227. Two forces P and Q pass through a point A which is 4 ft to the right of and 3 ft above a moment center O. Force P is 200 lb directed up to the right at 30° with the horizontal and force Q is 100 lb directed up to the left at 60° with the horizontal. Determine the moment of the resultant of these two forces with respect to O. Y
Y
60°
30°
3 ft 4 ft
X
F
200lb cos30 100lb cos 60
F
P cos Q cos
F
P sin Q sin
F
123.21lb
F
200lb sin 30 100lb sin 60
F
186.60lb
x
x
x
y
y
y
MO = Fx d Fy d MO = 123.21 (3) – 186.60 (4) MO = - 376.77 counterclockwise
228. Without computing the magnitude of the resultant, determine where the resultant of the forces shown in Fig. P-228 intersects the X and Y axes.
229. In Fig. P-229, find the y coordinate of point A so that the 361-lb force will have clockwise moment of 400 ft-lb about O. Also determine the X and Y intercepts of the action line of the force.
Y
361 lb 2 3
XA = 2 ft A
YA
X O FIG. P-229.
Fx cos Fy sin
3 Fx 361 13 Fx 300.37lb iy
400 ft lb 300.37lb
2 Fy 361 13 Fy 200.25lb
M O FxYA Fy X A
400 ft lb 300.37lb YA 200.25lb 2 ft 300.37lb YA 400 ft lb 400.50 ft lb YA
800.50 ft lb 300.37lb
YA 2.67 ft
M O Fx i y
iy
iy
MO Fx
400 ft lb 300.37lb
ix
MO Fy
ix
400 ft lb 200.25lb
ix 2 ft (left of O)
i y 1.33 ft (above O)
M O Fy ix
230. For the truss shown in Fig. P-230, compute the perpendicular distance from E and from G to the line BD. Hint: Imagine force F directed along BD and compute its moment in terms of its components about E and about G. Then equate these results to the definition of moment M = Fd to compute the required perpendicular distances.
F D B 16’
16’
18’
12’
12’
A 12’
C
12’
E
4 12
G
12’
Fx Fy F 12 4 160 Fx F 12 160 Fx
About E
M
E
M
E
M
E
Fd F 16
12 F 16 Fd 160
15.18 ft d
About G
12’
F
D
B
12’
12 F 160
M
G
Fd
M
G
F 20
M
G
12 F 20 Fd 160
18.97 ft d
12’
Y
A 3’ X O
6’
B
FIG. P-231, P-232, and P-233.
231. A force P passing through points A and B in Fig. P-231 has a clockwise moment of 300 ft-lb about O. Compute the value of P. Y
A 3’ X O
M O Px d
300 ft lb Px 3 ft Px
300 ft lb 3 ft
6’
B
P
300 ft lb Py 6 ft Py
300 ft lb 6 ft
Py 50lb
Px 100lb M O Py d
P Py 2 Px 2
P
50lb 100lb 2
2
P 111.8lb tan
50lb 100lb
tan 1
Py
26.57
Px
232. In Fig. 231, the moment of a certain force F is 180 ft-lb clockwise about O and 90 ft-lb counterclockwise about B. If its moment about A is zero, determine the force.
Y
A 3’ X O
6’
B
F
90 60 3 Fy 6
M O Fx d
180 Fx 3
270 Fy 6
180 Fx 3
45lb Fy
60lb Fx
M A Fx y Fy x 45lb 60lb
F Fy 2 Fx 2
F
45 60 2
F 75lb tan
Fy Fx
tan 1 2
36.87
233. In Fig. P-231, a force P intersects the X axis at 4 ft to the right of O. If its moment about A is 170 ft-lb counterclockwise and its moment about B is 40 ft-lb clockwise, determine its y intercept. Y
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.