Modelo Matematico
August 6, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Modelo Matematico...
Description
IMUBXBEIE 9> OJEF@J] OIUFOÉUBMJ] 9. Vdi foprfsi foprfsi hiarbmi ejs tb tbpjs pjs ef prjeumt prjeumtjs, js, I y A. @i mipimbeie mipimbeie ef prjeummbýd prjeummbýd oéxboi oéxboi sf fstboi fd 277 ef I j ef 677 ef A. @i efoidei ebirbi fs ef 877 ef I y ef 867 ef A. @i utb`beie pjr tjdf`iei ef I fs ef 57 udbeiefs ojdftirbis y ef 67 udbeiefs ojdftirbis piri A. Eftfrobdf `i mjoabdimbýd ýptboi ef prjeummbýd, ebli f` tbpj ef sj`umbýd y fstia`fzmi f` oïdboj y oéxboj ef prjeummbýd ef I y A quf prjeuzmid `i oïdboi y oéxboi utb`beie. Efhbdbmbýd ef virbia`fs> x 9?Midtbei Midtbeie e ef prjeumtjs prjeumtjs I x 1?Mid Midtbei tbeie e ef prjeumtj prjeumtjss A
Hudmbýd Janftbvj>
Qfstrbmmbjdfs>
^ Oéx ? OixbobzirVtb`beie
Efoidei x 9 > x 9 ≦ 877
^ Oéx ?57 x 9+ 67 x 1
Efoidei x 1 > x 1 ≦ 867 Mipim Mip im . Wm Wmmm x9 > x 9 ≥ 277 Mipim.Wmm x1 > x 1 ≥ 677
I` bdtrjeumbr `js eitjs fd f` \bdqsa y rfsj`vfr`j, sf jatbfdfd `js sblubfdtfs vi`jrfs, `j mui` qubfrf efmbr quf dj fxbstf udi sj`umbýd himtba`f piri jptbobzir `i utb`beie ef `i héarbmi efabej i quf `i mipimbeie ef prjeummbýd ef` prjeumtj A fs ofdjr quf `i efoidei. Wjr `j quf sf ebrïi quf f` oïdboj ef prjeummbýd fs x 9?7 y x 1?7, fdtjdmfs, Vtb`beie ? 7.
]b sf prftfde prftfdeff mi`mu` mi`mu`ir ir `i oéxboi utb`beie, utb`beie, fdtjdm fdtjdmfs, fs, x 1?7 yi quf dj i`midzi `i mipimbeie ef prjeummbý prjeummbýdd mjd rfspf rfspfmtj mtj i `i efoid efoidei ei y sf rffop`izi rffop`izi x 9?277 quf fs `i mipimbeie oéxboi ef prjeummbýd ef `js prjeumtjs I. ]bfdej isï `i ^ Oéx > 57 x 9 +67 x1 ?=8.777.
1.Vd Aidmj ef `i mbueie jtjrli fd prâstiojs ef `barf bdvfrsbýd y fd Cbpjtfmirbjs mjoj oéxboj =77.777 eý`irfs euridtf f` iùj 1717. F` Aidmj Mjari 93% pjr prâstiojs ef `barf bdvfrsbýd y ef 19% prâstiojs Cbpjtfmirbjs. Ioajs tbpjs ef prâstiojs sf `bqubeid i` hbdi` ef miei pfrbjej idui`. @i fxpfrbfdmbi oufstri quf i`rfefejr i`rfefejr ef` 5% ef `js prâstioj prâstiojss ef `barf bdvfrsbýd y f` 6% ef `js prâstiojs cbpjtfmirbjs dudmi sf `bqubeid. Wjr `j mjoþd, f` aidmj isbldi muidej ofdjs f` eja`f ef `js prâstiojs ef `barf bdvfrsbýd i `js prâstiojs piri f` sfmtjr cbpjtfmirbj. p`idtfir f` prja`foi y rfsj`vfr`j. rfs j`vfr`j. Efhbdbmbýd ef virbia`fs> Midtbeie eie ef eý`irfs eý`irfs fd prâstiojsef prâstiojsef `barf `barf bdvfrsbýd bdvfrsbýd x 9? Midtb x 1?Midtb Midtbeie eie ef eý`irfs eý`irfs fd prâstioj prâstiojss cbpjtfmirbjs cbpjtfmirbjs
Hudmbýd Janftbvj>
Qfstrbmmbjdfs>
^ Oéx ? Oixbobzi Oixbobzirr Vtb`beie
Mipimbeie > x 9 + x 1 ≥ =77.777
^ Oéx ?7,93∜7,28 x9 + 7,19 º 7,26 x 1
Wj`ïtbmi Aidmj > 1 x 9∑ x 1 ≦ 7
^ Oéx ?7,9 7,9< < 13 x9 + 7,9 7,92 2 26 x 1
Bdtrjeummbýd ef eitjs fd f` prjlrioi \bdqsa>
I` rfsj`vfr f` prja`foi sf jatbfdfd `js sblubfdtfs eitjs>
@i Hudm Hudmbýd býd Janft Janftbvj bvj quf fs oix oixbob bobzir zir `i utb`be utb`beie ie ef` aidmj, rfspjdef rfspjdef i` sbl sblubf ubfdtf dtf rfsu`tiej> ^ Oéx >7,9
^ Oéx ? Oixbobzi Oixbobzirr Vtb`beie
Mipimbei Mipi mbeie e x 9 > x9 ≥ 667
^ Oéx ?67 x9 + x 1 ≥ =67 Oitfrbi prboi > 97 x9 + 91 x1 ≥ 8.777
Bdtrjeummbýd ef eitjs fd f` prjlrioi \bdqsa>
I` rfsj`vfr f` prja`foi sf mi`mu`i quf `i hudmbýd janftbvj fs> ^ Oéx > 67 x 9+ s> x 9 937 y x 1 =67, `j quf qubfrf efmbr quf `i foprfsi efaf hiarbmir 937 mb`bderjs tbpj 9 , =67 mb`bderjs tbpj 1 y utb`beie ef ==.677 eý`irfs. @js prfmbjs sjoari piri x 9 > Ef 7 i 63,== y x 1 > Ef 87 i ∔, `j quf sbldbhbmi quf fd fstf ridlj ef vi`jrfs dj sf ihfmti `i hudmbýd janftbvj prbdmbpi` fd muidtj i su vi`jr ýptboj. I mjdtbduimbýd sf oufstri `i lréhbmi ef `js p`idjs sj`umbýd ef` prja`foi, efsirrj``iej fd \bdqsa.
5. @i foprfs foprfsii Irtfmt Irtfmtjj utb` utb`bzi bzi i 8 pfrsjd pfrsjdis is mjd mipim mipimbeie beie oid oiduhimtur uhimturfri fri euridtf 91 91 eïis piri fdsioa`ir ejs tbpjs ef oufa`fs I y A. ]f fop`fid = cjris piri prjeumbr I y 27 obdutjs piri prjeumbr A. Wjr `j lfdfri`, `js m`bfdtfs mjoprid fdtrf 5 y 8 oufa`fs ef A mjd ud oufa`f ef I. @is utb`beiefs sj ef 977 y 37 eý`irfs rfspfmtbviofdtf. @i mjopiùïi ebirbiofdtf jpfri euridtf 3 cjris. W`idtfir, rfsj`vfr, idi`bzir prfmbjs sjoari y cisti muidtj mjoj oéxboj ef utb`beie sf pufef ``flir i bop`fofdtir miei oufa`f piri jatfdfr `is oiyjrfs lididmbis. Efhbdbmbýd ef virbia`fs>
Midtb tbeie eie ef moufa`f moufa`fss tb tbpj pj A Midtbe tbeie ie ef oufa`f oufa`fss tbpj tbpj I x 1?Mid x 9? Mid
Hudmbýd Janftbvj>
Qfstrbmmbjdfs>
^ Oéx ? Oixbobzi Oixbobzirr Vtb`beie
Ubfopj > = x 9+ 9,6 x 1 ≥ 6 x 9 ≦ 9 Efoidei obd x 1 > x 1 ≦ 5 Efoideiobd Efoideioix Efoidei oix x 1 > x 1 ≥ 8
Bdtrjeummbýd ef eitjs fd f` prjlrioi \bdqsa>
I` rfsj`vfr f` prja`foi sf mi`mu`i quf `i hudmbýd janftbvj fs> ^ Oéx > 67 x 9+ //www.yjutuaf.mjo/witmc: v?o7]wC`AQEbl
View more...
Comments