Mtu Sam Manual
May 3, 2017 | Author: aaaa678 | Category: N/A
Short Description
Download Mtu Sam Manual...
Description
Technical Publication
SAM Functional Description E532187/00E
Printed in Germany © 2005 Copyright MTU Friedrichshafen GmbH Diese Veröffentlichung einschließlich aller ihrer Teile ist urheberrechtlich geschützt. Jede Verwertung oder Nutzung bedarf der vorherigen schriftlichen Zustimmung der MTU Friedrichshafen GmbH. Das gilt insbesondere für Vervielfältigung, Verbreitung, Bearbeitung, Übersetzung, Mikroverfilmungen und die Einspeicherung und / oder Verarbeitung in elektronischen Systemen, einschließlich Datenbanken und Online-Diensten. Das Handbuch ist zur Vermeidung von Störungen oder Schäden beim Betrieb zu beachten und daher vom Betreiber dem jeweiligen Wartungs- und Bedienungspersonal zur Verfügung zu stellen. Änderungen bleiben vorbehalten. Printed in Germany © 2005 Copyright MTU Friedrichshafen GmbH This Publication is protected by copyright and may not be used in any way whether in whole or in part without the prior written permission of MTU Friedrichshafen GmbH. This restriction also applies to copyright, distribution, translation, microfilming and storage or processing on electronic systems including data bases and online services. This handbook is provided for use by maintenance and operating personnel in order to avoid malfunctions or damage during operation. Subject to alterations and amendments. Imprimé en Allemagne © 2005 Copyright MTU Friedrichshafen GmbH Tout droit réservé pour cet ouvrage dans son intégralité. Toute utilisation ou exploitation requiert au préalable l’accord écrit de MTU Friedrichshafen GmbH. Ceci s’applique notamment à la reproduction, la diffusion, la modification, la traduction, l’archivage sur microfiches, la mémorisation et / ou le traitement sur des systèmes électroniques, y compris les bases de données et les services en ligne. Le manuel devra être observé en vue d’éviter des incidents ou des endommagements pendant le service. Aussi recommandons-nous à l’exploitant de le mettre à la disposition du personnel chargé de l’entretien et de la conduite. Modifications réservées. Impreso en Alemania © 2005 Copyright MTU Friedrichshafen GmbH Esta publicación se encuentra protegida, en toda su extensión, por los derechos de autor. Cualquier utilización de la misma, así como su reproducción, difusión, transformación, traducción, microfilmación, grabación y/o procesamiento en sistemas electrónicos, entre los que se incluyen bancos de datos y servicios en línea, precisa de la autorización previa de MTU Friedrichshafen GmbH. El manual debe tenerse presente para evitar fallos o daños durante el servicio, y, por dicho motivo, el usario debe ponerlo a disposición del personal de mantenimiento y de servicio. Nos reservamos el derecho de introducir modificaciones. Stampato in Germania © 2005 Copyright MTU Friedrichshafen GmbH Questa pubblicazione è protetta dal diritto d’autore in tutte le sue parti. Ciascun impiego o utilizzo, con particolare riguardo alla riproduzione, alla diffusione, alla modifica, alla traduzione, all’archiviazione in microfilm e alla memorizzazione o all’elaborazione in sistemi elettronici, comprese banche dati e servizi on line, deve essere espressamente autorizzato per iscritto dalla MTU Friedrichshafen GmbH. II manuale va consultato per evitare anomalie o guasti durante il servizio, per cui va messo a disposizione dall’utente al personale addetto alla manutenzione e alla condotta. Con riserva di modifiche. Impresso na Alemanha © 2005 Copyright MTU Friedrichshafen GmbH A presente publicação, inclusive todas as suas partes, está protegida pelo direito autoral. Qualquer aproveitamento ou uso exige a autorização prévia e por escrito da MTU Friedrichshafen GmbH. Isto diz respeito em particular à reprodução, divulgação, tratamento, tradução, microfilmagem, e a memorização e/ou processamento em sistemas eletrônicos, inclusive bancos de dados e serviços on-line. Para evitar falhas ou danos durante a operação, os dizeres do manual devem ser respeitados. Quem explora o equipamento economicamente consequentemente deve colocá-lo à disposição do respetivo pessoal da conservação, e à dispositção dos operadores. Salvo alterações.
Table of Contents
1
Function
01
.....................................................................
03
1.1
Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03
1.2
Overview of device functions
..............................................
04
1.3
Ambient conditions
......................................................
07
1.4
CAN communication link
1.5
Ethernet communication link (10/100BaseT)
1.6
RS422/RS232 communication link
1.7
Binary inputs with common ground
1.8
Binary inputs via optocoupler
..................................................
12
..................................
13
..........................................
15
.........................................
16
..............................................
19
1.9
Binary transistor outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
1.10
Binary outputs: Transistor switches
........................................
24
1.11
Binary outputs: Relay switches
............................................
27
1.12
Binary outputs: PWM outputs via Low switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
1.13
Signal outputs to control display instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
1.14
Interface for measuring sensor (analog IN)
...................................
33
1.15
Electrically isolated analog inputs
..........................................
38
1.16
Frequency inputs
........................................................
40
1.17
Removable memory
1.18
......................................................
41
Fault display
............................................................
42
1.19
Control keys
............................................................
43
1.20
Extendibility
............................................................
44
1.21
Self-diagnosis (ITS)
1.22
Index
E532187/00E
05-11
......................................................
46
..................................................................
49
© MTU
02
E532187/00E
Table of Contents
05-11
© MTU
Function
03
1
Function
1.1
Use
The SAM is primarily used for the following tasks: • Connection of additional peripheral engine sensors and actuators. • Conversion of CAN bus signals (data flow), e.g. ECU data and messages into separate signals. These signals are normally used to control measuring instruments or signal lamps in customer instrument panels. • Evaluation of discrete signals, e.g. binary switches or analog values (e.g. speed demand from customer control panels or plant computers). • Simple programmable logic for customer functions, e.g. speed regulation or power optimization for rail systems. • Display of fault messages for service personnel on a small display. • Adaptation of the MTU PCS5 bus to various customer bus systems. • Automatic backup of all ECU data and the ECU-FSW (Functional Software). • Upload and download of SAM data and ECU parameters via Ethernet 10BaseT using the TCP/IP protocol. The SAM must be installed in a protected and clean environment.
E532187/00E
05-11
© MTU
04
1.2
Function
Overview of device functions
View of SAM
E532187/00E
05-11
© MTU
Function
05
Graphic representation of functional units
Legend for graphic Item
Designation
Item
Designation
1
Switching input (referenced to ground)
13
LCD display: 2 lines of 16 characters
2
Switching input (optocoupler input)
14
Connector for MCS5 I/O module signals
3
2* active: Frequency input active transmitter
16
20 * TOHI: 0.5A
5
2* passive: Frequency input inductive transmitter
17
17 12 * TOLO: 0.3A 8 * TOLO: 1.0A
6
Alternatively: Serial interface RS422 or RS232
18
PWM 1.5A TLOLOP: Ri=01Ω
7
Ethernet interface
19
NO/NC relay 1A
9
PPC: Central processor
20
8 * (0 - 10V)
10
SRAM: 512Kbyte*16
21
Alternatively: 4 * (4 - 20mA) 4 * (0 - 10V)
E532187/00E
05-11
© MTU
06
Function
Item
Designation
11
Flash ROM: 512Kbyte*32
12
Compact Flash Card: 32 or 64Mbyte
Item
Designation
Explanation of abbreviations Abbreviation
Description
TOHI
Transistor Output High (Source 0.5A from UBatt).
TOLO
Transistor Output Low (Drain 0.3A to UBatt_GND).
TOLOP
Transistor Output Low Power (Drain 1.5A to UBatt_GND).
Multipurpose channel involved when several signal types are stated. Channel function is defined in the course of SAM application engineering (project environment).
E532187/00E
05-11
© MTU
Function
1.3
07
Ambient conditions
Use • Installation in enclosed control cabinets • Suitable for rail mounting or screw mounting on cabinet back wall (fixed installation) • Suitable for connecting wires or stranded conductors up to AWG16 (US) (1.5 mm2)
Technical data of SAM Term
Unit
Installation position
Value As desired, however integral fault display should be legible.
Operating voltage
VDC
24 rated value (-50%; +30%)
Power consumption
W
Below 6 (0.25A at 24V) without additional loads IP 40 as per DIN 40 050
Degree of protection: Shock: Rail mounting
10g, 11ms
Fixed installation
30g, 11ms
Vibration: Rail mounting
Hz
2 - 12.8:Xpp < ± 3mm 12.8 - 1000:a < 1g [rms]
Fixed installation
Hz
2 - 12.8: Xpp < ± 3mm 12.8 - 100:a < 4g [rms]
Ambient temperature:
°C
-40 - +70 with circulating ambient air
Storage temperature:
°C
-40 - +100
Relative humidity
%
5 - 97, non-condensing
Color:
Blue (RAL5015)
Material:
%
Polycarbonate reinforced with 10% fiberglass
Dimensions:
mm
L x W x H (295 x 151 x 75)
Weight:
kg
Approx. 1.6
Note: Values specified above may vary when used in conjunction with MCS5 extension modules.
E532187/00E
05-11
© MTU
08
Function
EMI/EMC - Electromagnetic interference (general) The SAM has been tested according to the following standards and meets the relevant limit values: Standard
Testing
EN 55011
(Conducted Emission) 10 kHz - 30 MHz Class A
EN 55011
(Radiated Emission) 30 MHz - 1 GHz
IEC-60533:1999
(Conducted Emission) 10 kHz - 30 MHz (type test)
EC-60533:1999
(Radiated Emission) 150 kHz - 2 GHz (type test)
EN 61000-4-2
(ESD interference immunity) ±8kV
EN 61000-4-3
(Radiated interference immunity) 80MHz - – 2GHz
EN 61000-4-4
(Burst interference immunity) ±2kV
EN 61000-4-5
(Surge interference immunity) ±1kV/±2kV
EN 50155
(Surge interference immunity) ±1.8kV
EN 61000-4-17
(LF conducted interference) 0.03 – 10 kHz / 3Veff
EN 61000-4-29
(Mains fluctuation / STANAG 1008)
IEC 60092-504
(Dielectric strength) 550VAC / 10mA
EN 50155
(Isolation) 500V / 10MOhm
E532187/00E
05-11
© MTU
Function
09
Special application (automotive industry) Standard
Testing
EN 55025:2003
(Conducted) Class 1
EN 55025:2003
(Emission) Class 1
EN 13309:2000
(Emission) EUB limit value
ISO 11452-2:2000
(Radiated) 1 MHz – 18 GHz 50V/m
ISO7637-2.2:2002
Pulse 1 - 600V / 50.0 / 5000 pulses level 4 Pulse 2a +50V / 2.0 / 5000 pulses level 4 Pulse 2b +20V / 0.05 / 10 pulses level 4 Pulse 3a - 200V / 50.0 / 1 hour level 4 Pulse 3b +200V / 50.0 / 1 hour level 4 Pulse 4 - 20V / 0.01 / 5 pulses level 4 Pulse 5a +73V / 2.0 / 1 pulses level 2
ISO 7637-3:1999
Pulse 3a - 500V / 50.0 / 10 minutes per cable Pulse 3b - +500V / 50.0 / 10 minutes per cable
ISO 10605:2001
ESD operating test level 2 ESD packing and transport test level 1
Requirements for fulfillment of EMI/EMC limit values are as follows: • The housing of the SAM must be connected to housing ground e.g. by a cable with a minimum cross-section of 2.5 mm2. Cable length shall not exceed 10 cm. • Twisted-conductor cables only shall be used to connect sensors and actuators. Maximum length of shall not exceed 5 m for unshielded cables and 50 m for shielded cables (providing that cable harness impedance allows).
E532187/00E
05-11
© MTU
10
Function
Electrical requirements Term
Unit
Value
Operating voltage:
V
24, -50% to +30% (+12 - +32) Admissible residual ripple less than 5% as per STANAG 1008. Note: The processor is automatically reset if the voltage falls below 7.
Power supply:
W
Below 7. Without activated loads at SAM outputs Additional output current on positive or negative conductor shall not exceed 10 A DC in total.
Current terminals:
mm
5.08 terminals (spring-cage terminals) • Wire diameter AWG14 (US) or 2.5 mm2 recommended.
Electrical isolation:
V
• Supply ground is common reference potential (Common Ground) for all SAM electronics. This applies to the entire I/O range with the exception of certain electrically isolated channels. • SAM electronics ground is not connected to housing ground. • Signal cable shields must be connected to housing ground if applicable. • Maximum direct current isolating voltage is 500 unless otherwise stated.
Mechanical design Term
Unit
Installation position:
Value • Horizontal (to facilitate legibility of fault display and inscriptions on SAM housing). • Note that space is required to connect cabling at the top and bottom when installing the SAM in control cabinets. • The device heats up as a result of power dissipation. Heat from the SAM dissipates through the back wall. Ensure that heat can be conducted away from the back wall of the SAM to the mounting frame. Do not allow neighboring devices to additionally heat up the SAM.
Signal connections The SAM module is easily replaced. The input and output signal cables are equipped with modular connectors. Common function channels are combined in groups. The wires are connected using spring-cage terminal technology. Two wires may be connected to one terminal when the wires are crimped in a double-wire ferrule. For example, a Phoenix AL-TWIN 2* 0.75-10 may be used. Connector modules are plugged together. The connector modules are equipped with coding pins to preclude polarity reversal.
E532187/00E
05-11
© MTU
Function
11
Terminals Term
Unit
Terminal strip modules:
Value WAGO spring-cage terminals
Current-carrying capacity (at 70 °C):
A
10 per contact
Measuring voltage:
V
250
Measuring surge voltage:
V
2500
Wire cross-sections:
mm2
Up to 1.5 or AWG15
Clamping range:
mm2
0.08 – 1.5 or AWG15
Note: Power supply and CAN bus connections feature different terminals (RM 5.08) and wires AWG14 (2.5 mm2).
E532187/00E
05-11
© MTU
12
1.4
Function
CAN communication link
CAN communication link Number of channels:
3 CAN interfaces; electrically isolated
CAN interface hardware conforms with the definition in ISO11998. The controller supports CAN version 2.0B/ (11/29 bit coding). All interfaces are electrically isolated from each other and from the SAM electronics. The interface operates with a 5V voltage level. 3 CAN channels are provided on the board. Additional channels can be realized as an option using an MCS5 extension module, e.g. a CCB2-02 module. One separate Y-connector plug “twin-wire connection” is provided for each CAN channel. The terminal plug is equipped with the terminals described above. CAN bus communication should not be disrupted if a connection on the SAM is disconnected. A terminator (120 ohm) must be installed at the connector plug when the SAM is used as a bus terminator device. Note: The connection (X4) for the MTU dialog unit features the signal lines for CAN_1 and CAN_2 and an additional 24V power supply.
Pin assignment: Designation
PIN
CAN_1
CAN1H
3
H
CAN1L
2
G
GND_CAN1
1
M
CAN_2
CAN_3
Dialog
E532187/00E
05-11
X6
X7
X8
X4
CAN2H
3
B
CAN2L
2
C
GND_CAN2
1
L
CAN3H
3
CAN3L
2
GND_CAN3
1
Lbatt+ (24V)
E
LGND
K
© MTU
Function
1.5
13
Ethernet communication link (10/100BaseT)
Communication link (10/100BaseT) Number of channels:
1 Ethernet interface; electrically isolated
Ethernet interface hardware conforms with the definition in IEEE802.3. A standard RJ-45 connector (Western connector) is provided on the board. The bus lines are coupled via a signal converter and are thus electrically isolated from the SAM electronics.
1 Transmit 2 Receive 3 RJ-45 connection
The operating status of the interface is indicated by a yellow and red LED on the board. • Link red LED; connection established to LAN device.
E532187/00E
05-11
© MTU
14
Function
• Bsy yellow LED; communication in progress. Interface:
10/100Base_T (10/100Mbit/s, twisted conductor pairs).
Applications:
Connection to HUB: Use patch cable CAT5 (1:1). Connection to PC: Use crossed cable CAT5.
Designation
Pin
Transmit data positive
Tx (+)
Transmit data negative Receive data positive
X5
EIA/TIA-T 568 A standard
EIA/TIA- 568 B standard
1
white/green
white/orange
Tx (-)
2
green
orange
Rx (+)
3
white/orange
white/green
orange
green
4 5 Receive data negative
Rx (-)
6 7 8
Housing ground
E532187/00E
05-11
9
© MTU
Function
1.6
15
RS422/RS232 communication link
RS422/RS232 communication link Number of channels:
1 serial interface; electrically isolated
Connection as per RS422, with one pair of transmit lines and one pair of receive lines. Channel may also be used as an RS232 communication link for minimum configuration with signals TxD, RxD and Signal_GND.
Pin assignment Group
Designation
RS232
Serial link RS422
Pin
X14
Tx
1
Rx
4
RS232_GND
5
SAM_GND
6
O1 ( TxB [+] )
1
O2 ( TxA [ -] )
2
I1 ( RxB [+] )
3
I2 ( RxA [ -] )
4
RS422_GND
5
SAM_GND
6
Standard configuration: Baud rate:
1.2 to 19.2 kbaud
Data
8 bits
Parity
N
Stop bits
1
Data flow control
Xon/Xoff
E532187/00E
05-11
© MTU
16
1.7
Function
Binary inputs with common ground
Binary inputs with common ground These channels may, for example, be connected by a line to a switch connecting +UBatt or Ubatt_GND to the input channel. Term
Unit
Value
Number of channels
8 binary inputs with common UBatt_GND reference potential
Voltage range
UBatt_GND to +UBatt
Initial voltage without connection
V
3.8
Input impedance
kohm
~6.9 to GND
Switch for +UBatt
mA
3.5 /24V
Switch for UBatt_GND
µA
-22 / 0V
Rated input current:
Threshold voltage
Measured at input terminal; Signal source impedance is less than 10 ohm
Switch for +UBatt
V
Vin > 10 -> Contact closed (logic high) Vin < 9 -> Contact open (logic low) For Open-Load detection: (33 kohm contact parallel resistor) 9 > Vin > 4.2 -> Contact open (logic low) Vin < 4.2 -> Contact open (Open Load)
Switch for UBatt_GND
V
Vin < 1.9 -> Contact closed (logic high) Vin > 1.9 -> Contact open (logic low) For Open-Load detection: (33.2k contact parallel resistor) 1.9 < Vin < 3.5 -> Contact open (logic low) Vin > 3.5 -> Contact open (Open Load) None
DC isolation Sampling rate
Hz
The sampling rate is determined by the software: E.g. 100
Signal filter
Hz
HW low-pass filter: fg = 500 *Note1
Contact bounce
ms
Masking by software e.g. 50 signal holding
E532187/00E
05-11
© MTU
Function
17
1 VIN 2 A/D converter
The input voltage is measured by an analog/digital converter (10 bit resolution). The switching thresholds are set by software parameters. This also makes it possible to detect broken wires when the switch contacts are connected in parallel to a 33k resistor. The inputs may be switched to positive voltage (+UBatt) or ground potential . The P-IN1 and P_IN2 channels are additionally connected to the TPU channels of the MPC565. This makes frequency measuring possible at these inputs. The HW low-pass filter cut-off frequency for these two channels is fg = 10kHz.
Frequency measuring requirements: Term
Unit
Value
Switch-on threshold, HV threshold voltage (w.c.)
V
Usignal > 11.1
Switch-off threshold, LV threshold voltage (w.c.)
V
Usignal < 3.2
Switching hysteresis:
V
Uhyst 2.7 to 4.1
Frequency:
Hz
32 to 6 kHz Usignal is the voltage at the SAM terminals.
E532187/00E
05-11
© MTU
18
Function
Pin assignment Group
Binary inputs with common reference ground
E532187/00E
05-11
Designation
Pin
X14
X19
Bin/pulse
P_IN1
5
Bin/pulse
P_IN2
6
Bin
P_IN3
7
Bin
P_IN4
8
Bin
P_IN5
9
Bin
P_IN6
10
Bin
P_IN7
11
Bin
P_IN8
7
Bin
GND
8
12
© MTU
Function
1.8
19
Binary inputs via optocoupler
Binary inputs via optocoupler Term
Unit
Value
Number of channels
20 electrically isolated binary inputs
Reference voltage
None: Each channel must be connected with two lines and is isolated from all other channels.
Voltage range
UBatt_GND to +UBatt
Initial voltage without connection
None
Input impedance
kohm
~5.5 (load)
Switch for +UBatt “ON”
mA
+4.0
Switch for UBatt_GND “OFF”
mA
0
Rated input current:
Measured at input terminal
Switching voltage Vin >= 12 V
mA
Iin > = 1.6 -> High
Vin =< 9 V
mA
Iin < 1.3 -> Low
(typical value is 10.5V threshold voltage)
V
For Open-Load detection: (33.2k contact parallel resistor) Vin < 9.0 -> Contact open (logic low). 9.0 > Vin > 2.1-> Contact open (Open Load).
DC isolation
VDC
> = 500
Sampling rate
Hz
The sampling rate is determined by the software: E.g. 100.
Signal filter
Hz
HW low-pass filter: fg = 500
Contact bounce
ms
by software e.g. 50 signal holding.
Online self-diagnosis
kohm
Yes: Wire break (when switch is connected in parallel with a 33 resistor).
E532187/00E
05-11
© MTU
20
Function
1 A/D converter 2 Uin 3 Iin
The secondary voltage of the optocoupler is measured by an analog/digital converter (10 bit resolution). The switching thresholds are set by software parameters. This also makes it possible to detect broken wires when the switch contacts are connected in parallel to a 33kohm resistor.
Pin assignment Group
Designation
Pin
OKI_switch
B_OKI_CH1
B_IN1_H
1
B_IN1_L
2
B_IN2_H
3
B_IN2_L
4
B_IN3_H
5
B_IN3_L
6
B_IN4_H
7
B_IN4_L
8
B_IN5_H
9
B_IN5_L
10
B_IN6_H
11
B_IN6_L
12
B_OKI_CH2
B_OKI_CH3
B_OKI_CH4
B_OKI_CH5
B_OKI_CH6
B_OKI_CH7
B_OKI_CH8
E532187/00E
05-11
X2
X3
X11
X12
B_IN7_H
1
B_IN7_L
2
B_IN8_H
3
B_IN8_L
4
© MTU
Function
21
Group
Designation
Pin
B_OKI_CH9
B_IN9_H
5
B_IN9_L
6
B_IN10_H
7
B_IN10_L
8
B_IN11_H
9
B_IN11_L
10
B_IN12_H
11
B_IN12_L
12
B_OKI_CH10
B_OKI_CH11
B_OKI_CH12
B_OKI_CH13
B_OKI_CH14
B_OKI_CH15
B_OKI_CH16
B_OKI_CH17
B_OKI_CH18
B_OKI_CH19
B_OKI_CH20
E532187/00E
05-11
X2
B_IN13_H
1
B_IN13_L
2
B_IN14_H
3
B_IN14_L
4
B_IN15_H
5
B_IN15_L
6
B_IN16_H
7
B_IN16_L
8
B_IN17_H
9
B_IN17_L
10
B_IN18_H
11
B_IN18_L
12
X3
X11
B_IN19_H
1
B_IN19_L
2
B_IN20_H
3
B_IN20_L
4
X12
© MTU
22
Function
1.9
Binary transistor outputs
Binary transistor outputs The High switches and the Low switches are connected internally on the SAM. Activation as High or Low switch is set by the software. The two output types are determined in the project application environment. The substrate diodes of the output transistors operate like clamp diodes. An additional external clamp diode, as normally used for inductive loads (relays, valve coils), is superfluous. Combination of High switches and Low switches:
1 High switch (BTS480R) 2 Low switch (TLE6240GP) 3 Diagnostic current source
Group
Designation
Pin
Power activation
Transistor outputs
BIN_OUT_CH1
3
BIN_OUT_CH2
4
BIN_OUT_CH3
5
BIN_OUT_CH4
6
BIN_OUT_CH5
7
BIN_OUT_CH6
8
BIN_OUT_CH7
9
BIN_OUT_CH8
10
BIN_OUT_CH9
11
BIN_OUT_CH10
12
E532187/00E
05-11
X17
X18
BIN_OUT_CH11
1
BIN_OUT_CH12
2
BIN_OUT_CH13
3
BIN_OUT_CH14
4
BIN_OUT_CH15
5
© MTU
Function
23
Designation
Group
E532187/00E
05-11
Pin
X17
X18
BIN_OUT_CH16
6
BIN_OUT_CH17
7
BIN_OUT_CH18
8
BIN_OUT_CH19
9
BIN_OUT_CH20
10
Load supply voltage
+LBatt
2
12
Reference ground for load
LGND
1
11
© MTU
24
1.10
Function
Binary outputs: Transistor switches
Binary outputs: Transistor High switches Term
Unit
Value
Number of channels
20 Transistor High switches Note: These channels are used in common with the transistor Low switches.
Reference voltage
Two terminals are provided separately for supply voltage +UBatt and UBatt_GND (use wire cross-section AWG 15 mm2 or 1.5 mm2).
Voltage range
V
+UBatt (12 - 45)
Initial voltage without connection
V
2.3 - 3.7
Impedance in ON state
mΩ
Less than 320 per channel
ON state
A
Less than or equal to - 0.5
OFF state
µA
Less than or equal to + or – (50 - 150)
Output current
None
DC isolation Switching cycle
Hz
The switching rate is determined by the software: Less than 10 admissible
Signal filter
nF
Capacitor with 100 to UBatt_GND (EMI/EMC)
Short circuit
A
Self-protection commencing at 0.7 and reaching to 1.9.
Online self-diagnosis
Yes, Note*
Note*: Minimum load current must exceed 500µA to avoid associated fault messages. This means that load impedance should be less than 30 kohm. The outputs offer the following benefits: • Overload protection with thermal breaking • Overvoltage protection (Load Dump Protection) • Possibility of switching inductive loads: (1 joule per channel when the channels are switched simultaneously, otherwise 10 joules per channel)
E532187/00E
05-11
© MTU
Function
25
Binary outputs: Transistor Low switches Term
Unit
Value 20 transistor Low switches Note: These channels are used together with the transistor High switches (see above). The number of Low transistors is divided into 12 low-current and 8 high-current outputs.
Number of channels
Reference voltage
mm2
Two terminals are provided separately for supply voltage +UBatt and UBatt_GND (use wire cross-section AWG 15 or 1.5).
Voltage range
V
+UBatt (up to 12 - 45)
Initial voltage without connection
V
2.3 - 3.7
Low current
Ω
1.3 per channel
High current
Ω
0.2 per channel
Low current BT_OUT1…..BT_OUT6 and BT_OUT11…BT_OUT16
A
Rated value less than or equal to 0.3 per channel
High current BT_OUT7…BT_OUT10 BT_OUT17…BT_OUT20
A
Rated value less than or equal to 1.0 per channel
Low current
µA
Max. - or + (50 - 150)
High current
µA
Max. - or + (100 - 300)
Impedance in ON state
Output current in ON state
Output current in OFF state
None
DC isolation Switching cycle
Hz
The switching rate is determined by the software: Less than 10 admissible
Signal filter
nF
Capacitor with 100 to UBatt_GND
Short circuit
Self-protection commences at:
Online self-diagnosis
A
1 to 2 for low current
A
6 to 12 for high current Yes, Note*
Note*: Minimum load current must exceed 1mA to avoid associated fault messages. This means that load impedance should be less than 11 kohm.
E532187/00E
05-11
© MTU
26
Function
Benefits The • • The
outputs offer the following benefits: Overload protection with thermal breaking Overvoltage protection (Load Dump Protection) outputs BT_OUT9 and BT_OUT10 may also be used as PWM outputs.
E532187/00E
05-11
© MTU
Function
1.11
27
Binary outputs: Relay switches
Binary outputs: Relay switches Number of channels
4 monostable relays with switching contacts
Reference voltage
None: Each channel must be connected with two lines and is isolated from all other channels.
Voltage range
Less than 36VDC
Contacts
Switching contacts (connected as NO contact or NC contact)
Impedance in ON state
Less than 20 mΩ
Output current ON state
Less than 1.0 A per channel
OFF state
Less than or equal to 100 µA per channel; a varistor lies above the contacts.
DC isolation
Isolation less than 300V DC
Switching cycle
The switching rate is determined by the software: Less than 1Hz
Switching cycles at 10W
106 (resistive load) max.
1W
107 (resistive load) max.
Self-protection
Overcurrent protection by multifuse (nom. 1A) Overvoltage protection by varistor (nom. 36V)
E532187/00E
05-11
© MTU
28
Function
Online self-diagnosis
Yes
Offline diagnosis
Yes
Pin assignment Group
Designation
Pin
Relay outputs
BIN_OUT_Rel1
COM1
1
NC1
2
NO1
3
COM2
4
NC2
5
NO2
6
COM3
7
NC3
8
NO3
9
COM4
10
NC4
11
NO4
12
BIN_OUT_Rel2
BIN_OUT_Rel3
BIN_OUT_Rel4
E532187/00E
05-11
X15
© MTU
Function
1.12
29
Binary outputs: PWM outputs via Low switches
Binary outputs: PWM outputs via Low switches Term
Unit
Value
Number of channels
2 transistor Low switches
Reference voltage
UBatt_GND circuit Two terminals are provided separately for the supply voltage +UBatt and Switch LGND (use wire cross-section AWG 15 mm2 or 1.5 mm2).
Voltage range
+ UBatt
Initial voltage without connection mΩ
150 - 250 per channel
ON state
A
Less than or equal to 1.5 per channel
OFF state
µA
Max. +/-100
Impedance in ON state Output current in ON state
None
DC isolation Output signal Frequency
Hz
5 to 500 adjustable by software
ON/OFF ratio
%
1 - 100 ; 0: Off
Accuracy (PWM)
%
0.3 of measuring range 60 - 200 Hz
Signal filter
nF
Capacitor with 30 to UBatt_GND
Short circuit
A
Self-protection commencing at 3 and reaching to 6. For switching transistor and supply line.
Online self-diagnosis The • • •
Yes
outputs offer the following benefits: Overload protection with thermal breaking Operation automatically restored after fault rectification A free-wheeling diode on the +UBatt supply rail allows switching of inductive loads.
Integral current regulation: Current measuring for operation of linear magnets is envisaged. The coil current is measured and signaled to the processor via an A/D converter. The processor software corrects the PWM output ratio on the basis of the desired coil current. This is a closed-loop control circuit the dynamic parameters of which can be set by the software. The supply of the coil LBatt+ is protected against short-circuit. The response time of the current regulator is approx.: Settling time =< 200ms. The coil current is measured by a 100 mΩ measuring resistor. Precise current regulation in the closed-loop control circuit only applies to the output frequency range of 100Hz to 200Hz. Attainable settling accuracy is = < 0.3 % at 1A current.
E532187/00E
05-11
© MTU
30
Function
1 Measuring resistor 2 LBatt+, short-circuit-proof 3 PWM – control signal
Pin assignment Designation
Group
PWM_CH1 PWM control PWM_CH2
E532187/00E
05-11
Pin
X14
PWM1_L
10
PWM1_H
9
PWM2_L
12
PWM2_H
11
© MTU
Function
1.13
31
Signal outputs to control display instruments
Signal outputs to control display instruments These outputs are used to control display instruments or other measuring instruments. 8 channels are provided to control instruments with a 0 - +10 V voltage input. Four of these channels are prepared for additional 0 20 mA current signals. The external load of the current channels must be less than 400 ohm. The choice of voltage or current channels for the respective application is made in the application engineering phase.
General Signal scaling: Scaling parameters can be set by the software. The DC output voltage or current is generated by PWM processor channels. The processor PWM signal is buffered, routed via a low-pass filter and finally amplified. PWM frequency
1710 Hz
PWM ratio
0 - 100%
Group
Designation
Pin
Instrument control
Volt_out voltage output
V_OUT1
1
V_OUT2
2
V_OUT3
3
V_OUT4
4
V_OUT5
5
Auxiliary voltage
E532187/00E
05-11
X1
X10
V_OUT6
9
V_OUT7
10
V_OUT8
11
Common GND
AGND
12
Curr_out
C_OUT1
6
Current output
C_OUT2
7
C_OUT3
8
C_OUT4
9
Common GND
AGND
10
24V/-1A
Lbatt+
11
LGND
12
© MTU
32
Function
Voltage outputs Term
Unit
Value
Number of channels
8 voltage inputs with common UBatt_GND reference potential
Reference voltage
UBatt_GND (AGND)
Voltage range
V
+0 – +10
Accuracy
%
0.3 of measuring range**
Initial voltage without connection
V
0 - 10
Impedance in ON state
Ω
0
Output current
mA
Less than or equal to 8 admissible None
DC isolation Settling time
ms
Less than 60.
Short-circuit protection
mA
The output voltage is automatically reduced when current intensity exceeds 20 - 30. Short-circuit proof to +UBatt and UBatt_GND.
** The value indicates accuracy in the temperature range –20 °C to 75 °C and for an operating period of one year after device manufacture. A factor of 0.05% p.a. must be allowed when determining long-term accuracy.
Current outputs Term
Unit
Value
Number of channels
4 current outputs with common UBatt_GND reference potential
Current
Source to UBatt_GND
Current intensity range
mA DC
0 - 20
Accuracy
%
0.3 of measuring range**
Max. load impedance (load)
Ω
Less than 400.
Max. output voltage
VDC
Less than 10. None
DC isolation ms
Settling time Short-circuit protection
Less than 60. Short-circuit proof to +UBatt and UBatt_GND
** The value indicates accuracy in the temperature range –20 °C to 75 °C and for an operating period of one year after device manufacture. A factor of 0.05% p.a. must be allowed when determining long-term accuracy. Note: These outputs supply current. This means that the current from SAM flows via an external instrument to UBatt_GND.
E532187/00E
05-11
© MTU
Function
1.14
33
Interface for measuring sensor (analog IN)
Interface for measuring sensor (analog IN) The eight analog multi-purpose measuring inputs facilitate alternative measuring of temperatures or voltages and currents.
Pin assignment Group
Designation
Pin
Analog multipurpose inputs
AN_CH1
A_Supp_CH1
1
A_In_CH1
2
A_GND
3
A_Supp_CH2
4
A_In_CH2
5
A_GND
6
A_Supp_CH3
7
A_In_CH3
8
A_GND
9
A_Supp_CH4
10
A_In_CH4
11
A_GND
12
AN_CH2
AN_CH3
AN_CH4
AN_CH5
AN_CH6
AN_CH7
AN_CH8
X16
A_Supp_CH5
1
A_In_CH5
2
A_GND
3
A_Supp_CH6
4
A_In_CH6
5
A_GND
6
A_Supp_CH7
7
A_In_CH7
8
A_GND
9
A_Supp_CH8
10
A_In_CH8
11
A_GND
12
X20
Temperature sensors Used for: • PT1000, Ni1000 temperature sensors • PT100, Ni100 temperature sensors E532187/00E
05-11
© MTU
34
Function
• NTC temperature sensors, e.g. Bosch NTC 284 509 049 (71Ω - 45k Ω)
Temperature inputs Term
Unit
8 commonly used with voltage inputs.
Number of channels Voltage range
Value
V
+5; AGND
PT1000
mA
2.5
PT100
mA
4.5
NTC
mA
2-5
Input impedance
kohm
1
PT1000
K
± 0.4 (measuring range: -20°C - 120°C)
PT100
K
± 5 (measuring range: -20°C - 650°C)
NTC
K
± 4 (measuring range: -20°C - 120°C)
Measuring current:
Accuracy of electronics:
Short-circuit protection
Yes
DC isolation
None
Sampling rate
Hz
The sampling rate is determined by the software: E.g. 100.
Signal filter
Hz
HW low-pass filter: f < 20.
Online self-diagnosis
Yes
** The values indicate accuracy in the temperature range –20 °C to 75 °C and for an operating period of one year after device manufacture. A factor of 0.05% p.a. must be allowed when determining long-term accuracy.
Measuring method: A 5V reference voltage is applied to the sensor resistor. The measuring current is generated from the temperature impedance and the inherent impedance of the measuring channel (conductors and contacts). The temperature-dependent voltage is decoupled by an amplifier and supplied to the 12-bit analog/digital converter.
E532187/00E
05-11
© MTU
Function
35
1 A/D channel 2 IN: PT1000, PT100, NTC
Analog inputs for voltage/current Used for: • Voltage measuring 0 - 5V or 0 - 10V • Current measuring 0 - 24mA • Operation of 8 external measuring sensors with 5V supply Example: Potentiometer or measuring sensor with 5V supply
1 A/D channel 2 Potentiometer or 5V pressure sensor
E532187/00E
05-11
© MTU
36
Function
Example: Voltage measuring 5V or 10V
1 A/D channel 2 0 - 5V or 0 - 10V 3 IN: 0 - 10V
Example: Current measuring
1 A/D channel 2 Sensor 0 - 20mA 3 IN: 0 - 20mA
Term
Unit
Value
Number of channels
8 commonly used with temperature inputs
Reference potential
UBatt_GND (AGND)
Voltage measuring Voltage range
V
0 - +5; 0 - +10
Impedance
kΩ
100
Current measuring
E532187/00E
05-11
© MTU
Function
37
Term
Unit
Value
Current range
mA
0 - 30
Load
Ω
150
Accuracy of electronics
%
0.2 of measuring range**
Voltage
V
5; 0.1 %**
Current intensity
mA
0 - 20 DC (current intensity limited internally)
Voltage
V
5; 0.1 %**
Current intensity
mA
0 - 20 DC (current intensity limited internally)
V
5 potentiometer/sensor supply
Sensor supply
Potentiometer supply
Pin assignment A_SUPPx A_IN1
Measuring voltage/current input
A_GND
Measuring ground
Short-circuit protection A_SUPPx ->(VBatt+; VBatt-)
Yes
A_IN1 ->(VBatt+; VBatt-)
Yes
A_GND ->(VBatt+; VBatt-)
A
Yes (SAM device fuse 15) None
DC isolation Sampling rate
Hz
The sampling rate is determined by the software: E.g. 100
Signal filter
Hz
HW low-pass filter: f g = 20
Online self-diagnosis
Yes (monitoring of range violations adjustable by software)
** The value indicates accuracy in the temperature range –20 °C to 75 °C and for an operating period of one year after device manufacture. A factor of 0.05% p.a. must be allowed when determining long-term accuracy. Input function can be selected between 5V, 10V and 20mA measuring in the application engineering phase.
E532187/00E
05-11
© MTU
38
1.15
Function
Electrically isolated analog inputs
Electrically isolated analog inputs Used for: • Voltage measuring 0 - 5V or 0 - 10V • Current measuring 0 - 20mA Term
Unit
Value
Number of channels
2 multi-purpose inputs
Reference potential
Both channels have a common reference potential (Common GND), which is electrically isolated from UBatt_GND of the SAM electronics.
Voltage measuring Voltage range
V
0 - +5; 0 - +10
Impedance
kΩ
47
Current range
mA
0 - 24
Load
Ω
150
Accuracy of electronics
%
0.3 of measuring range**
+IN_V_CHx -> A/D_OPT_GND
V
Measuring voltage 0 - 10 or 0 - 5
+IN_I_CHx -> A/D_OPT_GND
mA
Measuring current input 0 - 20
Current measuring
Pin assignment
A/D_OPT_+5V
Supplies Vpp (5.0V/10mA) to control an external potentiometer.
Short-circuit protection All poles to UBatt_GND
Yes
All poles to +UBatt
Yes
DC isolation
Yes
Sampling rate
Hz
The sampling rate is determined by the software: E.g. 100
Signal filter
Hz
HW low-pass filter: f = 20
Online self-diagnosis
Yes (monitoring of range violations adjustable by software)
** The value indicates accuracy in the temperature range –20 °C to 75 °C and for an operating period of one year after device manufacture. A factor of 0.05% p.a. must be allowed when determining long-term accuracy. Input adjustable between 5V, 10V and 20mA measuring in the application engineering phase.
Configuration:
E532187/00E
05-11
© MTU
Function
39
1 A/D converter optocoupler 2 Voltage measuring 3 Current measuring
Pin assignment Group
Designation
Pin
OKI_Analog
O-AN_CH1
A/D_OPT_+5V
5
+IN_V_CH1
6
+IN_I_CH1
7
A/D_OPT_GND
8
A/D_OPT_+5V
9
+IN_V_CH2
10
+IN_I_CH2
11
A/D_OPT_GND
12
O-AN_CH2
E532187/00E
05-11
X11
© MTU
40
1.16
Function
Frequency inputs
Frequency inputs Normal use: Speed measuring via a gear and an inductive sensor (without auxiliary voltage). Term
Unit
Value
Number of channels
2 x 2-pole differential inputs
Reference potential
Differential input
Signal measuring Maximum signal
1.2 Vpp < U input < 100Vpp
Hysteresis
V
Positive threshold at 0, negative threshold at -620mV.
Impedance
kΩ
Ri =2 x 24
Frequency range
Hz
5 to 10kHz
Accuracy of electronics
%
0.1 (frequency measuring range)**.
Configuration Short-circuit protection
Yes
DC isolation
None kHz
Signal filter Online self-diagnosis
HW low-pass filter: fg = 15 Yes (monitoring of range violations adjustable by software).
Note: The frequency range specified applies when the minimum signal level is supplied by the measuring sensors. Note signal forms from inductive sensors or active sensors used e.g. HAL sensors. A differential + and - signal is required for the frequency input. **Depending on software signal processing. Mean value calculation should include as many signal periods as possible in order to attain adequate signal quality. This can be set in the application engineering phase.
Pin assignment Pin assignment Group
Designation
Pin
Frequency inputs
SPEED_CH1
F_IN1H
1
F_IN1L
2
F_IN2H
3
F_IN2L
4
SPEED_CH2
E532187/00E
05-11
X19
© MTU
Function
1.17
41
Removable memory
Removable memory The need for a removable storage medium (i.e. Compact Flash) primarily results from the conditions of use and maintenance of the ADEC governor. Compact-Flash (CF)
32Mb 3.3 V supply voltage Block erasing and block programming
Using the Compact Flash CF memory card facilitates future use of higher storage capacity cards e.g. 64 MB or 256 MB. The Compact Flash operates with a file management system. Application engineering data and backup data incl. (FSW_SW) of the ADEC governor are stored on the CF. Following device manufacture and testing, the SAM incorporates firmware which includes the various I/O channel drivers and the initial program loader software. User-related software (application software) is first transmitted when the CF is installed in the SAM. Note: The CF shall only be installed and removed when the SAM is de-energized.
E532187/00E
05-11
© MTU
42
1.18
Function
Fault display
Display Two-line B/W LCD for 16 ASCII characters per line. Background illumination of the display can be deactivated by the software. General fault messages and fault codes are shown on the display. Fault descriptions are provided in the relevant application descriptions.
E532187/00E
05-11
© MTU
Function
1.19
43
Control keys
Control keys Four miniature keys are provided on the SAM to operate the display. Examples of functions are: • ESC • ENTER • Step back in menu • Step forward in menu
E532187/00E
05-11
© MTU
44
1.20
Function
Extendibility
Extendibility I/O capacity can be extended by inserting as many as three MCS5 I/O modules. The SAM board is prepared to accommodate as many as three MCS5 I/O modules. A list of I/O modules supported by the SAM is attached. Note: Electrical characteristics and specifications of these modules may vary. When using MCS5 I/O modules (→MCS5 documentation) technical specifications must be observed. Note the following restrictions: Use one (Multi-Communication Module) only, it must be inserted in slot 3. Use max. two frequency measuring modules, e.g. MFB1, these must be inserted in slot 1 and/or slot 2.
Pin assignment Group
Designation
MCS–5 I/O module extension
Slot_1
Slot_2
E532187/00E
05-11
Corresponding PIM PIN
Module Pin
X10
X21
X22
n01
PIN_1
1
n02
PIN_2
2
n03
PIN_3
3
n04
PIN_4
4
n05
PIN_5
5
n06
PIN_6
6
n07
PIN_7
7
n08
PIN_8
8
n09
PIN_9
9
n10
PIN_10
10
n11
PIN_11
11
n12
PIN_12
12
n13
PIN_13
1
n15
PIN_14
2
n14
PIN_15
3
n16
PIN_16
4
n01
PIN_1
5
n02
PIN_2
6
n03
PIN_3
7
n04
PIN_4
8
n05
PIN_5
9
n06
PIN_6
10
X23
© MTU
Function
Group
45
Designation
Slot_3
E532187/00E
05-11
Corresponding PIM PIN
Module Pin
X10
X21
X22
X23
n07
PIN_7
11
n08
PIN_8
12
n09
PIN_9
1
n10
PIN_10
2
n11
PIN_11
3
n12
PIN_12
4
n13
PIN_13
5
n14
PIN_14
6
n15
PIN_15
7
n16
PIN_16
8
n01
PIN_1
1
n02
PIN_2
2
n03
PIN_3
3
n04
PIN_4
4
n05
PIN_5
5
n06
PIN_6
6
n07
PIN_7
7
n08
PIN_8
8
n09
PIN_9
9
n10
PIN_10
10
n11
PIN_11
11
n12
PIN_12
12
n13
PIN_13
13
n14
PIN_14
14
n15
PIN_15
15
n16
PIN_16
16
© MTU
46
Function
1.21
Self-diagnosis (ITS)
Self-diagnosis (ITS) The SAM features self-monitoring where appropriate from the technical viewpoint. The following tests are performed during initialization following power-up: • RAM memory (R/W) • Flash memory (CRC) • Peripheral interface tests • Communication link tests Rapid diagnosis by LED: The SAM is equipped with a DILA (diagnosis lamp), an LED which indicates the status of the SAM. Steady
SAM in order
Flashing
SAM faulty
Dark
SAM power supply missing
The function of this LED is the same as the DILA in ECU 7. Offline diagnosis A straightforward diagnostic method allows service personnel to perform troubleshooting quickly and easily in case of a fault in the SAM. Proceed as follows: Place the SAM device on a table leaving only the power supply lines connected. Press the “▼” and “Enter” keys simultaneously and switch on the power supply at the same time. Release the keys after a few seconds and observe the display for approximately 10 seconds. Any faulty channels are displayed. Supported MCS5 I/O modules Designation
Board no.
Drawing / documentation
Use in SAM slot 1
Use in SAM slot 2
Use in SAM slot 3
AIB 1-02 Analog Input Board
529 530 93 12
529 539 83 02 529 531 57 91
x
x
x
AIB 2-02 Analog Input Board
529 530 39 12
529 539 40 02 529 531 29 91
x
x
x
AIB 3-02 Analog Input Board
529 530 38 12
529 539 39 02 529 531 28 91
x
x
x
AIB 4-01 Analog Input Board
529 530 49 12
529 539 50 02 529 531 34 91
x
x
x
BIB 1-02 Binary Input Board
529 530 88 12
529 539 79 02 529 531 53 91
x
x
x
BIB 2-01 Binary Input Board
504 530 08 97
504 539 66 03 504 531 01 90
x
x
x
E532187/00E
05-11
© MTU
Function
47
Designation
Board no.
Drawing / documentation
Use in SAM slot 1
Use in SAM slot 2
Use in SAM slot 3
BOB 1-02 Binary Output Board
529 530 86 12
529 539 77 02 529 531 51 91
x
x
x
BOB 1-02/A Binary Output Board
529 530 95 12
529 539 85 02 529 531 51 91
x
x
x
BOB 2-02 Binary Output Board
529 530 87 12
529 539 78 02 529 531 52 91
x
x
x
BOB 3-01 Binary Output Board
504 530 39 97
504 539 78 03 504 531 10 90
x
x
x
EGB 1-01 Exhaust Gas Board
504 530 74 92
504 539 54 03 504 531 91 93
x
x
x
IIB 1-01 Instrument Input Board
504 530 98 92
504 539 64 03 504 531 99 93
x
x
x
INB 2-01 Instrument Board
504 530 54 97
504 539 84 03 504 531 15 90
x
x
x
MFB1_01 Multi-Function Board
504 530 76 92
504 539 56 03
x
x
—
CCB2_02 Multi Communication Board
X 000 134 34
X 000 134 35
—
—
x
X: Supported by SAM Note on application engineering: The MCS5 I/O modules listed above are installed in cassettes and supplied for use in the corresponding SAM slot. These coded modules are slot-specific and are listed under a dedicated item number at MTU. First take stock when initially using such modules.
E532187/00E
05-11
© MTU
48
Function
Design of the SAM (all parts illustrated)
1 Modules 2 Module 3 Software
E532187/00E
4 Housing 5 Board 6 Board
05-11
7 Cap 8 Screws 9 Lock
© MTU
Function
1.22
49
Index A
Ambient conditions
.....................
Frequency inputs
I 19 16
49 33
O Overview of device functions
12 43
S
E Electrically isolated analog inputs . . . . . . . . . . Ethernet communication link (10/100BaseT) . . . . . . . . . . . . . . . . . . . . . . . . Extendibility . . . . . . . . . . . . . . . . . . . . . . . . . . .
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interface for measuring sensor (analog IN) . . .
29 27 24 22
C CAN communication link . . . . . . . . . . . . . . . . . Control keys . . . . . . . . . . . . . . . . . . . . . . . . . .
40
07
B Binary inputs via optocoupler . . . . . . . . . . . . . Binary inputs with common ground . . . . . . . . . Binary outputs: PWM outputs via Low switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Binary outputs: Relay switches . . . . . . . . . . . . Binary outputs: Transistor switches . . . . . . . . Binary transistor outputs . . . . . . . . . . . . . . . . .
......................
.............
04
Removable memory . . . . . . . . . . . . . . . . . . . . RS422/RS232 communication link . . . . . . . . .
41 15
R
Self-diagnosis (ITS) . . . . . . . . . . . . . . . . . . . . Signal outputs to control display instruments . . . . . . . . . . . . . . . . . . . . . . . . . . .
46 31
38 13 44
U Use
.................................
03
F Fault display
E532187/00E
..........................
05-11
42
© MTU
View more...
Comments