Numerical Investigation of Progressive Collapse Resistance of Reinforced Concrete Frames Subject to Column Removals From Different Stories, Advances in Structural Engineering, 2016

December 13, 2017 | Author: NasarKhan | Category: Beam (Structure), Bending, Column, Earthquake Engineering, Reinforced Concrete
Share Embed Donate


Short Description

Journal paper...

Description

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

  Hottest Papers My Blog Post Doc Position What's new

NUMERICAL INVESTIGATION OF PROGRESSIVE COLLAPSE RESISTANCE OF RC FRAMES SUBJECT TO COLUMN REMOVALS FROM DIFFERENT STORIES Yi Li 1, Xinzheng Lu 2, Hong Guan 3, Peiqi Ren 2 1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education  Beijing University of Technology, Beijing 100124, China 2. Key Laboratory of Civil Engineering Safety and Durability of Ministry of Education  Tsinghua University, Beijing 100084, China 3. Griffith School of Engineering, Griffith University Gold Coast Campus, Queensland 4222, Australia Advances in Structural Engineering, 2016, 19(2): 314­326. Download Full Text PDF File Abstract: This paper presents a nonlinear static pushdown analysis to evaluate the progressive collapse­resisting capacity curves of typical RC frames under different deformation. Unlike the previous studies in which only a few typical columns, such as a column on the bottom storey, are removed, this study examines the column removal scenarios for various typical locations from different stories.

*May. 14. 2016, Paper uploaded "Parameter determination and damage assessment for THA­based regional seismic damage prediction of multi­ story buildings" Our Lab Collapse Prevention Committee

The primary findings are: (1) the Vierendeel action causes different internal forces in the beams of different stories, which reduces the progressive collapse resistance under the beam mechanism and delays the development of the catenary mechanism. This may result in the beams fail successively from one floor to another in a frame system, which differs from the theoretical assumption that the beams are damaged simultaneously on different floors; (2) seismic designs significantly improve the progressive collapse resistance under the beam mechanism, especially for lower stories. However such an improvement is less significant for the catenary mechanism and little improvement is found for the top regions of the frame structures. Further, a nonlinear dynamic analysis is conducted to validate the predicted resistances of the RC frames in satisfying the requirement of collapse prevention. The design parameters as specified in the existing codes are also discussed. Keywords: reinforced concrete frame; progressive collapse resistance; numerical investigation; nonlinear static pushdown analysis; nonlinear dynamic alternative load path analysis, Vierendeel action. DOI: 10.1177/1369433215624515 If you need the PDF version of this paper, please email to [email protected]  1. Introduction Progressive collapse is a disproportional collapse of an entire structure caused by initial local failure of a few structural elements due to accidental events (ASCE, 2005). Progressive collapse of building structures has two significant characteristics: (1) It is a mechanical behavior of the entire structural system, in which the collapse spreads throughout a large part of or the entire structure (Starossek, 2007). In resisting a progressive collapse, on the other hand, the primary contributor is the alternative load paths within the structural system (GSA, 2003; DoD, 2010). (2) It is a mechanical behavior of the structure under large deformations. In conventional laboratory tests and numerical studies, when a structural member reaches a certain amount of deformation after the peak load, the member is considered to have failed, and the residual loading capacity is not considered. For example, in the published literature on fire resistance (ISO, 1999) and seismic resistance (ASCE, 2007; Jiang et al., 2014), when the beam deflection reached 1/50 ~ 1/30 the span length, the beam was considered to have failed. This is however not the case for progressive collapse, where large deformation (deflection approaching 1/5 the span length) characteristics of the beams must be carefully examined (GSA, 2003; DoD, 2010). Under large deformations, the strength of the beams may have degenerated significantly, and the load­carrying mechanism may have changed (e.g., from a beam http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

1/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

mechanism to a catenary mechanism) (Li et al., 2011; 2014a; 2014b). These mechanical behaviors of the beams are very important to the progressive collapse resistance of the structure. Significant progress has been achieved in the past decade with the development of experimental technologies and numerical simulation methods which have promoted fundamental research being conducted on progressive collapse of building structures. For the experimental studies, both static and dynamic methods are used to investigate the collapse behavior of structural members and sub­ structural systems under large deformations. Using the static test method, researchers have studied these progressive collapse behaviors of different types of structures and components such as continuous concrete beams (Su et al., 2009), reinforced concrete (RC) or steel beam­column subassemblages (Yap and Li, 2011; Sadek et al., 2011), three­storey, four­bay small­scale RC plane frame structures (Yi et al., 2008), single­storey small­scale RC flat­plate structures (Yi et al., 2011) and two­storey full­scale RC flat­plate structures (Kokot et al., 2012). The dynamic tests are commonly conducted using a special device as substitute support components, so that the locally failed structural member can be simulated by instantaneously releasing the special device. Qian and Li (2012a; 2012b) conducted static and dynamic tests to study the collapse behavior of a corner substructure of a concrete frame and comparatively analyzed the dynamic effects of the collapse process. Some researchers took the opportunity of demolishing abandoned buildings to study the dynamic progressive collapse resistance of the entire structures (Sasani et al., 2007, 2011; Sasani and Sagiroglu, 2010; Matthews et al., 2007; Song and Sezen, 2009). As a supplement to the experimental techniques, numerical methods have proven to be convenient and efficient for analyzing the progressive collapse behavior of an entire structural system, either statically or dynamically. Specially, numerical methods are suitable for comprehensive analyses of the various factors that influence the progressive collapse behavior and resistance. Typical studies in this area include: composite slabs using refined finite element analysis approach by Alashker et al. (2010); a concrete structure subjected to the impact of an explosion using the same method by Luccioni et al. (2004); a multi­storey steel frame with two different types of brace members studied by Khandelwala et al.(2009), where the joints and the structural components were simulated using the macro model and fiber model, respectively; a 20­storey steel frame structure with two different lateral resistant systems investigated by Fu (2009); the effects of the number of stories and bays on the progressive collapse resistance of steel frame structures, evaluated by Kim et al. (2009); steel frames with different strengths and stiffnesses studied by Galal and El­Sawy (2010), who concluded that the strength of framed beams has a great impact on the progressive collapse resistance of a steel frame; the progressive collapse mechanisms of steel frames exposed to fire studied by Jiang et al. (2014). Further, Kim et al. (2011) used a randomized method to generate different values for such key parameters as the live load, the elastic modulus and the yield strength of beams, columns and braces. The sensitivity of the progressive collapse resistance of the steel frame to these parameters was analyzed. Similar reliability assessment on the damaged RC frame has been conducted by Huang et al. (2014). Kwasniewski (2010) also developed a detailed 3­D model to evaluate the progressive collapse resistance of an 8­storey steel frame in the Cardington Fire Test. The structural responses of RC structures under instantaneous and gradual removal of columns were also compared by Rahai et al. (2014). The majority of the numerical analysis on the progressive collapse of overall structural systems adopted the conventional nonlinear dynamic alternate path (NDAP) method to obtain the dynamic responses of the structures (e.g., the time­history responses of the displacement and the internal force after the initial local failure occurred). In addition to the dynamic responses, the progressive collapse resistance of structural systems is also helpful for understanding the progressive collapse mechanism. However, the structural resistance varies with the structural deformation. To evaluate the progressive collapse­resisting capacity curves of structures under different deformation, the vertical load applied to the structures (i.e., the gravity), should be incrementally changed in each NDAP analysis, similar with the incremental dynamic analysis (IDA) in the seismic studies (Vamvatsikos and Cornell, 2002). Obviously, that is very time­consuming. On the other hand, existing numerical research mainly focuses on the collapse response of entire structures after the initial failure of a few representative structural members, primarily the perimeter columns in the bottom floor (GSA, 2003; DoD, 2010). http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

2/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

However, accidents may occur anywhere in the building. Therefore, it is necessary to comprehensively study the progressive collapse resistance of structures under different deformation subsequent to initial damages occurring at all possible locations in a structure. This will provide a valuable reference for engineering practices, yet such research is still lacking presently. In RC frame structures with precast slabs, the frames as the subassemblies of beams and columns are the major structural components resisting progressive collapse. In this paper, a typical 8­storey RC frame designed in accordance with low seismic action is firstly studied. A nonlinear static pushdown analysis is performed to investigate the progressive collapse resistance of the RC frame with initial local damage at typical locations of different stories. In addition, the RC frame is redesigned in accordance with high seismic action and the effect of seismic design on the progressive collapse resistance is analyzed by comparing the two RC frames with different seismic design intensities. The resistance of the RC frames is also validated via the nonlinear dynamic method, in which the design parameters as specified in the existing codes are discussed. The outcomes of these analyses can be used as references to further develop the design specifications and methods specific to progressive collapse. 2. The RC Frame Model The RC frame structure studied herein has eight stories. The height of the first storey is 4.2 m, and that of the remaining stories is 3.6 m. A plan view of the RC frame is shown in Figure 1. The bottom ends of the first storey columns are fixed to the ground. Table 1 lists the sectional sizes and material parameters for the structural elements. The frame is designed in accordance with the Chinese Code for the Design of Concrete Structures (GB50010­2010) (MOHURD, 2010a) and the Code for Seismic Design of Buildings (GB50011­2010) (MOHURD, 2010b). The main design parameters are given in Table 2. To study the influence of seismic design on the progressive collapse resistance, reinforcement details are designed according to two different seismic design intensities, while the other design parameters (e.g., plan, sectional size, materials, etc.) remain unchanged. This results in two frame models, namely Model A, designed for a low­seismic­intensity region and Model B, designed for a high­seismic­intensity region.

Figure 1 Plan view of the RC frame Table 1.  Parameters of the structural members in the RC frame  

Section

Longitudinal beam (X­ direction) 300 mm ¡Á 500 mm

Concrete Reinforcing steel

Transverse beam (Y­ Column Slab direction) 300 mm ¡Á 550 mm ¡Á 120 mm 550 mm 550 mm (thickness) C30 ( compressive strength 20.1 MPa) Longitudinal reinforcement: HRB335 (yield strength 335 MPa) Hoop reinforcement: HPB235 (yield strength 235 MPa) Table 2.  Design loads and action on the RC frame

 

Seismic action* Dead load

Model A

Model B

50 cm/s2

200 cm/s2

Floor: 5.0 kN/m2, Roof: 7.5 kN/m2

Live load

Floor: 2.0 kN/m2, Roof: 0.5 kN/m2

Wind Load

Wind pressure: W0£½0. 45 kN/m2

Gravity load of filled wall

Floor: 8.0 kN/m, Roof: 6.0 kN/m

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

3/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

*PGA (peak ground acceleration) of the design earthquake (i.e., a 10% probability of exceedance in 50 years) The amount of reinforcement in Model B is about twice that in Model A. The additional reinforcement in the beams of Model  B is mainly  concentrated  at  the  beam  ends  where  the  seismic  action  is  large.  However,  there  is  no  significant  difference  in  the  mid­span reinforcement in the beams between the two models because such reinforcement is mainly controlled by the gravity load, which is the same for the two models. Note that the RC frame is designed to have a regular structural arrangement which is popular in engineering practices. As  such,  the  conclusions  achieved  can  provide  useful  fundamental  understandings  for  future  analysis  and  design  tasks  for progressive  collapse  prevention,  although  some  of  the  conclusions  may  not  be  applicable  for  irregular  structures  (this  should  be investigated case by case). 3. Analysis Method 3.1 Fiber beam element model A fiber beam element model named THUFIBER (Li et al., 2011; Lu et al., 2013) is used to build the numerical model of the frame. THUFIBER takes into account the complex interaction mechanisms of the internal forces in the beam sections and has robust material models covering both unloading and reloading paths. Published literatures show that RC frames exhibiting flexural and axial failures under large deformations can be satisfactorily simulated using THUFIBER with a very efficient computational workload (Li et al., 2011; Lu et al., 2013; Ren et al., 2014). 3.2 Nonlinear pushdown method The nonlinear static pushdown method proposed by Khandelwal and El­Tawil (2008) is used in this study to analyze the collapse mechanisms and the progressive collapse resistance of the RC frames. First, the initially damaged columns are removed from the RC frame models. Note that only one column is removed in each analysis. Then, an increasing vertical load q is imposed in the damaged region while keeping the design vertical load g unchanged in other regions (as shown in Figure 2). Using this method, the relationship between  the  internal  forces  in  the  structural  elements  and  the  structural  deformation  during  the  collapse  process,  from  small  to  large deformation stages, can be obtained and analyzed. Likewise the relationship between the progressive collapse resistance of the structure, i.e. the vertical load q, and the structural deformation can also be established (see the following discussion). All representative columns on  each  floor,  located  at  the  short­edge,  long­edge,  corner,  and  interior  on  the  plan  layout  as  shown  in  Figure  1,  are  considered individually as the initially damaged columns.

Figure 2 Load pattern for pushdown analysis of the RC frames 3.3 Nonlinear static analysis algorithm based on multiple point constraints A softening process occurs when the RC beams transform from the compressive arch mechanism or the beam mechanism to the catenary mechanism. Problems may be encountered with numerical divergence in the computation for this softening process if the model is loaded by a force­controlled algorithm. Therefore, the nonlinear static analysis algorithm proposed by Huang (2009) is used in this study. Based on multiple point constraints, this algorithm can shift the loading mode from a force­controlled algorithm to a displacement­controlled one which is robust to obtain structural responses at the unstable softening stage. This allows for an entire structural resistance curve of the RC frames to be successfully established, as facilitated by this algorithm. 4. Progressive Collapse Resistance of Multi­Storey Frames

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

4/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

In this section, the progressive collapse mechanisms and resistance of Model A (designed for a lower seismic design intensity)  are evaluated through the analysis of the resistance curves as a result of removing typical columns on different stories. The internal force­ displacement  relationships  obtained  for  multi­storey  frames  will  facilitate  examination  of  the  collapse  resistance  influenced  by  the interaction characteristics of multi­storey frames. 4.1 Characteristics of the resistance curve Figure 3 shows the resistance curves of Model A, obtained from the nonlinear static pushdown analysis, for various column removal scenarios. The displacement of the joint on top of the removed column  is chosen as the representative deformation parameter, and the relative resistance (i.e., q/g, where q is the applied vertical load, and g is the design vertical load) is chosen as the resistance parameter. The analysis results obtained after the removal of a column on the xth­storey are represented by the legend "xth" in the figure. It can be found that with an increase in the joint displacement in the long­edge, short­edge and interior areas, the relative resistance q/g develops significantly  at  the  initial  stage  and  then  declines  significantly  after  the  first  peak.  The  value  of  q/g  reaches  its  minimum  when =500~850 mm. However, with further increase of the joint displacement, q/g starts to increase again until the second peak. The first peak resistance is provided by the bending moments at the beam ends (viz., the beam mechanism), and the second is provided by the axial tensile force in the beams (viz., the catenary mechanism). Particularly, pushdown analysis of the corner column removal scenario shows that there is only one peak in the resistance curve, indicating that only the beam mechanism works in this area. This phenomenon coincides  with  the  results  discussed  by  Li  et  al.  (2011).  Note  in  this  study  that,  the  first  peak  resistance  is  referred  to  as  the  beam mechanism instead of the compressive arch mechanism because not all the beams are able to provide compressive arch action  under small  deformations  to  resist  progressive  collapse,  whereas  all  the  beams  can  resist  progressive  collapse  by  the  bending  moments developed at the beam ends.

(a) Short­edge area

(b) Long­edge area

(c) Corner area

(d) Interior area

Figure 3  Progressive collapse resistance curves for Model A

4.2 Resistance under the beam mechanism Figure  3  also  indicates  that  the  progressive  collapse  resistance  of  Model  A  under  the  beam  mechanism  has  the  following  two characteristics: (1) For the long­edge, short­edge and interior areas, if the removed column is located on the top two stories, the relative resistances  are  generally  higher  than  those  of  lower  storey  column  removal  scenarios  at  the  corresponding  locations.  The  highest resistance is achieved when the top storey columns are removed. In addition, no significant difference exists in the relative resistance if the removed column is located on the lower six stories. (2) For the corner area, no significant difference in the relative resistance can be observed regardless of the storey the removed column is located on. Again for Model A, designed for a lower seismic design intensity, the gravity load dominates the design, and the amount of reinforcing steel in the beams is mainly governed by the dead and  live  loads  acting  on  the  floor.  Due  to  the  same  design  loads  applied  to  each  floor,  there  is  little  difference  in  steel  amount  for  different  stories.  Therefore,  in  theory,  the progressive collapse resistance should also be similar among different stories. To explain the unusually high progressive collapse resistance of the top storey, the internal forces of beams L­1 and L­2 (see Figure 1) obtained under different column removal scenarios (i.e., the long­edge middle column of the xth storey is removed, where x=6, 7, or 8) are analyzed, as shown in Figure 4 and Figure 5, respectively. In the figures, F j  i and M j  i represent the axial force and the bending moment, respectively, of beams L­1 and L­2 on the ith storey after the long­edge middle column on the jth storey is removed.

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

5/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

(a) Force diagram (8th storey column removal scenario)

(b) Force diagram (6th storey column removal scenario)

(c) Axial force (d) Bending moment Figure 4 Combined action of beams on different stories (beam L­1) Considering the removal of the 8th storey columns, before the joint displacement   of the edge perimeter beam L­1 reaches 500 mm the internal force in this beam ends is a combination of the flexural and axial actions (F 8 8, M 8 8), as shown in Figure 4a. However, when columns on the other stories are removed, the internal forces in the beams on different stories are not identical: those in the beams just above the removed column (e.g., (F 6 6, M 6 6) and (F 7 7, M 7 7)) are close to (F 8 8, M 8 8), whereas (F 6 7, M 6 7), (F 6 8, M 6 8) and (F 7 8, M 7 8) are much smaller, as shown in Figure 4c and Figure 4d. This is due to the existence of the Vierendeel action in beams within the multi­stories. The axial compressive forces in the beams of different stories form a new moment MF  to resist the external loads, as shown in Figure 4b. Thus, the same forces in the beams of the upper stories are much smaller. For a single beam, the existence of the axial compressive force can significantly improve its flexural capacity. However, for a multi­storey frame subject to the external loads as a whole, only the beams closer to the lower stories and those having higher axial compressive forces (see Figure 4c) can benefit from improved flexural capacities. Hence, with an increase in the number of stories, such an increased, residual flexural capacity will continuously be redistributed or ¡°diluted¡±, leading to a converged resistance capacity. This  explains  why,  in  Figure  3,  the  removal  scenarios  on  the  top  two  stories  result  in  higher  relative  resistance,  while  there  is  little  change  in  the  relative  resistance  for  the  removal scenarios on the bottom six stories. Yi et al. (2008) also discovered this phenomenon of uneven internal force development among different stories in the progressive collapse test of a three­storey frame, where the reinforcement strain of the bottom beams was larger than that of the upper beams, which agrees with the above discussion.

For beam L­2 perpendicular to the edge, the difference in axial forces in the beams of different stories is not obvious (Figure 5c) because there is no compressive arch action. The difference in bending moments in the beams of different stories is also insignificant (Figure 5d). Therefore, the Vierendeel action does not  exist in beam L­2, and the progressive collapse resistance for different column removal scenarios from different stories is almost identical. The mechanism of beams C­1 and C­2 in the corner area (see Figure 1) is similar to that of beam L­2, in that the relative resistance of the top storey is not higher than those of the bottom stories (Figure 3c).

(a) Force diagram (8th storey column removal scenario)

(b) Force diagram (6th storey column removal scenario)

(c) Axial force

(d) Bending moment

Figure 5 Combined action of beams on different stories (beam L­2) 

4.3 Resistance under the catenary mechanism Figure  3  further  illustrates  that,  in  the  catenary  mechanism  stage,  the  relative  resistances  of  the  removal  scenarios  on  the  upper stories  are  higher  than  those  on  the  lower  stories,  for  corresponding  locations  of  long­edge,  short­edge  and  interior  areas.  This phenomenon  is  similar  to  that  in  the  beam  mechanism  stage.  It  can  be  found  from  Figure  4  that  the  internal  forces  in  the  beams  of different stories are not evenly developed when considering the interaction of different stories. If the removed column is located on the jth  storey,  the  internal  forces  in  the  beam  on  the  (j+1)th  storey  rapidly  convert  from  compression  to  tension  (700  mm  ~  900  mm). However, such transformation of internal forces is delayed slightly (800 mm ~ 1000 mm) on the (j+2)th storey but significantly (800 mm ~ 1200 mm) on the (j+3)th storey. Therefore, the catenary action of the beams cannot be fully developed  at  the  same  time. The http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

6/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

lower  the  storey  on  which  the  column  is  removed,  the  smaller  resistance  of  the  catenary  action  will  be  provided  at  the  same deformation, due to the delay of the transformation of internal forces in upper storey beams. 4.4 Structural vulnerability due to uneven internal force development Regarding the theoretical models in the existing codes (GSA, 2003; DoD, 2010), e.g. the catenary model in the tie force method, development of the internal force in structural members is assumed to be even from different stories when resisting progressive collapse. Based on this hypothesis, each floor system is considered to independently carry the collapse load acting on the corresponding floor, and in turn, the whole substructure will successfully resist the total collapse load, as shown in Figure 6. However, as discussed in Section 4.2 and  Section  4.3,  the  internal  force  development  among different stories is uneven  in  the  frame  system.  More  specifically,  the  forces developed in the lower storey beams are larger than those in the upper stories. Hence, the lower storey beams will be damaged prior to the others. After that, the same mechanism will be applied to the remaining upper storey beams, and in turn, they fail successively from one storey to the other. A similar mechanism also presents in the  Vierendeel action of the frame beams. Hence, the combined action of the multi­storey floors may reduce the progressive collapse resistance of RC frames.

Figure 6  Structural vulnerability due to uneven internal force development

5. Effect of Seismic Design on Progressive Collapse Resistance 5.1 Resistance under the beam mechanism The effect of seismic design on progressive collapse resistance is examined through Model B, designed for a high­seismic­intensity region. Figure 7 shows the resistance curves for this model obtained after the removal of the typical columns from each storey. It can be found  that  in  contrast  to  Model A,  for  which  the  seismic  design  intensity  is  lower,  the  relative  resistance  of  Model  B  in  the  beam mechanism stage increases significantly at various locations from the top to the bottom stories (Figure 7). This difference is because, for RC  frames  designed  with  high  seismic  design  intensity,  earthquake  action  is  dominant  in  the  design.  The  beam  reinforcement  is governed by the horizontal earthquake action therefore the amount of aseismic reinforcement gradually increases from  the  top  to  the bottom stories. This increased amount is mainly located in the beam ends; thereby significantly improving the flexural capacity of the beam. This  in  turn  increases  the  progressive  collapse  resistance  of  the  RC  frame  under the beam mechanism. Figure 8 compares the resistance  curves  of  the  model  for  two  different  column  removal  scenarios  from  the  top  and  the  bottom  stories.  It  is  evident  that  a stronger seismic design improves the progressive collapse resistance of the bottom floors more than the top ones because the increase in the amount of seismic reinforcement on the bottom stories is much larger.

(a) Short­edge area

(b) Long­edge area

(c) Corner area (d) Interior area Figure 7 Progressive collapse resistance curves for Model B 5.2 Resistance under the catenary mechanism Continuous reinforcement in the beam creates an axial tension under the catenary mechanism. Thus mid­span reinforcement is the http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

7/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

key  factor  influencing  the  progressive  collapse  resistance  of  RC  frames  under  the  catenary  mechanism.  Seismic  design  primarily increases the amount of bending reinforcement at the beam ends, whereas such an increase at the mid­span is far less. For the RC frames presented in this study, the amount of mid­span reinforcement for Model B increases slightly on the top storey as compared to Model A. In addition, the increase in the axial strength of the top storey beam is also very limited. Therefore, for the top storey column removal scenario, the progressive collapse resistance of these two models is basically the same under the catenary mechanism (see Figure 8). For the bottom frame beams,  on  the  other  hand,  the  amount  of  mid­span  reinforcement  increases  noticeably,  and  therefore the resistance clearly increases for Model B under the catenary mechanism (see Figure 8). However, such an increase is still less significant than that under  the  beam  mechanism,  as  shown  in  Figure  8.  Considering  delayed  development  of  the  catenary  mechanism  when  multi­storey beams work together, the interaction of the above aspects leads to such a change in the progressive collapse resistance due to stronger seismic design being less obvious under the catenary mechanism. This is illustrated in Figure 7 for Model B.

(a) Short­edge area

(b) Long­edge area 

(c) Corner area

(d) Interior area

Figure 8 Comparison between the progressive collapse resistances of Model A and Model B 

6. Assessment of The Design Parameters in The Existing Codes and Validation of The Collapse Resistance of RC Frames The progressive collapse resistance of RC frames can be evaluated via a nonlinear static pushdown analysis. Given that the collapse process exhibits a strong dynamic effect, a maximum structural resistance that is larger than the design vertical load must be attained in order to prevent progressive collapse from happening. In other words, the maximum relative resistance qmax/g must be larger than 1.0. Based on this consideration, the resistance of the RC frames is further validated using the nonlinear dynamic alternative load path method (DoD, 2010; Li et al., 2011). For the two models, Figure 9 presents the maximum relative resistance qmax/g versus the ductility ratio  for a total of 32 column removal scenarios. For the portion of the frames undergoing large deformations,  is defined as the ratio of the joint displacement corresponding to the maximum relative resistance to the yield displacement (Pujol and Smith­Pardo, 2009; Tsai, 2010). The expression qmax/g refers to as the peak value of each resistance curve presented in Figures 3 and 7. In Figure 9, the hollow and solid marks demote collapse and non­collapse scenarios, respectively, based on the outcome of the nonlinear dynamic alternative load path analysis. It is evident that a collapse can be prevented when qmax/g of the RC frames is larger than 1.236. In addition, the minimum values of qmax/g to prevent collapse for the corner, short edge, long edge and internal column removal scenarios are 1.296, 1.327, 1.236 and 1.280, respectively. The factors for different column removal scenarios are very close because the ductility ratios of RC beams designed by the Chinese codes (MOHURD, 2010a; 2010b) are similar (varying from 3 to 4).  This can also be confirmed by the existing theoretical

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

8/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

study (Li et al., 2014a) that the dynamic amplification factor (i.e. the required values of qmax/g, for regular RC frame structures) equals 1.33 when the structural ductility ratio equals 4.0.

Figure 9 Design parameters in the existing codes To facilitate practical designs, the linear static and nonlinear static methods are recommended by the existing codes as the simplified approaches to calculate the progressive collapse resistance. In these methods, the resistance directly obtained from the linear static and nonlinear static analyses, which is equivalent to the applied vertical load g in this study, is further corrected using the dynamic amplification factor (DAF) and the demand capacity ratio (DCR), respectively, to account for the dynamic and nonlinear effects. In the GSA guideline (GSA, 2003), the required equivalent values of qmax/g, i.e. DAF/DCR, are 1.0 and 1.33, respectively, for typical and atypical structural configurations (see Figure 9). The analysis results presented in Figure 9 demonstrate that the GSA requirement for atypical structures is adequately met whilst that for typical structures cannot be met which would lead to unsafe designs. This is because the dynamic effect is consistently neglected (qmax/g =1). In the DoD2005 guideline (DoD, 2005), a DAF of 2.0, considering the nonlinear effect, is used for the linear and nonlinear static analyses in which the required equivalent value of qmax/g is also 2.0. The validation shown in Figure 9 demonstrates that the design parameter is over conservative because the structures satisfying such requirement will exhibit elastic behavior after the column removal. In the DoD2010 guideline (DoD, 2005), different values of DAFs are given for the linear and nonlinear static analyses. An expression of the DAF for nonlinear static analyses is regulated by Eq.(1) which is presented by the solid line in Figure 9.  

(1)

It can be seen that the GSA2003 requirement is higher than that for typical structures but is still unsafe for the RC frames discussed herein. Model A and Model B will collapse under three and two column removal scenarios, respectively. This is because Eq.(1) is obtained from the numerical analyses of typical planar 3­storey and 10­storey frames, from which the results cannot accurately describe the nonlinear dynamic effect of all types of frame buildings (Marchand et al., 2009). On the other hand, two DAFs are regulated for linear static analyses in the DoD2010 guideline. The force­controlled DAF is 2.0 for fragile structures (i.e. =1). Although rational, this DAF is only suitable for the elastic response when no structural ductility can be considered. The deformation­controlled DAF, on the other hand, is much larger than 2.0. This is because it is obtained based on the equal deformation demand in which the same deformation is applied to the RC frames in both linear static and dynamic analyses (Marchand et al., 2009). This is however not the focus of this study in which the nonlinear static method is used and the equal deformation demand is not required. 7. Discussion and Concluding Remarks

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

9/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

In this study, the progressive collapse behavior of an RC frame with two different seismic design intensities is analyzed using the nonlinear static pushdown method. The following conclusions are drawn and recommendations for future seismic designs against progressive collapse are given: (1) Vierendeel action leads to uneven internal forces in the beams of different stories. This may result in the beams fail successively from one floor to the other in a frame system, which differs from the theoretical assumption in that the beams are damaged simultaneously on different floors. This action also weakens the compressive arch mechanism of the beams, and therefore reduces the relative collapse resistance of RC frames under the beam mechanism. This is particularly true for frames with more stories. In view of this, considering only the pure flexural strength of the beams under the beam mechanism is a conservative and rational approach for design purposes. Furthermore, the catenary action is the prototype model of the tie force method in existing design codes and is assumed to be able to develop fully on all stories. However, Vierendeel action delays the catenary action on upper stories thereby reducing the progressive collapse resistance. Neglecting this effect will result in insufficient resistance to prevent progressive collapse. Hence, this phenomenon is recommended to be considered in future improvement of the tie force method. (2) Seismic design significantly enhances the progressive collapse resistance of RC frames under the beam mechanism. However, such enhancement is not as significant under the catenary mechanism. This is because the axial tension of the catenary mechanism is provided by continuous reinforcement in the beam. Seismic design consideration significantly increases the reinforcement amount in the beam ends however such an increase at the mid­span is small. Hence, it is suggested that the progressive collapse resistance can be improved by extending and connecting a portion of the seismic reinforcement which is proven very effective and economical for RC frames constructed in the seismic areas. In addition, seismic design significantly enhances the progressive collapse resistance of the bottom stories. However, such enhancement is limited for the top stories. Thus, the top stories may become the weakest location in progressive collapse designs. This is a very important and useful finding, because more attention is paid to the bottom stories of a structure in the existing design specifications. It is therefore recommended to specifically examine the progressive collapse resistance of the top stories of RC frames to ensure a safe design of the entire structure. (3) Based on the RC frames presented in this study, the validation demonstrates that the GSA simplified static method for atypical structures provides adequate resistance to prevent progressive collapse; whereas that for typical structures is inadequate due to the absence of dynamic effects which would result in unsafe designs. Furthermore, the nonlinear static analysis specified in DoD2010 also leads to unsafe designs for the RC frames concerned and further investigations in this area are needed. Acknowledgement The authors are grateful for the financial support received from the National Basic Research Program of China (No. 2012CB719703), the National Science Foundation of China (No. 51578018, 51208011) and the Australian Research Council through an ARC Discovery Project (DP150100606). References Alashker,  Y.,  El­Tawil,  S.  and  Sadek,  F.  (2010).  ¡°Progressive  collapse  resistance  of  steel­concrete  composite  floors¡±,  Journal  of  Structural Engineering, ASCE, Vol. 136, No. 10, pp. 1187­1196. American Society of Civil Engineers (ASCE) (2005). Minimum Design Loads for Buildings and Other Structures, Standard ASCE/SEI 7­05, Reston. American Society of Civil Engineers (ASCE) (2007). Seismic Rehabilitation of Existing Buildings, Standard ASCE/SEI 41­06. Reston. Department of Defense (DoD) (2005). Unified Facilities Criteria (UFC): Design of Buildings to Resist Progressive Collapse. Washington (DC). Department of Defense (DoD) (2010). Unified Facilities Criteria (UFC): Design of Buildings to Resist Progressive Collapse. Washington (DC). Fu,  F.  (2009).  ¡°Progressive  collapse  analysis  of  high­rise  building  with  3­D  finite  element  modeling  method¡±,  Journal  of  Constructional  Steel Research, Vol. 65, No. 6, pp. 1269­1278. Galal,  K.  and  El­Sawy,  T.  (2010).  ¡°Effect  of  retrofit  strategies  on  mitigating  progressive  collapse  of  steel  frame  structures¡±,  Journal  of

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

10/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in … Constructional Steel Research, Vol. 66, No. 4, pp. 520­531. General  Service Administration  (GSA).  (2003).  Progressive  Collapse Analysis  and  Design  Guidelines  for  New  Federal  Office  Buildings  and  Major Modernization Projects, Washington (DC). Huang,  Y.  (2009).  ¡°Simulating  the  inelastic  seismic  behavior  of  steel  braced  frames  including  the  effects  of  low­cycle  fatigue¡±,  PhD  thesis, University of California, Berkeley, Berkeley. Huang,  Z.,  Li,  B.  and  Sengupta,  P.  (2014)  ¡°Reliability  assessment  of  damaged  RC  moment­resisting  frame  against  progressive  collapse  under dynamic loading conditions¡±, Advances in Structural Engineering, Vol. 17, No. 2, pp. 211­232. International Organization for Standardization (ISO) (1999). Fire Resistance Tests­Elements of Building Construction,  Part  1:  General  Requirements (ISO­834), Geneva. Jiang,  J.,  Li,  G.Q.  and  Usmani,  A.  (2014)  ¡°Progressive  Collapse  Mechanisms  of  Steel  Frames  Exposed  to  Fire¡±,  Advances  in  Structural Engineering, Vol. 17, No. 3, pp. 381­398. Jiang,  Q.,  Lu.  X.Z.,  Guan,  H.  and Ye,  X.  (2014).  ¡°Shaking  table  model  test  and  FE  analysis  of  a  reinforced  concrete  mega­frame  structure  with tuned mass dampers¡±, The Structural Design of Tall and Special Buildings, doi: 10.1002/tal.1150. Kokot,  S.,  Anthoine,  A.,  Negro,  P.  and  Solomos,  G.  (2012).  ¡°Static  and  dynamic  analysis  of  a  reinforced  concrete  flat  slab  frame  building  for progressive collapse¡±, Engineering Structures, Vol. 40, No. 7, pp. 205­217. Kwasniewski, J. (2010). ¡°Nonlinear dynamic simulations of progressive collapse for a multistory building¡±. Engineering Structures, Vol. 32, No. 5, pp. 1223­1235. Khandelwal, K. and El­Tawil, S. (2008). ¡°Assessment of progressive collapse residual capacity using pushdown analysis¡±, Proceedings of the 2008 ASCE Structures Congress, ASCE. Khandelwal,  K.,  El­Tawil,  S.  and  Sadek,  F.  (2009).  ¡°Progressive  collapse  analysis  of  seismically  designed  steel  braced  frames¡±,  Journal  of Constructional Steel Research, Vol. 65, No. 3, pp. 699­708. Kim, T., Kim, J. and Park, J. (2009). ¡°Investigation of progressive collapse­resisting capability of steel moment frames using push­down analysis¡±, Journal of Performance of Constructed Facilities, ASCE. Vol. 23, No. 9, pp. 327­335. Kim, J., Park, J. and Lee, T. (2011). ¡°Sensitivity analysis of steel buildings subjected to column loss¡±, Engineering Structures,  Vol.  33,  No.  2,  pp. 421­432. Luccioni, B.M., Ambrosini, R.D. and Danesi, R.F. (2004). ¡°Analysis of building collapse under blast loads¡±, Engineering  Structures,  Vol.  26,  No. 1, pp. 63­71. Lu, X., Lu, X.Z., Guan, H. and Ye, L.P. (2013). ¡°Collapse simulation of reinforced concrete high­rise building  induced  by  extreme  earthquakes¡±, Earthquake Engineering & Structural Dynamics, Vol. 42, No. 5, pp. 705­723. Li, Y.,  Lu,  X.Z.,  Guan,  H.  and Ye,  L.P.  (2011).  ¡°An  improved  tie  force  method  for  progressive  collapse  resistance  design  of  reinforced  concrete frame structures¡±, Engineering Structures, Vol. 33, No. 10, pp. 2931­2942. Li,  Y.,  Lu,  X.Z.,  Guan,  H.  and  Ye,  L.P.  (2014a).  ¡°An  energy­based  assessment  on  dynamic  amplification  factor  for  linear  static  analysis  in progressive collapse design of ductile RC frame structures¡±, Advances in Structural Engineering, Vol. 17, No. 8, pp. 1217­1225. Li,  Y.,  Lu,  X.Z.,  Guan,  H.  and  Ye,  L.P.  (2014b).  ¡°Progressive  collapse  resistance  demand  of  RC  frames  under  catenary  mechanism¡±,  ACI Structural Journal, Vol. 111, No. 5, pp. 1225­1234. Matthews,  T.,  Elwood,  K.J.  and  Hwang,  S.  (2007).  ¡°Explosive  testing  to  evaluate  dynamic  amplification  during  gravity  load  redistribution  for reinforced concrete frames¡±, Proceedings of the 2007 ASCE Structures Congress, ASCE. Marchand,  K.A.,  McKay, A.E.  and  Stevens,  D.J.  (2009).  ¡°Development  and  application  of  linear  and  non­linear  static  approaches  in  UFC  4­023­ 03¡±, Proceedings of the 2009 ASCE Structures Congress, ASCE. Pujol, S. and Smith­Pardo, J.P. (2009). ¡°A new perspective  on the effects of abrupt column removal¡±, Engineering Structures, Vol.  31,  No.  4,  pp. 869­874. Qian, K. and Li, B. (2012a). ¡°Slab effects on the response of reinforced concrete substructures after the loss of a corner column¡±, ACI  Structural Jouranl, Vol. 109, No. 6, pp. 845­855. Qian,  K.  and  Li,  B.  (2012b).  ¡°Dynamic  performance  of  RC  beam­column  substructures  under  the  scenario  of  the  loss  of  a  corner  column­ Experimental results¡±, Engineering Structures, Vol. 34, No. 9, pp. 154­167. Rahai,  A.,  Asghshahr,  M.S.,  Banazedeh,  M.  and  Kazem,  H.  (2013)  ¡°Progressive  collapse  assessment  of  RC  structures  under  instantaneous  and

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

11/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in … gradual removal of columns¡±, Advances in Structural Engineering, Vol. 16, No. 10, pp. 1671­1682. Ren, P.Q., Li, Y., Guan, H. and Lu, X.Z. (2014). ¡°Progressive collapse resistance of two typical high­rise RC frame shear wall structures¡±,  Journal of Performance of Constructed Facilities, ASCE. doi: 10.1061/(ASCE)CF.1943­5509.0000593 Sadek, F., Main, J.A., Lew, H.S. and Bao, Y. (2011). ¡°Testing and analysis of steel and concrete beam­column assemblies under a column removal scenario¡±, Journal of Structural Engineering, ASCE. Vol. 137, No. 9, pp. 881­892. Sasani,  M.,  Bazan,  M.  and  Sagiroglu,  S.  (2007).  ¡°Experimental  and  analytical  progressive  collapse  evaluation  of  actual  reinforced  concrete structure¡±, ACI Structural Jouranl, Vol. 104, No. 6, pp. 731­739. Sasani,  M.  and  Sagiroglu,  S.  (2010).  ¡°Gravity  load  redistribution  and  progressive  collapse  resistance  of  20­story  reinforced  concrete  structure following loss of interior column¡±, ACI Structural Jouranl, Vol. 107, No. 6, pp. 636­644. Sasani,  M.,  Kazemi, A.,  Sagiroglu,  S.  and  Forest,  S.  (2011).  ¡°Progressive  collapse  resistance  of  an  actual  11­story  structure  subjected  to  severe initial damage¡±, Journal of Structural Engineering, ASCE. Vol. 137, No. 9, pp. 893­902. Starossek, U. (2007). ¡°Typology of progressive collapse¡±, Engineering Structures, Vol. 29, No. 9, pp. 2302­2307. Song,  B.I.  and  Sezen,  H.  (2009).  ¡°Evaluation  of  an  existing  steel  frame  building  against  progressive  collapse¡±,  Proceedings  of  the  2009  ASCE Structures Congress, ASCE. Su, Y., Tian, T. and Song, X. (2009). ¡°Progressive collapse resistance of axially­restrained frame beams¡±, ACI Structural Jouranl, Vol. 106,  No.  5, pp. 600­607. The  Ministry  of  Housing  and  Urban­Rural  Development  of  the  People¡¯s  Republic  of  China  (MOHURD).  (2010a).  Code  for  Design  of  Concrete Structures, GB50010­2010, Beijing. The  Ministry  of  Housing  and  Urban­Rural  Development  of  the  People¡¯s  Republic  of  China  (MOHURD).  (2010b).  Code  for  Seismic  Design  of Buildings, GB50011­2010, Beijing. Tsai,  M.H.  (2010).  ¡°An  analytical  methodology  for  the  dynamic  amplification  factor  in  progressive  collapse  evaluation  of  building  structures¡±, Mechanics Research Communications, Vol. 37, No. 1, pp. 61­66. Vamvatsikos,  D.  and  Cornell,  C.A.  (2002)  ¡°Incremental  dynamic  analysis¡±,  Earthquake  Engineering  &  Structural  Dynamics,  Vol.  31,  No.  3,  pp. 491­514. Yap,  S.L.  and  Li,  B.  (2011).  ¡°Experimental  investigation  of  reinforced  concrete  exterior  beam­column  subassemblages  for  progressive  collapse¡±, ACI Structural Jouranl, Vol. 108, No. 5, pp. 542­552. Yi, W.J.,  He,  Q.F.,  Xiao, Y.  and  Kunnath,  S.K.  (2008). ¡°Experimental study on progressive collapse‐resistant behavior of  reinforced  concrete

frame structures¡±, ACI Structural Jouranl, Vol. 105, No. 4, pp. 433­439. Yi, W.J.,  Kunnath,  S.K., Zhang, F.Z. and Xiao, Y. (2011). ¡°Large‐scale  experimental  evalua on  of  building  system  response to  sudden  column

removal¡±. Proceedings of the 2011 ASCE Structures Congress

List of Tables Table 1.                     Parameters of the structural members in the RC frame Table 2.                     Design loads and action on the RC frame List of Figures Figure 1.                   Plan view of the RC frame       Figure 2.                   Load pattern for pushdown analysis of the RC frames Figure 3.                   Progressive collapse resistance curves for Model A Figure 4.                   Combined action of beams on different stories (beam L­1) Figure 5.                   Combined action of beams on different stories (beam L­2) Figure 6.                   Structural vulnerability due to uneven internal force development

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

12/13

5/28/2016 Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories, Advances in …

Figure 7.                   Progressive collapse resistance curves for Model B Figure 8.                   Comparison between the progressive collapse resistance of Model A and Model B Figure 9.                Design parameters in the existing codes

 Corresponding author, Email: [email protected], Phone (Fax): +86­10­62795364 Introduction

Research

Application

Teaching

Publications

Download

Issues

Others

  我的网络日志 Following are advertisements

Google  

  Custom Search  

http://www.luxinzheng.net/publication7/2016­ASE­Progressive_Collapse_Different_Stories.htm

13/13

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF