Normativa Calcolo Alberi
Short Description
Norma calcolo alberi...
Description
c c f t f u f y q H K K K c K d K N N
> 2 00 0000 00 0000
> 2 00 0000 00 0000
K N
K sσ sσ K sτ sτ K t K u K σ K τ τ
> 2 00 0000 00 0000
K χ N N N t γ γ a γ as as γ f f σ σa σf σm σmin σmax σid σrf σrs σx σy τ τ a τ f f τ m τ rf rf τ rs rs χ
c
σ σ
τ τ
f u
f u
1,25 1,50 1,80
÷ 1,50 ÷ 1,75 ÷ 2,25
1,15 1,25 1,60
÷ 1,25 ÷ 1,50 ÷ 2,00
1,00 1,10 1,50
÷ 1,05 ÷ 1,25 ÷ 1,75
1,00 1,10 1,50
÷ 1,10 ÷ 1,30 ÷ 1,80
125
2
250
2
500
2
1
0,000012
−
0,000016
−
1
• • • • • • • • • • •
• • • • • • • • •
σid =
σ + σ − σ σ + 3τ 2 x
2 y
x y
2
σ τ
γ
γ a
σrs
≤ 0, 7
•
σrs = f y > 0, 0 , 7
•
σrs =
f y + 0, 0 , 7f t 2
f y f t f y
f t
τ rs rs =
σrs 3
√
f t (mm) mm)
(N/mm2 )
(N/mm2 )
f y
γ τ τ =
τ rs rs τ
e
γ σ =
σrs σ
γ as as = γ spe spe γ saf saf γ sac sac
γ spe spe γ saf saf γ sac sac
γ spe spe
γ saf saf
γ sac sac
χ = σ = σ min /σmax
χ
σm + σa
σm =
σm
σa
σmax + σmin 2
e
σa =
σmax
− σmin 2
σ τ
N t H N t = 60
n h
i i
ni
hi
H = h
i
H
K 1
K =
y c dx
0
y
dx
c
r
σi
N i r
K = i=0
σmax N t =
σi σmax
c
N
i
N t
σi
r i=0 N i
σmax = σ = σ m + max( max(σa ) σmin = σ = σ m + min( min(σa ) σm
max( max(σa )
N = K N τ τ
·
K
σrf = σ f K N N /K σ τ rf rf = τ f f K N N /K τ τ σf
τ f f σf
√
τ f f = σ f / 3 K σ
K τ τ K τ τ = 1
K N N σrf
τ rf rf
K c
K σ
f y
K τ
K τ τ K σ = K sσ sσ kd K u K c K τ τ = K sτ sτ kd K u K c
· · · ·
K sσ sσ K d K u K c
K sτ sτ
· ·
− σm
√
f y / 3
− τ m
K sσ sσ K sσ sσ
K sτ sτ
K sτ sτ K sσ sσ
K s
K sσ sσ
K sτ sτ
K sτ sτ K s = q = q ((K t
− 1) + 1
K t
• • • q r
q = 1/(1 + a/r) a/r ) q = = 1
r a
f t (N/mm2 )
f t (N/mm2 )
f t (N/mm2 )
K sσ sσ
K sτ sτ
K sσ sσ
K sτ sτ
K sσ sσ
K sτ sτ
K sσ sσ
K sτ sτ
K sσ sσ
K sτ sτ
K d K d K d K d = 1
K d
K u K u K u
K u
K c K c = 1 K c
K c
K χ
K χ χ
−1
χ
0 K χ =
0
5 3
− 2χ
+1
K χσ χσ =
K χτ χτ =
5/3 1− 1− 5σf 3K σ f t
5/3 1− 1− 5σf 3K τ τ f t
χ σmin /σmax
τ min min /τ max max
χ
(2
− f u )/f u
0, 6
f u K N
K N N 6
K N N =
2 · 10
1/c
N
N c ·
c =
·
ln
N
c
3
f t ·K σ σf ·Kχ 6
ln 28 10 10 ·
c =
6
ln 28 10 10
·
ln
3
f t ·K τ τ σf ·Kχ
2, 5 2000000
c K (K ) N
c
2000000
c = c +
K N N (K N )
√ 2
c +1
γ fσ fσ = γ fτ fτ
(χ) χσ · σK χσ
γ f σ = σ rf
max
χτ · τ K χτ
γ f τ = σ rf
γ fσ fσ = γ fτ fτ =
max max
1 +
σm K γ γ f t
σa σrf
1
√
τ m 3 K γ γ f t +
τ a τ rf rf
σm
τ m
K γ γ
< 0
γ as as γ af af
σm
τ m
σ
τ
σa
τ a
σ
τ
σa < β σm σm τ a < β τ m
β
f u
σa = β = β σm σm τ a = β = β τ m
−1
γ f f =
0, 25
γ γ
fσ fσ
· γ f τ
2 fσ +
2 γ fτ
View more...
Comments