MWD Log Quality & Standards
April 3, 2017 | Author: Hamed Sadeghi | Category: N/A
Short Description
MWD Log Quality & Standards...
Description
Baker Hughes INTEQ
MWD Log Quality and Data Management Standards
Reference Manual
750-500-041
Rev. A
January 1996
Baker Hughes INTEQ Technical Publications Group 2001 Rankin Road Houston, TX 77032 USA 713-625-4415
This manual is provided without any warranty of any kind, either expressed or implied. The information in this document is believed to be accurate; however, Baker Hughes INTEQ will not be liable for any damages, whether direct or indirect, which results from the use of any information contained herein.
Table of Contents
Table of Contents Chapter 1
Data Management Labeling Floppy Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Data Back Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 MWD Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 M-SERIES Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 P-SERIES Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 RWD Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 M-SERIES Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 M-SERIES Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Raw Memory Dump Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 GetXfer Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Getdata Disks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 P-SERIES Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Additional Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Squeeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Quicken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 WTOB.EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 IMP2MPLT.EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 HTFX.EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 MEDIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 Future Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 Chapter 2
Log Preparation Original Holes and Sidetracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Traces/Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Trace Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Pen-up Intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Recommendations for Scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Rate of Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Reference Manual 750-500-041 Rev. A / January 1996
i Confidential
Table of Contents
Log Quality and Data Management Standards
Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Neutron Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Bulk Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Density Porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Photoelectric Cross Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Delta Rho Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Time Since Drilled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Data Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 True Vertical Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 Log Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 See Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 Trace Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 Back Up Trace Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 Casing Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 Run Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 TD Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Sliding Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Comment Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 See Remark 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Exclamation Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Scale Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Trace Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Traces On/Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 Guide to Comment.fil (Bryan Dugas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 Comment.fil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 See Remarks X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Comment Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Trace Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Traces On and Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 Scale Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 Annotations Across . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 Annotation Down From Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Annotation Down To Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Line Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Horizontal Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 Casing Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
ii
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Table of Contents
Gulton Plotter Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 Manual Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 Software Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 Chapter 3
Headers Miniheader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Full Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Main Header Page, Top Half . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Service Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Customer Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Well Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Country . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Well Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 North America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 International . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Sect./Twp./Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 API Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Other Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Drilling Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Elevation Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Main Header Page, Bottom Half . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Borehole Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Casing Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Drilling Contractor/Rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Log Type/Scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Print Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Company Representative/Teleco Representative. . . . . . . . . . . . . . . . . . . 3-6 Job Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Main Header, Bit Run Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Surface Gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Eastman Teleco OD/Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Run Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Mud Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Water Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Rm @ Temp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Company Representative/Eastman Teleco Field Engineer . . . . . . . . . . . 3-7 Reference Manual 750-500-041 Rev. A / January 1996
iii Confidential
Table of Contents
Log Quality and Data Management Standards
Main Header, Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Equipment Serial Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Sensor Offsets to Bit/Memory Acquisition Rates . . . . . . . . . . . . . . . . . . . 3-8 Other Tool Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Main Header, Environmental Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Main Header, Calibration Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 DPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Neutron Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Main Header, Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Chapter 4
Directional/Natural Gamma Ray Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Mud Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Borehole Correction Inputs - Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Data Editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Editing of Realtime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Depth Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Data Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Rigsite Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Smoothing and/or Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Borehole Corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Squeeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Quicken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 ADDTSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
iv
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Table of Contents
Postwell Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Before Final Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 After Final Logs - LIS ASCII File and Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Rigsite Calibration Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Quality Control Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Data Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Time Since Drilled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Log Quality Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Typical Log Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Other Requirements for This Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Log Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 North and South America Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 International Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 Chapter 5
Drilling Dynamics Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Mud Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Borehole Correction Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Drilling Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Data Editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Editing of Realtime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Depth Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Data Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 Rigsite Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 Smoothing and/or Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Reference Manual 750-500-041 Rev. A / January 1996
v Confidential
Table of Contents
Log Quality and Data Management Standards
Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Borehole Corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Squeeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Quicken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 ADDTSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 ADDTVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 EWD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Postwell Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Before Final Logs - EWD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 After Final Logs - LIS ASCII File and Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Rigsite Calibration Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Log Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Typical Log Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Drilling Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Other Requirements for This Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Log Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 North and South America Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 Plotting Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 Traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 International Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 Plotting Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Chapter 6
Short Normal Resistivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 Mud Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 Borehole Correction Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Short Normal Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
vi
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Table of Contents
Data Editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Editing of Realtime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Depth Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Data Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Rigsite Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Smoothing and/or Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 Borehole Corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 Squeeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 Quicken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 ADDTSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 ADDTVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 Postwell Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Before Final Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 After Final Logs - LIS ASCII File and Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Rigsite Calibration Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Quality Control Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Data Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Time Since Drilled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Log Quality Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Typical Log Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 Short Normal Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 Permeable Zones (No Hydrocarbons) . . . . . . . . . . . . . . . . . . . . . 6-6 Impermeable Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 Other Requirements for This Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 Log Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 North and South America Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 International Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 Reference Manual 750-500-041 Rev. A / January 1996
vii Confidential
Table of Contents
Log Quality and Data Management Standards
Chapter 7
Dual Propagation Resistivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 Mud Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Borehole Correction Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Dual Propagation Resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Data Editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Editing of Realtime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Editing of Memory Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Depth Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 Data Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 MDMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 Rigsite Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 Smoothing and/or Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 MDMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 Borehole Corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 Dielectric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 Squeeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 Quicken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 ADDTSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 ADDTVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 Postwell Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 Before Final Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 Dielectric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 After Final Logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 Postwell WDS Log Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 LIS ASCII File and Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
viii
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Table of Contents
Rigsite Calibration Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Quality Control Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Data Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Time Since Drilled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Log Quality Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Typical Log Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 Dual Propagation Resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 Permeable Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 Impermeable Zones (Shales) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 Dielectric Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 Thin Beds Intersecting Borehole at High Incident Angles (Above 80°) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 Other Requirements for This Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 Log Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 North and South America Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 International Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13 Chapter 8
Double Combo Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 Mud Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Borehole Correction Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Dual Propagation Resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Modular Neutron Porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Data Editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Editing of Realtime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Editing of Memory Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 Depth Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 Data Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 MDMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 Reference Manual 750-500-041 Rev. A / January 1996
ix Confidential
Table of Contents
Log Quality and Data Management Standards
Rigsite Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 Smoothing and/or Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 MDMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 Borehole Corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 Dielectric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 Squeeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 Quicken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 ADDTSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 ADDTVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 WDS Quicklook Log Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 Postwell Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 Before Final Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 Dielectric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 After Final Logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Postwell WDS Log Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 LIS ASCII File and Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Rigsite Calibration Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Quality Control Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Data Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Time Since Drilled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Log Quality Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 Typical Log Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 Dual Propagation Resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 Permeable Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 Impermeable Zones (Shales) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 Dielectric Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 Thin Beds Intersecting Borehole at High Incident Angles (Above 60°) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10
x
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Table of Contents
Modular Neutron Porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 Clean Reservoir Rocks Filled with Either Water or Oil . . . . . . 8-10 Clean Reservoir Rocks Filled with Gas. . . . . . . . . . . . . . . . . . . 8-10 Shale Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 Other Requirements for This Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 Log Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 North and South America Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 International Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 Special Logging Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 Near/Far Count Overlays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 Pitfalls to This Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 Recommendations: "Methodology" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 Chapter 9
Triple Combo Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 Mud Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Borehole Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Dual Propagation Resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Modular Neutron Porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Modular Density Lithology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Data Editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Editing of Realtime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Editing of Memory Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 Depth Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 Data Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 MDMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 Rigsite Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 Smoothing and/or Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 M-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 MDMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 P-SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 HPUTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 Reference Manual 750-500-041 Rev. A / January 1996
xi Confidential
Table of Contents
Log Quality and Data Management Standards
Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 Despiking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 Hanning Window Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 Chi Square Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 Borehole Corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 Dielectric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 Squeeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 Quicken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 ADDTSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 ADDTVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 Quicklook WDS Log Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 Postwell Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 Before Final Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 Dielectric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 After Final Logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 Postwell WDS Log Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 LIS ASCII File and Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 Rigsite Calibration Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 Quality Control Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 Data Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 Time Since Drilled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 Delta Rho (Dr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 Log Quality Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 Typical Log Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 Dual Propagation Resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 Permeable Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 Impermeable Zones (Shales) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 Dielectric Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 Thin Beds Intersecting Borehole at High Incident Angles (Above 60°) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 Modular Neutron Porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 Clean Reservoir Rocks Filled with Either Water or Oil . . . . . . 9-11 Clean Reservoir Rocks Filled with Gas. . . . . . . . . . . . . . . . . . . 9-11 Shale Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 xii
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Table of Contents
Modular Density Lithology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 Permeable Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 Impermeable Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 Other Requirements for This Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 Log Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 North and South America Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 Combined Log Formats (Triple Combo) . . . . . . . . . . . . . . . . . . . . . . . . 9-13 Segregated Log Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 International Log Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19 Combined Log Formats) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19 Segregated Log Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22 Appendix A
Mnemonics Listing Axis Magnetic Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 Attenuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 Axial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 Azimuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 Bending Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 Bulk Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 Conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 Dip Angle (Magnetic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3 Density (Photoelectric Cross Section) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 Delta Rho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 Drilling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 Gravity (Accelerometer, Raw). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6 Highside Toolface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6 Horizontal Magnetic Field (Magnetometer, Raw). . . . . . . . . . . . . . . . . . . . . . . A-7 Inclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 Lag Strokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 Magnetic Tool Face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 Neutron Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 Phase Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9 Data Density/Elapsed Time calculated from MDMS/P-SERIES . . . . . . . . . . . A-9 DPR 2A Self Calibration Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10 Resistivity (Attenuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10 Resistivity (Mud) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11
Reference Manual 750-500-041 Rev. A / January 1996
xiii Confidential
Table of Contents
Log Quality and Data Management Standards
Rate of Penetration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistivity (Phase Difference) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistivity (Short Normal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistance (Short Normal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standpipe Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Strokes (Pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque (Rotary) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . True Vertical Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weight On Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-11 A-11 A-12 A-12 A-13 A-13 A-13 A-13 A-13 A-14 A-14 A-14 A-14 A-14
Appendix B
Chart Calibration and Accuracy Test Chart Accuracy (ST-250). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-1 Invoking Chart Calibration and Accuracy Test . . . . . . . . . . . . . . . . . . . . . . . . . .B-2 Calibration Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-2 Accuracy Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-3 Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-3 Chart Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-3 Gulton Wellogger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4 Multiscan Operating Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-4 Multiscan Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-4 Multiscan Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-4 Manual Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-4 Software Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-5 Software Version 3.00 Chart Calibration . . . . . . . . . . . . . . . . . . . . . . . .B-5 Manual Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-5 Software Command Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-5 Step Accuracy Calibration Procedure . . . . . . . . . . . . . . . . . . . . .B-5 Gultcal Software Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-7 TABLE 1: Dip Switch Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-8 TABLE 2: Dip Switch Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-15
xiv
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Chapter
1
Data Management This chapter provides the proper procedures for labeling floppy disks and backing up data to ensure software compatibility and consistent management of data collected.
Labeling Floppy Disks It is required that all data disks returning from a job be properly labeled as either Job Data, Raw/Edit Data, EP-1, D-Map, or Text. Every disk should have the job number, company, OCS-G/well number, location, and rig. In addition, every data disk should have beginning and ending depths as well as beginning and ending date and time. Avoid complicated numbering schemes for your data disks in the event you do a lot of reaming or change from one service type to another (such as going from RGD to DPR). When labeling your disks, use a pen with quick-drying ink. Allow the ink to dry before handling the disk or label (this will avoid smearing the ink and leaving the disk label illegible, which seems to be a common occurrence). Also avoid using a large broad tip marker (Marks-a-Lot) to label run numbers. Use a fine to medium tip marker instead.
Data Back Up The number of MS-DOS utility packages available to the personal computer user are rapidly increasing. Many of these packages have redundant capabilities such as data back up and data compression. As a personal computer user, you may have your own special utility package that you prefer to use. However, it is extremely important that you leave your package at home and use the utility packages provided in the HPUTIL main menu. This ensures upward and downward software compatibility in
Reference Manual 750-500-041 Rev. A / January 1996
1-1 Confidential
Data Management
Log Quality and Data Management Standards
every release of Teleco's surface software products. This also permits easy data manipulation for any data collected.
MWD Services M-SERIES Systems After all final logs are generated, back up all replay files to high density floppy disks. If the replay file (binary file) is relatively small (i.e., less than 1.1 megabytes), then copy the files directly to disk. If the file is larger, you need to back up the data using the Fastback Utilities program available from the HPUTIL main menu. The Fastback version used has been upgraded to version 2.10. This version will read earlier versions of Fastback disks, but the disks created by 2.10 cannot be read by earlier versions of Fastback. If you are unfamiliar with using this utilities program, contact your supervisor for guidance. It is important to note that during the job, you should always retain a copy of the original unedited raw data. The files that are required for back up are as follows: •
binary.* (this includes binary.fil, .idx, .uni, .apd)
•
*.cfg (header information), use this with HPUTIL Rev. 2.1 or greater
•
setup.fil (Mplot/Wplot formats...formally newplot.fil)
•
log.fil (Makelog/Head/Minihead formats)
•
tvddata.fil
•
newplot.fil (use with HPUTIL versions earlier than Rev. 2.1)
•
header.fil (use with HPUTIL versions earlier than Rev. 2.1)
•
comment.fil
•
mserdb.133 (M-SERIES ASCII definition file)
P-SERIES Systems All data is periodically backed up automatically to magnetic tape. Provide all job information and run numbers on each tape. If MPLOT in HPUTIL is used for plotting logs, a P-SERIES.Xfer file must be transferred into the HPUTIL directory so a binary file can be generated. In this case, back up the appropriate files as you would for an MWD M-SERIES system (see the preceding section). At the job's completion, you should have a set of disks with the binary.fil data and a set of P-SERIES magnetic cassette tapes.
1-2
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Data Management
RWD Services M-SERIES Systems In an effort to reduce the voluminous number of disks and different types of data disks returning from RWD jobs (i.e., xfer.fil, Getdata, raw memory, M-SERIES real-time data, etc.), please follow the recommended procedure for collection and storage of RWD data. The procedures also help conserve memory on the hard disk. There are four types of data disks that need to be saved during the course of a downhole memory job when using an M-SERIES system. These are the M-SERIES “real-time” data disks, raw memory dump data disks, and Getdata and GetXfer data disks. All disks should be labeled with the job number, company, OCS-G number and well number, rig, and depth in and out and volume number, regardless of the type of disk label used. This becomes increasingly important when several sidetracks are drilled from the same job. M-SERIES Disks Using a standard floppy disk label, make sure every disk is fully labeled, including time/date and depth in and out. Also, be sure to label the M-SERIES software revision number in the upper left-hand side of the label and the disk number in the upper right-hand side. Raw Memory Dump Disks Standard (generic) disk labels can be used for these disks. You should back up memory dump data after each dump (run). Each memory dump needs to be stored on a separate set of disks. Label these as Mem Dump 1, Mem Dump 2, etc. Besides the information recommended above (i.e., job number, company, OCS-G number and well number, rig, and depth in and out), include any time offsets that were used for processing and the MDMS revision number in the upper left-hand corner of the disk label. GetXfer Disks Use a standard (generic) disk label for these disks. Label these disks as GetXfer, volume (example: GetXfer, vol. 1 of 1). The directory for GetXfer is automatically named “GetXfer.” The volume label is a reference to the disk number and total number of disks used when the GetXfer file is backed up to floppy disk using the Fastback Utilities program. Make sure to provide all other pertinent well information on the disk label that is required on the other disks. The GetXfer executable is accessed in the HPUTIL main menu. This routine allows us to store the Xfer file selectively. When GetXfer is Reference Manual 750-500-041 Rev. A / January 1996
1-3 Confidential
Data Management
Log Quality and Data Management Standards
performed, a directory in the D:\ drive is created. The Xfer.fil is then compressed using PKARC and then copied into the Xfer directory. The engineer is required to perform a “GetXfer” at the completion of each run (i.e., memory dump) after all the memory data for that run has been processed. Perform GetXfer on the D:\ drive. When performing the GetXfer program, name each run as Xfer1.ARC, Xfer2.ARC, Xfer3.ARC (Xfer file from run 1,2,3, etc.). Relog sections should be listed as Xrl1.ARC, Xrl2.ARC, Xrl3.ARC (for Xfer file from relog 1,2,3, etc.). After a GetXfer is performed, back up the GetXfer directory onto floppy disks using the Fastback Utilities program (see “Proper Sequence for Executing a GetXfer and Getdata” on page 1-7). After the Xfer file has been backed up on the D:\ drive using the GetXfer utility program, delete the Xfer file from the C:\ drive. This is done to avoid duplication of data storage (i.e., storing the Xfer file on both the GetXfer and Getdata directories and data disks). Getdata Disks Use a standard (generic) disk label for these disks. Label these disks as Getdata, directory (job number), volume, (example: Getdata \3250, Vol. 2 of 2). Always use the job number as the directory name. Make sure to provide all other pertinent well information on the disk label, which is required on the other data disk types. Getdata backs up any file in the HPUTIL directory that has a “.fil” or “.cgf” extension. The Getdata routine is accessed through the HPUTIL main menu. A Getdata should be performed at the end of each run. If you are on a job that uses both RGD and DPR tools, make sure the binary files for each tool type are merged or appended together prior to data back up. It is important to note that a Getdata should not be performed until a GetXfer has been executed and the Xfer file is subsequently deleted from the C:\ drive. After the Xfer file has been deleted from the C:\ drive, run Squeeze and Quicken, which will significantly reduce the size of your binary file. You are now ready to execute a Getdata (see “Proper Sequence for Executing a GetXfer and Getdata” on page 1-7). Perform all of your Getdata on the D:\ drive. When Getdata is performed, store and label each run as Run1.ARC, Run2.ARC, Run3.ARC, etc. Run numbers should correspond to the correct bit run on the log header. After the Getdata has been executed, back up the Getdata to floppy disk using the Fastback Utilities program. It is imperative that a Getdata be performed at the completion of the last run, which includes the appended binary file for the entire job. If changes are made to the database (e.g., comment.fil, *.cfg, etc.) after a Getdata was performed, another Getdata should be executed and backed up 1-4
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Data Management
to disk to update the database. The idea is, in the event that logs have to be remade at a later date by either the engineer from the job or staff personnel, all of the information is readily available and will not have to be updated or recreated. P-SERIES Systems At the operator's option, all data is periodically backed up automatically to magnetic tape at a user selected time interval (every 30 minutes is recommended). Provide all job information and run numbers on each tape. If MPLOT in HPUTIL is used for plotting logs, a P-SERIES Xfer file must be copied into the HPUTIL directory so a binary file can be generated. In this case, back up the appropriate files to disk using the Getdata routine in HPUTIL (see the preceding section). At the job's completion, you should have a set of Getdata disks and P-SERIES magnetic cassette tapes for the entire job.
Additional Data Management Squeeze Squeeze is a program that is accessed through the HPUTIL main menu and is designed to compress the binary.fil in HPUTIL. The compression is done by discarding all deleted records, removing all backplotted records, and averaging the data to a resolution of 0.25 feet (0.10 meters). In addition, the resistivity values are recomputed from conductivity to provide a more precise approximation than just averaging the resistivities. After Squeeze is finished processing, the data in the binary.fil is replaced in an ordered structure. The surface records are listed first, then directional, temperature, memory data, etc. This ordering however, poses some problems for the editor in MPLOT UTILITIES (DMD editor), such as time and depth searches. Therefore, use MEDIT to edit any squeezed files. There is also a Squeeze executable for XFER files in the HPUTIL main menu. Its functionality is identical to the Squeeze used for binary files. Quicken Quicken is also accessed from the HPUTIL main menu and is designed to speed up the searching routine for data when using MPLOT or MEDIT. It accomplishes this by creating a table of indices for each 100 feet of log. These indices allow MPLOT or MEDIT to jump to a point within 100 feet of the start depth of the log (or in the case of MEDIT, within 100 feet of the depth you are searching for), thus making it a lot quicker for searching. Quicken should be run after any program that modifies the binary.fil. This would include appending to a binary.fil, or executing ADDTVD, ADDTSD, and/or Squeeze. Reference Manual 750-500-041 Rev. A / January 1996
1-5 Confidential
Data Management
Log Quality and Data Management Standards
WTOB.EXE This is a new program that copies a curve from a WDF file and either converts it to a binary.fil or writes it to a pre-existing binary file. IMP2MPLT.EXE This program imports an ASCII file into MPLOT. It is similar to the MARC I ASCII file import. HTFX.EXE This program creates line commands for the sliding indicator (see “Comment Files” on page 2-11). MEDIT MEDIT is an editor for the binary.fil that has been compiled for use in the HPUTIL main menu. MEDIT is used to view/edit the binary.fil in the HPUTIL directory. Use the Up/Down arrow keys and the PgUp/PgDn keys to highlight the record type you wish to edit. Press [ENTER] to select a particular record type. Use the [F2] key for the Depth Search option. All changes to a file are permanent as soon as you change to another page or exit. If you do not leave the page, press [F1] to abort the edit and the original contents of the page will be restored. Always use MEDIT on a squeezed file. This will greatly reduce the search time when doing a depth search. Future Additions Future additions include the ability to convert binary files to TIF (Tape Image Files). This can be used to transmit data via fax or for rapid plotting of multiple log copies (MPLOT/WPLOT ver. 3.1).
1-6
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Data Management
Proper Sequence for Executing a GetXfer and Getdata
Process memory data using MDMS. An Xfer file is automatically created and copied over to the DOS side on the C:\ drive.
Build a replay file using the Xfer file (this converts the Xfer file to a binary file) and append to the current binary file.
Execute Squeeze and Quicken.
Run a verification log to check data.
Execute GetXfer on the D:\ drive. Name runs as Xfer1.ARC, Xfer2.ARC, Xrlg1.ARC, Xrlg2.ARC, etc.
Delete Xfer file on the C:\ drive.
Back up GetXfer file to floppy disk using Fastback Utilities program.
Execute Getdata on the D:\ drive. Name runs as Run1.ARC, Run2.ARC, etc.
Back up Getdata file on the D:\ drive to floppy disk using Fastback Utilities program.
Reference Manual 750-500-041 Rev. A / January 1996
1-7 Confidential
Data Management
Log Quality and Data Management Standards
1-8
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Chapter
2
Log Preparation This chapter provides specific instructions on generating various logs for original holes and sidetracks. Recommendations for plotting traces and scales and generating log annotations and comments are explained in detail.
Note: Since depth scales for logs vary greatly between districts, it would be difficult to include all of these each time the subject of depth scales is referred to within this document. However, for any area, logs are generally presented with two depth scales that can be loosely defined as 1) correlation log scales and 2) quantitative log scales. Correlation logs are typically plotted with smaller depth scales such as 1:600, 1:1200 English or 1:1000 metric. Quantitative logs are plotted with larger scales for quantitative analysis; typical scales are 1:240 English or 1:200 metric. All depth scales referred to beyond this point in this document are referenced as either “correlation” or “quantitative” log scales. Regardless of customer requests on location, it is required that both 1- or 2and 5-inch Measured Depth and True Vertical Depth Field and Final logs be generated at the end of a job. True Vertical Depth logs should be omitted if a vertical hole was logged. Two copies of field prints should be left on location. When generating logs from the HPUTIL main menu, it is recommended to use the Make Log utility program. This utility permits the logging engineer to configure the header layout, log formats, and the configurations (annotations, trace labels, casing labels, etc.) from one screen. These Reference Manual 750-500-041 Rev. A / January 1996
2-1 Confidential
Log Preparation
Log Quality and Data Management Standards
configurations can be stored for later use. The major advantage to this feature is headers can be individually matched to logs and comment files. Once your configuration is set up and plotting is invoked, both header and log are plotted sequentially.
Original Holes and Sidetracks Engineers should treat original holes and sidetracks as separate wells. This means that the engineer should generate final logs and directional surveys for the original well, which should be completed and turned in before the start of the sidetrack. This data is finalized and sent to the customer. This is necessary because the client typically uses this data to plan the sidetrack wells. If the engineers remain on location, they should make every attempt to generate final logs for the original hole and back up to floppy disk (or tape for P-SERIES) all appropriate data, including directional surveys, and send everything to the office. Only one End of Well Report, which summarizes the activities from both the original and sidetrack well, is necessary and should be turned in at the completion of the last sidetrack well. Each sidetrack should have a separate header for that particular sidetrack. The first Eastman Teleco run number (in the Bit Run Summary) for each sidetrack header should succeed the last Eastman Teleco run number on the original hole or the sidetrack before that, unless the sidetrack well is considered as a “new well” by the operator. A “new well” status is usually applied if the bottom-hole location of the sidetrack well falls in another block. When making final logs for the sidetrack well, the beginning of the log should correspond with the beginning of the sidetrack. Do not make a composite log that includes any portion of the original hole above the sidetrack unless specifically requested by the customer. If you are requested to make composite logs, make sure to include a remark in the Remarks page indicating that the bit run information for the portion of log above the sidetrack can be found on the headers for the original log.
Traces/Scales Trace Coding The objective of using different line types is to distinguish between different types of measurements plotted together in the same track (i.e., phase difference/attenuation resistivities, neutron porosity/formation density, or conductivity/weight on bit, etc.). Therefore, unless you are 2-2
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Log Preparation
plotting more than one parameter together in any one track, all primary trace curves should be represented by solid lines only. The only exception to this is the back up scale for conductivity (see conductivity scale in RGD/ DPR log formats) Both short normal curves in track 2 on the correlation log format are plotted as solid lines. However, if you are plotting apparent resistivities with corrected resistivities, the corrected resistivity should be coded with a medium dashed line. Pen-up Intervals Pen-up intervals should not exceed 10 feet (3 meters). The only exception to this is when plotting TVD for a horizontal well or tool temperature (TCDX, TCDM). There is no reason to use a pen-up interval greater than 10 feet (3 meters), regardless of data density. You are strongly discouraged from doing so. Any data gaps and the reasons for their occurrence should be documented in the Remarks page of the Log Header (see “Main Header, Remarks” on page 3-10). Pen-up intervals are referred to as “Interpolation Limits” in 1.3x M-SERIES software.
Recommendations for Scales Use standard scales for traces where possible. However, when secondary traces continuously interfere with the primary trace or curve, scale adjustments may be necessary. When it does become necessary to change scales, always contact the geologist and/or engineer in the office who is watching the well and request preferred scales and formats. Always perform a scale change on secondary curves before primary curves. If scale changes are made to both secondary and primary curves and interference still exists, it may be necessary to move the secondary curve to another track or remove it from the log. Once again, consult the client for the preferred location of traces. Rate of Penetration The rate of penetration is included on all logs unless otherwise requested by the client. This includes morning and afternoon field logs as well. Rate of penetration is plotted on a linear grid but variable scale. It is typically presented with “Gamma Ray” in track 1 or with “Conductivity” or “Weight on Bit” in track 3. The scale should always begin with 0 on the right side of the track with increasing rate of penetration towards the left. This provides correlation of the sands and shales with “Gamma Ray” in track 1. The scale should be set up to allow minimum interference with the primary curve (gamma ray, conductivity, or weight on bit). This may require a scale of 1000 to 0 ft/hr if the rate of penetration is high. Also explore the “Scale Change” option when the rate of penetration decreases or increases (see page 2-12 and page 2-15).
Reference Manual 750-500-041 Rev. A / January 1996
2-3 Confidential
Log Preparation
Log Quality and Data Management Standards
It is important to note that when using MPLOT, select 5DSH (for correlation logs) and 2DSH (for quantitative logs) under the selection line type. Trace coding and curve averaging are provided automatically. For example, for 2DSH, a histogram will be plotted as a medium dashed line with a 2-foot average. This means that no additional averaging or smoothing should be selected under MPLOT when preparing to plot the rate of penetration. Gamma Ray It is important to set the scale range so that individual divisions on the trace scale are whole numbers (for example, each division on a scale from 25 to 225 API is equal to 20 units, each division on a scale from 50 to 150 API is equal to 10 units, etc., as opposed to a scale of 50 to 275 API, where each division would be equal to 22.5 units). This is an API industry standard because it simplifies reading the curve. Your scale should be set up to accommodate recommended divisions of either 10, 15, 20, or 25 units. Anything beyond 25 is generally too large because the separation between the sand and shale base line may be too small for adequate differentiation of lithologies. The scale should also be arranged so the gamma trace is centered in track 1. If the curve becomes weighted to one side of the track (i.e., becomes increasingly sandy or shaly) as you increase in depth, it may be necessary to perform a scale change (see page 2-12 and page 2-15). If a scale change does not seem appropriate, pick the scale that works best through the zones of interest. When plotting the gamma ray in track 1, you should set up your scaling to maximize the separation between the shale base line and the sand line. Ideally, you would shoot for a 4 to 6 division separation. However, when plotting a secondary trace in the same track as gamma ray, such as rate of penetration, the above recommendations often cannot be adhered to. The gamma ray trace must be compressed in order to accommodate the secondary trace. The following suggestions may be helpful. 1.
Compress the secondary trace (i.e., rate of penetration) scale as much as possible before compressing the gamma ray. Remember, MPLOT will do scale changes on the fly for any trace.
2.
Since a 6 division separation between sand and shale may not be feasible, shoot for a 4 division separation (anything less than 4 divisions is not recommended). This may require using scales that we are not accustomed to, but still allow for divisions that are divisible by whole numbers. For example, with a scale from 30 to 180 or 80 to 230, each division equals 15.
2-4
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Log Preparation
Note: Note the different smoothing intervals for the gamma ray MWD API trace on the 1-, 2-, and 5-inch logs. Always use a smaller smoothing interval for the higher rates of penetration. Resistivity The scale for both correlation and quantitative logs will vary for different locations. Consult the client for preferred scales and formats. As a standard, plot apparent resistivities on all logs for RGD services unless specifically requested by the customer. For the DPR service, plot corrected phase difference and amplitude ratio resistivities. In the event that you need to change your resistivity scale due to anomalous readings that obscure the trace, use the following standards: For correlation logs, your amplified measurement is always 1/5 the unamplified scale. For example: Default scale:
Change scale to:
unamplified = 0.0 to 10.0 amplified = 0.0 to 2.0
unamplified = 0.0 to 20.0 amplified = 0.0 to 4.0
Or: unamplified = 0.0 to 50.0 amplified = 0.0 to 10.0 Note: An X10 scale is available (on MPLOT) as a back up scale. This is typically used for linear resistivity scales (common in the Western Region) on all correlation logs for the 0 to 10 scale (see correlation log formats for the RGD and DPR Services). When the 0 to 10 scale wraps around (when resistivity exceeds 10 ohm-m) the back-up scale automatically switches to 0 to 100 scale. The backup trace will begin at the first division beyond the lefthand track edge (this division equals 10 ohm-m). If the X-10 scale is used, a remark should be provided that explains that the back-up scale is a “X-10 scale.” Although this is a typical format for wireline 1- or 2-inch logs, it is new to our MWD/RWD logs. A remark will avoid any confusion for anyone reading the log. For a quantitative log, the resistivity trace is ordinarily plotted on a two cycle semi-logarithmic scale. In order to increase the scale, increase from 2 cycles to 4 cycles. This is a standard procedure in the logging industry. For example: Reference Manual 750-500-041 Rev. A / January 1996
2-5 Confidential
Log Preparation
Log Quality and Data Management Standards
Increase from 2 to 4 cycles:
2-cycle = 0.2 - 20.0 4-cycle = 0.2 - 2000.0
A 4-cycle semi-logarithmic format should always occupy both tracks II and III (this will require you to sacrifice any other traces in track III). This prevents the scale from becoming too compressed in only one track. To do this, just set up track II with a 2-cycle semi-log scale from 0.2 to 20.0, and track III with a 2-cycle semi-log scale from 20.0 to 2000.0. Note: Make note of the change from +/- wrap to the over option for the resistivity trace in track 2 for quantitative logs. This option is now available on MPLOT and should be used wherever possible. Conductivity This trace is plotted commonly in areas characterized by low resistivity formations such as the Gulf Coast. This scale will also vary for different locations. It is always plotted on a linear grid, a default scale of which is typically 4000 to 0000 mmhos. Where space permits (i.e., extra traces are available for plotting), plot a back-up trace for conductivity (typically this would be 8000 to 4000 mmhos-meter). This trace is coded as a medium dashed line. If no space is available for extra traces, use the wrap or backup feature for plotting. In either case, the back-up trace should be annotated as CSAX back up or CPCM back up on your logs (see “Back Up Trace Labels” on page 2-10). Neutron Porosity This scale is variable but always on a linear grid. In clastic formations (sand and shale), the scale is typically 60 to 0 porosity units. In carbonates (limestones), the scale is 45 to -15 porosity units. On correlation logs, this trace is plotted in track 3. On quantitative log scales, the trace is either plotted across tracks 2 and 3, or only in track 3. This trace is plotted as a solid line in double combo presentations (because it is a primary curve) and as a medium dashed line for triple combo presentations. Consult the client for preferred scales and formats. Bulk Density This scale is variable, but always on a linear grid. The default scale is 2.0 to 3.0 g/cc (for a limestone matrix). Scales for clastic formations will vary for each region but a default scale that matches the neutron porosity 60 to 0 porosity units scale is 1.65 to 2.65 g/cc. Bulk density on correlation logs is typically plotted only in track 3. On quantitative logs, it is typically plotted across tracks 2 and 3 or only in track 3. This trace is plotted as a solid line. Consult the client for preferred scales and formats. 2-6
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Log Preparation
Density Porosity This scale is variable (but always on a linear grid) to match the neutron porosity scale. In clastics (sands and shales), the scale is 60 to 0 porosity units. In carbonates (limestones), the scale is 45 to -15 porosity units. On correlation logs, this trace is plotted in track 3 with neutron porosity. On quantitative logs, the trace is plotted either across tracks 2 and 3 or only in track 3 with neutron porosity. This trace is plotted as a solid line. Consult the client for preferred scales and formats. Photoelectric Cross Section The default scale is 0 to 10 barnes/electron, which is plotted on a linear grid. The scale may be manipulated to move the trace out of the way of the primary curves (keep track divisions as whole numbers). This trace is generally reserved for quantitative logs. It is plotted as a heavy dashed line in track 3 (when “Bulk Density” or “Density Porosity” is plotted across tracks 2 and 3), or in track 3 as a half track presentation (when “Bulk Density” or “Density Porosity” is plotted only in track 3). This currently is not a commercial measurement! Delta Rho Correction The default scale is - 0.25 to 0.25 g/cc, which is plotted on a linear grid. Although the scale can be manipulated to move it out of the way of the primary curves, the same sensitivity should be maintained (i.e., - 0.5 to 0.20 g/cc). This curve is generally reserved for quantitative logs. It is plotted in track 3 as a medium spot line (when “Bulk Density” or “Density Porosity” is plotted across tracks 2 and 3), or in track 3 as a half track presentation (when “Bulk Density” or “Density Porosity” is plotted in only track 3). Consult the client for preferred scales and formats. Time Since Drilled “Time Since Drilled” is a trace that is automatically calculated in P-SERIES and MDMS software systems and is referred to as “Elapsed Time.” This trace is also calculated from the executable ADDTSD in the HPUTIL main menu (run ADDTSD after the binary file in HPUTIL has been constructed). It is important to note that there are differences between these traces. Most notably P-SERIES/MDMS calculates elapsed time on a run-by-run basis, which means the trace is interrupted at the end and beginning of runs. Use this trace only if HPUTIL and MPLOT are not available for generating logs. The ADDTSD executable calculates “Time Since Drilled” continuously from top to bottom so there are no interruptions in the trace. The ADDTSD executable also gives you much more flexibility in selecting traces you can calculate TSD from, such as phase difference resistivity, gamma ray, etc. This is the trace of choice. Be careful when selecting mnemonics for plotting. Use mnemonics that are Reference Manual 750-500-041 Rev. A / January 1996
2-7 Confidential
Log Preparation
Log Quality and Data Management Standards
defined as “Time Since Drilled” (for example, RPTM - Time Since Drilled from Phase Difference Resistivity [RWD]). This trace is plotted on linear grids only and reserved for quantitative logs. The default track for “Time Since Drilled” is track 3. However, it may be moved over to the first track for Triple Combo presentations to avoid competition with other traces or when a logarithmic grid is used in track 3. The default scale from 0 to 300 minutes (increasing from left to right should be used in conjunction with a medium spot line type. It is not recommended to use a scale smaller than 0 600 minutes. Since a medium spot line type is similar to a medium dashed line (the back up scale for conductivity), make sure to identify the back up conductivity trace as CSAX back up or CPCM back up. Note: Plot “Time Since Drilled” with the “X-10 Mode” (see Note in “Resistivity” on page 2-5) to avoid multiple trace wraps where bit trips and long periods of circulation occur. Data Density Data density is another data type that is automatically calculated by the P-SERIES/MDMS software systems. This trace is also calculated with “Time Since Drilled” from the ADDTSD executable in the HPUTIL main menu (run ADDTSD after the binary file in HPUTIL has been constructed). The “Data Density” calculated from ADDTSD is the trace of choice for plotting. Data density should be plotted as tick marks on the left side of the depth track on quantitative logs. Make sure to move any annotated “Run Markers” to the right side of the depth track. True Vertical Depth True vertical depth is another new trace added for horizontal wells. It is calculated from the ADDTVD executable in the HPUTIL main menu. It should be plotted on both correlation and quantitative logs in track 1 as a heavy spot line type with a variable scale (the scale will depend on the true vertical depths calculated in the lateral portion of the hole), which should increase from right to left. If scaled appropriately, the TVD trace can be used in conjunction with the gamma ray and/or resistivity traces to identify when the bit enters and exits the objective zone.
2-8
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Log Preparation
Log Annotations Note: Annotations for logs are constructed using the control file comment.fil (see page 2-13). See Remark Follow the recommendations in the “Remarks” section (see page 3-10). All remarks should be referenced on the log by the “See Remark” annotation. If the “See Remark” refers to a particular depth interval, position the reference in between the top and bottom of the interval instead of at the top or bottom of the interval. Do this unless the interval to be remarked is several hundred feet in depth on the log. Trace Labels Trace labels should be placed within the first 100 feet and last 100 feet of each log. If your log is only a few hundred feet in length, such as a relog or morning log, it may not be necessary to supply trace labels at both the top and the bottom of the log (i.e., avoid crowding the log with too much information). Examine TVD logs carefully for this! In addition, trace labels should be provided at intermediate points on quantitative logs and lengthy correlation logs. As a rule, these should be spaced approximately every five feet, or 1.5 meters, on both quantitative and correlation logs. It is important to remember that the trace labels may need to be adjusted so they are evenly spaced on the log. It is better to have fewer trace labels than too many trace labels. Also, avoid placing trace labels in pay zones or areas of interest. Also, always make sure trace labels are provided where one service ends and another service begins on the log (i.e., where RGD converts to DPR). If large gaps are present on the log due to tool failures, or intervals that were drilled without Eastman Teleco, etc., provide trace labels where the traces end and begin again. Depending on the length of the gap, it may not be necessary to do this for the correlation log, but it should always be done for the quantitative log presentation. When plotting correlation DPR logs with linear grids (such as the Gulf Coast), trace labels are required for both Rat and Rpd on the 0 to 10 scale as well as Rpd on the 0 to 2 scale. It is acceptable to position the trace labels for the 0 to 10 scale to the left of the traces, which will probably put the trace labels in the depth track (see log examples at the end of each chapter for service descriptions). Make sure that the trace labels are positioned such that they do not interfere with depth labels, run markers, casing markers, etc. Also take care to make sure the Rat trace label accurately points to the Rat trace (dashed curve) and the Rpd trace label points to the Rpd trace (solid line). As a rule, when the Rat and Rpd traces overlap one Reference Manual 750-500-041 Rev. A / January 1996
2-9 Confidential
Log Preparation
Log Quality and Data Management Standards
another, place Rat on the left side and Rpd on the right side of the overlapping traces. Back Up Trace Labels Make sure back up traces are labeled when plotted. They should be labeled as CSAX back up ->. These are entered as a freeform remark using the “Annotations Across” option (see page 2-15). This is done primarily for the conductivity trace. Casing Markers Always include casing markers in the depth track on all final logs regardless of whether the casing marker overlaps with a depth label. Also identify the casing markers with the size of the casing (for example, 13-3/8” casing, see log examples at the end of each chapter for service descriptions). Attempt to place this inside of the casing unless space is a factor. This is done using the “Annotations Across” option (see page 2-15). Also make sure to reposition your casing markers appropriately for 5-inch logs. Casing markers can also be generated manually by using the “Line Annotation” option for comment.fil (see page 2-16). If we log out of casing and this is recorded on the log, mark the casing according to the log, not at the depth recorded by the driller. If there is a discrepancy in depths, make note of it in the Remarks page. List separately the driller's casing depth and Teleco's casing depth (see log examples at the end of each chapter for service descriptions). It is also important to note those intervals of log that have been logged behind casing. Run Markers Identify run markers on the right side of the depth track where runs begin and end. If there are any runs that overlap one another, these runs need to be entered by hand using the “Annotations Down To” and “Annotations Down From Depth” options (see page 2-16). When runs do overlap, offset and alternate the run markers as shown in the log examples at the end of each chapter for service descriptions. Where resistivities plot below 0.2 ohm-m (i.e., plots into the depth track), offset run markers if necessary to avoid overlap between the run marker and resistivity trace. Make note that run markers should now be plotted on the right side of the depth track. Data density has been moved to the left-hand side of the depth track so it will not interfere with resistivity traces that plot below 0.2 ohm-m.
2-10
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Log Preparation
TD Markers TD markers should also be provided at the end of the log (at “TD”) in the depth track unless they overlap with depth labels (see log examples at the end of each chapter for service descriptions). Commonly, this will happen on only one log, such as the TVD log. In this case, remove the marker from the log in question but include it on all other logs where it does not overlap. TD markers can also be generated manually using the “Line Annotation” option for comment.fil (see page 2-16). Sliding Indicator This is a new option that permits identification of sliding intervals on the log. As a default, plot the line between the specified depth interval on the outside edge of the right side of the log (i.e., track 3).
Comment Files Note: In order to activate all or any of the annotation options in comment.fil, go to the HPUTIL main menu and select MPLOT CONFIGURATION. Select “Yes” for desired options. It is important to note that comment files are generated using the SEE ASCII editor (selected from the HPUTIL main menu). Comment files are edited using either the SEE editor or the edit option in the MPLOT log plotting configuration menu (press [F1] to edit). To facilitate editing and log preparation, all features such as trace labels and annotations etc. can be viewed directly on the screen logs (press [F8] to view log). Remarks Type in your remarks as they should appear on the remarks page. If you do not want a remark printed, you must either delete it or insert an exclamation mark in front of the remark. The exclamation mark, when placed in column 1, basically tells the computer not to print that line (see “Exclamation Mark” on page 2-12). Annotations You should make an attempt to learn all of the annotation options available under the comment.fil. Become familiar with freeforming the annotations and, in particular, the “Down from Depth” and “Down to Depth” options. These allow you to freeform run markers in the event that you have overlapping runs. You will also be required to annotate the casing size in the depth track of each log where applicable (see example logs at the end of each chapter for service descriptions). You may also find it necessary to Reference Manual 750-500-041 Rev. A / January 1996
2-11 Confidential
Log Preparation
Log Quality and Data Management Standards
freeform the “See Remark X” option when the preset positions get in the way of log traces. Look for areas of conflict after plotting a log. For example, look for overlapping run markers, casing markers and TD markers that overlap depth markers, or trace labels and “See Remark X” that overlap traces, etc. If there are conflicts, reposition the label accordingly. Overlapping run markers should be put in the depth track using freeform annotations. Omit TD markers from logs where the TD marker conflicts with a depth label. See Remark 1 Make note of the track coding (1 through 4). If none of these positions works well for your log, use the freeform annotations (see the preceding section). Exclamation Mark Use the “!” symbol for any line you do not want to print on the remarks page. Also use this to fill line spaces between different sections in your comment.fil. This prevents blank remarks pages from printing below your last remarks. Scale Changes Become familiar with the “Scale Change” option (see example logs at the end of each chapter for service descriptions). This has a very important application for the first track on every log. In the past, we have encountered conflicts between the gamma ray and the rate of penetration trace. These conflicts can, in many cases, be eliminated with a scale change. In the event of high rates of penetration, you should apply a scale change to the rate of penetration trace through the interval characterized by the high drilling rates. In many cases, you may find it necessary to apply a scale change to the gamma ray trace when it drifts off to one side. Use good judgement for scale changes. Although you should feel comfortable about making scale changes, do not get in the habit of applying scale changes every 1,500 feet. Trace Labels When setting up trace labels, make sure to set up separate gamma ray trace labels for the correlation and quantitative logs. Due to the different smoothing intervals between the two, labels set up for the correlation log typically will not work for the quantitative log. Most engineers find it convenient to build a comment.fil for the main header and each log type (such as 1MD.fil, 1TVD.fil, 5MD.fil, 5TVD.fil, comment.fil). It is recommended to end each file with the three letter extension “.fil.” This ensures that all of these files will be stored when a 2-12
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Log Preparation
Getdata is performed. Also make sure to use a name that makes it easy to understand which file is for which log. Remember, we need to have the capability to plot your log in the event you cannot. If any corrections are made to your comment files while you are plotting final logs, make sure to restore these to disk via a Getdata. Traces On/Off This is a new function in MPLOT that enables the engineer to turn traces on or off where desired. This is advantageous, for example, when you log behind casing. Your log response is rather erratic and may drift beyond the track it is plotted in. This data can be turned off without having to manipulate the database. The same can be done in areas with poor data quality due to a tool failure. Its most common use is when combining realtime and memory data. Typically, the real-time data is disabled in the overlap region where the real-time data ends and the memory data begins or vice versa. (see “Traces On and Off” on page 2-15 for instructions on how to use this option.)
Guide to Comment.fil (Bryan Dugas) Comment.fil Comment.fil contains commands and text to be displayed on logs generated with MPLOT. It is important to note that the comment file is generated using the SEE editor (selected from the HPUTIL main menu). The comment file can be edited using either the SEE editor or the edit option in the MPLOT log plotting configuration menu (press [F1] to edit). To facilitate editing, all features such trace labels, annotations, etc., can be viewed directly on the screen logs (press [F8] to view log). Each line in the comment.fil is classified by the first character (which should always be left justified). Also note that there are no spaces in between characters. Below is a summary of the formats of the different types of annotations: #LABEL,DEPTH,VALUE,LEFT OR RIGHT
: Trace Labels
!COMMENT
: Do Not Print
@X,DEPTH,TRACK #
: See Remark X
^LABEL,DEPTH,CYCLES,LEDGE,REDGE
: Scale Change
%ANNOTATION,DEPTH,LOCATION
: ASCII Across
*ANNOTATION,DEPTH,LOCATION
: ASCII Down To
&ANNOTATION,DEPTH,LOCATION
: ASCII Down From
Reference Manual 750-500-041 Rev. A / January 1996
2-13 Confidential
Log Preparation
Log Quality and Data Management Standards
+LABEL,DEPTH
: Trace On
-LABEL,DEPTH
: Trace Off
|START DEPTH,END DEPTH,LOCATION,WIDTH
: Line Annotation
Any Other Character
: Remark On Header
See Remarks X @X,DEPTH,TRACK #
@1,12000,1 @2,12500,4
(example 1) (example 2)
Example 1: Place See Remark 1 at 12000 MD in the first track. Example 2: Place See Remark 2 at 12500 MD in between tracks 2 & 3. TRACK # coding 1 = TRACK 1 2 = TRACK 2 3 = TRACK 3 4 = Between tracks 2 & 3 Comment Line !This Line Will Not Print.
Trace Labels #LABEL,DEPTH,VALUE,LEFT OR RIGHT
#GRCM,12000,160,R (example 1) #GRCM,12500,160,L (example 2) Example 1: Place GRCM label at 12000 MD to the right of the trace at a value of 160. Example 2: Place GRCM label at 12500 MD to the left of the trace at a value of 160. An arrow automatically accompanies each trace label. For L the trace label looks like GRCM->. For R the trace label looks like Run 6,12000,660 (example 1) &> Run 5,11000,660 (example 2) Example 1: Place > Run 6 starting at 12000 MD at location 660 (Depth Track). Example 2: Place > Run 5 starting at 11000 MD at location 660 (Depth Track). Annotation Down To Depth *ANNOTATION,DEPTH,LOCATION
*Run 6 Rw , then Rpd > Rat In both cases, the amount of separation will depend on the depth of invasion, the relative values of Rmf , Rw , and the filtrate and water saturations. Impermeable Zones (Shales) When Rmf < Rw , then Rpd ≤ Rat When Rmf > Rw , then Rpd ≥ Rat
Reference Manual 750-500-041 Rev. A / January 1996
8-9 Confidential
Double Combo
Log Quality and Data Management Standards
Dielectric Formations Rpd < Rat Thin Beds Intersecting Borehole at High Incident Angles (Above 60°) Rpd > Rat Eccentricity Typically no effect unless a large contrast between Rm and Rt exists (either Rm much greater than Rt , or Rt much greater than Rm ). Under these circumstances Rpd < Rat . Modular Neutron Porosity After borehole corrections are applied, the following relationships should apply. This also assumes the correct logging matrix (sandstone, limestone) has been applied. Clean Reservoir Rocks Filled with Either Water or Oil NPCM reads correct porosity. Clean Reservoir Rocks Filled with Gas NPCM reads lower than true porosity. Shale Zones NPCM reads higher than true porosity.
Other Requirements for This Service Surface measurement of Rm and Rmf corrected for bottom-hole circulating temperature required on a daily basis. This data should be supplied on the header of each daily log with BHCT (see “Main Header, Environmental Parameters” on page 3-8 for measurement procedures).
8-10
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Double Combo
Log Presentation Note: All log formats listed below assume the data is either realtime or memory data that has been processed without a P-SERIES system (or with a P-SERIES system "without averaging" selected for processing) and plotted using MPLOT. In cases where a P-SERIES system was used and the data was processed using the "averaging" option, then it is recommended not to smooth during plotting. This will result in oversmoothed logging traces. This will most frequently affect the Gamma Ray MWD API trace.
North and South America Log Presentations 1:600 AND 1:1200 ENGLISH DEFAULT LOG FORMATS (correlation) LIMESTONE MATRIX Track 1: Linear Trace 1 2 3 4 5 6 7 8
Track 1 1 1 2 2 2 3 3
Track 2: Linear
Track 3: Linear
Param
Ledge
Redge
Line
Mode
GRAM ROPS TVD1 RPCM RPCM RACM NPLM TCDM2
0 1000 VAR 0 0 0 45 VAR
150 0 IABLE 2 10 10 -15 IABLE
MLIN 5DSH HSPT MLIN MLIN MDSH MLIN LSPT
WRAP WRAP NB NB X10 X10 WRAP WRAP
Smooth 3 0 0 0 0 0 0 0
Pen Up 10 10 100 10 10 10 10 100
Notes
Optional
Optional
SANDSTONE MATRIX Track 1: Linear Trace 1 2 3 4 5 6 7 8
Track 1 1 1 2 2 2 3 3
Track 2: Linear
Track 3: Linear
Param
Ledge
Redge
Line
Mode
GRAM ROPS TVD1 RPCM RPCM RACM NPSM TCDM2
0 1000 VAR 0 0 0 60 VAR
150 0 IABLE 2 10 10 0 IABLE
MLIN 5DSH HSPT MLIN MLIN MDSH MLIN LSPT
WRAP WRAP NB NB X10 X10 WRAP WRAP
Smooth 3 0 0 0 0 0 0 0
Pen Up 10 10 100 10 10 10 10 100
Notes
Optional
Optional
1.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
2.
TCDM: Optional curve for this presentation. Scale increases from left to right.
Reference Manual 750-500-041 Rev. A / January 1996
8-11 Confidential
Double Combo
Log Quality and Data Management Standards
1:240 ENGLISH DEFAULT LOG FORMATS (quantitative) LIMESTONE MATRIX Track 1: Linear Trace 1 2 3 4 5 6 7 8 9
Track 2: 2 Cycle Log
Track 3: Linear
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
1 1 1 LHDD 2 2 3 3 3
GRAM ROPS TVD1 RPIM2 RPCM RACM NPLM RPTM2 TCDM3
0 1000 VAR ** 0.2 0.2 45 0 VAR
150 0 IABLE ** 20 20 -15 300 IABLE
MLIN 2DSH HSPT ** MLIN MDSH MLIN MSPT LSPT
WRAP WRAP NB ** OVER OVER WRAP X10 WRAP
0.5 0 0 0 0 0 0 0 0
10 10 100 10 10 10 10 10 100
Notes
Optional
Optional
SANDSTONE MATRIX Track 1: Linear Trace 1 2 3 4 5 6 7 8 9
Track 2: 2 Cycle Log
Track 3: Linear
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
1 1 1 LHDD 2 2 3 3 3
GRAM ROPS TVD1 RPIM2 RPCM RACM NPSM RPTM2 TCDM3
0 1000 VAR ** 0.2 0.2 60 0 VAR
150 0 IABLE ** 20 20 0 300 IABLE
MLIN 2DSH HSPT ** MLIN MDSH MLIN MSPT LSPT
WRAP WRAP NB ** OVER OVER WRAP X10 WRAP
0.5 0 0 0 0 0 0 0 0
10 10 100 10 10 10 10 10 100
Notes
Optional
Optional
1.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
2.
rpim/rptm: as a default, use the time Since Drilled and Data Density from Phase Difference. The output of the RPIM trace is predetermined. However, a number must be put into these parameters to prevent MPLOT from crashing. Presentation for data density is in the depth track.
3.
TCDM: Optional curve for this presentation. Scale should increase from left to right.
8-12
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Double Combo
International Log Presentations 1:500 METRIC DEFAULT LOG FORMATS (correlation) LIMESTONE MATRIX Track 1: Linear
Trace 1 2 3 4 5 6 7
Track 3: Linear
Param
Ledge
Redge
Line
Mode
Smoot h
Pen Up
GRAM ROPS1 TCDM2 TVD3 RPCM RACM NPLM
0 100 0 VAR 0.2 0.2 45
150 0 250 IABLE 20 20 -15
MLIN 5DSH LSPT HSPT MLIN MDSH MLIN
WRAP WRAP WRAP WRAP OVER OVER WRAP
0.25 0 0 0 0 0 0
10 10 100 100 10 10 10
Track 1 1 1 1 2 2 3
Track 2: 2 Cycle Log
Notes
Optional
SANDSTONE MATRIX Track 1: Linear Trace 1 2 3 4 5 6 7
Track 1 1 1 1 2 2 3
Track 2: 2 Cycle Log
Track 3: Linear
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
GRAM ROPS1 TCDM
0 100 0 VAR 0.2 0.2 60
150 0 250 IABLE 20 20 0
MLIN 5DSH LSPT HSPT MLIN MDSH MLIN
WRAP WRAP WRAP WRAP OVER OVER WRAP
0.25 0 0 0 0 0 0
10 10 100 100 10 10 10
2
TVD3 RPCM RACM NPSM
Notes
Optional
1.
ROPS: Default units are ft/hr. Other default units and scales are 100 - 0 m/hr, 60 - 0 min/ft, 60 - 0 min/m, 10 - 0 ft/min, 10 - 0 m/min. Default for averaging is also feet. Metric equivalent is 2.0 (for 1:500) and 1.0 (for 1:200). Scale may need to be adjusted to accommodate the gamma ray trace (see “Rate of Penetration” on page 2-3 and “Gamma Ray” on page 2-4 for recommendations).
2.
TCDM: Default units are Celsius. Other default units and scales are 0 - 250°F.
3.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
Note: WBCS (Weight on Bit) is omitted from these double combo presentations. If weight on bit is requested by the client, it is preferred to generate a separate DPR log with WBCS and ROPS in track 3 (Eastern Region default format for DPR). Placement of weight on bit in track 3 Reference Manual 750-500-041 Rev. A / January 1996
8-13 Confidential
Double Combo
Log Quality and Data Management Standards with neutron porosity should be avoided unless there is consent from the client. Note: Pen up intervals are in feet. Metric equivalent is 3 meters (for 10 feet) and 30 meters (for 100 feet).
1:200 METRIC DEFAULT LOG FORMATS (quantitative) LIMESTONE MATRIX Track 1: Linear
Track 2: 2 Cycle Log
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
1 2 3 4 5 6 7 8
1 1 1 LHDD 2 2 3 3
GRAM TCDM1 TVD2 RPIM3 RPCM RACM NPLM RPTM3
0 0 VAR ** 0.2 0.2 45 0
150 250 IABLE ** 20 20 -15 600
MLIN LSPT HSPT ** MLIN MDSH MLIN MSPT
WRAP WRAP WRAP ** OVER OVER WRAP X10
0.25 0 0 0 0 0 0 0
10 100 100 10 10 10 10 10
Notes
Optional
SANDSTONE MATRIX Track 1: Linear
Track 2: 2 Cycle Log
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
1 2 3 4 5 6 7 8
1 1 1 LHDD 2 2 3 3
GRAM TCDM1 TVD2 RPIM3 RPCM RACM NPSM RPTM3
0 0 VAR ** 0.2 0.2 60 0
150 250 IABL E ** 20 20 0 600
MLIN LSPT HSPT ** MLIN MDSH MLIN MSPT
WRAP WRAP WRAP ** OVER OVER WRAP X10
0.25 0 0 0 0 0 0 0
10 100 100 10 10 10 10 10
8-14
Notes
Optional
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Double Combo
1.
TCDM: Optional curve for this presentation. Default units are Celsius. Other default units and scales are 0 - 250°F.°
2.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
3.
RPIM/RPTM: As a default, use time since drilled and data density from phase difference. The output of the RPIM trace is predetermined. However, a number must be put into these parameters to prevent MPLOT from crashing. Presentation for data density is in the depth track.
Note: ROPS (Rate of Penetration) and WBCS (Weight on Bit) are omitted from these double combo presentations. If either of these are requested by the client, it is preferred to generate a separate DPR log with WBCS and ROPS in track 3 (international default log format for DPR). placement of weight on bit in track 3 with neutron porosity should be avoided unless there is consent from the customer. Note: Pen up intervals are in feet. Metric equivalent is 3 meters (for 10 feet) and 30 meters (for 100 feet).
Special Logging Applications Near/Far Count Overlays It is recommended that you consult the Regional Eastman Teleco Log Analysts or Formation Evaluation Specialists before using this technique. This application permits identification of light hydrocarbons (gas) without the benefit of a density measurement. This is accomplished by plotting the near neutron counts and the far neutron counts together in the same track. The scales for each (near and far) need to be "normalized" for an in gauge, clean, "water wet" or oil filled reservoir rock (i.e., sand or carbonate) such that both the near and far count traces overlay one another. In a zone containing gas, the deeper investigating far counts detected by the tool will increase significantly more than the near counts. This is identified on the log as a characteristic separation between the near and far counts in the gas zone. Pitfalls to This Technique It is important to note that the effectiveness of this technique diminishes if the borehole size varies. This technique cannot be used if the zone of interest has a different borehole diameter than the zone used for normalizing. This technique also cannot be used for sand reservoirs that are shaley or silty (i.e., sands must be clean).
Reference Manual 750-500-041 Rev. A / January 1996
8-15 Confidential
Double Combo
Log Quality and Data Management Standards
Care must also be taken when using this technique in a mixed lithology environment. In fact, avoid using this technique without prior knowledge of the local stratigraphy. You must be able to distinguish between carbonates and sands (through correlation with offset logs, etc.). An overlay normalized in one lithology will yield an unfavorable response in another lithology. For example, an overlay normalized in a clean, wet sand may indicate gas in another clean reservoir rock that is actually a water bearing carbonate. However, without prior knowledge of the stratigraphy, this water bearing carbonate may be interpreted as gas in a clean sand. If zones of interest occur in more than one lithology, then an overlay needs to be constructed for each lithology. Recommendations: "Methodology" •
Identify the zone of interest using the gamma ray, phase difference and attenuation resistivity.
•
Make sure there is borehole integrity (i.e., the borehole is in gauge). Consult the client for drilling characteristics of the formations drilled. (Do the reservoir rocks typically remain in gauge? How much enlargement might take place if logging occurs on a reaming run? Etc.) Your Regional Log Analyst may be able to help with this information.
•
Look for a nearby clean reservoir rock (or water leg of the zone of interest) to normalize near and far counts. Make sure the lithology used for normalizing is the same lithology as the zone of interest. If you are logging in a mixed lithology environment, can you distinguish between carbonates and sands? If not, stop here!
•
Normalize the near and far counts by adjusting the default scales for near and far counts provided by the log format on the next page. Scale both traces so they lie in the center of the track. More importantly, make sure the porosity sensitivities for both near and far counts are similar. Once this is accomplished, normalize the traces in a nearby clean reservoir rock.
•
Correlate separations between near and far count log traces with the gamma ray and phase difference and attenuation resistivities for proper identification of gas bearing reservoir rocks (far > near, in a gas zone). Be wary of false separations due to mixed lithologies.
8-16
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Double Combo
NEAR/FAR COUNT OVERLAY 1:240 ENGLISH AND 1:200 METRIC DEFAULT LOG FORMAT Track 1: Linear
Track 2: 2 Cycle Log
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
1 2 3 4 5 6 7 8
1 1 LHDD 2 2 3 3 3
GRAM ROPS1 RPIM2 RPCM RACM NNBM3 NFBM3 RPTM2
0 100 ** 0.2 0.2 VAR VAR 0
150 0 ** 20 20 IABLE IABLE 300
MLIN 5DSH ** MLIN MDSH MLIN MDSH MSPT
WRAP WRAP ** OVER OVER NB NB X10
Smooth 0.5 0 0 0 0 0 0 0
Pen Up
Notes
10 10 10 10 10 10 10 10
Optional Optional
Optional
1.
ROPS: Optional trace for this format. Default units are ft/hr. Other default units and scales are 100 -0 m/hr, 60 - 0 min/ft, 60 - 0 min/m, 10 - 0 ft/min, 10 - 0 m/min. Default for averaging is also feet. Metric equivalent is 2.0 (for 1:500) and 1.0 (for 1:200). Scale may need to be adjusted to accommodate the gamma ray trace (see “Rate of Penetration” on page 2-3 and “Gamma Ray” on page 2-4 for recommendations).
2.
RPIM/RPTM: Optional traces for this presentation. Presentation is in the depth track.
3.
NNBM/NFBM: The default scales provided are typical for a high porosity regime. These scales will need to be adjusted for low porosity rocks (i.e., carbonates).
Note: Pen up intervals are in feet. Metric equivalent is 3 meters (for 10 feet) and 30 meters (for 100 feet).
Reference Manual 750-500-041 Rev. A / January 1996
8-17 Confidential
Double Combo
Log Quality and Data Management Standards
8-18
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Chapter
9
Triple Combo This chapter provides instructions on gathering and processing measurements using the Triple Combo tool. Log presentations are included at the back of the chapter.
Introduction The introduction of the modular density sub (MDL) shortly after the commercialization of MNP has given Teleco full "Triple Combo" capabilities. The addition of MDL to the DPR and MNP allows for a greater diversity in evaluating logs for hydrocarbon potential. Similar to the MNP measurement, this tool also infers porosity. In this case, porosity is inferred from bulk density. In most cases, the MDL is the porosity tool of choice. This is because the measurement is not as greatly influenced by shale effects (the neutron tool, for example, is greatly influenced by the presence shale in the matrix of the reservoir rock). Another advantage of this tool is the Pe measurement (photoelectric absorption cross section). The Pe measurement is used effectively for lithology identification when the MDL is used in normal density drilling fluids. This sub is typically located below the neutron porosity sub and above the propagation resistivity sub in a triple combo configuration. Similar to the MNP tool, the MDL tool incorporates state-of-the-art technology. This tool utilizes a 2.0 Curie Cesium 137 gamma source and two scintillator detectors (short and long). The detectors are placed under a full gauge stabilizer pad with low density windows. The full gauge stabilizer permits constant contact with the formation for increased sensitivity of the measurement. Gamma rays returning to the detectors are sampled using dual 256-multichannel analyzers. The MDL electronics are also selfcalibrating. This is accomplished by monitoring Cesium seed sources located in the short and long detectors. The tool is also modular in design, which means the detectors and associated electronics are housed in its own sub. Electrical power and communications from the main MWD collar to Reference Manual 750-500-041 Rev. A / January 1996
9-1 Confidential
Triple Combo
Log Quality and Data Management Standards
the modular tool sub occurs over a single wire bus. This single wire bus maintains communication from the sub to the main MWD collar via conductive contact rings mounted in the shoulder of each sub and the main MWD collar. As a result, this sub can be conveniently added or removed from the bottom-hole assembly at the rigsite as needed.
Mud Types All mud systems.
Borehole Corrections Gamma Ray Tool size, hole size, mud weight, %K (potassium content), sensor type, gamma API correction factor. Dual Propagation Resistivity Tool size, hole size, resistivity of the mud Rm, and constants (base offsets and temperature characterization constants). Modular Neutron Porosity Tool size, hole size, mud density, borehole salinity. Modular Density Lithology Tool size, hole size, mud density.
Data Editing Editing of Realtime Data Editing of realtime MNP data is not permitted. The realtime formation records are needed to accurately assign depths to the memory data. In the event severe decoding problems exist and the quality of the MWD log is lowered, editing is allowed provided the logging engineer has consent from the customer. In this case, the logging engineer is required to notify the Teleco office, then notify the client and request consent to edit the MWD log. If editing takes place, the engineer shall maintain a separate copy of unedited raw data that he shall use for processing memory data. Any and all editing should be prudent. If data is edited, it should be removed from the database. Under no circumstances should the data be replaced or
9-2
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
altered. It is preferred that questionable data remain in the database. This data should be identified and referenced on the log as such with a remark. Editing of Memory Data This is strictly prohibited. There are several reasons for this. We should let the client decide whether the data in question is useful to him or not. It is our job and responsibility as logging engineers, however, to identify data that is most likely in error (for whatever reason) and documenting this as such on the log. If the client requests an edited memory log with suspect data removed, a separate log should be made and documented as such. The LIS tape should contain all of the original memory data. When an interval of questionable data is recorded and identified, the client should be notified and a relog should be recommended. The concept of re-logging a particular interval to determine the repeatability of logging sensors is a standard practice in the logging industry. In order to establish repeatability, it is important to relog a zone where the log response is not in question in addition to relogging the questionable zone. Discuss this with the client. If the client declines to relog the interval, document this as well as the questionable interval on the remarks page of the log. Depth Shifts Make sure logging depths are as accurate as possible. This is crucial for this service. Make depth shifts in the database where necessary. Anytime depths differ at a depth at kelly down by 1.0 foot (0.45 meters) or greater, a depth shift should be performed. Depth shifts can be minimized by frequently calibrating the Kelly Height sensor at kelly down and updating the depth at kelly down at every connection.
Data Management M-SERIES A raw database file should be stored on the hard disk (Winchester) and a raw file backed up to disk. In the event that editing of the MWD data occurs, a copy of raw unedited data shall be maintained for processing memory data (see “Data Editing” above). If a Winchester is not used on the rigsite, a raw database file also should be backed up to disk. Provide all necessary information on every disk label, and use an easy to follow sequential numbering scheme for labeling disks.
Reference Manual 750-500-041 Rev. A / January 1996
9-3 Confidential
Triple Combo
Log Quality and Data Management Standards
MDMS Two file types need to be backed up to disk. These are the raw memory dump data and the XFER file. Both of these need to be backed up on a run by run basis. P-SERIES The database file should be backed up to tape periodically during the job. Both edited and raw data are maintained in the same database so there is no distinction between the two like M-SERIES. HPUTIL When M-SERIES (MWD data), MDMS XFER files (RWD data), or P-SERIES XFER files (MWD or RWD data) are converted to binary files for plotting with MPLOT, then several file types should be backed up to disk. These are as follows: •
binary.* (includes .fil, .apd, .uni, .idx),
•
*.cfg (HPUTIL Rev. 2.1 or greater)
•
setup.fil (Mplot/Wplot formats...formally newplot.fil)
•
log.fil (Makelog/Head/Minihead formats)
•
tvddata.fil
•
newplot.fil (use with HPUTIL versions earlier than Rev. 2.1)
•
header.fil (use with HPUTIL versions earlier than Rev. 2.1)
•
comment.fil
These files can be compressed using PZIP and backed up to disk using FASTBACK with the program Getdata (see “Getdata Disks” on page 1-4).
Rigsite Data Processing Smoothing and/or Averaging M-SERIES None applied to the database. User selective smoothing or averaging can be applied when plotting (see log formats for recommended curve smoothing).
9-4
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
MDMS MDMS processes raw memory dump data with MWD data and creates an XFER.FIL. Use MPLOT Utilities in HPUTIL to convert XFER file into a binary file. Run Squeeze to remove backplots and average data on a 0.25 feet (0.1 meter) interval (see “Squeeze” on page 9-6). P-SERIES None applied to the realtime database. User selective averaging (averaging on/off, it is recommended to select averaging). Propagation resistivities are block averaged on a 0.25 feet (0.1 meter) interval. See “Filtering” on page 9-5 for exclusive filtering routines applied to neutron porosity, density, and gamma ray data. During processing of data, backplots are removed. Additionally, user selective smoothing or averaging can be applied when plotting (however, if the data is processed with averaging selected, it is not recommended to smooth during plotting). HPUTIL If Squeeze is applied to the binary.fil, backplots are removed and data is averaged on a 0.25 feet (0.1 meter) interval. Additionally, user selective smoothing can be applied when plotting with MPLOT (see log formats for recommended curve smoothing).
Filtering Despiking Available only in P-SERIES 2.0 and above. Applied to density data prior to hanning window filter (see below). Hanning Window Filter Available only in P-SERIES 2.0 and above. Applied to density data after "despiking." Also applied to neutron porosity and gamma ray data. This routine filters as the data is placed on a 0.25 feet (0.1 meter) interval. Chi Square Smoothing Available only in P-SERIES 2.0 or above. Applied to bulk density value using delta rho, two raw data values, and the density long space windows 4 and 5.
Reference Manual 750-500-041 Rev. A / January 1996
9-5 Confidential
Triple Combo
Log Quality and Data Management Standards
Other Borehole Corrections Automatically applied by surface software (see “Borehole Corrections” on page 9-2). Dielectric Corrections Performed as required. This will be a rigsite option in P-SERIES 2.01 and above. Applied to phase difference and amplitude ratio resistivities when these data are affected by formation dielectric effects. Squeeze Squeeze is required for non-P-SERIES databases (HPUTIL binary files). Apply to binary files before plotting final logs with Gulton plotters. Squeeze compresses the data file by removing all backplots and then averages the data on a 0.25 feet (0.1 meter) average. (For more information, see “Squeeze” on page 1-5.) Quicken Quicken is not required but is highly recommended for non-P-SERIES databases (HPUTIL binary files). Apply to binary files after Squeeze is performed. This application sets up indices for every 100 feet (50 meters) of log, which speeds up the depth search routine for the MEDIT editor. (For more information, see “Quicken” on page 1-5.) ADDTSD ADDTSD is required for non-P-SERIES databases (HPUTIL binary files). Apply to binary file as needed during job. This application calculates the time since drilled and data density curves for MWD and RWD data. Calculate from the phase difference resistivity (RPCM) unless otherwise requested. (For more information, see “Time Since Drilled” on page 2-7.) ADDTVD ADDTVD is required on every horizontal well. This routine calculates and arranges directional data (true vertical depth) so it can be plotted as a curve. This is an HPUTIL utility program. (For more information, see “True Vertical Depth” on page 2-8.) Quicklook WDS Log Analysis Performed at the rigsite as required.
9-6
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
Note: No other rigsite data processing is required unless incorrect or base offsets and temperature characterization data and/or incorrect borehole corrections have been entered into the database. If this occurs, enter the correct correction factors and recalculate the database.
Postwell Data Processing Before Final Logs Dielectric Corrections Performed as required. Applied to phase difference and amplitude ratio resistivities when these data are affected by formation dielectric effects. This can be performed either in P-SERIES 2.01 and above or WDS. Inversion Performed as required. Applied to phase difference and amplitude ratio resistivities when characterized by thin bed effects. Performed in WDS.
After Final Logs Postwell WDS Log Analysis Performed at clients request by Regional Log Analyst. Provides more detailed analysis of logging data than Quicklook. LIS ASCII File and Tape Performed in either MDMS, P-SERIES, LOGWORKS, or WDS at customer's request.
Rigsite Calibration Verification Required at the beginning and end of each run. Verification accomplished using the density verifier and verification menu's in MDMS or P-SERIES surface software. P-SERIES records and processes verification data and automatically calculates the variance between the shop and rigsite verification. Verification data should be recorded on Calibration Verification page on P-SERIES header.
Reference Manual 750-500-041 Rev. A / January 1996
9-7 Confidential
Triple Combo
Log Quality and Data Management Standards
Quality Control Quality Control Curves Data Density Currently, data density is not calculated for neutron porosity or bulk density. Use the data density calculated from phase difference resistivity (RPIM). Data density (integrated) should be plotted on the quantitative log as tick marks in the depth track on the left hand side. Time Since Drilled Since there should be relatively little difference in the time between downhole sensors, use the time since drilled calculated from phase difference resistivity unless DPR is not present (due to failure, not in drillstring, etc.) or the client requests otherwise. This will maintain consistency between logs. Plot time since drilled as a medium spot line in track III on quantitative logs. A 0 to 300 minutes scale is recommended with no wrap or back up. Where the time since drilled curve goes off scale, provide a remark in the remarks page indicating the length of exposure time. Reference this remark on the log where the curve goes off scale. Delta Rho (∆ρ) This is a very important quality control curve for the density measurement. This curve plots the amount of correction (in g/cc) which has been applied to the density measurement as a result of increasing standoff of the density detectors from the borehole wall. The correction compensates for the drilling mud in the annulus (between the detector and formation) and is largely dependent on mud weight and formation lithology. Note: Delta Rho (∆ρ) corrections are positive for low mud weights but may be negative for high mud weights and carbonate lithologies. The quality of the density data is considered compromised with any correction greater than +/- 0.10 g/cc.
Log Quality Control You are responsible as a logging engineer to periodically evaluate the data quality of your logs. Generate a quantitative log and inspect the curves for areas that might suggest a compromise in quality. If areas characterized by poor quality are detected, notify the office (Eastman Teleco) and the client
9-8
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
immediately. Under these circumstances, the client should be given the opportunity to recover either lost or poorly recorded data. Listed below are required log quality checks that need to be performed for any RWD service. If during these checks you identify a problem area, you are required to call the office for recommendations. Note: Refer to DPR Services (see Chapter 7 "Dual Propagation Resistivity") for additional recommended DPR log quality checks. These log quality checks should be run in addition to the MDL log quality checks. 1.
Realtime vs. Memory Data Comparison: A quantitative log is required for adequate evaluation. At the end of each run after the memory data has been processed, a log should be made with the realtime and memory data plotted side by side (i.e., realtime DP*X data in track II, memory DP*M data in track III [* = L, S, for limestone, sandstone, respectively]). The engineer should evaluate the log for depth shifts between the realtime and memory data. Depth shifts result when incorrect time offsets are applied before processing. If depth shifts are identified, call the office for recommendations.
Note: There may be a difference between the realtime and memory MDL log responses due to smoothing and averaging which is not applied to realtime data (see “Rigsite Data Processing” on page 9-4). 2.
Realtime vs. Relog Data Comparison •
A quantitative log is required for adequate evaluation. After a relog (second pass) is performed, it is important to plot the memory relog data with the "original pass" realtime data. Plot realtime and memory gamma ray in track I and original pass realtime DP*X with memory relog DP*M in track II (plotting DPR data in track III is optional). Evaluate this data for depth shifts. If depth shifts are identified, call the office for recommendations.
•
If memory relog data is merged with "on bottom" data, a composite log which contains the realtime "on bottom" data and the memory merged relog data should be plotted and evaluated for depth discrepancies. Plot the realtime "on bottom" and the memory merged relog gamma ray together in track I. Plot the realtime "on bottom" and the merged relog in track II (plotting DPR data in track III is optional).
Reference Manual 750-500-041 Rev. A / January 1996
9-9 Confidential
Triple Combo
Log Quality and Data Management Standards If depth discrepancies occur, call the office for recommendations.
Typical Log Response Gamma Ray The gamma ray sensor is primarily a lithology indicator. It measures the natural gamma ray radiation which is emitted from naturally occurring radioactive elements (uranium, thorium, and potassium) deposited within the surrounding formations. As it turns out, shale generally contains much higher quantities of these radioactive substances than sandstones and carbonates (limestone and dolomite). Therefore, the gamma ray sensor can in most cases easily distinguish between shales and non-shale formations. •
Shales are generally identified by high gamma ray readings (greater than 100 MWD-API units).
•
Non-shale formations (sandstones and carbonates) are identified by relatively low gamma ray readings (lower than 60 MWD-API units).
Dual Propagation Resistivity After borehole corrections have been applied and relatively standard borehole conditions exist, the following relationships between Rpd and Rat should apply. Permeable Zones When Rmf < Rw , then Rpd < Rat When Rmf > Rw , then Rpd > Rat In both cases, the amount of separation will depend on the depth of invasion, the relative values of Rmf , Rw , and water saturations. Impermeable Zones (Shales) When Rmf < Rw , then Rpd ≤ Rat When Rmf > Rw , then Rpd ≥ Rat Dielectric Formations Rpd < Rat
9-10
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
Thin Beds Intersecting Borehole at High Incident Angles (Above 60°) Rpd > Rat Eccentricity Typically no effect unless a large contrast between Rm and Rt exists (either Rm much greater than Rt , or Rt much greater than Rm ). Under these circumstances Rpd < Rat . Modular Neutron Porosity After borehole corrections are applied and the following relationships should apply. This also assumes the correct logging matrix (sandstone, limestone) has been applied. Clean Reservoir Rocks Filled with Either Water or Oil NPCM reads correct porosity and also reads the same as DPCM (density porosity). Clean Reservoir Rocks Filled with Gas NPCM reads lower porosity than DPCM (density porosity). Shale Zones NPCM reads higher porosity than DPCM (density porosity). Modular Density Lithology The following relationships should apply. This also assumes the correct logging matrix (sandstone, limestone) has been applied. Permeable Zones •
Should read correctly unless significantly affected by standoff, drilling mud, and lithology (low mud weights will yield a positive ∆ρ; high mud weights and/or carbonates will yield a negative ∆ρ). The density measurement is considered compromised with any ∆ρ correction greater than ± 0.10 g/cc.
•
DPEM (photoelectric cross section) will read too high in barite loaded muds (over 12.0 ppg).
Reference Manual 750-500-041 Rev. A / January 1996
9-11 Confidential
Triple Combo
Log Quality and Data Management Standards
Impermeable Zones •
Same as above.
•
DPEM (photoelectric cross section) will read too high in barite loaded muds (over 12.0 ppg).
Other Requirements for This Service Surface measurement of Rm and Rmf corrected for bottom-hole temperature (CDS temperature) required on a daily basis. This data should be supplied on the header of each daily log with BHCT (see “Main Header, Environmental Parameters” on page 3-8 for measurement procedures).
Log Presentation Log formats and trace scales for Triple Combo Services are more complex and diversified than our other services. Formats and scales can vary greatly from each client as well as each region. It is important to consult the client for preferred formats and scales prior to logging. The formats provided below are default formats. Two types of formats are listed: combined and segregated. Combined formats present all of the parameters measured by the DPR, MNP, and MDL on one log. This is the typical "Triple Combo" format. Segregated formats typically present the resistivity traces on a separate log from the neutron porosity and density traces. Formats are additionally broken down by matrix type (limestone or sandstone). Since neutron porosity and density are typically run together, the log formats presented here are the same as those presented for modular density lithology. Note: All log formats listed below assume the data is either realtime or memory data that has been processed without a P-SERIES system (or with a P-SERIES system "without averaging" selected for processing) and plotted using MPLOT. In cases where a P-SERIES system was used and the data was processed using the "averaging" option, then it is recommended not to smooth during plotting. This will result in over smoothed logging traces. This will most frequently affect the Gamma Ray MWD API and Bulk Density/Density Porosity traces.
9-12
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
North and South America Log Presentations Combined Log Formats (Triple Combo) Dual propagation resistivity, neutron porosity, and bulk density/density porosity are combined on the same log. For double combo logs, use these same formats with the exception of the missing trace or measurement. Consult the client for preferred formats.
1:600 AND 1:1200 ENGLISH DEFAULT LOG FORMATS (correlation) LIMESTONE MATRIX Track 1: Linear
Track 2: Linear
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 2 2 2 3 3 LHT3 RHT3
GRAM ROPS TCDM1 TVD2 RPCM RPCM RACM NPLM DPLM3 DPEM4 DRHM4
0 1000 VAR VAR 0 0 0 45 45 0 -0.25
150 0 IABLE IABLE 2 10 10 -15 -15 10 0.25
MLIN 5DSH LSPT HSPT MLIN MLIN MDSH MDSH MLIN HDSH MSPT
WRAP WRAP WRAP NB NB X10 X10 WRAP WRAP WRAP WRAP
Smooth 3 0 0 0 0 0 0 0 0 0 0
Pen Up 10 10 100 100 10 10 10 10 10 10 10
Notes
Optional Optional
SANDSTONE MATRIX Track 1: Linear
Track 2: Linear
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 2 2 2 3 3 LHT3 RHT3
GRAM ROPS TCDM1 TVD2 RPCM RPCM RACM NPSM DPSM3 DPEM4 DRHM4
0 1000 VAR VAR 0 0 0 60 60 0 -0.25
150 0 IABLE IABLE 2 10 10 0 0 10 0.25
MLIN 5DSH LSPT HSPT MLIN MLIN MDSH MDSH MLIN HDSH MSPT
WRAP WRAP WRAP NB NB X10 X10 WRAP WRAP WRAP WRAP
Reference Manual 750-500-041 Rev. A / January 1996
Smooth 3 0 0 0 0 0 0 0 0 0 0
Pen Up 10 10 100 100 10 10 10 10 10 10 10
Notes
Optional Optional
9-13 Confidential
Triple Combo
Log Quality and Data Management Standards
1.
TCDM: Optional curve for this presentation. Plot this trace in Track 3 if DPEM and/ or DRHM are not presented.
2.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
3.
DPLM/DPSM: Optional traces for these are BDCM (Bulk Density, Compensated). Scales are 1.65 to 2.65 g/cc (for sandstone matrix), 1.95 to 2.95 g/cc (for limestone matrix). Consult client for preferred traces and scales.
4.
DPEM/DRHM: Optional traces on correlation logs. These should be set up with half track presentations (left half, right half). Accuracy of DPEM diminishes significantly in drilling muds with high concentrations of barite (typically greater than 12.0 ppg). This is currently not a commercial measurement.
1:240 ENGLISH DEFAULT LOG FORMATS (quantitative) LIMESTONE MATRIX Track 1: Linear
Track 2: 2 Cycle Log
Trace
Track
Param
Ledge
Redge
Line
Mode
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 LHDD 2 2 3 3 LHT3 RHT3
GRAM ROPS TCDM1 RPTM2 TVD3 RPIM2 RPCM RACM NPLM DPLM4 DPEM5 DRHM5
0 1000 VAR 0 VAR ** 0.2 0.2 45 45 0 -0.25
150 0 IABLE 300 IABLE ** 20 20 -15 -15 10 0.25
MLIN 2DSH LSPT MSPT HSPT ** MLIN MDSH MDSH MLIN HDSH MSPT
WRAP WRAP WRAP X10 NB ** OVER OVER WRAP WRAP WRAP WRAP
9-14
Track 3: Linear Smooth 0.5 0 0 0 0 0 0 0 0 0 0 0
Pen Up 10 10 100 10 100 10 10 10 10 10 10 10
Notes
Optional Optional
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
SANDSTONE MATRIX Track 1: Linear
Track 2: 2 Cycle Log
Trace
Track
Param
Ledge
Redge
Line
Mode
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 LHDD 2 2 3 3 LHT3 RHT3
GRAM ROPS TCDM1 RPTM2 TVD3 RPIM2 RPCM RACM NPSM DPSM4 DPEM5 DRHM5
0 1000 VAR 0 VAR ** 0.2 0.2 60 60 0 -0.25
150 0 IABLE 300 IABLE ** 20 20 0 0 10 0.25
MLIN 2DSH LSPT MSPT HSPT ** MLIN MDSH MDSH MLIN HDSH MSPT
WRAP WRAP WRAP X10 NB ** OVER OVER WRAP WRAP WRAP WRAP
Track 3: Linear Smooth 0.5 0 0 0 0 0 0 0 0 0 0 0
Pen Up 10 10 100 10 100 10 10 10 10 10 10 10
Notes
Optional Optional
1.
TCDM: Optional curve for this presentation. Plot this trace in Track 3 if DPEM and/ or DRHM are not presented.
2.
RPTM/RPIM: As a default, use the time since drilled and data density from phase difference. The output of the RPIM trace is predetermined. However, a number must be put into these parameters to prevent MPLOT from crashing. Presentation for data density is in the depth track.
3.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
4.
DPLM/DPSM: Optional traces for these are BDCM (bulk density, compensated). Scales are 1.65 to 2.65 g/cc (for sandstone matrix), 1.95 to 2.95 g/cc (for limestone matrix). Consult client for preferred traces.
5.
DPEM/DRHM: For quantitative triple combo presentations these traces should be set up with half track presentations (left half, right half). Accuracy of DPEM diminishes significantly in drilling muds with high concentrations of barite (typically greater than 12.0 ppg). This is currently not a commercial measurement.
Reference Manual 750-500-041 Rev. A / January 1996
9-15 Confidential
Triple Combo
Log Quality and Data Management Standards
Segregated Log Formats Dual propagation resistivity is typically presented separately from neutron porosity and either density porosity or bulk density. This presentation typically requires one correlation log (DPR only) and two quantitative logs (one with DPR and one with neutron porosity/density). Consult the client for preferred log formats.
1:600 AND 1:1200 ENGLISH DEFAULT LOG FORMATS (correlation) DPR Track 1: Linear Trace 1 2 3 4 5 6 7 8 9
Track 1 1 1 2 2 2 3 3 3
Track 2: Linear
Track 3: Linear
Param
Ledge
Redge
Line
Mode
GRAM ROPS TVD1 RPCM RPCM RACM CPCM CPCM TCDM2
0 1000 VAR 0 0 0 4000 8000 VAR
150 0 IABLE 2 10 10 0 4000 IABLE
MLIN 5DSH HSPT MLIN MLIN MDSH MLIN MDSH MSPT
WRAP WRAP NB NB X10 X10 NB NB WRAP
Smooth 3 0 0 0 0 0 0 0 0
Pen Up 10 10 100 10 10 10 10 10 100
Notes
Optional
Back up
1.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
2.
TCDM: Scale increases from right to left.
9-16
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
1:240 ENGLISH DEFAULT LOG FORMATS (quantitative) DPR Track 1: Linear
Track 2: 2 Cycle Log
Trace
Track
Param
Ledge
Redge
Line
Mode
1 2 3 4 5 6 7 8
1 1 1 1 1 LHDD 2&3 2&3
GRAM ROPS TCDM1 RPTM2 TVD3 RPIM2 RPCM RACM
0 1000 VAR 0 VAR ** 0.2 0.2
150 0 IABLE 300 IABLE ** 20 20
MLIN 2DSH LSPT MSPT HSPT ** MLIN MDSH
WRAP WRAP WRAP X10 NB ** OVER OVER
Track 3: 2 Cycle Log Smooth 0.5 0 0 0 0 0 0 0
Pen Up 10 10 100 10 100 10 10 10
Notes
Optional Optional
1.
TCDM: Optional trace for this presentation. Scale increases from right to left.
2.
RPTM/RPIM: Due to logarithmic scales in tracks 2 & 3, time since drilled must be moved over to track 1. Presentation for data density is in depth track.
3.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
NEUTRON POROSITY / DENSITY (LIMESTONE MATRIX) Track 1: Linear
Track 2: Linear
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 LHDD 2&3 2&3 2 3
GRAM ROPS TCDM1 RPTM2 TVD3 RPIM2 NPLM DPLM4 DPEM5 DRHM
0 1000 VAR 0 VAR ** 45 45 0 -0.25
150 0 IABLE 300 IABLE ** -15 -15 10 0.25
MLIN 2DSH LSPT MSPT HSPT ** MDSH MLIN HDSH MSPT
WRAP WRAP WRAP X10 NB ** WRAP WRAP WRAP WRAP
Reference Manual 750-500-041 Rev. A / January 1996
Smooth 0.5 0 0 0 0 0 0 0 0 0
Pen Up 10 10 100 10 100 10 10 10 10 10
Notes
Optional Optional
9-17 Confidential
Triple Combo
Log Quality and Data Management Standards
NEUTRON POROSITY / DENSITY (SANDSTONE MATRIX) Track 1: Linear
Track 2: Linear
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 LHDD 2&3 2&3 2 3
GRAM ROPS TCDM1 RPTM2 TVD3 RPIM2 NPSM DPSM4 DPEM5 DRHM
0 1000 VAR 0 VAR ** 60 60 0 -0.25
150 0 IABLE 300 IABLE ** 0 0 10 0.25
MLIN 2DSH LSPT MSPT HSPT ** MDSH MLIN HDSH MSPT
WRAP WRAP WRAP X10 NB ** WRAP WRAP WRAP WRAP
Smooth 0.5 0 0 0 0 0 0 0 0 0
Pen Up 10 10 100 10 100 10 10 10 10 10
Notes
Optional Optional
1.
TCDM: Optional trace for this presentation. Scale increases from right to left.
2.
RPTM/RPIM: Since track 3 is occupied by DRHM, time since drilled must be moved over to track 1. as a default, use the time since drilled and data density from phase difference. The output of the RPIM trace is predetermined. However, a number must be put into these parameters to prevent MPLOT from crashing. Presentation for data density is in the depth track.
3.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
4.
DPLM/DPSM: Optional traces for these are BDCM (bulk density, compensated). Default scales are 1.65 to 2.65 g/cc (for sandstone matrix), 1.95 to 2.95 g/cc (for limestone matrix). Consult client for preferred scales.
5.
DPEM: Accuracy of this measurement diminishes significantly in drilling muds with high concentrations of barite (typically mud density greater than 12.0 ppg). Currently is not a commercial measurement.
9-18
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
International Log Presentations Combined Log Formats) Dual propagation resistivity, neutron porosity, and bulk density/density porosity are combined on the same log. For double combo logs, use these same formats with the exception of the missing trace or measurement. Consult the client for preferred formats.
1:500 METRIC DEFAULT LOG FORMATS (correlation) LIMESTONE MATRIX Track 1: Linear
Track 2: 2 Cycle Log
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
Notes
1 2 3 4 5 6 7 8 9 10
1 1 1 1 2 2 3 3 LHT3 RHT3
GRAM ROPS1 TCDM2 TVD3 RPCM RACM NPLM BDCM4 DPEM5 DRHM5
0 100 VAR VAR 0.2 0.2 45 1.95 0 -0.25
150 0 IABLE IABLE 20 20 -15 2.95 10 0.25
MLIN 5DSH LSPT HSPT MLIN MDSH MDSH MLIN HDSH MSPT
WRAP WRAP WRAP NB OVER OVER WRAP WRAP WRAP WRAP
0.25 0 0 0 0 0 0 0 0 0
10 10 100 100 10 10 10 10 10 10
Optional Optional Optional
SANDSTONE MATRIX Track 1: Linear
Track 2: 2 Cycle Log
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
Notes
1 2 3 4 5 6 7 8 9 10
1 1 1 1 2 2 3 3 LHT3 RHT3
GRAM ROPS1 TCDM2 TVD3 RPCM RACM NPSM BDCM4 DPEM5 DRHM5
0 100 VAR VAR 0.2 0.2 60 1.65 0 -0.25
150 0 IABLE IABLE 20 20 0 2.65 10 0.25
MLIN 5DSH LSPT HSPT MLIN MDSH MDSH MLIN HDSH MSPT
WRAP WRAP WRAP NB OVER OVER WRAP WRAP WRAP WRAP
0.25 0 0 0 0 0 0 0 0 0
10 10 100 100 10 10 10 10 10 10
Optional Optional Optional
Reference Manual 750-500-041 Rev. A / January 1996
Optional
9-19 Confidential
Triple Combo
Log Quality and Data Management Standards
1.
ROPS: Default units are ft/hr. Other default units and scales are 100 - 0 m/hr, 60 - 0 min/ft, 60 - 0 min/m, 10 - 0 ft/min, 10 - 0 m/min. Default for averaging is also feet. Metric equivalent is 2.0 (for 1:500) and 1.0 (for 1:200). Scale may need to be adjusted to accommodate the gamma ray trace (see “Rate of Penetration” on page 2-3 and “Gamma Ray” on page 2-4 for recommendations).
2.
TCDM: Optional curve for this presentation. Default units are Celsius. Other default units and scales are 0 - 250° Fahrenheit.
3.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
4.
BDCM: Optional traces for this are DPLM/DPSM (density porosity, limestone matrix/ sandstone matrix). Scales are 45 to -15 p.u. (for limestone matrix), 60 to 0 p.u. (for sandstone matrix). Consult client for preferred traces and scales.
5.
DPEM/DRHM: Optional traces on correlation logs. These should be set up as half track presentations (left half, right half). Accuracy of DPEM diminishes significantly in drilling muds with high concentrations of barite (typically greater than 12.0 ppg). This is currently not a commercial measurement.
Note: WBCS (Weight on Bit) is omitted from these triple combo presentations. If weight on bit is requested by the client, it is preferred to generate a separate DPR log with WBCS and ROPS in track 3 (Eastern Region default format for DPR). Placement of weight on bit in track 3 with neutron porosity should be avoided unless there is consent from the customer. Note: Pen up intervals are in feet. Metric equivalent is 3 meters (for 10 feet) and 30 meters (for 100 feet).
1:200 METRIC DEFAULT LOG FORMATS (quantitative) LIMESTONE MATRIX Track 1: Linear
Track 2: 2 Cycle Log
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
Notes
1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 LHDD 2 2 3 3 LHT3 RHT3
GRAM TCDM1 RPTM2 TVD3 RPIM2 RPCM RACM NPLM BDCM4 DPEM5 DRHM5
0 0 0 VAR ** 0.2 0.2 45 1.95 0 -0.25
150 250 600 IABLE ** 20 20 -15 2.95 10 0.25
MLIN LSPT MSPT HSPT ** MLIN MDSH MDSH MLIN HDSH MSPT
WRAP WRAP X10 NB ** OVER OVER WRAP WRAP WRAP WRAP
0.25 0 0 0 0 0 0 0 0 0 0
10 100 10 100 10 10 10 10 10 10 10
Optional
9-20
Optional
Optional
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
SANDSTONE MATRIX Track 1: Linear
Track 2: 2 Cycle Log
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
Notes
1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 LHDD 2 2 3 3 LHT3 RHT3
GRAM TCDM1 RPTM2 TVD3 RPIM2 RPCM RACM NPLM BDCM4 DPEM5 DRHM5
0 0 0 VAR ** 0.2 0.2 60 1.65 0 -0.25
150 250 600 IABLE ** 20 20 0 2.65 10 0.25
MLIN LSPT MSPT HSPT ** MLIN MDSH MDSH MLIN HDSH MSPT
WRAP WRAP X10 NB ** OVER OVER WRAP WRAP WRAP WRAP
0.25 0 0 0 0 0 0 0 0 0 0
10 100 10 100 10 10 10 10 10 10 10
Optional Optional
Optional
1.
TCDM: Optional curve for this presentation. Default units are Celsius. Other default units and scales are 0 - 250° Fahrenheit.
2.
RPTM/RPIM: As a default, use the time since drilled and data density from phase difference. The output of the RPIM trace is predetermined. However, a number must be put into these parameters to prevent MPLOT from blowing up. Presentation for data density is in the depth track.
3.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
4.
BDCM: Optional traces for this are DPLM/DPSM (density porosity limestone matrix/ sandstone matrix). Scales are 45 to -15 p.u. (for limestone matrix), 60 to 0 p.u. (for sandstone matrix). Consult client for preferred traces.
5.
DPEM/DRHM: For quantitative triple combo presentations these traces should be setup with half track presentations (left half, right half). Accuracy of DPEM diminishes significantly in drilling muds with high concentrations of barite (typically greater than 12.0 ppg). This is currently not a commercial measurement.
Note: ROPS (Rate of Penetration) and WBCS (Weight on Bit) are omitted from these triple combo presentations. If rate of penetration and/or weight on bit are requested by the client, it is preferred to generate a separate DPR log with WBCS and ROPS in Track 3 (international default log format for DPR). Placement of rate of penetration and/or weight on bit in track 3 with neutron porosity should be avoided unless there is consent from the customer. Note: Pen up intervals are in feet. Metric equivalent is 3 meters (for 10 feet) and 30 meters (for 100 feet).
Reference Manual 750-500-041 Rev. A / January 1996
9-21 Confidential
Triple Combo
Log Quality and Data Management Standards
Segregated Log Formats Dual propagation resistivity is typically presented separately from neutron porosity and either density porosity or bulk density. This presentation typically requires one 1 or 2 inch log (DPR only) and two 5 inch logs (one with DPR and one with neutron porosity/density). Consult the client for preferred log formats.
1:500 METRIC DEFAULT LOG FORMATS (Correlation) DPR Track 1: Linear
Track 2: 2 Cycle Log
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
1 2 3 4 5 6 7
1 1 1 2 2 3 3
GRAM TCDM1 TVD2 RPCM RACM ROPS3 WBCS4
0 0 VAR 0.2 0.2 100 0
150 250 IABLE 20 20 0 100
MLIN MSPT HSPT MLIN MDSH 5LIN MDSH
WRAP WRAP NB OVER OVER WRAP WRAP
0.25 0 0 0 0 0 0
10 100 100 10 10 10 10
Notes
Optional
1.
TCDM: Optional curve for this presentation. Default units are Celsius. Other default units and scales are 0 - 250° Fahrenheit.
2.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
3.
ROPS: Default units are ft/hr. Other default units and scales are 100 - 0 m/hr, 60 - 0 min/ft, 60 - 0 min/m, 10 - 0 ft/min, 10 - 0 m/min. Default for averaging is also feet. Metric equivalent is 2.0 (for 1:500) and 1.0 (for 1:200). Scale may need to be adjusted to accommodate the gamma ray trace (see “Rate of Penetration” on page 2-3 and “Gamma Ray” on page 2-4 for recommendations).
4.
WBCS: Default units are K-lbs. Optional units and scales are 0 - 50 Tonnes, 0 - 500 KN.
9-22
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Triple Combo
1:200 METRIC DEFAULT LOG FORMATS (quantitative) DPR Track 1: Linear
Track 2: 2 Cycle Log
Track 3: 2 Cycle Log
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
1 2 3 4 5 6 7 8
1 1 1 1 1 LHDD 2&3 2&3
GRAM ROPS TCDM1 RPTM2 TVD3 RPIM2 RPCM RACM
0 100 0 0 VAR ** 0.2 0.2
150 0 250 600 IABLE ** 2000 2000
MLIN 2DSH MSPT MSPT HSPT ** MLIN MDSH
WRAP WRAP WRAP X10 NB ** OVER OVER
0.25 0 0 0 0 0 0 0
10 10 100 10 100 10 10 10
Notes
Optional
1.
TCDM: Default units are Celsius. Other default units and scales are 0 - 250°F.
2.
RPTM/RPIM: Due to logarithmic scales in tracks 2 & 3, time since drilled must be moved over to track 1. As a default, use the time since drilled and data density from phase difference. The output of the RPIM trace is predetermined. However, a number must be put into these parameters to prevent MPLOT from crashing. Presentation for data density is in the depth track.
3.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
NEUTRON POROSITY / DENSITY (LIMESTONE MATRIX) Track 1: Linear
Track 2: Linear
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 LHDD 2&3 2&3 2 3
GRAM ROPS1 TCDM2 RPTM3 TVD4 RPIM3 NPLM BDCM5 DPEM6 DRHM
0 100 0 0 VAR ** 45 1.95 0 -0.25
150 0 250 600 IABLE ** -15 2.95 10 0.25
MLIN 2DSH LSPT MSPT HSPT ** MDSH MLIN HDSH MSPT
WRAP WRAP WRAP X10 NB ** WRAP WRAP WRAP WRAP
0.25 0 0 0 0 0 0 0 0 0
10 10 100 10 100 10 10 10 10 10
Reference Manual 750-500-041 Rev. A / January 1996
Notes
Optional Optional
9-23 Confidential
Triple Combo
Log Quality and Data Management Standards
NEUTRON POROSITY / DENSITY (SANDSTONE MATRIX) Track 1: Linear
Track 2: Linear
Track 3: Linear
Trace
Track
Param
Ledge
Redge
Line
Mode
Smooth
Pen Up
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 LHDD 2&3 2&3 2 3
GRAM ROPS1 TCDM2 RPTM3 TVD4 RPIM3 NPSM BDCM5 DPEM6 DRHM
0 100 0 0 VAR ** 60 1.65 0 -0.25
150 0 250 600 IABLE ** 0 2.65 10 0.25
MLIN 2DSH LSPT MSPT HSPT ** MDSH MLIN HDSH MSPT
WRAP WRAP WRAP X10 NB ** WRAP WRAP WRAP WRAP
0.25 0 0 0 0 0 0 0 0 0
10 10 100 10 100 10 10 10 10 10
Notes
Optional Optional
1.
ROPS: Default units are ft/hr. Other default units and scales are 100 - 0 m/hr, 60 - 0 min/ft, 60 - 0 min/m, 10 - 0 ft/min, 10 - 0 m/min. Default for averaging is also feet. Metric equivalent is 2.0 (for 1:500 metric) and 1.0 (for 1:200 metric).
2.
TCDM: Default units are Celsius. Other default units and scales are 0 - 250°F.
3.
RPTM/RPIM: Since track 3 is occupied by DRHM, time since drilled must be moved over to track 1. As a default, use time since drilled and data density from phase difference. The output of the RPIM trace is predetermined. However, a number must be put into these parameters to prevent MPLOT from crashing. Presentation for data density is in the depth track.
4.
TVD: Optional trace used specifically for horizontal well applications. Scale increases from right to left.
5.
BDCM: Optional traces for this is DPLM/DPSM (density porosity limestone matrix/ sandstone matrix). Default scales are 45 to -15 (for limestone matrix), 60 to 0 (for sandstone matrix). Consult client for preferred scales.
6.
DPEM: Accuracy of this measurement diminishes significantly in drilling muds with high concentrations of barite (typically mud density greater than 12.0 ppg). Currently is not a commercial measurement.
9-24
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Appendix
A
Mnemonics Listing Axis Magnetic Field AMFX - Axis Magnetic Field [MWD]|gauss
Attenuation ATB1 - Attenuation Base [R1]|-dB ATB2 - Attenuation Base [R2]|-dB ATB3 - Attenuation Base [R3]|-dB ATB4 - Attenuation Base [R4]|-dB ATBMT - Attenuation [RWD] [-TVD]&BASE|-dB ATBM - Attenuation Base [RWD]|-dB ATBXT - Attenuation [MWD] [-TVD]&BASE|-dB ATBX - Attenuation Base [MWD]|-dB ATC% - Change Ratio Base [POST]|% ATC1 - Attenuation CORRECTED [R1], -dB ATC2 - Attenuation CORRECTED [R2], -dB ATC3 - Attenuation CORRECTED [R3], -dB ATC4 - Attenuation CORRECTED [R4], -dB ATCM - Attenuation CORRECTED [RWD], -dB ATCP - Attenuation [POST]&BOREHOLE CORRECTED, -dB ATCX - Attenuation CORRECTED [MWD], -dB ATOM - Attenuation Offset [RWD], -dB ATOX - Attenuation Offset [MWD], -dB
Axial AXBX - Axial Strain [MWD], mV/V AXOX - Axial (Tare) Offset [MWD], mV/V
Reference Manual 750-500-041 Rev. A / January 1996
A-1 Confidential
Mnemonics Listing
Log Quality and Data Management Standards
Azimuth AZNX - Non-Rotating True Azimuth [MWD], degree AZRX - Rotating True Azimuth [MWD], degree AZT - Azimuth - True (Posted), degree
Bending Moment BABX - Bending Moment Angle [MWD], degree BMBX - Bending Moment Magnitude [MWD], ft-lbs
Bulk Density BDC1 - Bulk Density Compensated [Relog 1], g/cc BDC2 - Bulk Density Compensated [Relog 2], g/cc BDC3 - Bulk Density Compensated [Relog 3], g/cc BDC4 - Bulk Density Compensated [Relog 4], g/cc BDCMT - Bulk Density Compensated [RWD] [-TVD], g/cc BDCM - Bulk Density Compensated [RWD], g/cc BDCX - Bulk Density Compensated [MWD], g/cc
Conductivity CAA1 - Attenuation Conductivity APPARENT [Relog 1], mmho/m CAA2 - Attenuation Conductivity APPARENT [Relog 2], mmho/m CAA3 - Attenuation Conductivity APPARENT [Relog 3], mmho/m CAA4 - Attenuation Conductivity APPARENT [Relog 4], mmho/m CAAM - Attenuation Conductivity APPARENT [RWD], mmho/m CAAX - Attenuation Conductivity APPARENT [MWD], mmho/m CAC1 - Attenuation Conductivity BOREHOLE CORRECTED [Relog 1], mmho/m CAC2 - Attenuation Conductivity BOREHOLE CORRECTED [Relog 2], mmho/m CAC3 - Attenuation Conductivity BOREHOLE CORRECTED [Relog 3], mmho/m CAC4 - Attenuation Conductivity BOREHOLE CORRECTED [Relog 4], mmho/m
A-2
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Mnemonics Listing
CACM - Attenuation Conductivity BOREHOLE CORRECTED [RWD], mmho/m CACX - Attenuation Conductivity BOREHOLE CORRECTED [MWD], mmho/m CPA1 - Phase Difference Conductivity APPARENT [Relog 1], mmho/m CPA2 - Phase Difference Conductivity APPARENT [Relog 2], mmho/m CPA3 - Phase Difference Conductivity APPARENT [Relog 3], mmho/m CPA4 - Phase Difference Conductivity APPARENT [Relog 4], mmho/m CPAM - Phase Difference Conductivity APPARENT [RWD], mmho/m CPAX - Phase Difference Conductivity APPARENT [MWD], mmho/m CPC1 - Phase Difference Conductivity BOREHOLE CORRECTED [Relog 1], mmho/m CPC2 - Phase Difference Conductivity BOREHOLE CORRECTED [Relog 2], mmho/m CPC3 - Phase Difference Conductivity BOREHOLE CORRECTED [Relog 3], mmho/m CPC4 - Phase Difference Conductivity BOREHOLE CORRECTED [Relog 4], mmho/m CPCM - Phase Difference Conductivity BOREHOLE CORRECTED [RWD], mmho/m CPCX - Phase Difference Conductivity BOREHOLE CORRECTED [MWD], mmho/m CSAM - Short Normal Conductivity APPARENT [RWD], mmho/m CSAX - Short Normal Conductivity APPARENT [MWD], mmho/m CSCM - Short Normal Conductivity BOREHOLE CORRECTED [RWD], mmho/m CSCX - Short Normal Conductivity BOREHOLE CORRECTED [MWD], mmho/m
Dip Angle (Magnetic) DIPX - Magnetic Dip Angle [MWD], degree
Density DLA1 -Density Long Space (Apparent) [Relog 1], pu DLA2 - Density Long Space (Apparent) [Relog 2], pu Reference Manual 750-500-041 Rev. A / January 1996
A-3 Confidential
Mnemonics Listing
Log Quality and Data Management Standards
DLA3 - Density Long Space (Apparent) [Relog 3] pu DLA4 - Density Long Space (Apparent) [Relog 4], pu DLAM - Density Long Space (Apparent) [RWD], pu DSA1 - Density Short Space (Apparent) [Relog 1], pu DSA2 - Density Short Space (Apparent) [Relog 2], pu DSA3 - Density Short Space (Apparent) [Relog 3], pu DSA4 - Density Short Space (Apparent) [Relog 4], pu DSAM - Density Short Space (Apparent) [RWD], pu DPD1 - Density Porosity (Dolomite) [Relog 1], pu DPD2 - Density Porosity (Dolomite) [Relog 2], pu DPD3 - Density Porosity (Dolomite) [Relog 3], pu DPD4 - Density Porosity (Dolomite) [Relog 4], pu DPDMT - Density Porosity (Dolomite) [RWD] [-TVD], pu DPDM - Density Porosity (Dolomite) [RWD], pu DPDX - Density Porosity (Dolomite) [MWD], pu DPL1 - Density Porosity (Limestone) [Relog 1], pu DPL2 - Density Porosity (Limestone) [Relog 2], pu DPL3 - Density Porosity (Limestone) [Relog 3], pu DPL4 - Density Porosity (Limestone) [Relog 4], pu DPLMT - Density Porosity (Limestone) [RWD], [-TVD], pu DPLM - Density Porosity (Limestone) [RWD], pu DPLX - Density Porosity (Limestone) [MWD], pu DPS1 - Density Porosity (Sandstone) [Relog 1], pu DPS2 - Density Porosity (Sandstone) [Relog 2], pu DPS3 - Density Porosity (Sandstone) [Relog 3], pu DPS4 - Density Porosity (Sandstone) [Relog 4], pu DPSMT - Density Porosity Sandstone [RWD], [-TVD], pu DPSM - Density Porosity (Sandstone) [RWD], pu DPSX - Density Porosity (Sandstone) [MWD], pu
A-4
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Mnemonics Listing
Density (Photoelectric Cross Section) DPE1 - Photoelectric Cross Section [Relog 1], B/e DPE2 - Photoelectric Cross Section [Relog 2], B/e DPE3 - Photoelectric Cross Section [Relog 3], B/e DPE4 - Photoelectric Cross Section [Relog 4], B/e DPEMT - Photoelectric Cross Section [RWD] [-TVD], B/e DPEM - Photoelectric Cross Section [RWD], B/e
Delta Rho DRH1 - Delta RHO - Density Correction [Relog 1], g/cc DRH2 - Delta RHO - Density Correction [Relog 2], g/cc DRH3 - Delta RHO - Density Correction [Relog 3], g/cc DRH4 - Delta RHO - Density Correction [Relog 4], g/cc DRHMT - Delta RHO - Density Correction [RWD] [-TVD], g/cc DRHM - Delta RHO - Density Correction [RWD], g/cc DRHX - Delta RHO - Density Correction [MWD], g/cc
Drilling DEF - Drilling Efficiency DWF - Drilling Work Factor DXCD - Drilling Exponent - Downhole
Gamma Ray GRA1 - Gamma Ray APPARENT [Relog 1], MWD-API GRA2 - Gamma Ray APPARENT [Relog 2], MWD-API GRA3 - Gamma Ray APPARENT [Relog 3], MWD-API GRA4 - Gamma Ray APPARENT [Relog 4], MWD-API GRAMT - Gamma Ray APPARENT [RWD] [-TVD], MWD-API GRAM - Gamma Ray APPARENT [RWD], MWD-API GRAXT - Gamma Ray APPARENT [MWD] [-TVD], MWD-API GRAX - Gamma Ray APPARENT [MWD], MWD-API GRB1 - Gamma Ray Base [Relog 1], cps Reference Manual 750-500-041 Rev. A / January 1996
A-5 Confidential
Mnemonics Listing
Log Quality and Data Management Standards
GRB2 - Gamma Ray Base [Relog 2], cps GRB3 - Gamma Ray Base [Relog 3], cps GRB4 - Gamma Ray Base [Relog 4], cps GRBMT - Gamma Ray BASE [RWD] [-TVD], cps GRBM - Gamma Ray Base [RWD], cps GRBXT - Gamma Ray BASE [MWD] [-TVD], counts/unit time GRBX - Gamma Ray Base [MWD], counts/unit time GRC1 - Gamma Ray BOREHOLE CORRECTED [Relog 1], MWD-API GRC2 - Gamma Ray BOREHOLE CORRECTED [Relog 2], MWD-API GRC3 - Gamma Ray BOREHOLE CORRECTED [Relog 3], MWD-API GRC4 - Gamma Ray BOREHOLE CORRECTED [Relog 4], MWD-API GRCMT - Gamma Ray BOREHOLE CORRECTED [RWD] [-TVD], MWD-API GRCM - Gamma Ray BOREHOLE CORRECTED [RWD], MWD-API GRCXT - Gamma Ray BOREHOLE CORRECTED [MWD] [-TVD], MWD-API GRCX - Gamma Ray BOREHOLE CORRECTED [MWD], MWD-API GRDM - Data Density from Gamma Ray [RWD], pnt/ft GRDX - Data Density from Gamma Ray [MWD], pnt/ft GRIM - Data Density from Gamma Ray [RWD], pnt GRIX - Data Density Integrated, from Gamma Ray [MWD], pnt GRTM - Time Since Drilled from Gamma Ray [RWD], min GRTX - Time Since Drilled from Gamma Ray [MWD], min
Gravity (Accelerometer, Raw) GXBX - X-accelerometer Base [MWD], gravities GYBX - Y-accelerometer Base [MWD], gravities GZBX - Z-accelerometer Base [MWD], gravities
Highside Toolface HTFX - Highside Toolface [MWD], degree
A-6
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Mnemonics Listing
Horizontal Magnetic Field (Magnetometer, Raw) HXBX - X-magnetometer Base [MWD], gauss HYBX - Y-magnetometer Base [MWD], gauss HZBX - Z-magnetometer Base [MWD], gauss
Inclination INC - Inclination (Posted), degree INNX - Non-rotating Inclination [MWD], degree INRX - Rotating Inclination [MWD], degree
Lag Strokes LAGS - Lag Strokes, pnt/ft
Magnetic Tool Face MTFX - Magnetic Toolface [MWD], degree
Neutron Porosity NFB1 - Neutron Far Base [Relog 1], cps NFB2 - Neutron Far Base [Relog 2], cps NFB3 - Neutron Far Base [Relog 3], cps NFB4 - Neutron Far Base [Relog 4], cps NFBMT - Neutron Far Counts [RWD] [-TVD], cps NFBM - Neutron Far Base [RWD], cps NNB1 - Neutron Near Base [Relog 1], cps NNB2 - Neutron Near Base [Relog 2], cps NNB3 - Neutron Near Base [Relog 3], cps NNB4 - Neutron Near Base [Relog 4], cps NNBMT - Neutron Near Counts [RWD] [-TVD], cps NNBM - Neutron Near Base [RWD], cps NPB1 - Neutron Porosity Base [Relog 1], pu NPB2 - Neutron Porosity Base [Relog 2], pu NPB3 - Neutron Porosity Base [Relog 3], pu NPB4 - Neutron Porosity Base [Relog 4]|pu Reference Manual 750-500-041 Rev. A / January 1996
A-7 Confidential
Mnemonics Listing
Log Quality and Data Management Standards
NPBMT - Neutron Porosity APPARENT [RWD] [-TVD], pu NPBM - Neutron Porosity Base [RWD], pu NPBX - Neutron Porosity Base [MWD], pu NPC1 - Neutron Porosity (Limestone), BOREHOLE CORRECTED [Relog 1], pu NPC2 - Neutron Porosity (Limestone), BOREHOLE CORRECTED [Relog 2], pu NPC3 - Neutron Porosity (Limestone), BOREHOLE CORRECTED [Relog 3], pu NPC4 - Neutron Porosity (Limestone), BOREHOLE CORRECTED [Relog 4], pu NPCM - Neutron Porosity (Limestone), BOREHOLE CORRECTED [RWD], pu NPCX - Neutron Porosity (Limestone), BOREHOLE CORRECTED [MWD], pu NPD1 - Neutron Porosity (Dolomite) [Relog 1], pu NPD2 - Neutron Porosity (Dolomite) [Relog 2], pu NPD3 - Neutron Porosity (Dolomite) [Relog 3], pu NPD4 - Neutron Porosity (Dolomite) [Relog 4], pu NPDM - Neutron Porosity (Dolomite) [RWD], pu NPDX - Neutron Porosity (Dolomite) [MWD], pu NPL1 - Neutron Porosity (Limestone) [Relog 1], pu NPL2 - Neutron Porosity (Limestone) [Relog 2], pu NPL3 - Neutron Porosity (Limestone) [Relog 3], pu NPL4 - Neutron Porosity (Limestone) [Relog 4], pu NPLMT - Neutron Porosity (Limestone) [RWD] [-TVD], pu NPLM - Neutron Porosity (Limestone) [RWD], pu NPLX - Neutron Porosity (Limestone) [MWD], pu NPS1 - Neutron Porosity (Sandstone) [Relog 1], pu NPS2 - Neutron Porosity (Sandstone) [Relog 2], pu NPS3 - Neutron Porosity (Sandstone) [Relog 3], pu NPS4 - Neutron Porosity (Sandstone) [Relog 4], pu NPSMT - Neutron Porosity (Sandstone) [RWD] [-TVD], pu A-8
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Mnemonics Listing
NPSM - Neutron Porosity (Sandstone) [RWD], pu NPSX - Neutron Porosity (Sandstone) [MWD], pu NRBX - Neutron Porosity Ratio [MWD], deg F NRC1 - Neutron Porosity Ratio CORRECTED [Relog 1], pu NRC2 - Neutron Porosity Ratio CORRECTED [Relog 2], pu NRC3 - Neutron Porosity Ratio CORRECTED [Relog 3], pu NRC4 - Neutron Porosity Ratio CORRECTED [Relog 4], pu NRCM - Neutron Porosity Ratio CORRECTED [RWD], pu NRCX - Neutron Porosity Ratio CORRECTED [MWD], pu
Phase Difference PDB1 - Phase Difference Base [R1], degree PDB2 - Phase Difference Base [R2], degree PDB3 - Phase Difference Base [R3], degree PDB4 - Phase Difference Base [R4], degree PDBMT - Phase Difference BASE [RWD] [-TVD], degree PDBM - Phase Difference Base [RWD], degree PDBXT - Phase Difference BASE [MWD] [-TVD], degree PDBX - Phase Difference Base [MWD], degree PDC% - Change Phase Difference [POST], BOREHOLE CORRECTED, % PDC1 - Phase Difference CORRECTED [R1], degree PDC2 - Phase Difference CORRECTED [R2], degree PDC3 - Phase Difference CORRECTED [R3], degree PDC4 - Phase Difference CORRECTED [R4], degree PDCM - Phase Difference CORRECTED [RWD], degree PDCP - Phase Difference [POST], BOREHOLE CORRECTED, degree PDCX - Phase Difference CORRECTED [MWD], degree
Data Density/Elapsed Time calculated from MDMS/P-SERIES (DO NOT USE, unless HPUTIL/MPLOT is not available) PDDI - Phase Difference Data Density [RWD], Integrated, pnt/m
Reference Manual 750-500-041 Rev. A / January 1996
A-9 Confidential
Mnemonics Listing
Log Quality and Data Management Standards
PDDM - Phase Difference Data Density [RWD], pnt/ft PDEM - Phase Difference Elapsed Time [RWD], min
DPR 2A Self Calibration Offset PDOM - Phase Difference (2A) Self Calibration Offset [RWD], degree PDOX - Phase Difference (2A) Self Calibration Offset [MWD], degree ATOM - Attenuation (2A) Self Calibration Offset [RWD], decibel ATOX - Attenuation (2A) Self Calibration Offset [MWD], decibel
Resistivity (Attenuation) RAA% - Change (Attenuation) [POST], APPARENT, % RAA1 - Attenuation Resistivity APPARENT [Relog 1], ohm-m RAA2 - Attenuation Resistivity APPARENT [RWD], [Relog 2], ohm-m RAA3 - Attenuation Resistivity APPARENT [RWD], [Relog 3], ohm-m RAA4 - Attenuation Resistivity APPARENT [RWD], [Relog 4], ohm-m RAAMT - Attenuation Resistivity APPARENT [RWD] [-TVD], ohm-m RAAM - Attenuation Resistivity APPARENT [RWD], ohm-m RAAP - Attenuation Resistivity [POST], APPARENT ohm-m RAAXT - Attenuation Resistivity APPARENT [MWD] [-TVD], ohm-m RAAX - Attenuation Resistivity APPARENT [MWD], ohm-m RAC% - Change (Attenuation) [POST], BOREHOLE CORRECTED, % RAC1 - Attenuation Resistivity BOREHOLE CORRECTED [Relog 1], ohm-m RAC2 - Attenuation Resistivity BOREHOLE CORRECTED [Relog 2], ohm-m RAC3 - Attenuation Resistivity BOREHOLE CORRECTED [Relog 3], ohm-m RAC4 - Attenuation Resistivity BOREHOLE CORRECTED [Relog 4], ohm-m RACMT - Attenuation Resistivity BOREHOLE CORRECTED [RWD] [-TVD], ohm-m RACM - Attenuation Resistivity BOREHOLE CORRECTED [RWD], ohm-m
A-10
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Mnemonics Listing
RACP - Attenuation Resistivity [POST], BOREHOLE CORRECTED, ohm-m RACXT - Attenuation Resistivity BOREHOLE CORRECTED [MWD] [-TVD], ohm-m RACX - Attenuation Resistivity BOREHOLE CORRECTED [MWD], ohm-m RADM - Data Density from Attenuation Resistivity [RWD], pnt/ft RADX - Data Density from Attenuation Resistivity [MWD], pnt/ft RAIM - Data Density,Integrated from Attenuation Resistivity [RWD], pnt RAIX - Data Density,Integrated from Attenuation Resistivity [MWD], pnt RATM - Time Since Drilled from Attenuation Resistivity [RWD], min RATX - Time Since Drilled from Attenuation Resistivity [MWD], min
Resistivity (Mud) RMAX - Mud Resistivity [MWD], ohm-m
Rate of Penetration ROPS - Rate of Penetration, ft/hr
Resistivity (Phase Difference) RPA% - Change (Phase Difference) [POST], APPARENT, % RPA1 - Phase Difference Resistivity APPARENT [Relog 1], ohm-m RPA2 - Phase Difference Resistivity APPARENT [Relog 2], ohm-m RPA3 - Phase Difference Resistivity APPARENT [Relog 3], ohm-m RPA4 - Phase Difference Resistivity APPARENT [Relog 4], ohm-m RPAMT - Phase Difference Resistivity APPARENT [RWD] [-TVD], ohm-m RPAM - Phase Difference Resistivity APPARENT [RWD], ohm-m RPAP - Phase Difference Resistivity [POST], APPARENT, ohm-m RPAXT - Phase Difference Resistivity APPARENT [MWD] [-TVD], ohm-m RPAX - Phase Difference Resistivity APPARENT [MWD], ohm-m RPC% - Change (Phase Difference) [POST], BOREHOLE CORRECTED, %
Reference Manual 750-500-041 Rev. A / January 1996
A-11 Confidential
Mnemonics Listing
Log Quality and Data Management Standards
RPC1 - Phase Difference Resistivity BOREHOLE CORRECTED [Relog 1], ohm-m RPC2 - Phase Difference Resistivity BOREHOLE CORRECTED [Relog 2], ohm-m RPC3 - Phase Difference Resistivity BOREHOLE CORRECTED [Relog 3], ohm-m RPC4 - Phase Difference Resistivity BOREHOLE CORRECTED [Relog 4], ohm-m RPCMT - Phase Difference Resistivity BOREHOLE CORRECTED [RWD] [-TVD], ohm-m RPCM - Phase Difference Resistivity BOREHOLE CORRECTED [RWD], ohm-m RPCP - Resistivity (Phase Difference) [POST], BOREHOLE CORRECTED, ohm-m RPCXT - Phase Difference Resistivity BOREHOLE CORRECTED [MWD] [-TVD], ohm-m RPCX - Phase Difference Resistivity BOREHOLE CORRECTED [MWD], ohm-m RPDM - Data Density from Phase Difference Resistivity [RWD], pnt/ft RPDX - Data Density from Phase Difference Resistivity [MWD], pnt/ft RPIM - Data Density Integrated from Phase Difference Resistivity [RWD], pnt RPIX - Data Density,Integrated from Phase Difference Resistivity [MWD], pnt RPTM - Time Since Drilled from Phase Difference Resistivity [RWD], min RPTX - Time Since Drilled from Phase Difference Resistivity [MWD], min
RPM RPMS - Surface RPM (rpm) TRPM - Turbine Tach RPM [RWD] (rpm)
Resistivity (Short Normal) RSAM - Short Normal Resistivity APPARENT [RWD], ohm-m RSAXA - Short Normal Resistivity APPARENT (Amplified), ohm-m A-12
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Log Quality and Data Management Standards
Mnemonics Listing
RSAX - Short Normal Resistivity APPARENT [MWD], ohm-m RSCM - Short Normal Resistivity BOREHOLE CORRECTED [RWD], ohm-m RSCXA - Short Normal Resistivity BOREHOLE CORRECTED (Amplified), ohm-m RSCX - Short Normal Resistivity BOREHOLE CORRECTED [MWD], ohm-m RSDX - Data Density from Short Normal Resistivity [MWD], pnt/ft RSIX - Data Density Integrated from Short Normal Resistivity [MWD], pnt RSTX - Time Since Drilled from Short Normal Resistivity [MWD], min
Ratios RTQ - Ratio of Torque, N-m RWB - Ratio of Weight On Bit, kN
Resistance (Short Normal) SNBM - Resistance (SN) Base [RWD], ohm SNBX - Resistance (SN) Base [MWD], ohm
Standpipe Pressure SPBS - Standpipe Pressure, psi
Strokes (Pump) SR1S - Pump #1 - Stroke Rate, spm SR2S - Pump #2 - Stroke Rate, spm SRTS - Total Stroke Rate, spm ST1S - Strokes - Pump 1, pnt/ft ST2S - Strokes - Pump 2, pnt/ft STTS - Strokes - Total, pnt/ft
Temperature TANX - Annulus Temperature [MWD], deg F TCD1 - CDS Temperature [Relog 1], deg F TCD2 - CDS Temperature [Relog 2], deg F Reference Manual 750-500-041 Rev. A / January 1996
A-13 Confidential
Mnemonics Listing
Log Quality and Data Management Standards
TCD3 - CDS Temperature [Relog 3], deg F TCD4 - CDS Temperature [Relog 4], deg F TCDM - CDS Temperature [RWD], deg F TCDX - CDS Temperature [MWD], deg F
Total Gas TGBS - Total Gas Base - Surface, %
Total Magnetic Field TMFX - Total Magnetic Field [MWD], gauss
Torque (Rotary) DTQ - Delta Torque On Bit, ft-lbs NTQ - Normalized Torque, mV/V TQBX - Torque Strain [MWD], mV/V TQCS - Surface Torque, ft-lbs TQCX - True Torque On Bit [MWD], ft-lbs TQOX - Torque (Tare) Offset [MWD], mV/V
True Vertical Depth TVD - True Vertical Depth, ft
Weight On Bit WBCS - Surface Weight On Bit, k-lbs WBCX - True Weight On Bit [MWD], k-lbs DWB - Delta Weight On Bit, k-lbs
A-14
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / January 1996
Appendix
B
Chart Calibration and Accuracy Test Provided in this appendix are the instructions for calibrating the ST-250 and Multiscan (Rev. 3.00) Gulton wellogger thermal plotters.
It is important to note that before calibrating the Gulton plotter, you must first identify the software version that is loaded into it. To do this, press the [Advance] button. The plotter prints out the model number, software revision, date, and whether the multiscan function is on or off (the multiscan function should always be used for plotting logs on thermal film; this function permits a second burn on the film for better contrast). When using a plotter with a software version below 3.00, follow the chart calibration instructions and calibration charts (Table 1) for the ST-250 wellogger. For any software revisions above 3.00, use the operating instructions and calibration charts (Table 2) for the multiscan wellogger.
Chart Accuracy (ST-250) The ST-250 has been designed to print with only +0.050 inch error over twenty inches. Since the ST-250 paper transport mechanism is the friction feed type and can accept media of different thickness, it must be calibrated for each type used to ensure such accuracy. Calibration of the ST-250 is a simple task and its operating system has had several tests incorporated into it for this purpose. Note: If the user does not require such accuracy, the ST-250 need not be calibrated and can be used as is.
Reference Manual 750-500-041 Rev. A / December 1995
B-1 Confidential
Chart Calibration and Accuracy Test
Log Quality and Data Management
Invoking Chart Calibration and Accuracy Test The chart calibration and accuracy tests are accessible to the user through use of the front panel Feed/Self-test switch and a bank of seven dip switches located in the rear of the roll paper compartment. These tests are also accessible under software control or a mix of both. The following sections will describe the tests in detail - utilizing the manual switches. See the “Configuration State” instructions CCD and MSC for an explanation of the software commands.
Calibration Test The first step in calibrating the ST-250 is to determine the error in a twenty-inch length of the media type being used (film, paper). Located in the rear of the roll paper compartment is a bank of seven dip switches. When set properly, they serve three purposes: 1.
Input of the chart error data.
2.
Enabling the accuracy test.
3.
Enabling the calibration test.
Performing the calibration test as follows: 1.
Load the ST-250 with film or paper.
2.
Set the seven dip switches to the open position.
3.
Press and hold the Feed/Self-test switch. The ST-250 will perform a regular self-test and after a brief pause will begin executing the calibration test. Release the switch at this point. Two calibration lines will be printed approximately twenty inches apart. The distance between these lines will be the key factor in determining the chart error for the type media being used.
4.
Measure the distance between the calibration lines. Substitute this value for X in the formula below and perform the computation. CE = X / (X - 20)......inches CE = X / (X - 500)......metric where: X is the distance between calibration lines CE is the computed chart error rounded to the nearest whole number.
5.
Match the value of CE with the values listed in column A of Table 1. Column B of this table shows the dip switch settings needed.
B-2
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / December 1995
Log Quality and Data Management Standards Chart Calibration and Accuracy 6.
After the dip switches have been set correctly, press the feed/ self-test switch briefly and release it. The ST-250 will perform a normal self-test and read the dip switch settings into memory. The ST-250 is now calibrated. It is necessary to perform an accuracy test to ensure that all steps of the calibration process were performed correctly.
Accuracy Test Press and hold the Feed/Self-test switch. The ST-250 will perform a normal self-test and momentarily pause before it begins execution of the accuracy test. Once the test has started, release the switch. As with the calibration test, the ST-250 will print two calibration lines. The distance between the lines should measure twenty inches, with an error no greater than +0.050 inch. Note: If the accuracy test is not producing results within this tolerance, recalibration is necessary. Film Accuracy on film media can be maintained within +/- 0.25% under most conditions. Because tolerance may vary from roll to roll, calibration should be verified periodically and recalibration performed as necessary. Chart Paper Accuracy on paper is limited due to the unstable characteristics of paper as a result of environmental effects. A calibration test must be made before each log. Accuracy can only be obtained under constant conditions.
Reference Manual 750-500-041 Rev. A / December 1995
B-3 Confidential
Chart Calibration and Accuracy Test
Log Quality and Data Management
Gulton Wellogger Multiscan Operating Instructions Standard Feature on all Models - Software Upgrade Version 3.00 "August 89" Multiscan Description I/C's = U3 and U4 (see Service Manual to install). The Multiscan print feature is an enhancement to the High Speed Raster mode which provides denser printing when activated by extending the print pulse cycle for each scan line to allow more development time on thermal film media. The increased density improves reproducible qualities in blueline copy and readability in overlay usage. When used with standard thermal charts, a darker image can be obtained for enhanced readability. Version 3.00 software modifies the dip switch calibration function by using dip switch No. 7 to toggle Multiscan On/Off. Multiscan may also be controlled with software commands provided. Calibration tables have been modified for six position dip switch control. Multiscan maximum print rate is 0.6 inches per second. Multiscan will only function in the High Speed Raster mode. All Gulton Wellogger Versatec V-80 emulation interfaces use the High Speed Raster mode. (Models TAC-387, TAC 387T, TAC-388 and TAC-392). If you are not sure what mode your specific software supports, contact your software supplier. Multiscan Operation Manual Method Multiscan On = Dip switch #7 in down position. Multiscan Off = Dip switch #7 in up position. The new setting must be activated with a reset command. Reset method = Activate self-test or turn power off/on. (Power Off/On is a hardware reset - reconfigure HSR) Multiscan On/Off status is printed when self test function is activated.
B-4
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / December 1995
Log Quality and Data Management Standards Chart Calibration and Accuracy Software Method Multiscan On = 4B80 0000 Multiscan Off = 4B80 0001 The software method disables all dip switches until: a) Multiscan is turned off with a software instruction. b) Hard Reset - Power-up or internal reset command. The self test function can then be used without changing Multiscan On/Off state. Software Version 3.00 Chart Calibration Manual Controls Only dip switches 1 through 6 control chart step calibration. Software Command Data 6 5 4 3 2 1 Dip switch position. 4FXX or (1 0 0 1 1 1 1 0 0 X X X X X X) Refer to Service Manual PAP-5075 Pages 051 (unchanged). Correct page 052 item A. from ± 0.001 in. to ± 0.010 in. error over 20 inches. Replace Calibration procedure page 053 with 053-A. Replace Calibration Tables 1.1, 1.2 and 1.3 pages 054-056 with Table 1.1-A page 054-A. Step Accuracy Calibration Procedure 1.
Before running test set all 6 dip switches to the open (UP) position.
2.
Load Gulton film media.
3.
Hold the self-test toggle switch downward until the self-test is printed and the first test line appears. Release the switch. The chart will continue until a second test line is printed and then stop.
Reference Manual 750-500-041 Rev. A / December 1995
B-5 Confidential
Chart Calibration and Accuracy Test 4.
Log Quality and Data Management
Measure the distance between the two test lines with an accurate inch or millimeter ruler. Use this value in the following formula: Inch Calibration (using inch ruler)
Millimeter Calibration (using millimeter ruler)
CE = (X - 20) • 1000 X
CE = (X - 500) • 1000 X
Answer should be rounded to the nearest whole number. 5.
Match the value of CE with the values listed in column A of Table 2. Column B shows correct dip switch settings needed.
6.
After correctly setting the dip switch per listing in column B, momentarily press the self-test toggle switch to print a normal self-test only. This will read the new dip switch values into memory.
7.
To verify step accuracy, repeat items C and D. If accuracy test is not within tolerance, recalibrate from step A or select next higher or lower entry from calibration table and run accuracy test C and D. Accuracy tolerance = ± 0.010 in. over 20 inches.
Note: Software calibration procedure can be found in the Gulton software interface manual. Use software command 4FXX or ( 1 0 0 1 1 1 1 0 0 X X X X X X) Dip switch position - 6 5 4 3 2 1 Software command disables all dip switches until as follows: 1.
Multiscan is turned off with a software instruction.
2.
Hard Reset - Power-up or internal reset command. The self-test function can then be used without changing Multiscan On/Off state or calibration values controlled in software.
B-6
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / December 1995
Log Quality and Data Management Standards Chart Calibration and Accuracy
Gultcal Software Calibration This program can be used on either the ST-250 or Multiscan (Rev. 3.00). To run the program, select "Gulton Calibration" from the HPUTIL main menu. At the prompt, type C (for Calibration test). This will reset all of the Gulton plotter dip switches to zero (all open) using a software command. A self-test line will then appear from the plotter as follows: ____________________________________________________________ ST-250 Rev. 02.02 03/23/91 P3P4 This is followed by 21 evenly spaced calibration lines. Pay particular attention to the "Revision Number" below the self test line. This is needed to determine the correct calibration equation and corresponding table to use to reset the dip switches on the Gulton plotter. After the calibration test has been performed, measure the distance from the first calibration line to the last. This distance should be approximately 20 inches (500 millimeters). Using the revision number printed below the self test line, select the correct equation and table listed below. English & Rev. below 03.00 → CE = X / (X - 20) TABLE 1 Metric & Rev. below 03.00 → CE = X / (X-500) TABLE 1 English & Rev. 03.00 or above → CE = [ (X - 20) / X ] * 1000 TABLE 2 Metric & Rev. 03.00 or above → CE = [ (X - 500) / X ] * 1000 TABLE 2 Where: X is the measured distance between the calibration lines, and Tables 1 and 2 are those tables found below. Once the CE value is calculated, look in the appropriate table for the correct dip switch settings and reset the dip switches located behind the paper roll on the unit. Once the dip switches have been set, activate them by cycling the power down and then on again. After the power has been cycled, confirm the accuracy of the Gulton with the accuracy test in Gultcal (type A at the prompt). Measure the distance between the first and last line. This measurement should be 20 inches +0.050 inches. 1/16th of an inch, or +2 millimeters is considered acceptable.
Reference Manual 750-500-041 Rev. A / December 1995
B-7 Confidential
Chart Calibration and Accuracy Test
Log Quality and Data Management
TABLE 1: Dip Switch Chart Switch Closed (Up) = "C" (O) Switch Open (Down) = "O" (1) ***A value of zero (switches closed) forces a Calibration Test even if Accuracy Test was triggered.
DIP SETTINGS CE
1
2
3
A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
4
5
6
7
B O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C
O O O C C C C O O O O C C C C O O O O C C C C O O O O C C C C
O O O O O O O C C C C C C C C O O O O O O O O C C C C C C C C
O O O O O O O O O O O O O O O C C C C C C C C C C C C C C C C
B-8
HEX C
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
00 * 01 01 02 02 03 03 04 04 05 05 06 06 07 07 08 08 09 09 0A 0A 0B 0B 0C 0C 0D 0D 0E 0E 0F 0F
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / December 1995
Log Quality and Data Management Standards Chart Calibration and Accuracy TABLE 1 - (continued) DIP SETTINGS CE
1
2
3
A 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
4
6
7
B O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C
O O O C C C C C O O O O C C C C O O O O C C C C O O O O C C C C O O O O C C C C
O O O O O O O O C C C C C C C C O O O O O O O O C C C C C C C C O O O O O O O O
O O O O O O O O O O O O O O O O C C C C C C C C C C C C C C C C O O O O O O O O
Reference Manual 750-500-041 Rev. A / December 1995
5
HEX C
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C C C C C C C C
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 1A 1A 1B 1B 1C 1C 1D 1D 1E 1E 1F 1F 20 20 21 21 22 22 23 23 B-9
Confidential
Chart Calibration and Accuracy Test
Log Quality and Data Management
TABLE 1 - (continued) DIP SETTINGS CE
1
2
3
A 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
4
5
6
7
B O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C
O O O O C C C C O O O O C C C C O O O O C C C C O O O O C C C C O O O O C C C C
C C C C C C C C O O O O O O O O C C C C C C C C O O O O O O O O C C C C C C C C
O O O O O O O O C C C C C C C C C C C C C C C C O O O O O O O O O O O O O O O O
B-10
HEX C
O O O O O O O O O O O O O O O O O O O O O O O O C C C C C C C C C C C C C C C C
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
24 24 25 25 26 26 27 27 28 28 29 29 2A 2A 2B 2B 2C 2C 2D 2D 2E 2E 2F 2F 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / December 1995
Log Quality and Data Management Standards Chart Calibration and Accuracy TABLE 1 - (continued) DIP SETTINGS CE
1
2
3
A 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
4
6
7
B O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C
O O O O C C C C O O C C C C C C O O O O C C C C O O O O C C C C O O O O C C C C
O O O O O O O O C C O O C C C C O O O O O O O O C C C C C C C C O O O O O O O O
C C C C C C C C C C C C C C C C O O O O O O O O O O O O O O O O C C C C C C C C
Reference Manual 750-500-041 Rev. A / December 1995
5
HEX C
C C C C C C C C C C C C C C C C O O O O O O O O O O O O O O O O O O O O O O O O
C C C C C C C C C C C C C C C C O O O O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O C C C C C C C C C C C C C C C C C C C C C C C C
38 38 39 39 3A 3A 3B 3B 3C 3C 3D 3D 3E 3E 3F 3F 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 4A 4A 4B 4B B-11
Confidential
Chart Calibration and Accuracy Test
Log Quality and Data Management
TABLE 1 - (continued) DIP SETTINGS CE
1
2
3
A 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
4
5
6
7
B O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C
O O O O C C C C O O O O C C C C O O O O C C C C O O O O C C C C O O O O C C C C
C C C C C C C C O O O O O O O O C C C C C C C C O O O O O O O O C C C C C C C C
C C C C C C C C O O O O O O O O O O O O O O O O C C C C C C C C C C C C C C C C
B-12
HEX C
O O O O O O O O C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
4C 4C 4D 4D 4E 4E 4F 4F 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 5A 5A 5B 5B 5C 5C 5D 5D 5E 5E 5F 5F
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / December 1995
Log Quality and Data Management Standards Chart Calibration and Accuracy TABLE 1 - (continued) DIP SETTINGS CE
1
2
3
A 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
4
6
7
B O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C
O O O O C C C C O O O O C C C C O O O O C C C C O O O O C C C C O O O O C C C C
O O O O O O O O C C C C C C C C O O O O O O O O C C C C C C C C O O O O O O O O
O O O O O O O O O O O O O O O O C C C C C C C C C C C C C C C C O O O O O O O O
Reference Manual 750-500-041 Rev. A / December 1995
5
HEX C
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C C C C C C C C
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
60 60 61 61 62 62 63 63 64 64 65 65 66 66 67 67 68 68 69 69 6A 6A 6B 6B 6C 6C 6D 6D 6E 6E 6F 6F 70 70 71 71 72 72 73 73 B-13
Confidential
Chart Calibration and Accuracy Test
Log Quality and Data Management
TABLE 1 - (continued) DIP SETTINGS CE
1
2
3
A 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
4
5
6
7
B O O C C O O C C O O C C O O C C O O C C O O C C
O O O O C C C C O O O O C C C C O O O O C C C C
C C C C C C C C O O O O O O O O C C C C C C C C
O O O O O O O O C C C C C C C C C C C C C C C C
B-14
HEX C
C C C C C C C C C C C C C C C C C C C C C C C C
C C C C C C C C C C C C C C C C C C C C C C C C
C C C C C C C C C C C C C C C C C C C C C C C C
74 74 75 75 76 76 77 77 78 78 79 79 7A 7A 7B 7B 7C 7C 7D 7D 7E 7E 7F 7F
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / December 1995
Log Quality and Data Management Standards Chart Calibration and Accuracy
TABLE 2: Dip Switch Chart Switch Closed (Up) = "C" (O) Switch Open (Down) = "O" (1) ***A value of zero (switches closed) forces a Calibration Test even if Accuracy Test was triggered. DIP SETTINGS CE
1
2
3
A 0 *** 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4
6
HEX
B C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O
C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O
C C C C O O O O C C C C O O O O C C C C O O O O C C C C O O O O
C C C C C C C C O O O O O O O O C C C C C C C C O O O O O O O O
Reference Manual 750-500-041 Rev. A / December 1995
5
C C C C C C C C C C C C C C C C C O O O O O O O O O O O O O O O O
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
***
00 *Start 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F B-15
Confidential
Chart Calibration and Accuracy Test
Log Quality and Data Management
TABLE 2 - (continued) DIP SETTINGS CE
1
2
3
A 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4
5
6
B C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O
C C O O C C O O C C O O C C O O C C O O C C O O C C O O C C O O
C C C C O O O O C C C C O O O O C C C C O O O O C C C C O O O O
C C C C C C C C O O O O O O O O C C C C C C C C O O O O O O O O
B-16
HEX C
C C C C C C C C C C C C C C C C O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
Baker Hughes INTEQ Confidential
750-500-041 Rev. A / December 1995
View more...
Comments