mms9 workbook 08 unit8

October 12, 2017 | Author: api-265180883 | Category: Circle, Angle, Triangle, Perpendicular, Euclidean Plane Geometry
Share Embed Donate


Short Description

Download mms9 workbook 08 unit8...

Description

MMS9_Prep book_Unit8.1.qxp

7/7/09

11:05 AM

Page 317

UNIT

8

Circle Geometry

What You’ll Learn How to • Solve problems involving tangents to a circle • Solve problems involving chords of a circle • Solve problems involving the measures of angles in a circle

Why Is It Important? Circle properties are used by • artists, when they create designs and logos

Key Words radius (radii) right angle tangent point of tangency diameter right triangle isosceles triangle

chord perpendicular bisector central angle inscribed angle arc subtended semicircle

317

MMS9_Prep book_Unit8.1.qxp

7/7/09

11:05 AM

Page 318

8.1 Skill Builder Solving for Unknown Measures in Triangles Here are 2 ways to find unknown measures in triangles. Angle Sum Property Pythagorean Theorem In any triangle: In any right 䉭PQR:

P

q



r

c° a°

R

a°  b°  c°  180°

Q

p

q2  p2  r 2

Here is how to find the unknown measures in right 䉭PQR. In 䉭PQR, the angles add up to 180°. To find x°, start at 180° and subtract the known measures. x°  180°  90°  60°  30°

P q R

7 cm

60°



8 cm

Q

By the Pythagorean Theorem: QR2  PR2  PQ2 82  q2  72 So: q2  82  72 Answer to the same degree of accuracy as the question uses.

q  冪 82  72 ⬟ 3.87 So, x° is 30° and q is about 4 cm.

Check 1. Find each unknown measure. a)

b)



3.0 cm 5.0 cm

x 60° 50°

x°  180°  ______  ______  ______ _

318

x2  ______  ______ x冪 ⬟



So, x is __________________.

MMS9_Prep book_Unit8.1.qxp

7/7/09

11:05 AM

Page 319

8.1 Properties of Tangents to a Circle FOCUS Use the relationship between tangents and radii to solve problems. A tangent touches a circle at exactly one point. Tangent Radius O

Point of tangency

Tangent-Radius Property B

A tangent to a circle is perpendicular to the radius drawn to the point of tangency. A So, OP ⬜ AB, ⬔OPA  90° and ⬔OPB  90°

Example 1

P

⬜ means “perpendicular to”.

O

Finding the Measure of an Angle in a Triangle

BP is tangent to the circle at P. O is the centre of the circle. Find the measure of x°.

P



B

50° O

Solution By the tangent-radius property: ⬔OPB  90° Since the sum of the angles in 䉭OPB is 180°: x°  180°  90°  50°  40° So, x° is 40°.

Check 1. Find the value of x°. ⬔_______  90° x°  180°  _____  _____  _____

O

65°



D

C

319

MMS9_Prep book_Unit8.1.qxp

7/7/09

Example 2

11:05 AM

Page 320

Using the Pythagorean Theorem in a Circle

MB is a tangent to the circle at B. O is the centre. Find the length of radius OB.

B r O 10 cm

Solution By the tangent-radius property: ⬔OBM  90° By the Pythagorean Theorem in right 䉭MOB: OM2  OB2  BM2 102  r 2  82 100  r 2  64 100  64  r 2 36  r 2 冪 36  r r6 Radius OB has length 6 cm.

Check 1. ST is a tangent to the circle at S. O is the centre. Find the length of radius OS. Answer to the nearest millimetre. S r

12 cm

O 16 cm

T

⬔OST  ______

By the tangent-radius property

OT2  ______  ______ ______  r 2  ______ ______  r 2  ______ ______  ______  r 2 ______  r 2 冪

r r ⬟ ______

OS is about ______ cm long.

320

By the Pythagorean Theorem

8 cm M

MMS9_Prep book_Unit8.1.qxp

7/7/09

11:05 AM

Page 321

Practice In each question, O is the centre of the circle. 1. From the diagram, identify: B C

J

A H

O E F D G

a) 3 radii

_______, _______, _______

b) 2 tangents

_______, _______

c) 2 points of tangency

_______, _______

d) 4 right angles

⬔_______, ⬔_______, ⬔_______, ⬔_______

2. What is the measure of each angle? a)

b)

B

Q

P

O

O

P

R

⬔OBP  _____

⬔PQO  _____

⬔PRO  _____

3. Find each value of x°. a)

b)

W



35°

O

T

T



O

25°

M

⬔OTW  ______ x°  180°  ______  ______  ______

____________________________ ____________________________  ______

321

MMS9_Prep book_Unit8.1.qxp

7/7/09

11:05 AM

Page 322

4. Find each value of x. Answer to the nearest tenth of a unit. a) x

C

O

10 km 12 km T

⬔OCT  90°

By the tangent-radius property By the Pythagorean Theorem in 䉭OCT

______  x 2  ______ ______  x 2  ______ ______  ______  x 2 _____  x 2 冪

x x ⬟ _____

So, OC is about _____ km. b)

c)

P 6 cm

4 cm O

x

O

Q

x

P

15 cm

15 cm M

⬔OPQ  ______, and:

x 2  ______  ______

x 2  ______  ______

x 2  ______  ______

x 2  ______  ______

x 2  ______

x 2  ______ x冪 x ⬟ ______ So, OQ is about ______ cm.

322

x冪 x ⬟ ______ So, OP is about ______ cm.

MMS9_Prep book_Unit8.2.qxp

7/7/09

11:08 AM

Page 323

8.2 Properties of Chords in a Circle FOCUS Use chords and related radii to solve problems. A chord of a circle joins 2 points on the circle. Radius

Chord O

Diameter

Chord Properties In any circle with centre O and chord AB: • If OC bisects AB, then OC ⬜ AB. • If OC ⬜ AB, then AC  CB. • The perpendicular bisector of AB goes through the centre O.

Example 1

A

C

B O

Finding the Measure of Angles in a Triangle

Find x°, y°, and z°.



O 30°

y° x°

B C

A

Solution OC bisects chord AB, so OC ⬜ AB Therefore, x°  90° By the angle sum property in 䉭OAC: y°  180°  90°  30°  60° Since radii are equal, OA  OB, and 䉭OAB is isosceles. ⬔OBA  ⬔OAB So, z°  30°



O 30°

y° x°

B C

A

In an isosceles triangle, 2 base angles are equal.

323

MMS9_Prep book_Unit8.2.qxp

7/7/09

11:08 AM

Page 324

Check 1. Find the values of x° and y°.

O y°

B x°

40°

C

A

_____ ⬜ _____

So, x°  _____

y°  _____  _____  _____

By the chord properties By the angle sum property

 _____ 2. Find the values of x°, y°, and z°. A

° C x

55°



O

z° B

_____ ⬜ _____

So, x°  _____

y°  _____  _____  _____  _____ Since OA  _____, 䉭_____ is isosceles and ⬔_____  ⬔_____ So, z°  _____

324

By the chord properties By the angle sum property

MMS9_Prep book_Unit8.2.qxp

7/7/09

Example 2

11:08 AM

Page 325

Using the Pythagorean Theorem in a Circle

O is the centre of the circle. Find the length of chord AB.

O 6 cm A

10 cm B

C

Solution

O 6 cm A

10 cm

C

102  62  BC2 100  36  BC2 100  36  BC2 64  BC2 BC  冪 64 8 So, BC  8 cm

B

By the Pythagorean Theorem in right 䉭OCB

Since OC ⬜ AB, OC bisects AB. By the chord properties So, AC  BC  8 cm The length of chord AB is: 2  8 cm  16 cm

325

MMS9_Prep book_Unit8.2.qxp

7/7/09

11:08 AM

Page 326

Check 1. Find the values of a and b.

O 5 cm E

b

G

13 cm F

a

By the Pythagorean Theorem in right 䉭OFG

_____  _____  a2 ___________________ ___________________ ___________________ ___________________ ___________________ So, a  _____ cm _____  _____

By the chord properties

So, b  _____ cm

Practice In each diagram, O is the centre of the circle. 1. Name all radii, chords, and diameters. a)

A

D

O

B

R

P

C

Radii: _________________________ Chords: _______________________ Diameters: ____________________

326

b)

T

O

S

Q

N

Radii: _________________________ Chords: _______________________ Diameters: ____________________

MMS9_Prep book_Unit8.2.qxp

7/7/09

11:08 AM

Page 327

2. On each diagram, mark line segments with equal lengths. Then find each value of a. a)

A

b)

a

M

P

3 cm

N

4 cm O

C

O

a B

AC  CB  ______ cm So, a  ______ cm

c)

MN  2  ______  2  ______ cm  ______ cm So, a  ______ d)

K

O 18 cm a

1.5 cm

O T

a S

M L

OL  12  ______  12  ______ cm

OS  ______  ______ cm So, a  _______

 ______ cm So, a  ______

327

MMS9_Prep book_Unit8.2.qxp

7/7/09

11:08 AM

Page 328

3. Find each value of x° and y°. a)

b)

O y° 45°

A

P

x° C

35°

O y° x°

B

Q

x°  ______

______  ______ 䉭OPQ is ________________

y°  180°  ______  ______

⬔______  ⬔______

 ______

So, x°  ______ y°  180°  ______  ______  ______

4. Find the length of chord BC. ______  ______  DB2

By the Pythagorean Theorem

______  ______  DB2

___________________ O

___________________ 15 cm

___________________

12 cm B D

C

___________________ So, DB  ______ cm ______  ______  ______ cm By the chord properties

So, chord BC has length: 2  ______ cm  ______ cm 1 AN  2  ______  12  ______ cm

5. Find ON.

By the chord properties

 ______ cm ______  ______  ON2 17 cm

______  ______  ON2

O

A

____________________

N 30 cm B

____________________ ____________________ ____________________ ____________________ So, ON is ______ cm.

328

By the Pythagorean Theorem

MMS9_Prep book_Check Point.qxp

7/7/09

11:04 AM

Page 329

Can you …

CHECKPOINT

• Solve problems using tangent properties? • Solve problems using chord properties?

8.1

In each diagram, O is the centre of the circle. Assume that lines that appear to be tangent are tangent. 1. Name the angles that measure 90°. a)

b)

G

M E

O

O M

N

2. Find the unknown angle measures. a)

b)

O

O

75° p° M





A

N

p° ⫽ ______

Tangent-radius property

q° ⫽ 180° ⫺ ______ ⫺ ______

Angle sum property

21°

q° ⫽ ______

B

_______ ⫽ 90° s° ⫽ ______ ⫺ ______ ⫺ ______ s° ⫽ ______

329

MMS9_Prep book_Check Point.qxp

7/7/09

11:04 AM

Page 330

3. Find the values of a and b to the nearest tenth. P

25 cm

a) Q

b)

20 cm

a

b

B

O

O 15 cm

20 cm

C

⬔OPQ ⫽ ______

⬔OBC ⫽ ______

By the tangent-radius property

OQ is _________________ of 䉭OPQ.

OB is _______ of 䉭OBC.

a2 ⫽ ______ ⫹ ______

______ ⫽ b2 ⫹ ______

_______________________

By the Pythagorean Theorem

_______________________

_______________________

_______________________

_______________________

_______________________

So, a ⬟ ______ cm

_______________________ So, b ⬟ ______ cm

8.2

4. Find the unknown measures. a)

b)

X

d M

b° O

L

6 cm

N

O

35°

Y

OX ⫽ ______

MN ⫽ 2 ⫻ ______

䉭OXY is ___________.

MN ⫽ ______ ⫻ ______ cm

So, b° ⫽ ______

⫽ ______ cm So, d ⫽ ______ cm

330

MMS9_Prep book_Check Point.qxp

7/7/09

11:04 AM

Page 331

5. Find each value of x°, y°, and z°. B z°



C

O



65°

x° ⫽ ______ By the chord properties y° ⫽ ______ ⫺ ______ ⫺ ______ By the angle sum property ⫽ ______ ______ ⫽ ______, so ______ is isosceles. ⬔______ ⫽ ⬔______ So, z° ⫽ ______

A

6. Find the length of OP.

O

10 cm Q P 16 cm

R

QP ⫽ 1 ⫻ QR ⫽

2 1 2

By the chord properties

⫻ ______ cm

⫽ ______ cm OQ2 ⫽ ______ ⫹ OP2

By the Pythagorean Theorem

______ ⫽ ______ ⫹ OP2 ____________________ ____________________ ____________________ ____________________ ⫽ ______ So, the length of OP is ______ cm.

331

MMS9_Prep book_Unit8.3.qxp

7/7/09

11:09 AM

Page 332

8.3 Properties of Angles in a Circle FOCUS Use inscribed angles and central angles to solve problems. Inscribed angle ∠ACB

C

In a circle: • A central angle has its vertex at the centre.

Central angle ∠AOB

O

• An inscribed angle has its vertex on the circle. Both angles in the diagram are subtended by arc AB.

B

A

Arc AB

Central Angle and Inscribed Angle Property The measure of a central angle is twice the measure of an inscribed angle subtended by the same arc. B x° O C 2x°

A

So, ⬔AOC  2⬔ABC, or ⬔ABC  1 ⬔AOC 2

Inscribed Angles Property Inscribed angles subtended by the same arc are equal. So, ⬔ACB  ⬔ADB  ⬔AEB

C x° D

E



B

O

x° A

332

MMS9_Prep book_Unit8.3.qxp

7/7/09

Example 1

11:09 AM

Page 333

Using Inscribed and Central Angles

Find the values of x° and y°. D y° C

22°

O x°

B

A

Solution D

y° C

22°

O x°

A

B

Central ⬔AOB and inscribed ⬔ACB are both subtended by arc AB. So, ⬔AOB  2⬔ACB x°  2  22°  44° ⬔ACB and ⬔ADB are inscribed angles subtended by the same arc AB. So, ⬔ADB  ⬔ACB y°  22°

333

MMS9_Prep book_Unit8.3.qxp

7/7/09

11:09 AM

Page 334

Check 1. Find each value of x°. a)

b)

C

c)

C

25°

D C



O

x° O

O



28°

62° B

A

B

B A

A

⬔AOB  2  ⬔ACB

⬔ACB  1  ________ 2

x°  2  ______

x°  2  ______

⬔ADB  ________

1

 ______

x°  ______

 ______

2. Find the values of x° and y°. a)

T

b)



C x°

P

D S

30°

O



O



70°

Q

B

⬔QOP  2  ⬔QSP

A

x°  2  ______

⬔ACB  1  ________ 2

x°  ______

x°  2  ______

⬔QTP  ________ y°  ______

1

x°  ______ ⬔ADB  ________ y°  ______

334

MMS9_Prep book_Unit8.3.qxp

7/7/09

11:09 AM

Page 335

Angles in a Semicircle Property Inscribed angles subtended by a semicircle are right angles. ⬔AFB  ⬔AGB  ⬔AHB  90°

H G F

B O

A

Example 2

Finding Angles in an Inscribed Triangle

Find x° and y °. N 40°

I

O



y° M

Solution ⬔MIN is an inscribed angle subtended by a semicircle. So, x°  90° By the angle sum property in 䉭MIN

y°  180°  90°  40°  50°

Check 1. Find the values of x° and y °. x°

60°

O

x°  ______ y °  180°  ______  ______ y °  ______



335

MMS9_Prep book_Unit8.3.qxp

7/7/09

11:09 AM

Page 336

Practice 1. Name the following from the diagram. C

a) the central angle subtended by arc CB: ⬔_______ b) the central angle and inscribed angle subtended by arc AD: ⬔_______ and ⬔_______

A

O

c) the inscribed angle subtended by a semicircle: ⬔_______ D

d) the right angle: ⬔_______ 2. In each circle, name a central angle and an inscribed angle subtended by the same arc. Shade the arc. a)

b)

C

Q

R

O A

O

P

B

Central angle: ⬔_______ Inscribed angle: ⬔_______

Central angle: ⬔_______ Inscribed angle: ⬔_______

3. Determine each indicated measure. a)

G

b)

F x°

O 84°

O



S

T

28°

R H

⬔TSR  1  ⬔_______

⬔GOF  2  ⬔GHF

2

x°  2  _______

x° 

 _______ E

O



F x° G

⬔DEG  _______

336

L

d)

72°

x°  _______

 _______

x°  _______

c) D

1 2

J O

K

x°  _______

B

MMS9_Prep book_Unit8.3.qxp

7/7/09

11:09 AM

Page 337

4. Determine each value of x° and y°. x°

a)

34° O y°

x°  _______ y°  _______ b) y° O 15°



x°  _______  _______  _______ y°  _______ 5. Find the value of x° and y°. B

⬔ACB  _______

x° O 25°

x°  180°  _______  _______ C



By the angle sum property

 _______ y°  _______  _______

A

 _______ 6. Find the value of x°, y °, and z °.

z° B

A

⬔AOB  2  _______



x°  2  _______  _______ In 䉭OAB, _______  _______

x° O

䉭OAB is ________________.

50° C

In 䉭OAB: y°  z ° y°  y°  _______  _______

By the angle sum property

2y°  _______ y° 

2

So, y°  _______ and z°  _______

337

MMS9_Prep book_UnitBM.qxp

7/7/09

11:12 AM

Page 338

Unit 8 Puzzle Circle Geometry Word Search

R

E

S

E

M

I

C

I

R

C

L

E

E

K

P

A

L

C

T

S

E

S

Y

E

C

P

L

N

O

S

L

A

I

N

F

Y

E

O

H

L

G

O

I

M

U

U

U

R

E

E

R

B

O

S

N

G

N

F

M

B

C

Q

C

G

T

R

R

I

A

C

T

N

P

C

T

I

E

L

N

A

D

E

L

S

O

E

E

A

K

E

D

S

E

A

C

V

A

F

F

E

D

L

L

T

N

N

C

E

T

C

R

E

T

M

I

C

S

E

Z

D

E

L

C

E

T

E

A

L

A

U

T

T

I

S

E

P

L

A

N

R

N

Z

M

D

V

C

U

J

E

D

R

K

E

C

G

G

E

E

G

P

U

R

B

M M

E

C

R

E

Z

T

E

E

L

G

N

A

I

R

T

P

A

N

M

E

R

A

D

I

U

S

O

I

C

G

H

C

Q

R

T

N

I

O

P

F

R

B

G

R

Q

Y

E

L

G

N

A

D

E

B

I

R

C

S

N

I

Find these words in the puzzle above. You can move in any direction to find the entire word. A letter may be used in more than one word. degrees

radius

perpendicular

centre

inscribed angle

bisect

diameter

central angle

circle

tangent

chord

triangle

circumference

point

angle

arc

isosceles

equal

point of tangency

semicircle

subtended

338

MMS9_Prep book_UnitBM.qxp

7/7/09

11:12 AM

Page 339

Unit 8 Study Guide Skill

Description

Recognize and apply tangent properties

Example x°

6 cm

O B

53°

O

8 cm y

P A

⬔APO  ⬔BPO  90° Recognize and apply chord properties in circles

O y° 10 5 x° M

O

A

K

C

B

If OB ⬜ AC, then AB  CB. If AB  CB, then OB ⬜ AC. Recognize and apply angle properties in a circle

x °  90°

L

x °  90° and y °  60° ML2  102  52

• Inscribed and central angles B

30°

50°

O

x° y°



O

A

C

⬔BOC  2⬔BAC, or ⬔BAC  1 ⬔BOC

x °  90° y °  50° z°  100°

2

• Inscribed angles C D O

B

E A

⬔ACB  ⬔ADB  ⬔AEB • Angles on a semicircle E D A

C B

O

⬔ACB  ⬔ADB  ⬔AEB  90°

339

MMS9_Prep book_UnitBM.qxp

7/7/09

11:12 AM

Page 340

Unit 8 Review 8.1

1. Find each value of x ° and y °. Segments RS and MN are tangents. R

a)

b)



M y°



O

O 75°

20° S

N

x °  ______ y °  180°  ______  ______  ______

⬔ONM  ______ x °  180°  ______  ______  ______

2. Find each value of x to the nearest tenth. Segments GH and ST are tangents. a) x

4 cm

13 cm

O 15 cm

O

G

12 cm

x

⬔OHG  ______

⬔OST  ______

______  x 2  ______

______________________

______________________

______________________

______________________

______________________

______________________

______________________

______________________

So, x ⬟ ________ cm

So, x ⬟ ________ cm

340

S

b)

H

T

MMS9_Prep book_UnitBM.qxp

8.2

7/7/09

11:12 AM

Page 341

3. Find the values of x ° and y °.

O 25° A

x °  ______

By the chord properties

y °  ______  ______  ______

By the angle sum property

__________________________

y° x°

y °  ______

B C

4. Find the values of x °, y °, and z °. x °  ______

By the ____________________

OM  ON, so 䉭______ is isosceles. ⬔ONP  ⬔OMP

O z° M

27° x° P



So, y °  ______

N

z °  ______  ______  ______

__________________________

z °  ______ 5. Find the length of the radius of the circle to the nearest tenth. XY  1  ______ 2 X

12 cm Y 2 cm O

Z

 1  ______ cm 2  ______ cm Draw radius OX. OX2  ______  XY2 OX2  ______  ______ ___________________________ ___________________________ ___________________________ OX ⬟ ______ The radius is about ______ cm.

341

MMS9_Prep book_UnitBM.qxp

8.3

7/7/09

11:12 AM

Page 342

6. Find each value of x °. a)

b)

c) x°

14°

O

43°

O

O



x °  2  ______



x °  ______

x °  ______

x °  ______ 7. Find each value of x ° and y °. a)

b) 25° y°



O 35°

O x°

x° 35°

x °  ______

x °  2  ______

y °  ______

 ______ y °  ______

8. Find the value of w°, x °, y °, and z °. A

x °  y °  ______

25°

z °  ______  ______  ______

w° O C



x° B z° D

________________________ z°  ______ 䉭ACD is ____________. So, ⬔CDA  ⬔CAD  w ° w °  w °  ______  ______ 2w °  ______ w° 

2

w °  ______

342

By the angle sum property

By the angle sum in 䉭ACD

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF