NOTES FOR ENGINEERING SCIENCE (SEM 1)
Short Description
THE NOTES ARE VERY USEFUL FOR STUDENTS UNDER SEMESTER 1 WHO ARE DOING DIPLOMA IN ELECTRONIC ENGINEERING. THE NOTES ARE P...
Description
Ntr}ES
far
EnglnEEFl ilg
sctEilcE -l
Fslilctatir prunicr Sultqn $hlruddin Adul
,rir
$tdt
lJ-Ir-,
T
UIJIL
FglifrEtmit(
-
I
Frcnier sulfan $alehuddin ^{bdul .*ri: shsh
/1"." ,'
t'/'
).,
t/t .
Engineering Science -TL
Topic 1: Physical Quantities and Measurement t4"4{
^
eu+{|M
y-
o't t'Yre *uau'#'i' f )e#nr,srhau *{ , deriv'ed ?*
Dut"oh"n
-sl u*'|{
€ pru*tP*'s
Physical Quantity
f,gr6r'2
r
Physicat quantity is the numerical value of a measurable property that describes a physical system's state at a moment in time. It is a physical property that can be quantified, can be measured with a measuring instrument. Examplei of physical quantities are rnass, volume, length, time, temperature,electric current-
\.il
Quantities can be divided into two types 1. Base quantities 2. Derived quantities
:
Basic quantities
Basic qLJantittes are the fundamental quantities that are not related to each other and that are use to derive all other quantities.
There are seven basic quantities. They are
1. length 2. time 3. mass 4. Thermodynamic temperature - 5. electric current of substance Q "rnornt intensity (7)luminous
'\b
.
Derived quantitigs " Derived quantities are just quantities that are derived from one or more basic quantities. For exarnple: Area is a derived quantity because it is derived from the basic quantity length.
Area=length*length Volume is a derived quantities because it is derived from the basic quantity length. volume = length " length * lengtlt Density is a derived quantity because it is derived from length and mass, two basic quantities. * * density = mass/(length length lengttt)
JMSK/sllee
1
4
88101 fngineering Science -T1
lnternational System of Units All systems of weights and measures, metric and non-metric, are linked through a network of international agreements suppofting the lnternational System of Units. The lnternational System is called the Sl, using the first two initials of its French name Sysfeme lnternational d'lJnitds. It is a scientific method of expressing the magnitudes or quantities of important natural phenomena. There are seven base units in the system, from which other units are derived, This system was formerly called the meter-kilogram-second (MKS) system.
Sl Base Units The Sl is founded on seven S/ base unifs for seven base quanfifr'es assumed to be mutually independent, as table 1.
Table Ba.se
{.
Sl base units
Name
quantity
$5'mbol
Sf base unit
lfftgth
nra.ss
kilo.greu
elech'ic crnreflt
t#fiuddj .'G"g41
',,,
arupere A ,,kei , , K '
amourtofsrlrstatrce roole luminousiat€asitrr .
JMSK/sllee
..,
t,
:
..''r
i
kg
mol
..r.a :,. ,:3.andgla cd ,, i-ra:,,:r.:,' ., :.,.::',
:..:.''
'
88101 Engineering Science
Definitions of the $l base units
Unlt of
length
meter
The meler is the tength of ttre path travelled iry light in vaurum dunng a time interval ot
seconc
lllgg i92
458 cf
a
Unitofmass kilogram lheklogramrstheunloimass:ltiseqra!totrem*ssoftlprr.tematinnalprotolypeofthekrfogram
.
.qe
tltr
*ffi (adar
Unitof
time
second fte selond
is the duration of
g 192 031 770 peiiods
of the raiilation conesponding to $ie
beltireenthelt;o hvperfine levels oftne ground state ofifte cesiilrTi 133
arnpere of electric cunent Unit
atom.
transiiian
,.9rg
Tflffi
The ampere is ihai constanf cunent s'hich, ii mair$ained in lwa straighi parallei concuctors of irifrrute of negltgrbie circular cioss-sec&on. and phced 1 nreter apan in vacium, vrould produce bet*een
[en$h, ..ete
lhese
' H
conductors a foree equal to 2 x 10-i neulion per rneter of lerEti.
Unftof kelvin Tlrcltelvin,unilofiherrnoivnamictenperature,isthefractronl2i3.lti0fthethennoCynamictemperafurecf ..r"p H* thermodynamic tlu triple grornt of nater. temperature
Unlt
of mole of
amoun{
1 The fiole is fre anrftnt of $$slance of a sysiem which cffiiains as ma*y elemenian entlites as tl€re afoins in 0.012 kiloEam ol carbon 12; its
wr*ol
is
'
mo[."
are ..St'
H
substance 2. F/hen the moi,e is useC. the elemeniarr e$rtres must tre speciiled and may be atoms. mo{ecules. .ofis,
other padcles. cr speu{ied groups of
Unit of oandela luminous frquency
The candela is tlte klmtnous intensitv. in a given
intensity
JMSK/sllee
540 x 1012
elediots.
su$ par{i&s.
d #*t" s{eraiian ffiJ
dredion oi a source thai emits rnonochronutic
hert and that has a radlant intensrty in tha{ direstion of 1/683 waft per
radralron
-fr
I
88101 Engineering Science -T1 I I
Sl Derived Units Other quantities, called derived quantities, are defined in terms of the seven base quantities via a system of quantity equations. The Sl derived unifs for these derived quantities are obtained from these equations and the seven Sl base units.
Table
2. Examples of Slderived units SI derirerl onit
..*---.-.-,*-----
.---...-.-.-.---.:-j:>
gea
:
,,
,., .,,
Sdel!{q
-,i
cubicmeter
Sp€E4rdoq'
. ,oetefpq second ",' ,' .
aceleration
metupa . ..,
sas: dcnsi&' qpeiific
rohne
m-
second
.a
tn5
.
u's
sEared
.n'
recipocdneter .\
tEfi'
hlcgrdr[per cubhneter
rubico4qpqirlag!ry
ctrrcdemir.*
allprr€ Pef
Cagnelhfeld sr€oge
SrygrePer:meter
aoou{-of-slb$ancc coac.er8diou
oclcpcr nrbic rcter
!ffi'r..
t1!f]!pq,lge*;i
nusstaction
ldogaru pcr
JMSK,/sllee
::.'
:..
rrriune
ware$rrober
l--:
s,quafr
:':-:
,
{ml
netef
'
hlogu,
r.
:i::'
',,
aobn' .,,,,,.'; ..,:,,,:;
:' ,
-,,
wbich ar4' be represeced
bl
",-,, the
,,
:, :,-ad#
qnbcr
:
1
1
kgfu= I
88101 Engineering Science -T1
For ease of understanding and convenience, 22 Sl derived units have been given special names and symbols, as shown in Table 3.
Derived quantity
Expression in termr of Symbol oiher Sl units
Name
Table
3. Sl derived units with special names and symbols Sl
plane angle
radian {ai
solid angle
steradian
fteqUegCy:.,', ::'i
,
r: r',:: rr.::',,,
;,: :.: ri ,,',,
'rPascal
:,
:
:,
:
joule
power,radiantflux
.,*att,'," ",,
'
electric charge" quantilv of electricity electricpotential difference,
electromotiveforce
:
.
' .
'
''
,i.',.VOlt;t,
capacitance
',:::
,
,
farad
electricresistano: t
i,
siemens i'
,,.,1,,.,,,.ii,,,.,:,,,
-,.',.
, .,,,.,t.',
-.,t,, ,.
.:aeber
,
, .
magneiicflux densig
tesla
indudance
,1gfrv '-,,,,,:,;
,
,
Celsius temperature
iu*itiOiii"
.j,..',.,.,''
,.=;irt.,.' ,:,,ri';,,:.
,,,;1,' ,; ,
'
.
I
ianuA*j"l',-.
'
JMSK/sllee
;tlr1A,
,;,,.,,nftg'-s{A1 '
',a
cA/ v!A
'
s
Ai/
11
lx
,
,.,:'
,a5jbvert
katal
.r
:1:
,'
'"'
m-2.kg-t.s4.42
::
:-
zXjj:{2
#tgs€.A'1
Wbim2
kg's-2-4-1
v,lb,'A
tnz.kg s-e.4-z
.
cd;5rftl
'
'
K rnr-m-.2-Cri=Cd
lmim? 'n?
.,
*.4 66 = 6-216
,.s-1
rBq Gy
J/kg
€Y,,
'idni
kat
,r,'n
rn-2.kg-1.s3,A2
V9'
,wb T
,,*
:,';fggguere!
mr*g s-r
,
sA
',V i,
t,,
'
gray
catalytic activity
m2.kg-s-2
"c
lul ti11,,1,.i,.,,,..::,=',,.',.',
m-r*g s-r
N.m
degree Celsius
l'.l*nen.i
illuminance
ffiVtpr!..i
N,'nf
J
F
ohm,.,::,t:,:,
,,
electric conductance
rna$iiri"*ut
.,
1 {bi
m'kg 5'2
c
:
=
,Pa
Ji's
coulomb
1{bi
,'s'j.
'r1z '
:
mnrl= rp2-r1-2
tl
energy, work. quantity of frcat
:'
.
51 ic)
ne,uton
. '...
derived snlt
rad {a}
.,riierE :,
,
force
pressure,.stress
Expression in terms of Sl base units
'*'"t
"':','1.1.t''I
.
ml:s-z s-1-mot
.
:,
E
88101 Lngineering Science -T1
Sl prefixes A prefix may be added to aunit to produce a multiple of the original unit. All multiples are integer powers of ten. The 20 Sl prefixes used to form decimal multiples and submultiples of Sl units are as below.
Factor Name Symbol FactorName Symbol
1024 yotta y 1021 zetta Z
10-1 ,deii 'd fi2 centi c
101s exa 1015 peta
10-3 rnilli 'm 10-6 micro l,
E
p
tera' T 10e giga G 1012
106 mega M 103 kilo k 102 ftecto h 101 deka.da
10
9
1A-i2
nano
n
pico
p
10-15 femlo f 10-18
atto
a
!o'21 zepto z 10_24
yocto y
Conversion of Units Conversion of units involves comparison of different standard physical values, either of a single physical quantity or of a physical quantity and a combination of other physical quantities Refer some conversion factors, and examples of unit conversion on page 7-10.
JMSK/sllee
l
Bro
o+rncrnrtr cIjw
1.2
SGTENCE
colwERSlON OF Ul'llrs
Table 3: Convers[qq
Gonversion factqls-
L'IIdI ILILY
1m= 1606:= 1-o'cm { lzm , tn3 tn - 0-621 mi
Length
1 kg =.1O00 g ! 1 metric ton = 1qq9-!g
Mass
@s r yeir
Time
= 8J6 x 103 h i trort = 6o minulqg-= J.999 sesgnq f raaian (rad) = 57.30o ro - n A1-74\ rad
Angle
Power
t froriepower
\
(hP) = 746 w
1kw=1000 w
Unifs conversion Basic.
tlnit conversion Weight
Time
Lenqth
) 1m + 1cm)
1 km
1000m 100cm
t hour )
60 minutes
10mm
1 minute
)
6O seconds
1 kq
)
1000q
Example I
Thetalleststudentinclassiswithaheightof2.02m.
How tall is he in feet?
Solution: Provide the conversion fa'dor 1m = 3'281 ft 1 = 3.281 ft/m
2'o2'"
Example2
= [3:3i)&1!?' ={r36'Tt -= 6"#++
o,*,
Give this area in square A bacterium has an area of 2.35 square inches. millimeters'
SOIutlon: Zamszuln'
1
FI
I
OO4-TDCHnrrCI]TN SCIENCE
provide the conversion factor 1 in.? = (O.OZ54)2,rnm2
Etample 3 Convert 3.5 kilometre to meter. SoLution:-
1km :101m =1000m l9:0h 3.S km = 3.5 Lr * = 3.5,,x 1000 m =
tkm
\
3500 m
$:-
Convert 3.27 mtligmrn to gram.
*"\ 3
D'
Example 4
"rr'-" /"
,.
.'
I
,,(7
_S_qAtjon;_
"-1fng -1O-39 =0.001 g 3.27 ms 3.27y-
:
;g.z7x 0.001 s
fu
= o,00327 e
Examole 5 Convert 0.087 kW
to
mW.
5"s"fuUon.'
kW*W* 0.087 kw
W* mW
I :
I
,i:
r 'f tr::
mW
:
o.o87
n* *
:
B7w
x
1000w
=
lkw
looomw
lw
=
0.087 x 1000
w:
87 Watt
87 000 mW
Example 6 Convert 670 0OO me to ke.
Solution:
mf)* fl* ka. 67O O00
E, ;r.
mfl :67Oo00 mfl
*
lQ l000mC)
=
670sl,. lkQ = o.67ke 1000c)
i&: d:,.
?amaaui.s
5' &l Dill: &,' €:.
F''L1
f'
I
60
kmlh:
.--
3600s
)F.f
76.67 mls
Example 8
)9
Conveft 9.8 m/s to krn/h. s.B m/s
{ Example
=
n,tl. " l9?0t ls ,1*. 1000m th
= 35.28 --- km/h.
S
9
>{
A speed-trap mission in Utara-Selatan highway has determined the speed * '-* :O lirnit as 110 kilometer/hour (km/h). Express the speed in meter/secoitAirf6f*
(&* // -/.,Y .,''
Solution:
g"i
factor 1 km = 1000 m and t hour = 3800 s
provide the conversion
rewrite the factor of
s
*o
/;,
1
1 = 1000 m/km and
t
hour
11o krn/h = (110 km) (1000 m ) (
m
km
i
U36oA hr/s
t 3G00
hr) = 30.5 m/s s
Exarnrfie 10 'A capacitor is with capacitance 1.2 x 10-6 F. what is its value in picofarad(pF)? Solution: provide the convers.ion factor 1 pF = 10-12 F
rewrite the factor of 'f a= -
r
Tdtr2
1.2 x 10-6 p
pF
F
1 -^r? =1012oF
= (1.2 x 10-6FX
F 1O12
pF) = 7.2x 106 pF F
z..t:r^-=rir.
E 4 tl n:
4 IH rE
BIOO4-TECI{ISI CIA]\I SCIDNCE
ACTIVITY .
1,1r. State: a) base, quantity b) .derive quantity L.2. Convert a) 56km/htom/sM b) 40 N/m to kN/m 1.3. Convert a) 0.37 meter'to.decimete, dt b) 5oo miligram to gram t l*-^ Q, L.4. Convert t' '
1,5.
a)
700 mg/cm3 to g/cm3
b)
900 9/cm3 to kglm3
,l-o\i
Convert 90 km/h to m/s.
t
tn:
l0C6w4: \j
FEEDBACK
1.1. a) b)
Base quantities its length, mass, Derived quantities its area, volume, velocity and pressure.
L.2. a)
56km/h
iooo = 56x-60x60
b) 40 N/m
4o k*/.n = 1000
m/S
= =
15.56 m/s 0.04 kN/m
1.3- ^i-3 0.37m = 9Orn : 0'37x10dm = 3.7dm t0-, \ 1\!y,{st 5oo mg = 5oo x o.ool s = 0.5 dN)) 700 ms/cm3 = J9L sTcm' = a.7 slcm3
.\r'9 ^N \00u
'
b)
1.s
:
,
n,
e00 000 ks/m3 [#U)*, [#) -' = eokm/h = [H#) '" = 25 mls e00 s/cm3
la
'ITEKOU}(IW.
:
lrit
'Pr. Measuring instruments are v-eryimportant in order to measure physicall'guantiiies-: .''- -- -'-''-:--' rEe'rsrrrLJ' Three equipm'ent for measuring length is:
' i; . iii.
migrometer screw
gauge
rt!'
a:
t! f,i -t' 'I: ;1. ' f::
f.
'{t
Micrometer Screw Gauge Vernier Caliper Meter ruler
*
€';
d:
Micrometer screw gauge/ Tolok skru miirometer
ij: ll
Used to measure very small length such as the diameter of a wire Has two scales: (a) Main scale on the sleeve(skala utama mengufuk) (b) Circular scale on the thimble(skata bidal membuiat) . Smallest divisiorr is 0.50 mm Can measure lengUi acolrately up to 0.01 mm
'.
.
RaJche(race0
ry of lass,
f,
Q,
scale
: 35 x O.Oi mm = 0.35 so, actual reading is: (6.5 + 0.35)mm Vernier
Ir..
= 6.85 mm
:isr
aM
b)
Vernier Calipers
es or
a
units
a
a a
Areen
actor
rtity)
a
*; ti: -g:
Use correctly the following measuring equipment
a)
:"{;,
tEi
'
ruler
-
E"
Used in rneasuring length Smallest division is 0.01 cm (0.1 mm) Can measure length accurateiy up to b.ot cm Useful in measuring the inner diameter of an object Divided into main scale and vernier scale jaws (rahang
ctors
et -f l*"'
o stJi).- 3e7"_
II
e' +..
q: 2'i
9' 'F:,:
tabung
uJl
Meter ruter
c)
Used in measuring length Smallest division is 0.1 cm (1 mm) Can measure length accurately up to 0.1 cm Measurement haveto be recorded accurately to 0.1 cm
r--
!.-in'
,*
.1
;ir' .i
.i
'
Length of object = 4.2 cm
ACTIVITY
1.
Discuss
a. Scalar quantities and give 3 examples b. Vector quantities and give 4 examples c. Mornent
d.. Weight
2.
Change the following units: a. 1O0 kg - 50 g (in gram)
b. 1O tan (in gram) . c. 15 micron (in meter) -' d. looTtTj (in m/s) e. 10 9/cm3 (in unit kg/m3)
( +4^
* r.=Oo h5
t2
.
,.1'.r'. E.r'
,,":
.'t
Exercise
t,
-
l.l
t. Convert (a) 3 x 10sm/s
'i
liot x:rol ,
loh^ rA' t> n;-,9
,
l@lh (b) 30tu1h to mls (c) 1.3 kg/m3 to gl*tt
*-t
'ro
{d) 7.g glcnf tn kdr.3 i"i ZSfr2 1,o n"(D 45 d to mm3
to
*
=Li{
:
= |o
'
cm
til;;;""
t ' 3. calculate the volume of a spher-e ofradius l0 cm in V (a) run3 (b) cmt (rl -t ,'
:
'
4.
'
':
.1,
Convert
(a) 60 ms to h (b) 20 pm ro to m \D) zv (c) Is s
(d) 30 pA to mA (e) rwu 1000 km to cm (0 400 JkgrICr to
tops
5''
u I
JgrKr - :
ci,
,ffi
I3>r'ro-{gc*1
Convert the unit of the following quantities and write the final answer in the standard
@.
>o
(a) 13600 kd*t to glctl3 (b) 6400 lsn to m (c) 6x l0-7m to ;rm.
prr *t'r
.s
)o1,m K to- \
'
\
lf".
: )* tO -t'-
l-l^
t tr' '-
,*
\cx
tsoO
nt
i9O c ^^ lO *:t.. .:
1;g
MEASTIREMENT oF. LENGTII
\
Measuring instrrments are very important in order to measurephysical quantities. Three important things should be remembired when using measuring iorn r*rott
l,t-:
(a) All measuring insfiuments have tbe smallest
scale that tliey could measur€. Therefore, the decimal places given by these instuments cannot be s'inaller than their smallest scale.
.t
(b) The zero elTor of the inshuments
must be determined before measurements can be made. Zero elTor is a non-zero reading shown by an instrument while it is not measuring any object
'
(c) To get a true reading, we need to subfact
the zero error from the obsbrved
reading.
Observed reading - Zero
\.o
ewor \=
ir
:
@-'o o)"
2. Cilculatethe *tifi#"^ area of a circle ofradius rvuru l0 in -ii-;;"o':* -'
/....
^q'b'
(1.1)
l
e
;!\
srnn f,
'r:--l^
( qd$**
.i..\
t:..
L
{c:
lg d,0
I
1
It
g;c;]
-f
*
MEASUREMENT
Metre rule
ta
Mefre rule is a measuring insfiument that is commonly av,ailable in the laboratory and its smallest scale is 0.1 cm; Thereforen the reading from a nnene rule must not be more than one decimal place in the unit of centimete. The zero efiot for a mefie rule is the end *0" elTor, wlich is the end portion of a met'er rule which does not give an accurate rcading due to wear and tear.
Vernier Calliper used to measure a length of between 0.10 cm and 12.00 cm. Figure 1.1 shows a venrier calliper which consists of the
Vernier calliper is a measuring insfiilment that is usually following
'
components:
'
?.j
6y Outstde jn+,s to measure the outside diameter or the length of an object, (b) inside jcws to measure the the inside diameter of an object such as apipe, (c) tatl to measure the depth of a hole or a test tube, (d) main scale and (e) verniey scale.
?.
insidejaws
main scale
vcmicrscalc
outsidejaws
0
N
V**
Main scalercading = 1.70 em Vernicr scale rcading = 0.07 cro
Rea
V
A
-1,, : A vetoilS H L =
View more...
Comments