Model Pertumbuhan Logistik

June 5, 2018 | Author: Fito Tria | Category: N/A
Share Embed Donate


Short Description

Download Model Pertumbuhan Logistik...

Description

Model pertumbuhan logistik 

 x   Rx 1 -  dt  K  

dx

Penyelesaian dengan persamaan diferensial peubah terpisah:

dx   Rdt    x   x  1 -    K   Menggunakan pecahan parsial:

1  P Q   x 1   x  x 1   x  K   K 









  P 1   x K   Qx  1   P  P  x K   Qx  1   P   1 dan 

 P 



 K  Q

Q0

1

 K 

Sehingga diperoleh:

1 1     K   dx  Rdt     x 1   x    K   1 1   K   dx  Rdt         x 1   x   K    1  K  dx  Rdt   dx    x 1   x  K 



1





1  K  dx : untuk   x 1  K 



misal: u

 1 x

du   1 dx  K  sehingga  dx   K 



 K 

1 1  K    K  du  du u u



  ln u  C 2   ln 1  x K   C 2 

 ln  x



ln  x



ln

ln





e



C1  

 ln

 x 1   x

 x 1 x  K 



1   x



1   x

 ln

 K 



 K 

Rt  C 

 Rt  C 

 K 



 Rt  C 

e

 x *  Rt  C e 1   x  K 



  x  C *e Rt  1   x



 K 

  x  C *e Rt   x K C *e Rt    x   x K C *e Rt  C *e Rt 





*

  x 1  C   K e Rt  C *e Rt   x 

C *e Rt * 1  C 

  Rt 

 K 

e

e  Rt  e

 Rt 

 



C2





Rt  C 3

  x  t  

  x  t  

 K 

C * e

*  C 

 Rt 

  K 

 K 

C * C *

 K   K 

C *

e

 Rt 

1

Sehingga penyelesaian umumnya adalah:

 x  t  

 K   K 

e  1  Rt 

C *

Syarat awal:  x  0  x0

 x  0  x0  K   K 

 K 

e 1 C * 0

*





 K 

 K   K   1  x0

x0

  x0

1

 C *

Sehingga didapat penyelesaian khususnya,

 x(t ) 

 K   K 

 K   1   x   0 



e Rt   1

 K 

  K    Rt    1 e  1   x0 

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF