Mohr-Coulomb model and soil stiffness
Short Description
Mohr-Coulomb model and soil stiffness...
Description
Mohr-Coulomb model
The Mohr-Coulomb model Dennis Waterman Plaxis bv
Mohr-Coulomb model and soil stiffness Objectives: •
To indicate features of soil behaviour
•
To formulate Hooke’s law of isotropic linear elasticity
•
To formulate the Mohr-Coulomb criterion in a plasticity framework
•
To identify the parameters in the LEPP Mohr-Coulomb model
•
To indicate the possibilities and limitations of the MC model
CG1 - Santiago, Chile - Octubre de 2012
1
Mohr-Coulomb model
Features of soil behaviour •
Elasticity (reversible deformation; limited)
> stiffness
•
Plasticity (irreversible deformation)
> stiffness, strength
•
Failure (ultimate limit state or critical state)
> strength
•
Presence and role of pore water
•
Undrained behaviour and consolidation
•
Stress dependency of stiffness
•
Strain dependency stiffness
•
Time dependent behaviour (creep, relaxation)
•
Compaction en dilatancy
•
Memory of pre-consolidation pressure
•
Anisotropy (directional strength and/or stiffness)
σ yy σ yz σ zy
Concepts of soil modelling
σ zz
σ zx
σ yx σ xy σ xz
σ xx
•
Relationship between stresses (stress rates) and strains (strain rates)
•
Elasticity (reversible deformations) –
•
dσ σ=f (dεε,σ σ,h)
Plasticity (irreversible deformations) –
•
dσ σ=f (dεε)
Example: Hooke’s law
Perfect plasticity, strain hardening, strain softening
–
Yielding, yield function, plastic potential, hardening/softening rule
–
Example: Mohr-Coulomb yielding
Time dependent behaviour (time dependent deformations) –
Biot’s (coupled) consolidation
–
Creep, stress relaxation
–
Visco elasticity, visco plasticity
CG1 - Santiago, Chile - Octubre de 2012
dσ σ=f (dεε,σ σ,t)
2
Mohr-Coulomb model
Types of stress-strain behaviour σ
Linear-elastic
Non-linear elastic
σ
ε
σ
Elastoplastic
ε
Lin. elast. perfectly-plast.
ε
EP strain-hardening
σ
σ
EP strain-softening
σ
ε
ε
ε
Stress definitions • •
In general, soil cannot sustain tension, only compression PLAXIS adopts the general mechanics definition of stress and strain: Tension/extension is positive; Pressure/compression is negative
σyy σxx
σxx σyy
• •
σyy σxx
σxx σyy
In general, soil deformation is based on stress changes in the grain skeleton (effective stresses) According to Terzaghi’s principle: σ’ = σ - pw
CG1 - Santiago, Chile - Octubre de 2012
3
Mohr-Coulomb model
Elasticity: Hooke’s law 1 − ν σ xx ν σ yy ν σ zz E σ = (1 + ν )(1 − 2 ν ) 0 xy 0 σ yz σ zx 0
Inverse: ε xx ε yy ε zz 1 γ = E xy γ yz γ zx
1 − ν − ν 0 0 0
ν 1−ν
ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 −ν 0 0
1 2
−ν 1 −ν
−ν −ν 1
0 0 0
0 0 0
0 0 0
0 0 0
2 + 2ν 0 0
0 2 + 2ν 0
1 2
0 0 2 + 2ν 0 0 0
0 0 0 0 −ν 0
1 2
0 0 0 0 0 −ν
ε xx ε yy ε zz γ xy γ yz γ zx
σ xx σ yy σ zz σ xy σ yz σ zx
Elasticity: Hooke’s law In principal stress / strain components:
ν ν σ 1 1 −ν E σ = ν 1 −ν ν 2 (1 + ν )(1 − 2ν ) σ 3 ν ν 1 −ν
ε1 ε 2 ε 3
In isotropic and deviatoric stress / strain components:
p K q = 0
0 ε v 3G ε s
CG1 - Santiago, Chile - Octubre de 2012
(σ 1 + σ 2 + σ 3 )
p=
1 3
q=
1 (σ 1 − σ 2 ) 2 + (σ 2 − σ 3 ) 2 + (σ 3 − σ 1 ) 2 2
4
Mohr-Coulomb model
Model parameters in Hooke’s law: dσ1 Two parameters:
- dε1 ⇓
- Young’s modulus E - Poisson’s ratio ν
dε3 ⇐
- σ1 Meaning (axial compr.):
E
dσ 1 d ε1
E = ν=−
1 ν
dε3 dε1
- ε1 1
ε3
Alternative parameters in Hooke’s law: Shear modulus:
G =
d σ xy dγ
xy
=
⇒ dγxy
E 2 (1 + ν )
Bulk modulus:
dp
dp E K= = dε v 3(1 − 2ν ) Oedometer modulus:
Eoed
E (1 − ν ) dσ = 1= dε1 (1 + ν )(1 − 2ν )
CG1 - Santiago, Chile - Octubre de 2012
dσxy
dεv - dσ1 ⇓ - dε1
5
Mohr-Coulomb model
Hooke’s law for effective stress rates The modeling of non-linear soil behaviour requires a relationship between effective stress rates (dσ’ ) and strain rates (dε)
ν' 1 −ν ' ν ' dσ 'xx ν ' 1 −ν ' ν ' dσ ' yy ν' dσ 'zz ν ' 1 −ν ' E' = 0 0 dσ 'xy (1 +ν ')(1 − 2ν ') 0 0 dσ ' yz 0 0 0 0 dσ 'zx 0 Symbolic:
dσ ' = D d ε
0
1 2
0
0
0
0
−ν ' 0 0
0 1 2
−ν ' 0
( )
dε = D
⇔
e
0
0 0 0 0 0 1 −ν ' 2
e −1
d ε xx dε yy d ε zz d γ xy d γ yz d γ zx
dσ '
Plasticity Basic principle of elasto-plasticity:
ε ij = ε ije + ε ijp dε ij = dε ije + dε ijp
(total strains) (strain rates)
Elastic strains: Hooke’s law Plastic strains: 3 questions 1. Does plasticity occur? 2. If so, in what direction? 3. How much plasticity?
CG1 - Santiago, Chile - Octubre de 2012
-> yield function -> potential function -> magnitude dλ
6
Mohr-Coulomb model
Plasticity – does plasticity occur? Determination based on yield function f = f (σ’,ε) • • •
If f < 0 If f = 0 and df < 0 If f = 0 and df = 0
Pure elastic behaviour Unloading from plastic state (= elastic behaviour) Elastoplastic behaviour
Plasticity – does plasticity occur? Yield function f is (a.o.) a function of the stress state → f=0 can be represented as a border in the stress space (yield contour) Within the yield contour: On the yield contour: Outside the yield contour:
f0
(impossible stress state)
f=0 Condition: Yield contour must be convex
f0
CG1 - Santiago, Chile - Octubre de 2012
7
Mohr-Coulomb model
Plasticity – in what direction? Determination based on potential function g = g (σ’,ε) The direction of plastic strain is determined by the vector Perpendicular to the plastic potential function Metals (a.o): Soils:
f = g (associated flow) f ≠ g (non-associated flow)
q,εs
q,εs
g f=g
f p,εv
p,εv
Plasticity – how much? Determination based on magnitude scalar dλ λ The magnitude of plastic strain can be found with the so-called consistency condition, stating that for plasticity the stress state should remain on the yield surface:
df =
∂f ∂f dσ + dε = 0 ∂σ ∂ε
CG1 - Santiago, Chile - Octubre de 2012
8
Mohr-Coulomb model
Plasticity Basic principle of elasto-plasticity:
ε ij = ε ije + ε ijp dε ij = dε ije + dε ijp
(total strains) (strain rates)
Elastic strain rates:
dε ije = (D e )ijkl dσ 'kl −1
Plastic strain rates:
dε ijp = dλ
∂g ∂σ 'ij
dλ = scalar; magnitude of plastic strains dg/dσ = vector; direction of plastic strains g = plastic potential function
The Mohr-Coulomb failure criterion Origin:
σ’n
F T
τ
T ≤ A + F tanϕ
Coulomb:
τ ≤ c’ - σ’n tanϕ’ τ
T ϕ
ϕ’
A
c’ F
CG1 - Santiago, Chile - Octubre de 2012
σ’n
9
Mohr-Coulomb model
The Mohr-Coulomb failure criterion σ’n In general:
τ σ’3 θ
σ’1 The condition τ ≤ c’ - σ’n tanϕ’ must hold for arbitrary angle θ
The Mohr-Coulomb failure criterion τ c cosϕ -s* sinϕ
MC criterion: t*≤ c cosϕ - s* sinϕ
t* ϕ c
-σ3
-σ1
-σn
-s*
CG1 - Santiago, Chile - Octubre de 2012
10
Mohr-Coulomb model
The Mohr-Coulomb failure criterion MC criterion:
t*≤c’ cosϕ’ - s* sinϕ’ t* = ½(σ’3 - σ’1) s* = ½(σ’3+σ’1)
1 2
(σ '3 −σ '1 ) ≤ c' cos ϕ ' − 12 (σ '3 +σ '1 )sin ϕ ' − σ '1 ≤
2c' cos ϕ ' 1 + sin ϕ ' − σ '3 1 − sin ϕ ' 1 − sin ϕ '
Note: Compression is negative and σ’1≤ σ’2≤ σ’3
Visualisation of the M-C failure criterion τ ϕ’ c’ σ’n -σ’1
a=
2c' cos ϕ ' 1 − sin ϕ '
b=
1 + sin ϕ ' 1 − sin ϕ '
b 1 a -σ’3
CG1 - Santiago, Chile - Octubre de 2012
11
Mohr-Coulomb model
Full Mohr-Coulomb criterion σ1
(σ '3 −σ '2 ) ≤ c' cos ϕ ' − 12 (σ '3 +σ '2 )sin ϕ ' 1 1 2 (σ '2 −σ '3 ) ≤ c ' cos ϕ ' − 2 (σ '2 +σ '3 ) sin ϕ ' 1 1 2 (σ '3 −σ '1 ) ≤ c ' cos ϕ ' − 2 (σ '3 +σ '1 ) sin ϕ ' 1 1 2 (σ '1 −σ '3 ) ≤ c ' cos ϕ ' − 2 (σ '1 +σ '3 ) sin ϕ ' 1 1 2 (σ '2 −σ '1 ) ≤ c ' cos ϕ ' − 2 (σ ' 2 +σ '1 ) sin ϕ ' 1 1 2 (σ '1 −σ '2 ) ≤ c ' cos ϕ ' − 2 (σ '1 +σ '2 ) sin ϕ ' 1 2
σ3
σ2
Reformulation into yield functions 1 2
(σ '3 −σ '1 ) ≤ c' cos ϕ ' − 12 (σ '3 +σ '1 )sin ϕ '
f 2b = 12 (σ '3 −σ '1 ) + 12 (σ '3 +σ '1 )sin ϕ '−c' cos ϕ '
CG1 - Santiago, Chile - Octubre de 2012
12
Mohr-Coulomb model
Reformulation into yield functions f1a = 12 (σ '3 −σ '2 ) + 12 (σ '3 +σ '2 ) sin ϕ '−c' cos ϕ '
σ1
f1b = 12 (σ '2 −σ '3 ) + 12 (σ '2 +σ '3 ) sin ϕ '−c' cos ϕ '
f 2 a = 12 (σ '1 −σ '3 ) + 12 (σ '1 +σ '3 )sin ϕ '−c' cos ϕ ' f 2b = 12 (σ '3 −σ '1 ) + 12 (σ '3 +σ '1 )sin ϕ '−c' cos ϕ '
σ2
σ3
f 3a = 12 (σ '2 −σ '1 ) + 12 (σ '2 +σ '1 )sin ϕ '−c' cos ϕ ' f 3b = 12 (σ '1 −σ '2 ) + 12 (σ '1 +σ '2 )sin ϕ '−c' cos ϕ '
Parameters: Effective cohesion (c’) and effective friction angle (ϕ’)
Plastic potentials of the M-C model g1a = 12 (σ '3 −σ '2 ) + 12 (σ '3 +σ '2 ) sinψ − c' cosψ g1b = 12 (σ '2 −σ '3 ) + 12 (σ '2 +σ '3 ) sinψ − c' cosψ
g 2 a = 12 (σ '1 −σ '3 ) + 12 (σ '1 +σ '3 ) sinψ − c' cosψ g 2b = 12 (σ '3 −σ '1 ) + 12 (σ '3 +σ '1 ) sinψ − c' cosψ
g 3a = 12 (σ '2 −σ '1 ) + 12 (σ '2 +σ '1 )sinψ − c' cosψ g 3b = 12 (σ '1 −σ '2 ) + 12 (σ '1 +σ '2 ) sinψ − c' cosψ Dilatancy angle ψ instead of friction angle ϕ Motivation based on simple shear test
CG1 - Santiago, Chile - Octubre de 2012
13
Mohr-Coulomb model
Failure in a simple shear test: dε yy dγ xy
=
dε yyp dγ xyp
= tanψ
σxy
γxy εyy
ψ
dilatancy
γxy
The LEPP Mohr-Coulomb model Linear-elastic perfectly-plastic stress-strain relationship - Elasticity: - Plasticity:
Hooke’s law Mohr-Coulomb failure criterion
The LEPP model with Mohr-Coulomb failure contour is in PLAXIS called the Mohr-Coulomb model For this model: Plasticity = Failure This does NOT apply to all models!!!
CG1 - Santiago, Chile - Octubre de 2012
14
Mohr-Coulomb model
The LEPP Mohr-Coulomb model Model parameters: -
Young’s modulus (stiffness) Poisson’s ratio Cohesion Friction angle Dilatancy angle
E ν
c
ϕ ψ
Model parameters must be determined such that real soil behaviour is approximated in the best possible way
Parameter determination Parameter determination from: •
Laboratory tests (triaxial test (CD, CU), oedometer test or CRS, simple shear test, …)
•
Field tests (SPT, CPT, pressure meter (Menard, CPM, SBP), dilatometer, …)
•
Correlations with qc , PI , RD and other index parameters
•
Rules-of-thumb, norms, charts, tables
•
Engineering judgement
CG1 - Santiago, Chile - Octubre de 2012
15
Mohr-Coulomb model
MC approximation of a CD triax. test σ1-σ3
σ’3 = confining pressure
E ’50
2c 'cos φ '− 2σ '3 sin φ ' 1 − sin φ '
-ε1
εv 2 sinψ 1 − sinψ
-ε1
1-2ν’
MC approximation of a compression test -σ1
Eoed -ε1
Eoed =
(1 +ν )(1 − 2ν ) E (1 −ν )
CG1 - Santiago, Chile - Octubre de 2012
16
Mohr-Coulomb model
Possibilities and limitations of the LEPP MohrCoulomb model Possibilities and advantages – – – – – –
Simple and clear model First order approach of soil behaviour in general Suitable for many practical applications Limited number and clear parameters Good representation of failure behaviour (drained) Dilatancy can be included
σ1
σ2
σ3
Possibilities and limitations of the LEPP Mohr-Coulomb model Limitations and disadvantages – – – – – – –
Isotropic and homogeneous behaviour Until failure linear elastic behaviour No stress/stress-path/strain-dependent stiffness No distinction between primary loading and unloading or reloading Dilatancy continues for ever (no critical state) Be careful with undrained behaviour No time-dependency (creep)
σ1
σ2
CG1 - Santiago, Chile - Octubre de 2012
σ3
17
View more...
Comments