# NOTES FOR ENGINEERING SCIENCE (SEM 1)

October 25, 2017 | Author: Leena Muniandy | Category: Force, Acceleration, Potential Energy, Velocity, Kinetic Energy

#### Short Description

THE NOTES ARE VERY USEFUL FOR STUDENTS UNDER SEMESTER 1 WHO ARE DOING DIPLOMA IN ELECTRONIC ENGINEERING. THE NOTES ARE P...

#### Description

Ntr}ES

far

EnglnEEFl ilg

sctEilcE -l

Fslilctatir prunicr Sultqn \$hlruddin Adul

,rir

\$tdt

lJ-Ir-,

T

UIJIL

FglifrEtmit(

-

I

Frcnier sulfan \$alehuddin ^{bdul .*ri: shsh

/1"." ,'

t'/'

).,

t/t .

Engineering Science -TL

Topic 1: Physical Quantities and Measurement t4"4{

^

eu+{|M

y-

o't t'Yre *uau'#'i' f )e#nr,srhau *{ , deriv'ed ?*

Dut"oh"n

-sl u*'|{

€ pru*tP*'s

Physical Quantity

f,gr6r'2

r

Physicat quantity is the numerical value of a measurable property that describes a physical system's state at a moment in time. It is a physical property that can be quantified, can be measured with a measuring instrument. Examplei of physical quantities are rnass, volume, length, time, temperature,electric current-

\.il

Quantities can be divided into two types 1. Base quantities 2. Derived quantities

:

Basic quantities

Basic qLJantittes are the fundamental quantities that are not related to each other and that are use to derive all other quantities.

There are seven basic quantities. They are

1. length 2. time 3. mass 4. Thermodynamic temperature - 5. electric current of substance Q "rnornt intensity (7)luminous

'\b

.

Derived quantitigs " Derived quantities are just quantities that are derived from one or more basic quantities. For exarnple: Area is a derived quantity because it is derived from the basic quantity length.

Area=length*length Volume is a derived quantities because it is derived from the basic quantity length. volume = length " length * lengtlt Density is a derived quantity because it is derived from length and mass, two basic quantities. * * density = mass/(length length lengttt)

JMSK/sllee

1

4

88101 fngineering Science -T1

lnternational System of Units All systems of weights and measures, metric and non-metric, are linked through a network of international agreements suppofting the lnternational System of Units. The lnternational System is called the Sl, using the first two initials of its French name Sysfeme lnternational d'lJnitds. It is a scientific method of expressing the magnitudes or quantities of important natural phenomena. There are seven base units in the system, from which other units are derived, This system was formerly called the meter-kilogram-second (MKS) system.

Sl Base Units The Sl is founded on seven S/ base unifs for seven base quanfifr'es assumed to be mutually independent, as table 1.

Table Ba.se

{.

Sl base units

Name

quantity

\$5'mbol

Sf base unit

lfftgth

nra.ss

kilo.greu

elech'ic crnreflt

t#fiuddj .'G"g41

',,,

arupere A ,,kei , , K '

amourtofsrlrstatrce roole luminousiat€asitrr .

JMSK/sllee

..,

t,

:

..''r

i

kg

mol

..r.a :,. ,:3.andgla cd ,, i-ra:,,:r.:,' ., :.,.::',

:..:.''

'

88101 Engineering Science

Definitions of the \$l base units

Unlt of

length

meter

The meler is the tength of ttre path travelled iry light in vaurum dunng a time interval ot

seconc

lllgg i92

458 cf

a

Unitofmass kilogram lheklogramrstheunloimass:ltiseqra!totrem*ssoftlprr.tematinnalprotolypeofthekrfogram

.

.qe

tltr

Unitof

time

second fte selond

is the duration of

g 192 031 770 peiiods

of the raiilation conesponding to \$ie

beltireenthelt;o hvperfine levels oftne ground state ofifte cesiilrTi 133

arnpere of electric cunent Unit

atom.

transiiian

,.9rg

Tflffi

The ampere is ihai constanf cunent s'hich, ii mair\$ained in lwa straighi parallei concuctors of irifrrute of negltgrbie circular cioss-sec&on. and phced 1 nreter apan in vacium, vrould produce bet*een

[en\$h, ..ete

lhese

' H

conductors a foree equal to 2 x 10-i neulion per rneter of lerEti.

Unftof kelvin Tlrcltelvin,unilofiherrnoivnamictenperature,isthefractronl2i3.lti0fthethennoCynamictemperafurecf ..r"p H* thermodynamic tlu triple grornt of nater. temperature

Unlt

of mole of

amoun{

1 The fiole is fre anrftnt of \$\$slance of a sysiem which cffiiains as ma*y elemenian entlites as tl€re afoins in 0.012 kiloEam ol carbon 12; its

wr*ol

is

'

mo[."

are ..St'

H

substance 2. F/hen the moi,e is useC. the elemeniarr e\$rtres must tre speciiled and may be atoms. mo{ecules. .ofis,

other padcles. cr speu{ied groups of

Unit of oandela luminous frquency

The candela is tlte klmtnous intensitv. in a given

intensity

JMSK/sllee

540 x 1012

elediots.

su\$ par{i&s.

d #*t" s{eraiian ffiJ

dredion oi a source thai emits rnonochronutic

hert and that has a radlant intensrty in tha{ direstion of 1/683 waft per

-fr

I

88101 Engineering Science -T1 I I

Sl Derived Units Other quantities, called derived quantities, are defined in terms of the seven base quantities via a system of quantity equations. The Sl derived unifs for these derived quantities are obtained from these equations and the seven Sl base units.

Table

2. Examples of Slderived units SI derirerl onit

..*---.-.-,*-----

.---...-.-.-.---.:-j:>

gea

:

,,

,., .,,

Sdel!{q

-,i

cubicmeter

Sp€E4rdoq'

. ,oetefpq second ",' ,' .

aceleration

metupa . ..,

sas: dcnsi&' qpeiific

rohne

m-

second

.a

tn5

.

u's

sEared

.n'

recipocdneter .\

tEfi'

hlcgrdr[per cubhneter

rubico4qpqirlag!ry

ctrrcdemir.*

allprr€ Pef

Cagnelhfeld sr€oge

SrygrePer:meter

aoou{-of-slb\$ancc coac.er8diou

oclcpcr nrbic rcter

!ffi'r..

t1!f]!pq,lge*;i

nusstaction

ldogaru pcr

JMSK,/sllee

::.'

:..

rrriune

ware\$rrober

l--:

s,quafr

:':-:

,

{ml

netef

'

hlogu,

r.

:i::'

',,

aobn' .,,,,,.'; ..,:,,,:;

:' ,

-,,

wbich ar4' be represeced

bl

",-,, the

,,

qnbcr

:

1

1

kgfu= I

88101 Engineering Science -T1

For ease of understanding and convenience, 22 Sl derived units have been given special names and symbols, as shown in Table 3.

Derived quantity

Expression in termr of Symbol oiher Sl units

Name

Table

3. Sl derived units with special names and symbols Sl

plane angle

solid angle

fteqUegCy:.,', ::'i

,

r: r',:: rr.::',,,

;,: :.: ri ,,',,

'rPascal

:,

:

:,

:

joule

.,*att,'," ",,

'

electric charge" quantilv of electricity electricpotential difference,

electromotiveforce

:

.

' .

'

''

,i.',.VOlt;t,

capacitance

',:::

,

,

electricresistano: t

i,

siemens i'

,,.,1,,.,,,.ii,,,.,:,,,

-,.',.

, .,,,.,t.',

-.,t,, ,.

.:aeber

,

, .

magneiicflux densig

tesla

indudance

,1gfrv '-,,,,,:,;

,

,

Celsius temperature

iu*itiOiii"

.j,..',.,.,''

,.=;irt.,.' ,:,,ri';,,:.

,,,;1,' ,; ,

'

.

I

ianuA*j"l',-.

'

JMSK/sllee

;tlr1A,

,;,,.,,nftg'-s{A1 '

',a

cA/ v!A

'

s

Ai/

11

lx

,

,.,:'

,a5jbvert

katal

.r

:1:

,'

'"'

m-2.kg-t.s4.42

::

:-

zXjj:{2

#tgs€.A'1

Wbim2

kg's-2-4-1

v,lb,'A

tnz.kg s-e.4-z

.

cd;5rftl

'

'

K rnr-m-.2-Cri=Cd

lmim? 'n?

.,

*.4 66 = 6-216

,.s-1

rBq Gy

J/kg

€Y,,

'idni

kat

,r,'n

rn-2.kg-1.s3,A2

V9'

,wb T

,,*

:,';fggguere!

mr*g s-r

,

sA

',V i,

t,,

'

gray

catalytic activity

m2.kg-s-2

"c

lul ti11,,1,.i,.,,,..::,=',,.',.',

m-r*g s-r

N.m

degree Celsius

l'.l*nen.i

illuminance

ffiVtpr!..i

N,'nf

J

F

ohm,.,::,t:,:,

,,

electric conductance

rna\$iiri"*ut

.,

1 {bi

m'kg 5'2

c

:

=

,Pa

Ji's

coulomb

1{bi

,'s'j.

'r1z '

:

mnrl= rp2-r1-2

tl

energy, work. quantity of frcat

:'

.

51 ic)

ne,uton

. '...

derived snlt

.,riierE :,

,

force

pressure,.stress

Expression in terms of Sl base units

'*'"t

"':','1.1.t''I

.

ml:s-z s-1-mot

.

:,

E

88101 Lngineering Science -T1

Sl prefixes A prefix may be added to aunit to produce a multiple of the original unit. All multiples are integer powers of ten. The 20 Sl prefixes used to form decimal multiples and submultiples of Sl units are as below.

Factor Name Symbol FactorName Symbol

1024 yotta y 1021 zetta Z

10-1 ,deii 'd fi2 centi c

101s exa 1015 peta

10-3 rnilli 'm 10-6 micro l,

E

p

tera' T 10e giga G 1012

106 mega M 103 kilo k 102 ftecto h 101 deka.da

10

9

1A-i2

nano

n

pico

p

10-15 femlo f 10-18

atto

a

!o'21 zepto z 10_24

yocto y

Conversion of Units Conversion of units involves comparison of different standard physical values, either of a single physical quantity or of a physical quantity and a combination of other physical quantities Refer some conversion factors, and examples of unit conversion on page 7-10.

JMSK/sllee

l

Bro

o+rncrnrtr cIjw

1.2

SGTENCE

colwERSlON OF Ul'llrs

Table 3: Convers[qq

Gonversion factqls-

L'IIdI ILILY

1m= 1606:= 1-o'cm { lzm , tn3 tn - 0-621 mi

Length

1 kg =.1O00 g ! 1 metric ton = 1qq9-!g

Mass

@s r yeir

Time

= 8J6 x 103 h i trort = 6o minulqg-= J.999 sesgnq f raaian (rad) = 57.30o ro - n A1-74\ rad

Angle

Power

t froriepower

\

(hP) = 746 w

1kw=1000 w

Unifs conversion Basic.

tlnit conversion Weight

Time

Lenqth

) 1m + 1cm)

1 km

1000m 100cm

t hour )

60 minutes

10mm

1 minute

)

6O seconds

1 kq

)

1000q

Example I

Thetalleststudentinclassiswithaheightof2.02m.

How tall is he in feet?

Solution: Provide the conversion fa'dor 1m = 3'281 ft 1 = 3.281 ft/m

2'o2'"

Example2

= [3:3i)&1!?' ={r36'Tt -= 6"#++

o,*,

Give this area in square A bacterium has an area of 2.35 square inches. millimeters'

SOIutlon: Zamszuln'

1

FI

I

OO4-TDCHnrrCI]TN SCIENCE

provide the conversion factor 1 in.? = (O.OZ54)2,rnm2

Etample 3 Convert 3.5 kilometre to meter. SoLution:-

1km :101m =1000m l9:0h 3.S km = 3.5 Lr * = 3.5,,x 1000 m =

tkm

\

3500 m

\$:-

Convert 3.27 mtligmrn to gram.

*"\ 3

D'

Example 4

"rr'-" /"

,.

.'

I

,,(7

_S_qAtjon;_

"-1fng -1O-39 =0.001 g 3.27 ms 3.27y-

:

;g.z7x 0.001 s

fu

= o,00327 e

Examole 5 Convert 0.087 kW

to

mW.

5"s"fuUon.'

kW*W* 0.087 kw

W* mW

I :

I

,i:

r 'f tr::

mW

:

o.o87

n* *

:

B7w

x

1000w

=

lkw

looomw

lw

=

0.087 x 1000

w:

87 Watt

87 000 mW

Example 6 Convert 670 0OO me to ke.

Solution:

mf)* fl* ka. 67O O00

E, ;r.

mfl :67Oo00 mfl

*

lQ l000mC)

=

670sl,. lkQ = o.67ke 1000c)

i&: d:,.

?amaaui.s

5' &l Dill: &,' €:.

F''L1

f'

I

60

kmlh:

.--

3600s

)F.f

76.67 mls

Example 8

)9

Conveft 9.8 m/s to krn/h. s.B m/s

{ Example

=

n,tl. " l9?0t ls ,1*. 1000m th

= 35.28 --- km/h.

S

9

>{

A speed-trap mission in Utara-Selatan highway has determined the speed * '-* :O lirnit as 110 kilometer/hour (km/h). Express the speed in meter/secoitAirf6f*

(&* // -/.,Y .,''

Solution:

g"i

factor 1 km = 1000 m and t hour = 3800 s

provide the conversion

rewrite the factor of

s

*o

/;,

1

1 = 1000 m/km and

t

hour

11o krn/h = (110 km) (1000 m ) (

m

km

i

U36oA hr/s

t 3G00

hr) = 30.5 m/s s

Exarnrfie 10 'A capacitor is with capacitance 1.2 x 10-6 F. what is its value in picofarad(pF)? Solution: provide the convers.ion factor 1 pF = 10-12 F

rewrite the factor of 'f a= -

r

Tdtr2

1.2 x 10-6 p

pF

F

1 -^r? =1012oF

= (1.2 x 10-6FX

F 1O12

pF) = 7.2x 106 pF F

z..t:r^-=rir.

E 4 tl n:

4 IH rE

BIOO4-TECI{ISI CIA]\I SCIDNCE

ACTIVITY .

1,1r. State: a) base, quantity b) .derive quantity L.2. Convert a) 56km/htom/sM b) 40 N/m to kN/m 1.3. Convert a) 0.37 meter'to.decimete, dt b) 5oo miligram to gram t l*-^ Q, L.4. Convert t' '

1,5.

a)

700 mg/cm3 to g/cm3

b)

900 9/cm3 to kglm3

,l-o\i

Convert 90 km/h to m/s.

t

tn:

l0C6w4: \j

FEEDBACK

1.1. a) b)

Base quantities its length, mass, Derived quantities its area, volume, velocity and pressure.

L.2. a)

56km/h

iooo = 56x-60x60

b) 40 N/m

4o k*/.n = 1000

m/S

= =

15.56 m/s 0.04 kN/m

1.3- ^i-3 0.37m = 9Orn : 0'37x10dm = 3.7dm t0-, \ 1\!y,{st 5oo mg = 5oo x o.ool s = 0.5 dN)) 700 ms/cm3 = J9L sTcm' = a.7 slcm3

.\r'9 ^N \00u

'

b)

1.s

:

,

n,

e00 000 ks/m3 [#U)*, [#) -' = eokm/h = [H#) '" = 25 mls e00 s/cm3

la

'ITEKOU}(IW.

:

lrit

'Pr. Measuring instruments are v-eryimportant in order to measure physicall'guantiiies-: .''- -- -'-''-:--' rEe'rsrrrLJ' Three equipm'ent for measuring length is:

' i; . iii.

migrometer screw

gauge

rt!'

a:

t! f,i -t' 'I: ;1. ' f::

f.

'{t

Micrometer Screw Gauge Vernier Caliper Meter ruler

*

€';

d:

Micrometer screw gauge/ Tolok skru miirometer

ij: ll

Used to measure very small length such as the diameter of a wire Has two scales: (a) Main scale on the sleeve(skala utama mengufuk) (b) Circular scale on the thimble(skata bidal membuiat) . Smallest divisiorr is 0.50 mm Can measure lengUi acolrately up to 0.01 mm

'.

.

RaJche(race0

ry of lass,

f,

Q,

scale

: 35 x O.Oi mm = 0.35 so, actual reading is: (6.5 + 0.35)mm Vernier

Ir..

= 6.85 mm

:isr

aM

b)

Vernier Calipers

es or

a

units

a

a a

Areen

actor

rtity)

a

*; ti: -g:

Use correctly the following measuring equipment

a)

:"{;,

tEi

'

ruler

-

E"

Used in rneasuring length Smallest division is 0.01 cm (0.1 mm) Can measure length accurateiy up to b.ot cm Useful in measuring the inner diameter of an object Divided into main scale and vernier scale jaws (rahang

ctors

et -f l*"'

o stJi).- 3e7"_

II

e' +..

q: 2'i

9' 'F:,:

tabung

uJl

Meter ruter

c)

Used in measuring length Smallest division is 0.1 cm (1 mm) Can measure length accurately up to 0.1 cm Measurement haveto be recorded accurately to 0.1 cm

r--

!.-in'

,*

.1

;ir' .i

.i

'

Length of object = 4.2 cm

ACTIVITY

1.

Discuss

a. Scalar quantities and give 3 examples b. Vector quantities and give 4 examples c. Mornent

d.. Weight

2.

Change the following units: a. 1O0 kg - 50 g (in gram)

b. 1O tan (in gram) . c. 15 micron (in meter) -' d. looTtTj (in m/s) e. 10 9/cm3 (in unit kg/m3)

( +4^

* r.=Oo h5

t2

.

,.1'.r'. E.r'

,,":

.'t

Exercise

t,

-

l.l

t. Convert (a) 3 x 10sm/s

'i

liot x:rol ,

loh^ rA' t> n;-,9

,

[email protected] (b) 30tu1h to mls (c) 1.3 kg/m3 to gl*tt

*-t

'ro

{d) 7.g glcnf tn kdr.3 i"i ZSfr2 1,o n"(D 45 d to mm3

to

*

=Li{

:

= |o

'

cm

til;;;""

t ' 3. calculate the volume of a spher-e ofradius l0 cm in V (a) run3 (b) cmt (rl -t ,'

:

'

4.

'

':

.1,

Convert

(a) 60 ms to h (b) 20 pm ro to m \D) zv (c) Is s

(d) 30 pA to mA (e) rwu 1000 km to cm (0 400 JkgrICr to

tops

5''

u I

JgrKr - :

ci,

,ffi

I3>r'ro-{gc*1

Convert the unit of the following quantities and write the final answer in the standard

@.

>o

(a) 13600 kd*t to glctl3 (b) 6400 lsn to m (c) 6x l0-7m to ;rm.

prr *t'r

.s

)o1,m K to- \

'

\

lf".

: )* tO -t'-

l-l^

t tr' '-

,*

\cx

tsoO

nt

i9O c ^^ lO *:t.. .:

1;g

MEASTIREMENT oF. LENGTII

\

Measuring instrrments are very important in order to measurephysical quantities. Three important things should be remembired when using measuring iorn r*rott

l,t-:

(a) All measuring insfiuments have tbe smallest

scale that tliey could measur€. Therefore, the decimal places given by these instuments cannot be s'inaller than their smallest scale.

.t

(b) The zero elTor of the inshuments

must be determined before measurements can be made. Zero elTor is a non-zero reading shown by an instrument while it is not measuring any object

'

(c) To get a true reading, we need to subfact

the zero error from the obsbrved

Observed reading - Zero

\.o

ewor \=

ir

:

@-'o o)"

2. Cilculatethe *tifi#"^ area of a circle ofradius rvuru l0 in -ii-;;"o':* -'

/....

^q'b'

(1.1)

l

e

;!\

srnn f,

'r:--l^

( qd\$**

.i..\

t:..

L

{c:

lg d,0

I

1

It

g;c;]

-f

*

MEASUREMENT

Metre rule

ta

Mefre rule is a measuring insfiument that is commonly av,ailable in the laboratory and its smallest scale is 0.1 cm; Thereforen the reading from a nnene rule must not be more than one decimal place in the unit of centimete. The zero efiot for a mefie rule is the end *0" elTor, wlich is the end portion of a met'er rule which does not give an accurate rcading due to wear and tear.

Vernier Calliper used to measure a length of between 0.10 cm and 12.00 cm. Figure 1.1 shows a venrier calliper which consists of the

Vernier calliper is a measuring insfiilment that is usually following

'

components:

'

?.j

6y Outstde jn+,s to measure the outside diameter or the length of an object, (b) inside jcws to measure the the inside diameter of an object such as apipe, (c) tatl to measure the depth of a hole or a test tube, (d) main scale and (e) verniey scale.

?.

insidejaws

main scale

vcmicrscalc

outsidejaws

0

N

V**

Main scalercading = 1.70 em Vernicr scale rcading = 0.07 cro

Rea

V

A

-1,, : A vetoilS H L =