Modul 4 Tempat Kedudukan Akar
July 9, 2019 | Author: Izdyad Fathin | Category: N/A
Short Description
Modul 4...
Description
Tujuan Instruksional Umum (TIU) Setelah mengikuti mata kuliah ini mahasiswa dapat : 1. Menentukan tempat kedudukan akar dari sebuah sistem kendali. 2. Melakukan analisis dengan menggunakan methoda TKA
Tujuan Instruksional Khusus (TIK) Setelah mengikuti mata kuliah ini mahasiswa dapat 1. Mengtahui cara menggambar TKA baik secara manual maupun dengan program/sofware 2. Menentukan batas akhir gain yang diperkenankan agar sistem tetap dalam keadaan stabil. 3. Membaca gambar TKA untuk memperoleh informasi tentang performasi sistem
Pendahuluan Karakteristik
dasar respon transien suatu sistem lup tertutup ditentukan oleh lup-lup tertutup.
Teknik
klasik dgn penguraian polinomial atas faktor2nya sulit dilakukan (terutama u/ n>3)
Solusi Methoda MTKA adalah
tempat kedudukan akar (MTKA).
: suatu methoda grafis sederhana untuk menentukan akar-akar dengan menggambar pada bidang kompleks semua harga parameter sistem (penguatan, K untuk harga K dari 0 s/d tak hingga)
MTKA
Ide dasar harga s yang membuat fungsi alih lup terbuka = -1 harus memenuhi persamaan karakteriktik sistem
MTKA berguna krn dapat dap at menunjukkan cara memodifukasi pole dan zero lup terbuka sehingga respon memenuhi spesifikasi performasi sistem
Variasi pole-pole sistem lup tertutup (1)
Fungsi alih lup tertutup : C ( s) R( s )
G ( s) 1 K . B( s) / A( s )
Persamaan karakteristik 1 + K .G( s) H ( s) = 0 atau G( s) H ( s) = -1
Variasi pole-pole sistem lup tertutup (2) Fungsi alih lup terbuka G( s) H ( s) bisa dinyatakan dgn : G( s) H ( s)
dimana
K (b0 s m b1 s m1 .... bm1 s bm a0 s a1 s n
n 1
.... an1 s an
B( s) A( s)
B( s) dan A( s) polinom variabel kompleks m 0 :
Titik-titik TKA terletak disebelah kiri jumlah GANJIL dari banyaknya kutub dan nol Untuk
K 0
4.
Menentukan titik pisah
Titik pisah adalah sebuah titik pada sumbu nyata dimana dua cabang atau lebih TKA keluar dari sumbu nyata atau tiba disumbu nyata
Titik pisah σ b ditentukan sbb :
n
1
i 1
( b pi )
m
1
i 1
( b z i )
Contoh Tentukan titik pisah dari G ( s) H ( s)
Jawab :
n
1
i 1
( b pi )
1 ( b 0)
K s( s 1)( s 2)
0
1 ( b 1)
1 ( b 2)
0
( b 1)( b 2) b ( b 2) b ( b 1) 0 3 b2 6 b 2 0 b 0.423,1.577
Untuk K > 0 ada cabang-cabang TKA antara 0 dan -1 dan antara - dan -2. Karena itu akar di -0.423 merupakan titik pisah = 1,577 adalah titimpisah untuk K < 0
5. Menentukan sudut keluar dan sudut masuk
# SUDUT KELUAR Sudut keluar suatu TKA dari sebuah pole kompleks adalah :
180 G ( s ) H ( s )' dimana : G( s) H (s)' sudut phase dari G(s)H(s) yang dihitung
dari pole kompleks tersebut.
Contoh :
Selidiki sebuah sistem yang mempunyai fugsi alih lup terbuka : K ( s 2) G ( s) H ( s ) , K 0 ( s 1 j )( s 1 J )
Sudut G(s)H(s) untuk s = -1+j1 dengan mengabaikan sumbangan pole di s = -1 + j tersebut adalah -45. maka sudut keluarnya adalah :
180 (45 ) 135
# SUDUT MASUK Sudut masuk u/ TKA ke sebuah zero kompleks adalah :
A 180 G ( s) H ( s)' ' dimana
G( s) H ( s)' '
adalah sudut phase dari G(s)H(s) yang dihitung di zero kompleks tsb dengan mengabaikan efek dari nol itu
Contoh :
Selidiki fungsi alih lup terbuka : G ( s) H ( s)
K ( s 2) ( s 1 j )( s 1 J )
, K 0
Sudut masuk untuk TKA ke zero kompleks di s = j adalah :
A 180 (45 ) 225
a). Sudut keluar
b). Sudut masuk
Prosedur umum tempat kedudukan akar (TKA) Tentukan
persamaan karakteristik Tentukan titik awal dan titik akhir dari TKA dan tentukan juga banyaknya cabang TKA. Tentukan bagian-bagian TKA pada sumbu nyata. Hitung pusat dan sudut-sudut asimtot dan gambar asimtot pada gambar TKA Tentukan titik ‘luncur’ dan ‘mulai’ Tentukan
sudut keluar dan sudut masuk di pole-pole kompleks dan zero kompleks (jika ada) dan berikan tandanya) Tentukan titk potong TKA dengan sumbu imajiner Buat sketsa dari cabang-cabang TKA sedemikian hingga TKA tsb berakhir di sebuah zero atau mendekati tak hingga disepanjang salah satu asimtot tsb.
#Contoh :
Tentukan TKA untuk semua harga K dari sistem lup tertutup yang mempunyai fungsi alih lup terbuka sbb :
G ( s) H ( s )
K s ( s 2)( s 4)
Penyelesaian
# Dari penyebut fungsi alih dapat diketahui kutub-kutub pada titik 0, -2 dan -4
# Untuk K > 0, TKA terletak diantara 0 dan -2 dan diantara -4 dan – tak hingga pada sumbu nyata
# Pusat asimtot = -(2+4)/3 = -2, banyaknya asimtot n-m = 3, Sudut asimtot = 60, 180, 300.
# Karena dua cabang TKA datang bersama-sama di sumbu nyata antara 0 dan -2, ada sebuah titik pisah diantara 0 dan -2.
Jadi TKA dapat dilukiskan dengan memperkirakan titik pisah dan melanjutkan cabang-cabang ke asimtotnya.
# Titik pisah, 1
n
i 1
( b pi )
1 ( b 0)
0
1 ( b 1)
1 ( b 2)
2 b
3 12 b 8 0 b 0.845, dan 3.155
0
# TKA untuk K > 0
# TKA K < 0 disusun dengan cara yang hampir sama, dimana bagian-bagian sumbu nyata antara 0 dan tak hingga dan antara -2 dan -4.
# Titik pisah di - 3,155
# Sudut asismtot 0, 120 dan 240
# TKA untuk K < 0
PENEMPATAN AKAR r
u
e
K
H ( s)
y
Kutub dari sistem kalang tertutup adalah nilai dari s yaitu 1 + KH(s) = 0. H(s) = b(s)/a(s), maka persamaan ini mempunyai bentuk: a(s) + Kb(s) = 0 (a(s)/K) + b(s) = 0 Aturan menggambar penempatan akar
Evans (setelah Walter R. Evans memperkenalkannya untuk pertama kali pada tahun 1948),
MENGGAMBAR DIAGRAM PENEMPATAN AKAR DENGAN MATLAB H ( s)
Y ( s) U ( s)
s 7 s( s 5)( s 15)( s 20)
num=[1 7]; den=conv(conv([1 0],[1 5]),conv([1 15],[1 20])); rlocus(num,den) axis([-22 3 -15 15]) zeta=0.7;Wn=1.8;sgrid(zeta, Wn) grid on 15 15
10
letak kutub agar sist em sesuai dengan kriter ia yang diinginkan
10
5 5
s i x A g 0 a m I
s i x A g 0 a m I
-5
-5
-10 -10
-15 -20
-15 -20
-15
-10 Real Axis
-5
0
-15
-10 Real Axis
-5
0
View more...
Comments