Mot So Lenh Matlab Trong Giai Tich

July 26, 2017 | Author: Tiến Gẻ | Category: N/A
Share Embed Donate


Short Description

Các lệnh cơ bản sử dụng để giải các bài toán liên quan đến giải tích trong matlab như: tính giới hạn, tính đạo hàm, tính...

Description

PHẦN I: CÁC LỆNH THƯỜNG DÙNG TRONG GIẢI TÍCH MÔ TẢ

CÂU LỆNH

LOẠI HÀM

GIỚI HẠN-ĐẠO HÀM-TÍCH PHÂN

limit( f )

lim f ( x ) x →0

symbolic

lim( f , a) hoặc lim( f , x, a)

lim f ( x ) x→a

symbolic

x→a−

lim f ( x )

symbolic

lim f ( x )

symbolic

lim( f , x, a, ' left ') lim( f , x, a, ' right ') diff ( f ), diff ( f , x) diff ( f , x, n) , diff ( f , n)

x→a+

df = f ′( x ) (biến mặc dx định là x) dn f n = f ( ) ( x) n dx

int ( f ) int ( f , x )

∫ f ( x)dx

int ( f , a, b ) , int ( f , x, a, b )



b

quad(f,a,b)



b

rsums(f,a,b), rsums(f,[a,b])

taylor(f,n) taylor(f,n,x0)

a

a



symbolic ,string symbolic, string

f ( x)dx

symbolic, string

f ( x)dx

inline, handle

Tổng Riemman của f trên [a, b], xuất dạng bar(đồ thị) k n −1 f ( ) ( 0) k x ∑ k! k =0 n −1

symbolic , f= ‘f(x)’ (srting)

f(

k)

k =0

( x0 )

k!

( x − x0 )

k

inline, handle,(2010 có thêm symbolic) symbolic Symbolic

factorial(N)

Tính giai thừa: N!

compose(f,g)

f(g(x))

f=sym(‘f(x)’),g=sym(‘g(x)’)

compose(f,g,’u’,’v’)

f(g(v)

f=sym(‘f(u)’),g=sym(‘g(v)’)

finverse(f)

Tìm hàm ngược của f

Symbolic

TÍNH TOÁN TRÊN BIỂU THỨC subs(f,x,a), subs(f,’x’,a)

f ( x) → f (a)

Dạng 1: symbolic, string Dạng 2: mọi hàm

feval(f,a), feval(f,[a,b]) polyval(p,a) eval(biểu thức số)

f ( x) → f (a)

inline, handle (1)

Tính giá trị của đa thức p tại a Trả về giá trị của biểu thức dạng thập phân.

simplify

Rút gọn biểu thức

simple

Viết biểu thức dạng ngắn nhất.

pretty(f)

Biểu diễn f theo dạng viết tay

Symbolic

solve(’f(x)’)

Giải pt f(x) = 0

Có thể thay: F=’f(x)’

solve(F,G) fsolve(f,x0)

Giải hệ pt f(x,y)=0,g(x,y)=0 Giải pt f(x) = 0 trong khu vực gần x0

F=’f(x,y)’,G=’g(x,y)’ handle

fzero( Trả về vector hệ số của đa thức theo thứ tự bậc cao đến thấp Trả về đa thức có các hệ poly2sym(a) số tương ứng với các phần tử của vector a Tìm giá trị nhỏ nhất trên [x,m]=fminbnd(f,a,b), [a,b] Giải phương trình vi dsolve(‘pt1’,’pt2’,’đk1,’đk2’,’biến’) phân , hệ pt vi phân với ’biến’ được chỉ ra. Nhập dữ liệu số từ bàn input(‘Thông báo’) phím với thông báo nằm trong ‘ ’. sym2poly(f)

input(‘Thông báo’,’s’) disp(‘string’),disp(x) fprinf

strfind(S,s) strcmp(S1,S2)

Đa thức Vector hàng handle Có thể thay : F=’pt1’,G=’pt2’

Nhập chuỗi từ bàn phím. Xuất chuỗi hoặc giá trị ra màn hình. Ghi dữ liệu vào file text hoặc xuất dữ liệu ra màn Xem Help hình Tìm chuỗi con s trong chuỗi lớn S, kết quả là S,s là các chuỗi ký tự. thứ tự của phần tử đầu tiên trong chuỗi con. So sánh hai chuỗi (giống hay khác nhau)

char(x) num2str(a)

Chuyển biến x sang dạng chuỗi (string) Chuyển số a sang dạng chuỗi(string)

x là một symbolic (!) a là một giá trị bằng số

VẼ ĐỒ THỊ ezplot(x(t),y(t),[t1,t2]) ezplot(f,[a,b]) ezplot3(x(t),y(t),z(t),[t1,t2]) fplot(f,[a,b] plot(x,f,tính chất) plot3(x(t),y(y),z(t),tính chất) polar(phi,r) fill(X, Y, C)

Vẽ đường cong tham số với t chạy trên [t1,t2] Vẽ đồ thị hàm f với biến chạy trên [a, b]. Vẽ đồ thị hàm f với biến chạy trên [a, b]. Vẽ đồ thị của f theo x, x là miền được chỉ ra theo(2) Tính chất (3) Vẽ đương cong trong tọa độ cực Tô màu miền đóng kín với hoành độ, tung độ biên nằm trong X, Y bangwg màu C

surfc(x,y,z)

Vẽ mặt cong với đường mức

mesh(x,y,z)

Vẽ mặt lưới

xlabe(‘str’), ylabel(‘str’), zlabel(‘str)

Tạo ma trận lưới từ các vector x,y Định các giá trị đặt trên Ox Định các giá trị đặt trên Oy Gán tên cho các trục Ox, Oy,Oz

title(‘string’)

Gán tên cho hình

legend

Gán tên cho từng đồ thị trên hình.

set(gca,’ytick’,[y1,y2…])

m-file, handle, inline, string Vẽ điểm, tập hợp điểm

Vẽ đc 3D dạng điểm

Vẽ mặt cong

set(gca,’xtick’,[x1,x2…])

Symbolic,string,inline,handle

Vẽ đc tham số 3D

surf(x,y,z)

meshgrid(x,y)

Symbolic,string,inline,handle

(1) Khai báo cho hàm inline: inline(‘f(x)’,’x’), ví dụ: f = inline(‘sin(x),’x’); Khai bao cho hàm handle: handle = @(danh sách đối sô, biến) biểu thức định nghĩa. Ví dụ : f = @ (x) sin(x)+x*cos(x) g=@ (x,y) sin(x+y)-x*y (2) Khai báo miền chạy của x trong trường hợp này có 2 cách

R là hàm theo phi, phi là miền đươc chỉ ra trong(2)

Str là chuỗi ký tự

a. x = linspace(a,b) hay x=linspace(a,b,n) (n điểm chia trên [a, b]). Ví dụ: x=linspace(-2,3) (trên [-2,3] có 100 điểm chia). x= linspace(-2,3,70)( trên [-2,3] có 70 điểm chia) b. x= a:d/n:b : trên doạn [a, b], số điểm chia được tính từ quy ước : đoạn có độ dài d được chia thành n diểm Ví dụ: x = 0: 20/100:1 có nghĩa x thuộc [0,1], đoạn có độ dài 20 được chia thành 100 điểm. Vậy mỗi đoạn con dài 1/5 và [0,1] có 5 đoạn chia tương ứng với các điểm: 0, 1/5, 2/5, 3/5, 4/5, 1. (3) Tính chất bao gồm (tra cứu bằng LineSpec) a. Line Style b. LineWidth c. Color d. Marker (Marker sẽ thể hiện ở các điểm chia) i. MarkerType ii. MarkerSize iii. MarkerFaceColor & MarkerEdgeColor Cú pháp: 1. plot(x,y, ’kiểu đường vẽ’, ‘LineWidth’, giá trị,’ MarkerFaceColor’, ’giá trị ’, ‘MarkerEdgeColor’, ‘giá trị ’, ‘MarkerSize’, ‘giá trị ’) 2. Kiểu đường vẽ thể hiện theo thứ tự ‘LineStyleColorMarkerType’. ví dụ: ‘- -mo’; ‘:rx’; ‘-bs’. Nếu chỉ chọn Marker và không chọn Line Style thì chỉ có marker xuất hiện trên đồ thị.

Line Style Specifiers Specifier -

Line Style Solid line (default)

--

Dashed line

:

Dotted line

-.

Dash-dot line

Marker Specifiers Specifier

Marker Type

+

Plus sign

o

Circle

*

Asterisk

.

Point (see note below)

x

Cross

'square' or s

Square

'diamond' or d

Diamond

^

Upward-pointing triangle

v

Downward-pointing triangle

>

Right-pointing triangle

<

Left-pointing triangle

'pentagram' or p

Five-pointed star (pentagram)

'hexagram' or h

Six-pointed star (hexagram)

Note The point (.) marker type does not change size when the specified value is less than 5.

Color Specifiers Specifier

Color

Specifier

Color

Specifier

Color

r

Red

c

Cyan

k

Black

g

Green

m

Magenta

w

White

b

Blue

y

Yellow

PHẦN 2: LẬP TRÌNH TRONG MATLAB (tóm tắt những vấn đề càn thiết nhất) A. CÁC HÀM TOÁN HỌC sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), sinh(x), cosh(x) abs(x): trị tuyệt đối hoặc modun của x. sqrt(x): căn bậc 2 của x. exp(x): ex log(x): ln(x) log10(x): log10 (x) a^x: ax B. CẤU TRÚC ĐIỀU KIỆN 1. Cấu trúc if a. if điều kiện Nhóm lệnh end b. if điều kiện Nhóm lệnh 1 else Nhóm lệnh 2 end c. if điều kiện 1 Nhóm lệnh 1 elseif điều kiện 2 Nhóm lệnh 2 else Nhóm lệnh 3 end 2. Cấu trúc switch case (áp dụng khi có nhiều điều kiện tương ứng với nhiều nhóm lện khác nhau) TRƯỜNG HỢP = dãy ký tự hoặc dãy số (TRƯỜNG HỢP=[TH1 TH2 TH3…]) switch TRƯỜNG HỢP case TH1 nhóm lệnh 1 case TH2 nhóm lệnh 2 case TH3 nhóm lệnh 3 …. otherwise nhóm lệnh n end

VÍ DỤ Giải phương trình bậc 2: ax 2 + bx + c = 0 dùng cấu trúc if a=input(‘nhap a:’); b=input(‘nhap b:’); c=input(‘nhap c:’); delta =b^2-4*a*c; if delta >0 disp(‘Phuong trinh co 2 nghiem thuc phan biet:’); x1=(-b+sqrt(delta))/(2*a) x2=(-b-sqrt(delta))/(2*a) elseif

delta==0

disp(‘Phuong trinh co nghiem kep:’); x= -b/(2*a) else

Giải phương trình bậc 2: ax 2 + bx + c = 0 dùng cấu trúc switch case a=input(‘nhap a:’); b=input(‘nhap b:’); c=input(‘nhap c:’); delta =b^2-4*a*c; if delta >0 choice =1 elseif delta==0 else

x1=(-b+i*sqrt(-delta))/(2*a) x2=(-b-i*sqrt(-delta))/(2*a)

choice=3

end switch choice case 1 disp(‘Phuong trinh co 2 nghiem thuc phan biet:’);

% truong hop nay la delta < 0

disp(‘Phuong trinh co nghiem phuc:’);

choice=2

x1=(-b+sqrt(delta))/(2*a) x2=(-b-sqrt(delta))/(2*a) case 2 disp(‘Phuong trinh co nghiem kep:’);

end

x= -b/(2*a) case 3 disp(‘Phuong trinh co nghiem phuc:’); x1=(-b+i*sqrt(-delta))/(2*a) x2=(-b-i*sqrt(delta))/(2*a) end

C. CẤU TRÚC VÒNG LẶP (sử dung khi nhóm lệnh được lặp lại nhiều lần) 1. Vòng lặp for (sử dụng khi đã biết số lần lặp tối đa) for i=m:k:n Nhóm lệnh end i là biến đếm, bắt đầu đi từ m đến n, k là bước nhảy của i. Nếu không có k, bước nhảy mặc định là 1. Nếu k < 0, i lùi từ m về n (trường hợp này m
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF