MIMO Feature Parameter Description: Issue Date

November 21, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download MIMO Feature Parameter Description: Issue Date...

Description

 

eRAN

MIMO Feature Parameter  Description Issue

01

Date

2019-06-06

HUAWEI TECHNOLOGIES CO., LTD.

 

  Copyright © Huawei Technologies Co., Ltd. 2019. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.  

Trademarks and Permissions  and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.  All other trademarks trademarks and trade names men mentioned tioned in this this document a are re the property of of their respective holders.  

Notice The purchased products, services and features are stipulated by the contract made between Huawei and the customer.. All or part of the products, services and features described in this document may not be within the customer purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or  representations representatio ns of any kind, either express or implied. The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations recommend ations in this document do not constitute a warranty of any kind, express or implied.  

Huawei Technologies Co., Ltd.  Address:

Huawei Industrial Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China

Website:

https://www.huawei.com

Email:

[email protected]

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

i

 

eRAN MIMO Feature Parameter Description

Contents

Contents 1 Change History.............. History..................................... ............................................. ............................................ ............................................ ............................................ ........................ 1 1.1 eRAN15.1 01 eRAN15.1 01 (2019-06-06).................................................................................... ( 2019-06-06)............................................................................................................................................1 ........................................................1 1.2 eRAN15.1 Draft eRAN15.1 Draft C (2019-04-10)....................................................................................................................................1 (2019-04-10)....................................................................................................................................1 1.3 eRAN15.1 Draft eRAN15.1 Draft B (2019-03-18)....................................................................................................................................2 (2019-03-18)....................................................................................................................................2 1.4 eRAN15.1 Draft eRAN15.1 Draft A (2019-01-05)................................................................................................ (2019-01-05)................................................................................................................................... ................................... 2

2 About This This Document........... Document................................. ............................................ ............................................. ............................................. .................................... .............. 4 2.1 General Statements.......................................................................... Statements......................................................................................................................................................... ...............................................................................4 4 2.2 Applicable Applicable RA RAT................................................................................................ T.............................................................................................................................................................. .............................................................. 4 2.3 Features in in This Document.............................................................................................................................................4 2.4 Feature Differences Differences Between NB-IoT and FDD.................................................................................................... FDD............................................................................................................ ........ 5

3 Overview........... Overview................................. ............................................ ............................................ ............................................. ............................................. ..................................... ............... 7 3.1 Definition........................................................................................................................................................................7 Definition........................................................................................................................................................................7 3.2 Benefits........................................................................................................................................................................... Benefits...........................................................................................................................................................................7 7

4 General Principles.......... Principles................................. ............................................. ............................................ ............................................ .......................................... ....................11 11 4.1 Multiple-Antenna Multiple-Antenna Transmission................................................................................................................ Transmission................................................................................................................................... ................... 11 4.1.1 Basic Concepts...........................................................................................................................................................11 Concepts...........................................................................................................................................................11 4.1.2 Downlink Transmission Processing...........................................................................................................................12 4.1.3 Transmission Modes and Solutions........................................................................................................................... Solutions........................................................................................................................... 14 4.2 Multiple-Antenna Multiple-Antenna Reception..................................................... Reception........................................................................................................................................ ................................................................................... 17 4.2.1 Receive Diversity.................................................................................................... Diversity...................................................................................................................................................... .................................................. 17 4.2.2 Uplink MU-MIMO............................................................................................................ MU-MIMO.................................................................................................................................................... ........................................ 18 4.2.3 Uplink SU-MIMO........................................................................................................ SU-MIMO..................................................................................................................................................... ............................................. 19

5 Downlink Downlink MIMO.......... MIMO................................ ............................................ ............................................. ............................................. ........................................... ..................... 20 5.1 Transmission Transmission Mode Configuration............................................................................................................................... Configuration...............................................................................................................................20 20 5.2 CRS Port Mapping (FDD)............................................................................................................................................21 5.3 CRS Port Mapping Detection and Reconfiguration (FDD)..........................................................................................25 5.3.1 Principles...................................................................................................... Principles................................................................................................................................................................... ............................................................. 25 5.3.1.1 Detection Detection and Reconfiguration...............................................................................................................................25 5.3.1.2 Example.................................................................................................................................................................. Example..................................................................................................................................................................26 26 5.3.2 Network Analysis......................................................................................................... Analysis...................................................................................................................................................... ............................................. 27 5.3.2.1 Benefits................................................................................................................................................................... Benefits...................................................................................................................................................................27 27 5.3.2.2 Impacts................................................................................................ Impacts....................................................................................................................................................................28 ....................................................................28 Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

ii

 

eRAN MIMO Feature Parameter Description

Contents

5.3.3 Requirements............................................................................................................................................................. 30 Requirements.............................................................................................................................................................30 5.3.3.1 Licenses..................................................................................................................... Licenses.................................................................................................................................................................. ............................................. 30 5.3.3.2 Software.................................................................................................................................................................. Software..................................................................................................................................................................30 30 5.3.3.3 Hardware............................................................................ Hardware................................................................................................................................................................ .................................................................................... 31 5.3.3.4 Others.................................................................................................. Others......................................................................................................................................................................32 ....................................................................32 5.3.4 Operation Operation and Maintenance.......................................................................................................................................32 5.3.4.1 Data Configuration.................................................................................. Configuration................................................................................................................................................. ............................................................... 32 5.3.4.1.1 Data Prepara Data Preparation................................................................................................... tion.................................................................................................................................................. ............................................... 32 5.3.4.1.2 Using Using MML Commands......................................................................................................................................32 5.3.4.2 Verification Verification and Monitoring.................................................................................................... Monitoring................................................................................................................................... ............................... 33 5.4 DL 4-Antenna 4-Antenna Transmit Diversity Diversity (FDD).................................................................................................................... (FDD).................................................................................................................... 34 5.4.1 Principles....................................................................................................... Principles................................................................................................................................................................... ............................................................ 34 5.4.2 Network  Analysis.........................................................................................................   Analysis...................................................................................................................................................... ............................................. 35 5.4.2.1 Benefits...................................................................................................................................................................35 Benefits...................................................................................................................................................................35 5.4.2.2 Impacts....................................................................................................................................................................36 Impacts....................................................................................................................................................................36 5.4.3 Requirements.................................................................................................. Requirements............................................................................................................................................................. ........................................................... 36 5.4.3.1 Licenses.................................................................................................... Licenses.................................................................................................................................................................. .............................................................. 36 5.4.3.2 Software..................................................................................................................................................................36 Software..................................................................................................................................................................36 5.4.3.3 Hardware............................................................................................. Hardware................................................................................................................................................................ ................................................................... 36 5.4.3.4 Networking................................................................................................. Networking............................................................................................................................................................. ............................................................ 37 5.4.3.5 Others......................................................................................................................................................................37 Others......................................................................................................................................................................37 5.4.4 Operation Operation and Maintenance.......................................................................................................................................37 5.4.4.1 Data Configuration.................................................................................. Configuration................................................................................................................................................. ............................................................... 37 5.4.4.1.1 Data Prepara Data Preparation................................................................................................... tion.................................................................................................................................................. ............................................... 37 5.4.4.1.2 Using Using MML Commands......................................................................................................................................37 5.4.4.1.3 Using Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 37 5.4.4.2 Verification Verification and Monitoring.................................................................................................... Monitoring................................................................................................................................... ............................... 37 5.4.4.2.1 Activation Activation Verification..................................................................................... Verification........................................................................................................................................ ................................................... 37 5.4.4.2.2 Network Network Monitoring............................................................................................................................................ Monitoring............................................................................................................................................38 38 5.5 DL 2x2 MIMO..............................................................................................................................................................38 M IMO..............................................................................................................................................................38 5.5.1 Principles....................................................................................................... Principles................................................................................................................................................................... ............................................................ 38 5.5.2 Network  Analysis.........................................................................................................   Analysis...................................................................................................................................................... ............................................. 39 5.5.2.1 Benefits...................................................................................................................................................................39 Benefits...................................................................................................................................................................39 5.5.2.2 Impacts....................................................................................................................................................................39 Impacts....................................................................................................................................................................39 5.5.3 Requirements.................................................................................................. Requirements............................................................................................................................................................. ........................................................... 39 5.5.3.1 Licenses.................................................................................................... Licenses.................................................................................................................................................................. .............................................................. 40 5.5.3.2 Software..................................................................................................................................................................40 Software..................................................................................................................................................................40 5.5.3.3 Hardware............................................................................................. Hardware................................................................................................................................................................ ................................................................... 40 5.5.3.4 Others......................................................................................................................................................................40 Others......................................................................................................................................................................40 5.5.4 Operation Operation and Maintenance.......................................................................................................................................40 5.5.4.1 Data Configuration.................................................................................. Configuration................................................................................................................................................. ............................................................... 40 5.5.4.1.1 Data Prepara Data Preparation................................................................................................... tion.................................................................................................................................................. ............................................... 41

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

iii

 

eRAN MIMO Feature Parameter Description

Contents

5.5.4.1.2 Using MML Commands (FDD)................................................................................................................ .......... 41 (FDD).......................................................................................................................... 5.5.4.1.3 Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 42 5.5.4.2 Verification Verification and Monitoring................................................................................................................................... Monitoring................................................................................................................................... 42 5.6 DL 4x2 MIMO (FDD)..................................................................................................................................................42 5.6.1 Principles....................................................................................................................... Principles................................................................................................................................................................... ............................................ 42 5.6.2 Network  Analysis.........................................................................................................   Analysis...................................................................................................................................................... ............................................. 43 5.6.2.1 Benefits...................................................................................................................................................................43 Benefits...................................................................................................................................................................43 5.6.2.2 Impacts....................................................................................................................................................................44 Impacts....................................................................................................................................................................44 5.6.3 Requirements............................................................................................................................................................. Requirements.............................................................................................................................................................44 44 5.6.3.1 Licenses..................................................................................................................... Licenses.................................................................................................................................................................. ............................................. 44 5.6.3.2 Software.................................................................................................................................................................. Software..................................................................................................................................................................44 44 5.6.3.3 Networking.................................................................................................................................................... Networking............................................................................................................................................................. ......... 44 5.6.3.4 Hardware............................................................................ Hardware................................................................................................................................................................ .................................................................................... 45 5.6.3.5 Others.................................................................................................. Others......................................................................................................................................................................45 ....................................................................45 5.6.4 Operation and Maintenance....................................................................................................................................... Maintenance.......................................................................................................................................46 46 5.6.4.1 Data Configuration.................................................................................................................... Configuration................................................................................................................................................. ............................. 46 5.6.4.1.1 Data Preparation.................................................................................................................... Preparation.................................................................................................................................................. .............................. 46 5.6.4.1.2 Using MML Commands......................................................................................................................................47 5.6.4.1.3 Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 48 5.6.4.2 Verification Verification and Monitoring................................................................................................................................... Monitoring................................................................................................................................... 48 5.7 DL 4x4 MIMO..............................................................................................................................................................49 MIMO..............................................................................................................................................................49 5.7.1 Principles....................................................................................................................... Principles................................................................................................................................................................... ............................................ 49 5.7.2 Network Analysis......................................................................................................... Analysis...................................................................................................................................................... ............................................. 50 5.7.2.1 Benefits................................................................................................................................................................... Benefits...................................................................................................................................................................50 50 5.7.2.2 Impacts................................................................................................ Impacts....................................................................................................................................................................51 ....................................................................51 5.7.3 Requirements............................................................................................................................................................. Requirements.............................................................................................................................................................51 51 5.7.3.1 Licenses..................................................................................................................... Licenses.................................................................................................................................................................. ............................................. 51 5.7.3.2 Software.................................................................................................................................................................. Software..................................................................................................................................................................52 52 5.7.3.3 Hardware............................................................................ Hardware................................................................................................................................................................ .................................................................................... 52 5.7.3.4 Networking Networking (FDD).................................................................................................................................. (FDD)................................................................................................................................................. ............... 52 5.7.3.5 Others.................................................................................................. Others......................................................................................................................................................................54 ....................................................................54 5.7.4 Operation and Maintenance....................................................................................................................................... Maintenance.......................................................................................................................................55 55 5.7.4.1 Data Configuration.................................................................................................................... Configuration................................................................................................................................................. ............................. 55 5.7.4.1.1 Data Preparation.................................................................................................................... Preparation.................................................................................................................................................. .............................. 55 5.7.4.1.2 Using MML Commands (FDD)................................................................................................................ (FDD).......................................................................................................................... .......... 56 5.7.4.1.3 Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 57 5.7.4.2 Verification Verification and Monitoring................................................................................................................................... Monitoring................................................................................................................................... 57 5.8 TX Channel Calibration................................................................................................................................................58 Calibration................................................................................................................................................58 5.9 Downlink-Only Module Channel Channel Calibration (FDD).................................................................................................. (FDD).................................................................................................. 60

6 Uplink MIMO......... MIMO............................... ............................................ ............................................ ............................................ ............................................. ............................. ...... 61 6.1 UL 2-Antenna 2-Antenna Receive Diversity................................................................................................. Diversity................................................................................................................................. ................................ 61 6.1.1 Principles....................................................................................................... Principles................................................................................................................................................................... ............................................................ 61 Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

iv

 

eRAN MIMO Feature Parameter Description

Contents

6.1.1.1 1T2R Cell.............................................................................. Cell............................................................................................................................................................... ................................................................................. 62 6.1.1.2 2T2R Cell.............................................................................. Cell............................................................................................................................................................... ................................................................................. 63 6.1.2 Network Analysis......................................................................................................... Analysis...................................................................................................................................................... ............................................. 64 6.1.2.1 Benefits................................................................................................................................................................... Benefits...................................................................................................................................................................64 64 6.1.2.2 Impacts................................................................................................ Impacts....................................................................................................................................................................64 ....................................................................64 6.1.3 Requirements.................................................................................................. Requirements............................................................................................................................................................. ........................................................... 64 6.1.3.1 Licenses.................................................................................................... Licenses.................................................................................................................................................................. .............................................................. 64 6.1.3.2 Software..................................................................................................................................................................65 Software..................................................................................................................................................................65 6.1.3.3 Hardware............................................................................................. Hardware................................................................................................................................................................ ................................................................... 65 6.1.3.4 Others......................................................................................................................................................................65 Others......................................................................................................................................................................65 6.1.4 Operation Operation and Maintenance.......................................................................................................................................65 6.1.4.1 Data Configuration.................................................................................. Configuration................................................................................................................................................. ............................................................... 65 6.1.4.1.1 Data Prepara Data Preparation................................................................................................... tion.................................................................................................................................................. ............................................... 65 6.1.4.1.2 Using Using MML Commands (FDD)............................................................................................... (FDD).......................................................................................................................... ........................... 66 6.1.4.1.3 Using Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 66 6.1.4.2 Verification Verification and Monitoring.................................................................................................... Monitoring................................................................................................................................... ............................... 66 6.2 UL 4-Antenna 4-Antenna Receive Diversity................................................................................................. Diversity................................................................................................................................. ................................ 68 6.2.1 Principles....................................................................................................... Principles................................................................................................................................................................... ............................................................ 68 6.2.1.1 2T4R Cell (FDD).................................................................................................................................................... (FDD)....................................................................................................................................................68 68 6.2.1.2 4T4R Cell.............................................................................. Cell............................................................................................................................................................... ................................................................................. 70 6.2.2 Network  Analysis.........................................................................................................   Analysis...................................................................................................................................................... ............................................. 72 6.2.2.1 Benefits...................................................................................................................................................................72 Benefits...................................................................................................................................................................72 6.2.2.2 Impacts....................................................................................................................................................................73 Impacts....................................................................................................................................................................73 6.2.3 Requirements.................................................................................................. Requirements............................................................................................................................................................. ........................................................... 73 6.2.3.1 Licenses.................................................................................................... Licenses.................................................................................................................................................................. .............................................................. 73 6.2.3.2 Software..................................................................................................................................................................74 Software..................................................................................................................................................................74 6.2.3.3 Hardware............................................................................................. Hardware................................................................................................................................................................ ................................................................... 74 6.2.3.4 Others......................................................................................................................................................................75 Others......................................................................................................................................................................75 6.2.4 Operation Operation and Maintenance.......................................................................................................................................75 6.2.4.1 Data Configuration.................................................................................. Configuration................................................................................................................................................. ............................................................... 75 6.2.4.1.1 Data Prepara Data Preparation................................................................................................... tion.................................................................................................................................................. ............................................... 75 6.2.4.1.2 Using Using MML Commands (FDD)............................................................................................... (FDD).......................................................................................................................... ........................... 76 6.2.4.1.3 Using Using MML Commands (NB-IoT)..................................................................................................... (NB-IoT)......................................................................................................................77 .................77 6.2.4.1.4 Using Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 80 6.2.4.2 Verification Verification and Monitoring.................................................................................................... Monitoring................................................................................................................................... ............................... 80 6.3 UL 2x2 MU-MIMO M U-MIMO (FDD)................................................................................................................................. (FDD).......................................................................................................................................... ......... 82 6.3.1 Principles....................................................................................................... Principles................................................................................................................................................................... ............................................................ 82 6.3.2 Network  Analysis.........................................................................................................   Analysis...................................................................................................................................................... ............................................. 82 6.3.2.1 Benefits...................................................................................................................................................................83 Benefits...................................................................................................................................................................83 6.3.2.2 Impacts....................................................................................................................................................................83 Impacts....................................................................................................................................................................83 6.3.3 Requirements.................................................................................................. Requirements............................................................................................................................................................. ........................................................... 84 6.3.3.1 Licenses.................................................................................................... Licenses.................................................................................................................................................................. .............................................................. 84

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

v

 

eRAN MIMO Feature Parameter Description

Contents

6.3.3.2 Software.................................................................................................................................................................. 85 Software..................................................................................................................................................................85 6.3.3.3 Hardware............................................................................ Hardware................................................................................................................................................................ .................................................................................... 85 6.3.3.4 Others.................................................................................................. Others......................................................................................................................................................................85 ....................................................................85 6.3.4 Operation and Maintenance....................................................................................................................................... Maintenance.......................................................................................................................................85 85 6.3.4.1 Data Configuration.................................................................................................................... Configuration................................................................................................................................................. ............................. 86 6.3.4.1.1 Data Prepara Data Preparation................................................................................................... tion.................................................................................................................................................. ............................................... 86 6.3.4.1.2 Using Using MML Commands......................................................................................................................................86 6.3.4.1.3 Using Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 86 6.3.4.2 Verification Verification and Monitoring.................................................................................................... Monitoring................................................................................................................................... ............................... 86 6.4 UL 2x4 MU-MIMO......................................................................................................................................................87 M U-MIMO......................................................................................................................................................87 6.4.1 Principles....................................................................................................... Principles................................................................................................................................................................... ............................................................ 87 6.4.2 Network  Analysis.........................................................................................................   Analysis...................................................................................................................................................... ............................................. 88 6.4.2.1 Benefits...................................................................................................................................................................88 Benefits...................................................................................................................................................................88 6.4.2.2 Impacts....................................................................................................................................................................88 Impacts....................................................................................................................................................................88 6.4.3 Requirements.................................................................................................. Requirements............................................................................................................................................................. ........................................................... 90 6.4.3.1 Licenses.................................................................................................... Licenses.................................................................................................................................................................. .............................................................. 90 6.4.3.2 Software..................................................................................................................................................................90 Software..................................................................................................................................................................90 6.4.3.3 Hardware............................................................................................. Hardware................................................................................................................................................................ ................................................................... 91 6.4.3.4 Others......................................................................................................................................................................91 Others......................................................................................................................................................................91 6.4.4 Operation Operation and Maintenance.......................................................................................................................................91 6.4.4.1 Data Configuration Configuration (FDD)................................................................................................... (FDD)......................................................................................................................................91 ...................................91 6.4.4.1.1 Data Prepara Data Preparation................................................................................................... tion.................................................................................................................................................. ............................................... 91 6.4.4.1.2 Using Using MML Commands......................................................................................................................................92 6.4.4.1.3 Using Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 92 6.4.4.2 Verification Verification and Monitoring.................................................................................................... Monitoring................................................................................................................................... ............................... 92 6.5 UL SU-MIMO.................................................................................................... SU-MIMO.............................................................................................................................................................. .......................................................... 93 6.5.1 Principles....................................................................................................... Principles................................................................................................................................................................... ............................................................ 93 6.5.1.1 Uplink  Transmission  Transmission Modes...................................................................................................................................93 6.5.1.2 Rank Selection........................................................................................................................................................94 6.5.2 Network  Analysis.........................................................................................................   Analysis...................................................................................................................................................... ............................................. 94 6.5.2.1 Benefits...................................................................................................................................................................94 Benefits...................................................................................................................................................................94 6.5.2.2 Impacts....................................................................................................................................................................95 Impacts....................................................................................................................................................................95 6.5.3 Requirements.................................................................................................. Requirements............................................................................................................................................................. ........................................................... 96 6.5.3.1 Licenses.................................................................................................... Licenses.................................................................................................................................................................. .............................................................. 96 6.5.3.2 Software..................................................................................................................................................................96 Software..................................................................................................................................................................96 6.5.3.3 Hardware............................................................................................. Hardware................................................................................................................................................................ ................................................................... 97 6.5.3.4 Others......................................................................................................................................................................97 Others......................................................................................................................................................................97 6.5.4 Operation Operation and Maintenance.......................................................................................................................................97 6.5.4.1 Data Configuration Configuration (FDD)................................................................................................... (FDD)......................................................................................................................................98 ...................................98 6.5.4.1.1 Data Prepara Data Preparation................................................................................................... tion.................................................................................................................................................. ............................................... 98 6.5.4.1.2 Using Using MML Commands......................................................................................................................................99 6.5.4.1.3 Using Using the CME.................................................................................................................................................... CME.................................................................................................................................................... 99

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

vi

 

eRAN MIMO Feature Parameter Description

Contents

6.5.4.2 Verification Monitoring................................................................................................................................... 99 Verification and Monitoring...................................................................................................................................

7 Parameters..... Parameters............................ ............................................. ............................................ ............................................ ............................................ ..................................... ...............102 102 8 Counters.......... Counters................................ ............................................ ............................................ ............................................ ............................................ .................................... .............. 103 9 Glossary......... Glossary................................ ............................................. ............................................ ............................................ ............................................ ..................................... ...............104 104 10 Reference Documents.......... Documents................................ ............................................. ............................................. ............................................ ................................ .......... 105

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

vii

 

eRAN MIMO Feature Parameter Description

1 Change History

1

 Change History

This chapter describes describes changes not not included included in the "Par ameters", ameters", "Counters", "Glossary", and "Reference Documents" chapters. These changes include: l

Technical changes Changes in functions and their corresponding parameters

l

Editorial changes Improvements or revisions to the documentation

1.1 eRAN15.1 01 (2019-06-06) This issue includes the following changes.

Technical Changes Change Description

Parameter Change

RAT

Base Station Model

 None

None

FDD

None

 

Editorial Changes Revised descriptions in this document, and added 4 General Principles. Added the impact relationship and mutually exclusive relationship between the "CRS port mapping detection and reconfiguration (FDD)" function and energy conservation. For details, see 5.3.2.2 Impacts and 5.3.3.2 Software.

1.2 eRAN15.1 Draft C (2019-04-10) This issue includes the following changes.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

1

 

eRAN MIMO Feature Parameter Description

1 Change History

Technical Changes Change Description

Parameter Change

RAT

Base Station Model

Added downlink-only module channel calibration. For details, Downlink-Only ly see 5.9 Downlink-On Module Channel Calibration (FDD).

 None

FDD

3900 and 5900 series base stations

 

Editorial Changes Revised descriptions in this document.

1.3 eRAN15.1 Draft B (2019-03-18) This issue includes includes the following following changes.

Technical Changes Change Description

Parameter Change

RAT

Base Station Model

Added the CRS portchannel mapping adjustment function. For  details, see CRS PortChannel Mapping Adjustment .

Add the  LogicalPort  PDSCHCfg. LogicalPort   SwapSwitch parameter.

FDD

3900 and 5900 series base stations

Enabled the UBBPg to support uplink 4-antenna receive diversity. For  details, see 6.2.3.3 Hardware.

 None

FDD

3900 and 5900 series base stations

 

Editorial Changes Revised descriptions in this document.

1.4 eRAN15.1 Draft A (2019-01-05) This issue intr oduces oduces the following changes following changes to eRAN13.1 01 (2018-04-10).

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

2

 

eRAN MIMO Feature Parameter Description

1 Change History

Technical Changes Change Description

Parameter Change

RAT

Base Station Model

Deleted the method of  detecting no-spacing antenna combinations from 5.3.1.1 Detection and Reconfigurat Reconfiguration ion.

Deleted the ColumnDetectMethod   parameter from the STR  CRSPORTOPTDET command

FDD

3900 and 5900 series base stations

Added counters for  uplink MU-MIMO  performance monitoring. monitoring.

 None

FDD

3900 and 5900 series base stations

Change Description

Parameter Change

RAT

Base Station Model

Added descriptions about

For details, see

 NB-IoT

3900 and 5900

 NB-IoT features. For  details, see 6.2 UL 4Antenna Receive Diversity and 5.4 DL 4Antenna Transmit Diversity (FDD).

descriptions in the corresponding sections.

Revised descriptions in this document.

 None

 

Editorial Changes

Issue 01 (2019-06-06)

series base stations

FDD  NB-IoT

Copyright © Huawei Technologies Co., Ltd.

3900 and 5900 series base stations

3

 

eRAN MIMO Feature Parameter Description

2 About This Document

2

 About This Document

2.1 General Statements Purpose This document is intended to acquaint readers with: l

The technical principles of features and their related parameters

l

The scenarios where these features are used, the benefits they provide, and the impact they have on networks and functions

l

Requirements of the operating environment that must be met before feature activation

l

Parameter configuration required for feature activation, verification of feature activation, and monitoring of feature performance

This document only provides guidance for feature activation. Feature deployment and feature gains depend on the specifics of the network scenario where the feature is deployed. To achieve the desired gains, contact Huawei professional service engineers.

Software Interfaces Any parameters, alarms, counters, or managed objects (MOs) described in this document apply only to the corresponding software release. For future software releases, refer to the corresponding updated product documentation.

2.2 Applicable RAT This document applies to FDD/NB-IoT. FDD/NB-IoT.

2.3 Features in This Document This document describes the following FDD features: Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

4

 

eRAN MIMO Feature Parameter Description

2 About This Document

Feature ID

Feature Name

Section

LOFD-001001

DL 2x2 MIMO

 

5.5 DL 2x2 MIMO

LOFD-001003

DL 4x2 MIMO

 

5.6 DL 4x2 MIMO (FDD)

LOFD-001060

DL 4x4 MIMO

 

5.7 DL 4x4 MIMO

LBFD-00202001

UL 2-Antenna Receive Diversity

6.1 UL 2-Antenna Receive Diversity

LOFD-001005

UL 4-Antenna Receive Diversity

6.2 UL 4-Antenna Receive Diversity

LOFD-001002

UL 2x2 MU-MIMO

 

6.3 UL 2x2 MU-MIMO (FDD)

LOFD-001058

UL 2x4 MU-MIMO

 

6.4 UL 2x4 MU-MIMO

LOFD-130201

UL SU-MIMO

 

6.5 UL SU-MIMO

  This document describes the following NB-IoT features.

Feature ID

Feature Name

Section

MLBFD-12000238

UL 2-Antenna Receive Diversity

6.1 UL 2-Antenna Receive Diversity

MLBFD-12100240

DL 4-Antenna Transmit Diversity

5.4 DL 4-Antenna Transmit Diversity (FDD)

MLOFD-121202

UL 4-Antenna Receive Diversity

6.2 UL 4-Antenna Receive Diversity

 

2.4 Feature Differences Between NB-IoT and FDD FDD

Issue 01 (2019-06-06)

NB-IoT Feature

FDD Feature

Difference

MLBFD-1200 0238 UL 2Antenna Receive Diversity

LBFD-00202 001 UL 2Antenna Receive Diversity

 None

Section  

Copyright © Huawei Technologies Co., Ltd.

6.1 UL 2-Antenna Receive Diversity

5

 

eRAN MIMO Feature Parameter Description

2 About This Document

NB-IoT Feature

FDD Feature

Difference

Section

MLBFD-1210 0240 DL 4Antenna Transmit

LOFD-00106 0 DL 4x4 MIMO

 NB-IoT::  NB-IoT

For details about  NB-IoT,, see 5.4 DL  NB-IoT 4-Antenna Transmit

Diversity

MIMO is not supported by 1T1R  UEs. A maximum of two NRS antenna ports can be used. SFBC is supported. FDD: MIMO is supported. A maximum of four CRS antenna ports can be used. SFBC+FSTD is supported.

LOFD-00100 3 DL 4x2 MIMO

Diversity (FDD). For details about FDD, see 5.6 DL 4x2 MIMO (FDD) and 5.7 DL 4x4 MIMO.

 NB-IoT::  NB-IoT MIMO is not supported by 1T1R  UEs. A maximum of two NRS antenna ports can be used. SFBC is supported. FDD: MIMO is supported. A maximum of four CRS antenna ports can be used. SFBC+FSTD is supported.

MLOFD-121 202 UL 4Antenna Receive Diversity

LOFD-00100 5 UL 4Antenna Receive Diversity

 NB-IoT::  NB-IoT MIMO is not supported by 1T1R  UEs. A maximum of two NRS antenna ports can be used. SFBC is supported.

6.2 UL 4-Antenna Receive Diversity

FDD: MIMO is supported. A maximum of four CRS antenna ports can be used. SFBC+FSTD is supported.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

6

 

eRAN MIMO Feature Parameter Description

3 Overview

3

 Overview

3.1 Definition Multiple-input multiple-output (MIMO) is a technology that uses multiple antennas at the transmitter or receiver in combination with signal processing techniques to multiply spectral efficiency.. It is developed from single-input single-output (SISO). Multiple antenna efficiency configurations are expressed in the form mxn MIMO, where m represents the number of  transmit (TX) antennas and n represents the number of receive (RX) antennas. For example, downlink 2x2 MIMO means that the eNodeB uses two antennas for transmission and the UE uses two antennas for reception; downlink 4x4 MIMO means that the eNodeB uses four  antennas for transmission and the UE uses four antennas for reception.

In this document, multiple antennas refer to the logical ports of multiple TX or RX antennas, not to multiple physical antennas.

3.2 Benefits MIMO improves the transmission reliability and signal quality of radio links by using signal  processing techniques. It not only increases network network capacity and coverage coverage but also provides provides higher data rates and better user experience. MIMO brings array gains, multiplexing gains, diversity gains, and power gains.

Array Gains Array gains are achieved by utilizing the correlation between signals and non-correlation  between noises on different different antennas. The The signals are combined combined to increase the average average signal to interference plus noise ratio (SINR) and improve reception quality, as shown in Figure 3-1.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

7

 

eRAN MIMO Feature Parameter Description

3 Overview

Figure 3-1 Array gains

Multiplexing Gains Multiplexing gains are provided are provided by by multiple spatial channels. This increases cell throughput  by using multiple antennas, without without the need for additional additional bandwidth or transmit power, power, as shown in Figure 3-2.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

8

 

eRAN MIMO Feature Parameter Description

3 Overview

Figure 3-2 Multiplexing gains

Diversity Gains Diversity gains are achieved by taking taking advantage advantage of the non-correlation between deep fading on different antennas. The signals are combined to reduce fading and improve reception quality,, as shown in Figure 3-3. quality

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

9

 

eRAN MIMO Feature Parameter Description

3 Overview

Figure 3-3 Diversity gains

Power Gains Power gains are offered by multiple TX antennas in noise-limited scenarios to increase the SINR at the RX end and improve reception quality.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

10

 

eRAN MIMO Feature Parameter Description

4 General Principles

4

 General Principles

4.1 Multiple-Antenna Multiple-Antenna Transmission Multiple-antenna transmission is a MIMO technique in which multiple antennas are used to transmit signals and certain algorithms are used for signal processing.

4.1.1 Basic Concepts Open-Loop MIMO and Closed-Loop MIMO Downlink MIMO techniques are classified into open-loop MIMO and closed-loop MIMO  based on whether UEs UEs are required to report report precoding matrix matrix indications (PMIs) to eNodeBs eNodeBs for downlink data transmission. Open-loop MIMO and closed-loop MIMO are not involved in the uplink. l

Open-loop MIMO does not require UEs to report PMIs.

l

Closed-loop MIMO requires UEs to report PMIs.

Transmit Diversity and Spatial Multiplexing  Downlink MIMO techniques are classified into transmit diversity and spatial multiplexing  based on the number of independent data streams streams transmitted on the same time-frequency resources. l

Transmit diversity Transmit diversity is a technique in which signals and their copies are transmitted after  encoding based on low correlation between spatial channels as well as time selectivity and frequency selectivity. selectivity. Transmit diversity allows for transmission of only one independent data stream at a time.

l

Spatial multiplexing Spatial multiplexing is a technique in which multiple independent data streams are transmitted using the same time-frequency resources. Spatial multiplexing increases system capacity and brings spatial multiplexing gains because it uses more spatial channels transmission. of one or than moresingle-antenna independent data streams at Spatial a time. t ime. multiplexing allows for transmission

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

11

 

eRAN MIMO Feature Parameter Description

4 General Principles

Downlink MIMO techniques of LTE can be further classified into four categories: open-loop transmit diversity, closed-loop transmit diversity, open-loop spatial multiplexing, and closedloop spatial multiplexing.

4.1.2 Downlink Transmission Processing  For details about downlink transmission principles, see section 7.1 "UE procedure for  receiving the physical downlink shared channel" in 3GPP TS 36.213 V10.6.0.

Downlink Transmission Procedure Figure 4-1 illustrates the downlink transmission procedure in the logical and physical aspects: l

The process up to "CRS port" involves transmission solutions and transmission modes in the logical aspect.

l

The process from "CRS port" onwards involves mapping between cell-specific reference signal (CRS) ports and TX channels.

The number of CRS ports cannot exceed the number of configured TX channels.

Figure 4-1 Downlink transmission procedure

The following explains the concepts introduced in Figure 4-1: l

Codeword Different codewords represent different data streams. LTE supports a maximum of two codewords. When two or more antennas are available at both the TX and RX ends, the number of  codewords depends on radio channel conditions and UE categories. Dual-codeword transmission is mainly used in scenarios with high SINRs, low channel correlations, and UE categories of 2 or above.

l

Rank  If the codeword rank is 1, the eNodeB typically uses transmit diversity. Alternatively, Alternatively, the eNodeB can use transmission mode 6 (TM6), which is a special form of closed-loop spatial multiplexing in rank 1. If the codeword rank is greater than 1, the eNodeB uses spatial multiplexing.

l

Layer mapping mapping and precoding and precoding Layer mapping and precoding are used to map codewords onto CRS ports.



In layer mapping, codewords are mapped onto layers. The number of multiplexing layers (also called MIMO layers) determined the ports, rank. The maximum number  of multiplexing layers depends onisthe number ofby CRS as shown in Table 4-1.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

12

 

eRAN MIMO Feature Parameter Description

– l

4 General Principles

In precoding, layered data streams are mapped onto CRS ports.

CRS port CRS ports are logical antenna ports. According to protocols, a cell can be configured with one, two, or four CRS ports. The number of CRS ports is specified by the Cell.CrsPortNum parameter. Table 4-1 describes the logical antenna ports used as CRS  ports. Table 4-1 4 -1 Logical antenna ports used as CRS ports

Number of CRS Ports

Logical Antenna Ports

Description

1

Port 0

When there is only one CRS port, only single-codeword transmission can be  performed, which is not a MIMO transmission solution.

2

Ports 0 and 1

When there are two CRS ports, a maximum of two multiplexing layers can be used.

4

Ports 0, 1, 2, and 3

When thereofarfour e foumultiplexing r CRS ports,layers a maximum can be used.

 

Example (with Four CRS Ports) Figure 4-2 il  illustrates lustrates codeword, codeword, rank, layer mapping, and precoding when there are four CRS  ports.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

13

 

eRAN MIMO Feature Parameter Description

4 General Principles

Figure 4-2 Example of codeword, rank, layer mapping, precoding when there are four CRS  ports

4.1.3 Transmission Modes and Solutions Transmission Modes For details about transmission modes defined in 3GPP Release 10, see section 7.1 "UE  procedure for receiving receiving the physical downlink downlink shared channel" channel" in 3GPP TS 36.213 V10.6.0. Table 4-2 4 -2 describes the transmission modes supported by eNodeBs. Table 4-2 4 -2 Transmission modes and corresponding MIMO techniques

Issue 01 (2019-06-06)

Transmission Mode

Protocol-Defined MIMO Protocol-Defined Technique

Meaning 

TM1

Single antenna port (port 0)

Single antenna port 0 is used.

TM2

Transmit diversity

Open-loop transmit diversity is used.

TM3

Transmit diversity

If only one data stream is transmitted, open-loop transmit diversity is used.

Large-delay cyclic delay Large-delay diversity (CDD) spatial multiplexing

If multiple data streams are transmitted, large-delay CDD spatial multiplexing is used.

Copyright © Huawei Technologies Co., Ltd.

14

 

eRAN MIMO Feature Parameter Description

4 General Principles

Transmission Mode

Protocol-Defined MIMO Protocol-Defined Technique

Meaning 

TM4

Transmit diversity

When the PMIs reported by UEs are not used for signal processing at the transmitter, open-loop transmit diversity is used. One data stream is transmitted.

TM6

TM9 and TM10

Closed-loop spatial multiplexing

When the PMIs reported by UEs are used for signal processing at the transmitter, closed-loop spatial multiplexing is used. One or more data streams are transmitted.

Transmit diversity

When the PMIs reported by UEs are not used for signal processing at the transmitter, open-loop transmit diversity is used. One data stream is transmitted.

Closed-loop spatial multiplexing for a single

When the PMIs reported by UEs are used for signal processing at the

stream

transmitter, closed-loop spatial multiplexing is used. One or more data streams are transmitted.

Transmit diversity

When the PMIs reported by UEs are not used for signal processing at the transmitter, the specific technique used in non-MBSFN subframes depends on the number of antenna ports used for  the physical broadcast channel (PBCH). If the number of antenna ports is 1, single antenna port 0 is used for  transmission; otherwise, transmit transmit diversity is used. One data stream is transmitted.

Spatial multiplexing

When the PMIs reported by UEs are used for signal processing at the transmitter, spatial multiplexing is used. One or more data streams are transmitted.

 

Transmission Solutions Transmission solutions depend on transmission modes if the number of CRS ports has been determined. Table 4-3 4 -3 describes the transmission solutions in different transmission modes when there are

two CRS ports.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

15

 

eRAN MIMO Feature Parameter Description

4 General Principles

Table 4-3 4 -3 Transmission solutions in different transmission modes with two CRS ports

Downlink Transmission Solution

Number of Codewor ds

Number of Layers

Rank ank

Tra rans nsmi miss ssiion Mode Mode

Space frequency

1

2

1

TM2

Large-delay cyclic Large-delay delay diversity (CDD) precoding, a form of open-loop spatial multiplexing

2

2

2

TM3

Precoding without CDD, a form of  closed-loop spatial multiplexing

1

1

1

TM6

2

2

2

TM4

 block coding (SFBC), a form of  transmit diversity

  4 -4 describes the transmission solutions in different transmission modes when there are Table 4-4 four CRS ports. Table 4-4 4 -4 Transmission solutions in different transmission modes with four CRS ports

Downlink Transmission Solution

Number of Codewor ds

Number of Layers

Rank ank

Tra rans nsmi miss ssiion Mode Mode

SFBC + frequency switched transmit diversity (SFBC

1

4

1

TM2

Large-delay CDD  precoding, a form of  of  open-loop spatial multiplexing

2

2

2

TM3

2

3

3

2

4

4

Precoding without CDD, a form of  closed-loop spatial multiplexing

1

1

1

TM6

2

2

2

TM4/TM9/TM10

2

3

3

2

4

4

+FSTD), a form of  transmit diversity

 

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

16

 

eRAN MIMO Feature Parameter Description

4 General Principles

4.2 Multiple-Antenna Multiple-Antenna Reception Multiple-antenna reception is a MIMO technique in which multiple antennas are used to receive signals and certain algorithms are used to combine the received signals. Multipleantenna reception is supported by both eNodeBs and UEs, and that on UEs is similar to that on eNodeBs. This document describes multiple-antenna reception on eNodeBs. Multiple-antenna reception on eNodeBs includes receive diversity, uplink multi-user MIMO (MU-MIMO), and uplink single-user MIMO (SU-MIMO). Adaptation between receive diversity and MU-MIMO is supported by eNodeBs.

4.2.1 Receive Diversity Receive diversity is a technique in which signals and their copies are received and combined after passing through channels at different fading degrees. In receive diversity mode, a UE uses one antenna and dedicated time-frequency resources to transmit signals while an eNodeB uses multiple antennas to receive signals and then combines the received signals. This process maximizes the SINR, brings diversity and array gains, and improves cell capacity and coverage. Radio channels from a transmitter to a receiver may experience time-varying deep fading of  10 dB to 20 dB, dB, which will will lead to SINR fluctuations at the receiver. receiver. If the receiver uses multiple antennas for reception, there is a relatively low probability that deep fading occurs simultaneously on different antennas. As a result, the combined signals experience a lower   probability of deep fading fading than the signals received received by a single antenna, antenna, obtaining diversity gains. White noises on different antennas are uncorrelated, and therefore the power of the combined noise remains unchanged. However, the energy of the combined signal increases several-fold, which brings array gains. Figure 4-3 shows the principles of receive diversity.

Figure 4-3 Principles of receive diversity

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

17

 

eRAN MIMO Feature Parameter Description

4 General Principles

The UE sends signal x signal x,, which passes through different channels to the eNodeB's antennas r 1 to r M. The eNodeB applies a weight wi to each received signal, and then combines the weighted signals into signal y signal y.. The combined signal can be expressed as follows:  y  y =  = W   (( Hx +  Hx + N   N ) The variables in the previous formula and figure are described as follows: l l

W = (w1 ... w M  )  ):: 1x M  vector  vector composed of RX antenna weights. T   H = (h1 ... h M  ) : M x1 x1 vector composed of spatial channel coefficients. hi indicates the coefficient of channel i, and T   is is a transpose operator. The channel coefficients are used to obtain the signals that change in amplitude and phase after passing through channels.

l

 N = (n1 ... n M  )T : M x1 x1 vector composed of received noises.

l

 x  x:: TX signal.

Signal combining, especially weight calculation, is key to receive diversity. For details about signal combining, see MRC see MRC and IRC Receivers Receivers..

4.2.2 Uplink MU-MIMO Uplink MU-MIMO is a technique that enables multiple UEs to perform data transmission simultaneously using the same time-frequency resources. It brings multiplexing gains in addition to diversity and array gains. Theoretically, the number of UEs that use the same timefrequency resources cannot exceed the number of RX antennas of the eNodeB. The key techniques of MU-MIMO are signal combining and UE pairing.

Principles Figure 4-4 uses uplink 2x2 MU-MIMO as an example for illustration. Figure 4-4 Uplink 2x2 MU-MIMO

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

18

 

eRAN MIMO Feature Parameter Description

4 General Principles

UE1 and UE2 use the same time-frequency resources to send signals x 1 and x2 to the eNodeB through channels (h11, h21, h12, and h22). The eNodeB detects UEs that use the same timefrequency resources, calculates the weights (W), applies the weights to the received signals, and performs signal combining. Specifically, the eNodeB combines the two groups of signals and obtains y1 and y2, the estimated values of x 1 and x2, respectively.

UE Pairing  UE pairing is a process where an eNodeB selects a pair of suitable UEs for transmission and schedules the paired UEs. For example, it selects a pair of UEs that have approximately orthogonal channels or that will bring the maximum gain to the system. In general, the better  the channel quality, the better the UE pairing effect. The MU-MIMO pairing procedure is as follows: 1.

Sele Select ctss ca cand ndid idat atee UEs. UEs. If a UE has been scheduled, the eNodeB attempts to pair it with another UE.

2.

Calc Calcul ulaates tes the the post post--  pairing pairing SINR and sp spectral ectral efficiency. The eNodeB calculates the post-pairing SINR of each UE based on the pre-pairing SINR  and inter-UE channel correlation, and then calculates the post-pairing spectral efficiency efficiency..

The calculated post-pairing spectral efficiency may be different from the actual one because the  pre-pairing SINR is measu measured red by the se serving rving cell b based ased on the current channel channel cond conditions itions but the  paired UEs perform perform data transmission four subfra subframes mes later after the pairing.

3.

Pa Pair irss the the sele seleccted ted U UEs Es.. If the total post-pairing spectral efficiency is higher than the total pre-pairing spectral efficiency,, the eNodeB pairs the two UEs. Otherwise, the eNodeB does not pair the two efficiency UEs and rolls back to receive diversity.

4.

Sche Schedu dule less tthe he pair paired ed UEs. UEs. The eNodeB allocates the same time-frequency resources to the paired UEs for data transmission.

4.2.3 Uplink SU-MIMO Uplink SU-MIMO is a technique that enables a single UE to send multiple data streams simultaneously using the same time-frequency resources. resources. Uplink SU-MIMO is suitable for UEs that have two TX channels and work in TM2. For  details, see 6.5 UL SU-MIMO.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

19

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

5

 Downlink MIMO

5.1 Transmission Mode Configuration Transmission modes need to be determined for UEs in random access and subsequent 5 -1. scheduling based on the following parameters and Table 5-1 l

 InitialMimoType: specifies an initial transmission mode.   CellMimoParaCfg. InitialMimoType

l

  CellMimoParaCfg. MimoAdaptiveSwitch  MimoAdaptiveSwitch: specifies whether to use an adaptive transmission mode.

l

  CellMimoParaCfg.FixedMimoMode: specifies a fixed transmission mode.

Table 5-1 5 -1 Transmission mode configuration

MimoAdap Initial tiveSwitch Mimo Setting  Type Setting 

Transmission Mode in Random Access Based on Contention

Transmission Mode in Random Access Not Based on Contention

Transmission Mode in Scheduling 

TM2 None ADAPT  NO_ADAPT IVE IVE

TM2 Depending on the value of  CellMimoParaCfg .FixedMimoMode

TM2 Depending on the value of  CellMimoParaCf  g.FixedMimoMod  e

None Depending on the value of  CellMimoParaCfg. FixedMimoMode

OL_ADAPT IVE

TM3

TM2

TM3

CL_ADAPT IVE

TM4

TM2

TM4

OC_ADAPT IVE

TM3

TM2

TM3 or TM4

 

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

20

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

In FDD, TM9 or TM10 is recommended in low-speed cells if a certain proportion of UEs support TM9 or TM10. TM9 and TM10 are controlled by the TM9Switch and TM10Switch options of the CellAlgoSwitch. EnhMIMOSwitch  EnhMIMOSwitch parameter, respectively. TM9 and TM10 cannot be enabled simultaneously for a cell. l

TM9 is suitable for 2T cells with adaptive single frequency network (SFN) enabled and 4T cells with multi-user MIMO (MU-MIMO) enabled.

l

TM10 is suitable for 4T cells with adaptive SFN enabled.

For the applications of TM9 and TM10 in adaptive SFN cells, see SFN . For details about MUMIMO in TM9 in 4T cells, see eMIMO (FDD). (FDD). There are the following limitations on TM9: l

UE services to be transmitted in TM9 cannot be scheduled in MBSFN subframes where the physical multicast channel (PMCH) exists.

l

UE services to be transmitted in TM9 cannot be scheduled in MBSFN subframes that are configur eed d for enha enhanced nced symbol power saving.

l

For FDD, UE services to be transmitted in TM9 cannot be scheduled in subframes where OTDOA-based positioning reference signals are transmitted.

5.2 CRS Port Mapping (FDD) To avoid the adjustment of antenna connections after RF modules are connected to physical antennas, CRS port mapping is introduced to map CRS ports onto the TX channels of RF modules and further onto the physical antennas. CRS port mapping is required in cells working in at least 4T mode. Signal correlation between antennas varies depend depending ing on  polarization direction. Adjusting Adjusting CRS port mapping can optimize signal correlation. correlation.

CRS port mapping can be understood as mapping CRS ports onto the TX ports of RF modules. The sequence of TX/RX ports of an RF module is fixed. For details, see the hardware description of the corresponding RF module.

CRS port mapping is controlled by the Cell.CrsPortMap parameter. By adjusting this  parameter  parameter, , you can change mapping CRS ports and TX channels. channeusing ls. The of this section describes CRS port the sequence andbetween CRS port mapping configuration therest example of a 4T4P cell (a cell with four TX channels and four CRS ports).

CRS Port Sequence Figure 5-1 illustrates the default and recommended configurations for a 4T4P cell on the assumption that the physical antennas are installed in non-cross mode. l

The default configuration refers to the default mapping between CRS ports and TX channels. It is used when the Cell.CrsPortMap parameter is set to NOT_CFG. For a 4T RRU, ports 0, 1, 2, and 3 are mapped onto TX channels A, B, C, and D, respectively. For two combined 2T RRUs, ports 0, 1, 2, and 3 are mapped onto TX channels A, B, A, and B, respectively.

l

Issue 01 (2019-06-06)

The recommended configuration is as follows: Copyright © Huawei Technologies Co., Ltd.

21

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO



For a 4T RRU, set the Cell.CrsPortMap parameter to 4T4P_0321 to map CRS  ports 0, 1, 2, and 3 onto TX channels channels A, D, C, and B.



For combined 2T RRUs, set the Cell.CrsPortMap parameter to 4T4P_0213 to map CRS ports 0, 1, 2, and 3 onto TX channels A, A, B, and B.

Figure 5-1 RRU-antenna connection in non-cross mode

Using the same setting for the Cell.CrsPortMap parameter results in different CRS port sequences on a 4T RRU and two combined 2T RRUs. l

For a 4T RRU, the digital sequence (ports 0, 1, 2, and 3) indicates the CRS port sequence on channels A, B, C, and D. However, the default channel sequence on RRU hardware is ACDB.

l

For two combined 2T RRUs, the digital sequence (ports 0, 1, 2, and 3) indicates the CRS  port sequence on channels channels A, B, A, and B.

For example, if the Cell.CrsPortMap parameter is set to 4T4P_0213, then:

l

For a 4T RRU, the theoretical channel sequence and CRS port sequence are However, the actual sequences are

l

.

.

For two combined 2T RRUs, the theoretical channel sequence and CRS port sequence are

. The actual sequences are the same as the theoretical sequences.

CRS Port Mapping Configuration Table 5-2 5 -2 lists the CRS port sequences that apply for each setting of the Cell.CrsPortMap  parameter for different different RRUs. Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

22

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Table 5-2 5 -2 CrsPortMap settings and actual CRS port sequences

4T4P or 4T2P

CrsPortMap Setting 

CRS Port Sequence on TX Channels ACDB of a 4T RRU

CRS Port Sequence on TX Channels ABAB of Two Combined 2T RRUs

4T4P

4T4P_0213

0132

0213 (recommended for   downlink 4x2 or 4x4 MIMO)

4T4P_0231

0312

0231

4T4P_0123 or   NOT_CFG

0231

0123

4T4P_0132

0321

0132

4T4P_0312

0123

0312

4T4P_0321

0213 (recommended for  downlink 4x2 or  4x4 MIMO)

0321

4T2P_0011 or    NOT_CFG

0110

0 011 (reco2x2 mmMIMO) ended for   downlink

4T2P_0101

0011 (recommended for downlink 2x2 MIMO)

0101

4T2P_0110

0101

0110

4T2P

 

The CRS port mapping principle for 4T2P cells is similar to that for 4T4P cells. The principle is not described here but the actual sequences indicated by the parameter settings are provided in this table. 4T1P cells do not require CRS port mapping. The Cell.CrsPortMap parameter needs to be set to NOT_CFG. If a cell is set up on an LBBPc, the number of CRS ports is equal to the number of physical antennas and the Cell.CrsPortNum parameter does not take effect. For example, if the LBBPc is configured to support 2T mode, the number of CRS ports is always 2, regardless of the Cell.CrsPortNum parameter  value.

CRS Port-Channel Mapping Adjustment UEs measure the RSRP values of CRS ports 0 and 1 in accordance with 3GPP specifications. Therefore, when channel power is limited, raising the transmit power of ports 0 and 1 can increase the measured RSRP values and improve the cell coverage. CRS port-channel mapping adjustment can implement the preceding function. It applies to 4T4R cells with four physical antennas and four CRS ports. When multiple carriers exist on the same RF module, this function can implement intercarrier channel power sharing and adjust the mapping between CRS ports and physical Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

23

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

channels while ensuring that the total power of the carriers on each channel does not exceed the channel power. In this way, the transmit power of ports 0 and 1 increases and the coverage 5 -3 and Table 5-4 describe the principle of CRS port-channel mapping improves. Table 5-3 adjustment; the mapping between CRS ports and physical channels of carrier 2 is adjusted. Table 5-3 5 -3 CRS port configuration with the same channel power value (with the CRS portchannel mapping adjustment function disabled)

Physical Channel

Channel A

Channel B

Channel C

Channel D

Total power  (W)

60

60

60

60

Carrier 1 power  (W)

Port 0

Port 2

Port 1

Port 3

30

30

30

30

Carrier 2 power  (W)

Port 0

Port 2

Port 1

Port 3

30

30

30

30

  Table 5-4 5 -4 CRS port configuration with different channel power values (with the CRS portchannel mapping adjustment function enabled)

Physical Channel

Channel A

Channel B

Channel C

Channel D

Total power  (W)

60

60

60

60

Carrier 1 power  (W)

Port 0

Port 2

Port 1

Port 3

40

20

40

20

Carrier 2 power  (W)

Port 2

Port 0

Port 3

Port 1

20

40

20

40

  The CRS port-channel mapping adjustment function is controlled by the PDSCHCfg . LogicalPortSwapSwitch  LogicalPortSwapSwitch parameter. l

l

When the PDSCHCfg . LogicalPortSwapSwitch  LogicalPortSwapSwitch parameter is set to OFF, the eNodeB determines the mapping between CRS ports and physical channels based on the Cell.CrsPortMap parameter. When the PDSCHCfg . LogicalPortSwapSwitch  LogicalPortSwapSwitch parameter is set to SWAP_MODE_1 , the eNodeB adjusts the mapping between CRS ports and physical channels specified by the Cell.CrsPortMap parameter. It exchanges the physical channels corresponding to  ports 0 and 2 and exchanges exchanges the physical channels channels corresponding to ports ports 1 and 3. For  example, the Cell.CrsPortMap parameter is set to 4T4P_0213, the mapping between CRS ports and physical channels is

Issue 01 (2019-06-06)

, and the mapping is changed to

Copyright © Huawei Technologies Co., Ltd.

after  24

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

the adjustment. The target carrier of the mapping adjustment function is selected by operators in multi-carrier scenarios. When different power values are set for physical channels, the transmit power values of CRS  ports 0, 1, 2, and 3 depend depend on the baseline transmit power power and power offsets: offsets: l

The baseline transmit power is determined by the system bandwidth, CRS power, Pa, and Pb.

l

The power offsets of ports 0, 1, 2, and 3 are specified by the PDSCHCfg.TxPowerOffsetAnt0 PDSCHCfg. TxPowerOffsetAnt0 , PDSCHCfg. PDSCHCfg.TxPowerOffsetAnt1 TxPowerOffsetAnt1, TxPowerOffsetAnt2 , and PDSCHCfg. TxPowerOffsetAnt3 parameters, PDSCHCfg.TxPowerOffsetAnt2 PDSCHCfg. PDSCHCfg.TxPowerOffsetAnt3 respectively.

The CRS port-channel mapping adjustment function depends on the Cell.CrsPortMap  parameter.. After the Cell.CrsPortMap parameter value is changed, the mapping between CRS  parameter  ports and physical channels channels adjusted by this function is also also changed. The CRS port-channel mapping adjustment function is mutually exclusive with virtual 4T4R  (controlled by the Virtual4T4RSwitch  option of the CellAlgoSwitch. EmimoSwitch  EmimoSwitch  parameter) and single carrier power power sharing for 4T (controlled (controlled by the SINGLE_CA_PWR_SHARE_SW_FOR_4T  option of the PDSCHCfg .TxChnPowerCfgSw  parameter).

5.3 CRS Port Mapping Detection and Reconfiguration (FDD) 5.3.1 Principles 5.3.1.1 Detection and Reconfiguration CRS port mapping detection involves the identification of no-spacing antenna combinations and co-polarization antenna combinations, which are illustrated in Figure 5-2 and described as follows: l

A no-spacing antenna combination consists of antennas with no spacing between them. For example, antennas A and B form a no-spacing antenna combination; antennas C and D form another.

l

A co-polarization antenna combination consists of antennas with the same polarization direction. For example, antennas A and C form a co-polarization antenna combination; antennas B and D form another. Figure 5-2 Physical antennas

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

25

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

The Cell.CrsPortMap parameter setting may not be the optimum. The optimal mapping  principles are: l

The antennas for CRS ports 0 and 2 form a no-spacing antenna combination. The antennas for CRS ports 1 and 3 form another another..

l

The antennas for CRS ports 0 and 1 form a co-polarization antenna combination. The antennas for CRS ports 2 and 3 form another another..

Huawei eNodeBs support CRS port mapping detection and reconfiguration. This function is controlled by the  AutoRecfgSw  AutoRecfgSwitch itch parameter in the STR CRSPORTOPTDET command. l

l

If this switch is on, the eNodeB operates based on whether CRS port mapping detection is successful. The detection result can be queried using the DSP CRSPORTOPTDET command.



If successful (that is, CRS Antenna Port Opt Mapping Detection Result  is COMPLETE) and the current Cell.CrsPortMap parameter setting is not the optimum, the eNodeB automatically reconfigures this parameter.



If unsuccessful (that is, CRS Antenna Port Opt Mapping Detection Result  is not COMPLETE), the eNodeB does not perform any processing.

If this switch is off, the eNodeB checks the Cell.CrsPortMap parameter setting and detects the optimal mapping but does not reconfigure this parameter. parameter. During the detection, the eNodeB identifies co-polarization antenna combinations by selecting UEs in a cell for channel estimation and calculating the correlation between channels. The number of UEs selected per cell per hour is specified by the CrsAntPortOptDetUserNum parameter in the STR CRSPORTOPTDET  command. mand. CRSPORTOPTDET com



Selecting a larger number of UEs will result in more accurate detection results  because there are are more samples for channel estimation. However, However, it may may affect resource allocation in the cell.



Selecting a smaller number of UEs will have a smaller impact on resource allocation in the cell. However, it may affect the accuracy of detection results  because there are are fewer samples samples for channel estimation.

5.3.1.2 Example The connections between antennas and RRUs are shown in Figure 5-3. The initial configuration is presented in the left part of the figure. The Cell.CrsPortMap parameter is set to 4T4P_0321 and the mapping between CRS ports and TX channels is . The antennas for CRS ports 0 and 2 form a co-polarization antenna combination, and the antennas for CRS ports 1 and 3 form another. However However,, the two combinations should be no-spacing antenna combinations to ensure transmit diversity gains. The optimal setting obtained after CRS port mapping detection is 4T4P_0213 and the mapping between CRS ports and TX channels is figure.

Issue 01 (2019-06-06)

, as shown in the right part of the

Copyright © Huawei Technologies Co., Ltd.

26

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Figure 5-3 CRS port mapping reconfiguration

5.3.2 Network Analysis 5.3.2.1 Benefits The CRS port mapping detection and reconfiguration function allows operators to adjust related parameters to adapt to different physical connections without conducting onsite operations. Physical connections between antennas and RF modules are detected based on RX signal strength changes on each antenna at different downtilt angles and correlation between uplink  channels of the UE. RX signal strength and uplink channel correlation are affec affected ted by many factors, for example, antenna downtilt angles, propagation paths, and external interference. Therefore, there may be no results after a detection. In this case, multiple detections are required. If there are still no results after multiple detections, onsite operations are required  because the ambient ambien t environments toofor complex. complex. When UEs are are inDirect a cell these or UEs are aretoat the cell edge, drive-test UEs can beare used detection in thenocell center. UEs the antennas and move them within the range of 50 m to 100 m. During this process, ensure that the UEs are in RRC_CONNECTED mode. The expected detection completion rate is 90%. If there are no detection results after multiple detections, it is recommended that the electrical downtilt angles of antennas be configured for  cells. The detection result error rate does not exceed 1% if detections are successfully completed. The User Downlink Average Throughput increases by 1% to 5% in cells where the actual CRS port mapping is changed to the optimal mapping.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

27

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

5.3.2.2 Impacts Network Impacts If the electrical downtilt angles of antennas are configured for a cell, adjusting the downtilt angles during the detection will have a negative impact of 30% on the basic network KPIs of  LTE. If the antenna system is shared by GSM, UMTS, and LTE, adjusting the downtilt angles of  antennas will affect the network KPIs of GSM and UMTS.

Function Impacts Function Name

Function Switch

Reference

Intelligent power-of power-off  f  of carriers in the same coverage

CellShutdown.CellS   Energy CellShutdown.CellS  hutdownSwitch Conservation and   parameter being set set to  Emission ON  Reduction

Description In "intelligent  power-offf of carriers  power-of in the same coverage" mode, CRS port mapping detection and reconfiguration are not supported. If the conditions for  entering "intelligent  power-offf of carriers  power-of in the same coverage" mode are met in a cell undergoing CRS  port mapping detection, the cell will enter this mode and the detection will be interrupted.

Low power  mode consumption

CellLowPower. Low  Low  PwrSwitch

 Energy Conservation and   Emission  Reduction

In low power mode, consumption CRS port mapping detection and reconfiguration are not supported. If the conditions for  entering low power  consumption mode are met in a cell undergoing CRS  port mapping detection, the cell will enter this mode and the detection will be interrupted.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

28

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Function Name

Function Switch

Reference

Description

RF module regular  time sleep mode

eNodeBAutoPower AutoPowerOffS  Off. AutoPowerOffS  witch

 Energy Conservation and   Emission  Reduction

In RF module regular time sleep mode, CRS port mapping detection and reconfiguration are not supported. If  the conditions for  entering RF module regular time sleep mode are met in a cell undergoing CRS  port mapping detection, the cell will enter this mode and the detection will be interrupted.

Intelligent power-of power-off  f  of carriers in the same coverage as UMTS networks

InterRatCellShutdown.ForceShutdow down. ForceShutdow nSwitch

 Energy In "intelligent Conservation and   power-of  power-offf of carriers  Emission in the same coverage  Reduction

as UMTS networks" mode, CRS port mapping detection and reconfiguration are not supported. If  the conditions for  entering "intelligent  power-offf of carriers  power-of in the same coverage as UMTS networks" mode are met in a cell undergoing CRS  port mapping detection, the cell will enter this mode and the detection will be interrupted.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

29

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Function Name

Function Switch

Reference

Description

Multi-RAT Carrier  Joint Shutdown

 InterRatCellShut InterRatCellShutdown.ForceShutdow nSwitch

 Multi-RAT  Carrier Joint  Shutdown

In Multi-RAT Carrier Joint Shutdown mode, CRS port mapping detection and reconfiguration are not supported. If the conditions for  entering Multi-RAT Carrier Joint Shutdown mode are met in a cell undergoing CRS  port mapping detection, the cell will enter this mode and the detection will be interrupted.

 

5.3.3 Requirements 5.3.3.1 Licenses  None

5.3.3.2 Software Before activating this function, ensure that its prerequisite functions have been activated and mutually exclusive functions have been deactivated. For detailed operations, see the relevant feature documents.

Prerequisite Functions  None

Mutually Exclusive Functions Function Name Virtual 4T4R 

 

Downlink extended CP Uplink extended CP

Issue 01 (2019-06-06)

   

Function Switch

Reference

Virtual4T4RSwitch option of the CellAlgoSwitch. EmimoSwi   EmimoSwi  tch parameter 

Virtual 4T4R (FDD)

 DlCyclicPrefix  Cell. DlCyclicPrefix 

 Extended CP 

Cell.UlCyclicPrefix 

 Extended CP 

Copyright © Huawei Technologies Co., Ltd.

30

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Function Name

Function Switch

Reference

Cell. MultiRruCellFlag   MultiRruCellFlag 

Cell Management 

 NB-IoT cell

None

 NB-IoT Basics (FDD)

RF channel intelligent shutdown

 RfShutdo CellRfShutdown. RfShutdo wnSwitch

 Energy Conservation Conservation and   Emission Reduction

Multi-sector cell

 

 

5.3.3.3 Hardware Base Station Models 3900 and 5900 series base stations are compatible with this function.

Boards 4T4R BBPs can be used, for example, LBBPd2, UBBPd3, UBBPd4, or UBBPd5.

RF Modules 4T4R RF modules or 2T4R RF modules combined for 4T4R can be used. 2T2R RF modules can be used only when certain conditions are met. To find out whether a 2T2R RF module can be used, perform the following steps: st eps: 1.

Run the DSP CELLPHYTOPO command to obtain the cabinet, subrack, and slot numbers of an RF module.

2.

Run the DSP BRDMFRINFO command and check the Description field. If the field value is V3, V6, or KUNLUN, the RF module supports this function.

Active antenna units (AAUs) do not support this function.

Cells Cells must meet the following requirements: l

The cell bandwidth is 5 MHz or more, and an integrated 4T4R antenna is used.

l

The uplink bandwidth is the same as the downlink bandwidth.

l

The uplink CP configuration is the same as the downlink CP configuration.

l

The work mode is neither DL_ONLY DL_ONLY nor LAA, and RF loopback is not enabled.

This function applies only to 4T4R cells, not the following cells: l

2T2R cells

l

8T8R cells

l

Massive MIMO cells

l

SFN cells

l

Cells generated by dividing signals of an RRU and directing them to multiple antennas

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

31

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

This function is not suitable for scenarios with software-defined antennas, vertically stacked antennas, or 4T6S. It is recommended that the electrical downtilt angles of antennas be configured for cells. Such cells must meet the following conditions: l

The antennas support remote electrical tilt (RET) control, and the RRU ports that support RET control are correctly connected to the antenna ports.

l

In separate-MPT scenarios, the RET antennas must be configured on the LTE side.

5.3.3.4 Others  None

5.3.4 Operation and Maintenance 5.3.4.1 Data Configuration 5.3.4.1.1 Data Preparation Table 5-5 5 -5 describes the parameters used for function activation. Table 5-5 5 -5 Parameters used for activation

Parameter Name

Parameter ID

Setting Notes

Automatic Reconfigure Switch

 AutoRecfgSwitch  AutoRecfgSwitch  parameter in the STR  CRSPORTOPTDET command

For detection, turn off this switch.

CrsAntPortOptDetUser Num parameter in the STR  CRSPORTOPTDET

For drive tests in new cells, you are advised to set this parameter  to the maximum value.

command

On commercial networks, set this parameter to its recommended value.

CRS Ant Port Opt Mapping Detection User   Number 

For reconfiguration, turn on this switch.

 

5.3.4.1.2 Using MML Commands

Activation Command Examples //Starting detection STR CRSPORTOPTDET: AutoRecfgSwitch=OFF,CrsAntPortOptDetUserNum=3; //Starting reconfiguration after the detection, which will lead to an automatic cell reset STR CRSPORTOPTDET: AutoRecfgSwitch=ON;

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

32

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Optimization Command Examples The antennas support RET control, and the RRU ports that support RET control are correctly connected to the antenna ports. The following provides an example for setting an antenna device number. //Querying the device number of the RET antenna used by the LTE cell LST RET; //Querying the cabinet, subrack, and slot numbers of the RRU of the LTE cell LST RRU; //Binding the RET antenna to the RRU //For an RRU (RRU RRU (RRU 60) 60) that  that does not share the antenna system with others MOD RETSUBUNIT:DEVICE RETSUBUNIT:DEVICENO=0,SUBUNITNO=1,CONNCN1=0,CONNSRN1=60,CONNSN1=0,CONNPN1=R0A; NO=0,SUBUNITNO=1,CONNCN1=0,CONNSRN1=60,CONNSN1=0,CONNPN1=R0A; //For two 4T4R RRUs (RRUs 60 and 61) that share the same antenna system MOD RETSUBUNIT:DEVICENO=0,SUBUNITNO=1,CONNCN1=0,CONNSRN1=60,CONNSN1=0,CONNPN1=R0A,CONN CN2=0,CONNSRN2=61,CONNSN2=0,CONNPN2=R0A;

5.3.4.2 Verification and Monitoring  Activation Verification Step 1 Run the DSP CRSPORTOPTDET command to query the status of CRS port mapping detection and reconfiguration.

Step 2 Check the output items listed in Table 5-6. ----End Table 5-6 5 -6 Output of CRS port mapping detection and reconfiguration

Field

Description

CRS Antenna Port Opt Mapping Detection Result

Indicates the result of CRS port mapping detection for optimization.

Curr Curren entt C CRS RS Ante Antenn nnaa P Por ortt M Map appi ping ng

Indi Indica cate tess tthe he cu curr rren entt map mappi ping ng betw betwee een n CRS CRS  ports and RRU channels. channels.

Opti Op tima mall C CRS RS Ante Antenn nnaa P Por ortt M Map appi ping ng

Indi Indica cate tess the the opti optima mall m map appi ping ng betw betwee een n CRS CRS  ports and RRU channels. channels.

CRS Opt Det Completion Status

Indicates the CRS detection comple lettion sta tattus of the entire base station.

CRS Optimizatio Optimization n De Detecti tection on P Progre rogress(%) ss(%)

Indicates Indicates the CRS detection detection progress progress of the the entire base station.

  Table 5-7 5 -7 explains the values of CRS Antenna Port Opt Mapping Detection Result .

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

33

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Table 5-7 5 -7 Detection result values

Field Name

Parameter ID

Field Value

CRS Antenna Port Opt Mapping Detection Result

GlobalProcSw  N/A itch.CrsAntPor  tOptDetResult  RUNNING

Meaning   No detection Detecting

FAILURE COMPLETE

Detection failed Detection completed

SCENARIO_NOT_SUPP ORTED

Scenario not supported

FAILURE_HIGHER_PRI ORITY_TASK_DISRUP TION

Detection failed: a higher-priority task  disrupted the detection

FAILURE_TIMEOUT

Detectio ion n failed: timeout

 

Network Monitoring  l Detection completion rate = Number of COMPLETE cells / (Number of COMPLETE cells + Number of FAILURE cells + Number of FAILURE_TIMEOUT cells). In this formula, the numbers are obtained from the CRS Antenna Port Opt Mapping Detection Result. It is recommended that the number of detections for a cell be greater  than 3. As long as one of the detections is successful, the detection for this cell is successful and the cell is counted as a COMPLETE cell. l

l

Detection result error rate = Number of cells where the detected connections are inconsistent with the actual connections / Total number of monitored cells. Spot checks on site can be performed to determine whether the detected connections are consistent with the actual connections. It is recommended that the number of detection samples be greater than 300 and the calculated detection result error rate be rounded down. For  example, if the calculated value is 1.1%, round it down to 1%.   User Downlink Average Throughput

5.4 DL 4-Antenna Transmit Diversity (FDD) This section mainly describes downlink 4-antenna transmit diversity in NB-IoT NB-IoT..

5.4.1 Principles Downlink multiple-antenna transmission is a technique where the eNodeB uses multiple antennas for signal transmission and uses a special algorithm for processing. Transmit diversity is a diversity scheme in which the transmitter uses multiple antennas to send signals and their copies after encoding based on low correlation between spatial channels, time selectivity, and frequency selectivity. The receiver then combines these signals and their copies, which travel through paths at different fading degrees. This process brings diversity gains and improves transmission reliability. reliability. Figure 5-4 shows the downlink 4-antenna transmit diversity. Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

34

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Figure 5-4 Downlink 4-antenna transmit diversity

For NB-IoT, NB-IoT, the mapping of narrowband reference signal (NRS) antenna ports on physical antennas is determined by the mapping of NRS antenna ports on RRU channels. A maximum of two NRS antenna ports are supported. The specific number is specified by the Cell.CrsPortNum parameter. When there are two antenna ports (ports 0 and 1), space frequency block coding (SFBC) is adopted. The mapping between NRS antenna ports and RRU channels is specified by the Cell.CrsPortMap parameter  parameter.. For example, if the TX/RX mode is 4T4R and two NRS antenna  ports are configured, configured, it is recommended that the the Cell. Cell.CrsPortMap CrsPortMap parameter be set to 4T2P_0101 . Thatand is, NRS +45º, -45º, +45º, -45º. antenna ports 0, 0, 1, and 1 are mapped onto physical antennas

Antenna ports mentioned in this document are logical ports used for transmission. They do not have one-to-one relationship with physical antennas. Signals on one antenna port can be transmitted over one or more physical antennas.

5.4.2 Network Analysis 5.4.2.1 Benefits When the transmit power of each RRU channel is limited, the transmit power in 4T2P mode is more likely to double that in 2T2P mode, improving downlink coverage. Assume that downlink 4-antenna transmit diversity uses the same number of NRS antenna  ports as downlink 2-antenna 2-antenna transmit diversity but doubles the total transmit power. power. Then, downlink 4-antenna transmit diversity offers the following benefits: l

Increases the average downlink cell throughput by 10% to 20%.

l

Improves coverage by 1 dB to 3 dB.

l

Reduces the number of occupied downlink subcarriers and the downlink subcarrier  usage.

The preceding benefits are affected by interference from neighboring cells: l

Strong interference from neighboring cells results in an increase in the power in the serving cell and neighboring cells and a nearly imperceptible increase in the signal-tonoise ratio (SNR). Consequently, power gains and capacity gains are small.

l

Weak interference from neighboring cells results in a more significant increase in the  power in the serving cell cell than that in neighboring cells cells as well as a significant significant increase in the SNR. Consequently, power gains and capacity gains are large.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

35

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

The following uses the average downlink cell throughput as an example: l

When interference from neighboring cells is very strong, downlink 4-antenna transmit diversity cannot provide a higher throughput than downlink 2-antenna transmit diversity diversity..

l

When there is no interference from neighboring cells, downlink 4-antenna transmit diversity can provide a throughput 20% higher than downlink 2-antenna transmit diversity.

5.4.2.2 Impacts Network Impacts In LTE in-band deployment, when channel calibration is performed for combined LTE FDD RRUs: l

If the NB-IoT cell is activated, channel calibration affects NB-IoT services. The bit error  rates (BERs) of narrowband physical downlink control channel (NPDCCH) and narrowband physical downlink shared channel (NPDSCH) increase by no more than 10%.

l

In other situations, channel calibration does not affect NB-IoT services.

Function Impacts  None

5.4.3 Requirements 5.4.3.1 Licenses Downlink 4-antenna transmit diversity is a basic function, and therefore is not under license control.

5.4.3.2 Software Prerequisite Functions  None

Mutually Exclusive Functions  None

5.4.3.3 Hardware Base Station Models 3900 and 5900 series base stations are compatible with this function.

Boards BBPs must be UBBPd4/UBBPd5/UBBPd6 or UBBPe2/UBBPe4/UBBPe5/UBBPe6. Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

36

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

RF Modules For the models of RF modules that support NB-IoT NB-IoT,, see technical descriptions in base station  product documentation.

5.4.3.4 Networking  Downlink 4-antenna transmit diversity requires that the eNodeB have at least four transmit channels and at least four physical antennas.

5.4.3.5 Others If physical antennas are combined for use, downlink 4-antenna transmit diversity has the same antenna requirements as uplink 4-antenna receive diversity.

5.4.4 Operation and Maintenance 5.4.4.1 Data Configuration 5.4.4.1.1 Data Preparation Data preparation for downlink 4-antenna transmit diversity is the same as that for uplink 4antenna receive diversity. For details, see 6.2.4.1.1 Data Preparat Preparation ion.

5.4.4.1.2 Using MML Commands Commands Multiple-antenna transmission and reception are configured together when sectors and cells are configured. Command examples for downlink 4-antenna transmit diversity are the same as those for uplink 4-antenna receive diversity. diversity. For details, see 6.2.4.1.3 Using MML Commands (NB-IoT).

5.4.4.1.3 Using the CME For detailed operations, see CME-based Feature Configuration.

5.4.4.2 Verification and Monitoring  5.4.4.2.1 Activation Verification Use the RRU/RFU/BRU output power monitoring function on the U2020 or the output power  monitoring function on the Web LMT to monitor the output power power.. l

In standalone or LTE guard band deployment mode, compare the four NB-IoT channels' output power values displayed with those configured. If the differences are less than 0.5 dB, four antennas are configured for transmission and downlink 4-antenna transmit diversity has been activated.

l

In LTE in-band deployment mode, compare the four LTE FDD channels' output power  values displayed with those configured. If the differences are less than 0.5 dB, four  antennas are configured for transmission and downlink 4-antenna transmit diversity has  been activated.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

37

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

5.4.4.2.2 Network Monitoring  The values of the following performance indicators will increase after downlink 4-antenna transmit diversity is enabled. l

Average downlink MCS index = (1 x L.NB.ChMeas.NPDSCH.MCS.1  + 2 x L.NB.ChMeas.NPDSCH.MCS.2  + ... + 13 x L.NB.ChMeas.NPDSCH.MCS.13 ) / (L.NB.ChMeas.NPDSCH.MCS.0  + L.NB.ChMeas.NPDSCH.MCS.1  + L.NB.ChMeas.NPDSCH.MCS.2  + ... + L.NB.ChMeas.NPDSCH.MCS.13 )

l

Average downlink throughput = L.NB.Thrp.bits.DL / L.NB.Thrp.Time.DL

5.5 DL 2x2 MIMO 5.5.1 Principles Downlink 2x2 MIMO can be used only in cells configured with at least two CRS ports, and only for 2R UEs (UEs with two RX channels), as shown in Figure 5-5. Figure 5-5 Downlink 2x2 MIMO

Table 5-8 5 -8 lists the parameters used for this feature. Table 5-8 5 -8 Parameter used for downlink 2x2 MIMO

Parameter Name CRS Port Number 

 

Maximum number of  MIMO layers MIMO Adaptive Switch

 

Parameter ID

Setting Notes

Cell.CrsPortNum

The value CRS_PORT_2 is recommended.

 MaxM  CellDlschAlgo. MaxM  imoRankPara

Set this parameter to SW_MAX_SM_RANK_2 .

CellMimoParaCfg. M   M  imoAdaptiveSwitch

The value NO_ADAPTIVE  is recommended generally. The value CL_ADAPTIVE  is recommended if the benefits of  closed-loop adaptation have been verified.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

38

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Parameter Name Fixed MIMO Mode

 

Parameter ID

Setting Notes

CellMimoParaCfg.Fi   xedMimoMode

Set this parameter to TM3.

 

5.5.2 Network Analysis 5.5.2.1 Benefits Table 5-9 5 -9 describes the improvements provided by downlink 2x2 MIMO over downlink  single-input single-output (SISO). Table 5-9 5 -9 Improvements provided by downlink 2x2 MIMO

Improvement

Description

Increases downlink peak throughput by approximately 100%.

A single UE far away from the cell center  will experience high gains.

Increases downlink edge throughput.

An cell that UEsentire far away fromaccommodates the cell center many will experience high gains.

Improves downlink cell coverage.

None

  The performance of this feature cannot be ensured in closed-loop transmission mode if RRUs are combined for use or the "RRU Channel Cross Connection Under MIMO" feature is used. Downlink 2x2 MIMO requires that TX channels be connected to physical antennas in different polarization directions. Otherwise, the gains may be reduced.

5.5.2.2 Impacts Network Impacts  None

Function Impacts  None

5.5.3 Requirements

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

39

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

5.5.3.1 Licenses RAT

Feature ID

Feature Name

Model

Sales Unit

FDD

LOFD-001001

DL 2x2 MIMO

LT1S0D2I2O00

Per Cell

 

For FDD, when the Cell.CrsPortNum parameter is set to CRS_PORT_4 or the number of physical antennas is greater than or equal to 4, the license for LOFD-001003 DL 4x2 MIMO needs to be  purchased.  purchase d.

In addition to feature licenses, capacity licenses are required for MIMO. Each BBP is licensed  by default to provide two baseband TX channels channels and two baseband RX channels for each each cell. Each RF module is licensed by default to provide two RF TX channels and two RF RX channels. For details, see License see  License Control Control Item Lists (FDD). (FDD).

5.5.3.2 Software Prerequisite Functions  None

Mutually Exclusive Functions  None

5.5.3.3 Hardware Base Station Models  No requirements

Boards  No requirements

RF Modules  No requirements

5.5.3.4 Others UEs must support 2R.

5.5.4 Operation and Maintenance 5.5.4.1 Data Configuration Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

40

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

5.5.4.1.1 Data Preparation Uplink MIMO and downlink MIMO are configured together in actual applications. Therefore,  both uplink and downlink parameters parameters are listed here here while other parameters parameters for cell setup setup are not. Table 5-10 describes the parameters used for activation using the setup of a 2T2R cell as an example. Table 5-10 5 -10 Parameters used for activation

RAT

Parameter Name

Parameter ID

Setting Notes

FDD

Cell transmission and reception mode

Cell.TxRxMode

Set this parameter to 2T2R .

FDD

CRS Port Number     Cell.CrsPortNum

Set this parameter to CRS_PORT_2.

FDD

Maximum number   of MIMO layers

Set this parameter to SW_MAX_SM_RANK_2 .

CellDlschAlgo. Max   Max   MimoRankPara

 

5.5.4.1.2 Using MML Commands (FDD)

Activation Command Examples Set up a 2T2R cell. //Adding a sector and a set of sector equipment after adding an RRU ADD SECTOR: SECTORID=0, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0A, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0B, CREATESECTOREQM=TRUE, SECTOREQMID=0; ADD SECTOREQM: SECTOREQMID=0, SECTORID=0, ANTCFGMODE=ANTENNAPORT, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0A, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0B, ANTTYPE2=RXTX_MODE; //Adding an FDD cell ADD CELL: LocalCellId=0, CellName="cell0", FreqBand=12, UlEarfcnCfgInd=NOT_CFG, DlEarfcn=5020, UlBandWidth=CELL_BW_N50, DlBandWidth=CELL_BW_N50, CellId=0, PhyCellId=0, FddTddInd=CELL_FDD, RootSequenceIdx=0, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, TxRxMode=2T2R,CrsPortNum=CRS_PORT_2; //Adding cell sector equipment ADD EUCELLSECTOREQM: LocalCellId=0, SectorEqmId=0; //Adding an operator for the cell ADD CELLOP: LocalCellId=0, TrackingAreaId=0; //Setting the maximum number of MIMO layers MOD CELLDLSCHALGO: LocalCellId=0, MaxMimoRankPara=SW_MAX_SM_RANK_2; //Setting a fixed transmission mode for the cell MOD CELLMIMOPARACFG: LocalCellId=0,MimoAdaptiveSwitch=NO_ADAPTIVE,FixedMimoMode=TM3,InitialMimoType=ADA PTIVE; //Activating cell 0 ACT CELL: LocalCellId=0;

Optimization Command Examples  N/A Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

41

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

5.5.4.1.3 Using the CME For detailed operations, see CME-based Feature Configuration.

5.5.4.2 Verification and Monitoring  Activation Verification Use the counters listed in Table 5-11 to monitor downlink MIMO with transmission modes adaptively configured. If any counter has a non-zero value, downlink 2x2 MIMO has taken effect. Table 5-11 Counters used to monitor downlink MIMO with transmission modes adaptively configured

Counter ID

Counter Name

1526727391   L.ChMeas.MIMO.PR  B.CL.Rank1

Counter Description

Corresponding   Feature

Total number of physical resource blocks (PRBs) used for rank 1 transmission in downlink  closed-loop MIMO

DL 2x2 MIMO

1526727392   L.ChMeas.MIMO.PR  B.CL.Rank2

Total number of PRBs used for rank 2 transmission in downlink closed-loop MIMO

1526727393   L.ChMeas.MIMO.PR  B.OL.Rank1

Total number of PRBs used for rank 1 transmission in downlink open-loop MIMO

1526727394   L.ChMeas.MIMO.PR  B.OL.Rank2

Total number of PRBs used for rank 2 transmission in downlink open-loop MIMO

DL 4x2 MIMO DL 4x4 MIMO

 

Network Monitoring   None

5.6 DL 4x2 MIMO (FDD) 5.6.1 Principles Downlink 4x2 MIMO can be used only in only  in a cell configured configured with at least four CRS ports and only for 2R UEs. Figure 5-6 shows downlink 4x2 MIMO.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

42

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Figure 5-6 Downlink 4x2 MIMO

Table 5-12 5 -12 lists the parameters used for this feature. Table 5-12 5 -12 Parameter used for downlink 4x2 MIMO

Parameter Name CRS Port Number 

 

Maximum number of  MIMO layers MIMO Adaptive Switch

 

Parameter ID

Setting Notes

Cell.CrsPortNum

Set this parameter to CRS_PORT_4.

CellDlschAlgo. MaxMimoR  MaxMimoR ankPara

Set this parameter to SW_MAX_SM_RANK_2 .

 MimoA CellMimoParaCfg. MimoA daptiveSwitch

Set this parameter to CL_ADAPTIVE.

 

5.6.2 Network Analysis 5.6.2.1 Benefits Table 5-13 5 -13 describes the benefits offered by downlink 4x2 MIMO. Table 5-13 5 -13 Benefits offered by downlink 4x2 MIMO

Improv Imp roveme ement nt ov over er Downli Downlink nk 2x2 MIMO MIMO

Descri Descripti ption on

Decreases the peak throughput by no more than 2.3%.

 None

Increases the Cell Downlink Average Throughput by up to 15%.

For a single UE, the farther away it is from the cell center, the higher the gains are.

Increases the downlink edge throughput by 10% to 40%.

Improves the downlink cell coverage.

For a cell, the more cell-edge users (CEUs) it accommodates, the higher the gains are. None

  Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

43

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Downlink 4x2 MIMO requires that the feeders between physical antennas and RRUs be of the same type, the feeders be shorter than 75 m, and the difference in length between the feeders  be less than 1 m.

5.6.2.2 Impacts Network Impacts  None

Feature Impacts  None

5.6.3 Requirements 5.6.3.1 Licenses Feature ID

Feature Name

Model

Sales Unit

LOFD-001005

UL 44-Antenna Receive Diversity

LT1S0U4ARD00

Per Cell

LOFD-001001

DL 2x2 MIMO

LT1S0D2I2O00

Per Cell

LOFD-001003

DL 4x2 MIMO

LT1S0D4I2O00

Per Cell

  In addition to feature licenses, capacity licenses are required for MIMO. Each BBP is licensed  by default to provide two baseband TX channels channels and two baseband RX channels for each each cell. Each RF module is licensed by default to provide two RF TX channels and two RF RX channels. For details, see License see  License Control Control Item Lists (FDD). (FDD).

5.6.3.2 Software Prerequisite Functions  None

Mutually Exclusive Functions  None

5.6.3.3 Networking  The networking requirements for downlink 4x2 MIMO are the same as those for downlink  4x4 MIMO. For details, see 5.7.3.4 Networking (FDD).

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

44

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

5.6.3.4 Hardware Base Station Models This function requires 3900 or 5900 series base stations.

Boards This function requires 4T4R BBPs.

RF Modules  No requirements

5.6.3.5 Others UEs must support 2R. To achieve stable benefits from closed-loop MIMO, it is recommended that RRU ports and antenna ports be connected using jumpers (or feeders) with the same length, regardless of  whether integrated or combined RRUs are used. If one or more jumpers (or feeders) are connected to a combiner, it is required that the difference in delay between channels induced  by the combiner and jumpers jumpers (or feeders) feeders) meet the requirements requirements in Table 5-14 5 -14. Table 5-14 5 -14 Requirements for inter-channel inter-channel delay difference difference

System Bandwidth

Requirements for Inter-Channel Delay Difference

20 MHz

Less than 10 ns

15 MHz

Less than 13.3 ns

10 MHz

Less than 20 ns

5 MHz

Less than 40 ns

≤ 3 MHz

Less than 65 ns

  If the inter-channel delay difference does not meet the preceding requirements, there will be a significant deterioration in the performance of downlink 4x2 MIMO in closed-loop mode. The larger the delay difference, the higher the degree of deterioration. Assume that the  bandwidth is 10 MHz and inter-channel inter-channel delay delay difference difference is introduced at ports ports D and B. Then, the delay difference affects performance, performance, as listed in Table 5-15.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

45

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Table 5-15 5 -15 Impact of inter-channel delay difference on performance

Inter-Channel Delay Difference

Average Throughput (Mbit/s)

Average SINR (dB)

Proportion of Rank 2 Transmissions

Throughput Change

4x2 MIMO (baseline)

29.78

11.41

70.87%

-

4x2 MIMO + 10 ns

29.78

11.22

69.64%

Remains unchanged

4x2 MIMO + 20 ns

28.59

11.06

61.31%

-4.00%

4x2 MIMO + 30 ns

23.75

11.21

34.86%

-20.25%

4x2 MIMO + 50 ns

22.37

11.34

33.96%

-24.88%

 

The preceding test results are reference only forchange estimating of inter-channel delay difference on 4T performance. The results will withthe testimpact conditions. If combiners are required in engineering, note the following: l

l

It is recommended that other channels be connected to the same types of combiners to ensure that the inter-channel delay difference meets the requirements in the preceding table. However, this solution increases component costs and engineering costs. If other channels are not connected to combiners, you need to measure the delay induced  by the existing combiner, combiner, estimate the delay difference difference caused caused by the difference difference between  jumpers (and feeders), feeders), and use MML commands commands to provide delay compensation compensation for other  channels. This solution requires a vector network analyzer (VNA) for combiner delay measurement.

5.6.4 Operation and Maintenance 5.6.4.1 Data Configuration 5.6.4.1.1 Data Preparation In actual applications, uplink MIMO and downlink MIMO are configured together. together. Therefore,  both uplink and downlink parameters parameters are listed here here while other cell-setup cell-setup parameters are are not. Table 5-16 5 -16 describes the parameters used for activation using the setup of a 4T4R cell as an example.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

46

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Table 5-16 5 -16 Parameters used for activation

Parameter Name

Parameter ID

Option

Setting Notes

Cell transmission and reception mode

Cell.TxRxMode

 None

Set this parameter to 4T4R .

CRS Port  Number 

Cell.CrsPortNum

 None

Set this parameter to CRS_PORT_4.

CRS Antenna Port Mapping

Cell.CrsPortMap

 None

Set this parameter to NOT_CFG.

Maximum number of  MIMO layers

CellDlschAlgo. Ma  Ma  xMimoRankPara

 None

Set this parameter to SW_MAX_SM_RANK   _2.

Compatibility Control Switch

ENodeBAlgoSwitc h.CompatibilityCtrl   Switch

Tm3Tm4Max4La yerCtrlSwitch

Select this option.

 

5.6.4.1.2 Using MML Commands

Activation Command Examples Change 2T2R and 2T4R cells to 4T4R cells. l

Changing a 2T2R cell to a 4T4R cell

//Deactivating cell 0 DEA CELL: LocalCellId=0; //Modifying sector and sector equipment configurations MOD SECTOR: SECTORID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D; MOD SECTOREQM: SECTOREQMID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D, ANTTYPE2=RXTX_MODE; //Changing the number of CRS ports and CRS port mapping. This is a high-risk operation and you are advised to use the following parameter settings when setting up the cell. MOD CELL: LocalCellId=0, CrsPortNum=CRS_PORT_4, TxRxMode=4T4R, CrsPortMap=NOT_CFG; //Setting the maximum number of MIMO layers MOD CELLDLSCHALGO: LocalCellId=0,MaxMimoRankPara=SW_MAX_SM_RANK_2; //Setting a fixed transmission mode for the cell MOD CELLMIMOPARACFG: LocalCellId=0,MimoAdaptiveSwitch=NO_ADAPTIVE,FixedMimoMode=TM4,InitialMimoType=ADA PTIVE; //Enabling MIMO at a maximum of four layers for UEs of categories 6 or higher (not category 5) MOD ENODEBALGOSWITCH: COMPATIBILITYCTRLSWITCH=Tm3Tm4Max4LayerCtrlSwitch-1; //Activating cell 0 ACT CELL: LocalCellId=0;

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

47

 

eRAN MIMO Feature Parameter Description l

5 Downlink MIMO

Changing a 2T4R cell to a 4T4R cell

//Deactivating cell 0 DEA CELL: LocalCellId=0; //Modifying sector and sector equipment configurations MOD SECTOREQM: SECTOREQMID=0, OPMODE=DELETE, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D; MOD SECTOREQM: SECTOREQMID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D, ANTTYPE2=RXTX_MODE; //Changing the number of CRS ports and CRS port mapping. This is a high-risk operation and you are advised to use the following parameter settings when setting up the cell. MOD CELL: LocalCellId=0, CrsPortNum=CRS_PORT_4, TxRxMode=4T4R, CrsPortMap=NOT_CFG; //Setting the maximum number of MIMO layers MOD CELLDLSCHALGO: LocalCellId=0,MaxMimoRankPara=SW_MAX_SM_RANK_2; //Setting a fixed transmission mode for the cell MOD CELLMIMOPARACFG: LocalCellId=0,MimoAdaptiveSwitch=NO_ADAPTIVE,FixedMimoMode=TM4,InitialMimoType=ADA PTIVE; //Enabling MIMO at a maximum of four four layers for UEs of categories 6 or higher (not category 5) MOD ENODEBALGOSWITCH: COMPATIBILITYCTRLSWITCH=Tm3Tm4Max4LayerCtrlSwitch-1; //Activating cell 0 ACT CELL: LocalCellId=0;

Optimization Command Examples //Turning on switches related to CQI reporting optimization MOD CELLCQIADAPTIVECFG: LocalCellId=x, CqiPeriodAdaptive=ON, HoAperiodicCqiCfgSwitch=ON,SimulAckNackAndCqiSwitch=ON; MOD CELLALGOSWITCH: LocalCellId=0, DlSchSwitch=AperiodicCqiTrigOptSwitch-1; //Turning on the ApCqiAndAckAbnCtrlSwitch MOD ENODEBALGOSWITCH: CompatibilityCtrlSwitch=ApCqiAndAckAbnCtrlSwitch-1;

5.6.4.1.3 Using the CME For detailed operations, see CME-based Feature Configuration.

5.6.4.2 Verification and Monitoring  Activation Verification Use the counters listed in Table 5-17 to monitor downlink MIMO with transmission modes adaptively configured. If any counter has a non-zero value, downlink 4x2 MIMO has taken effect.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

48

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Table 5-17 5 -17 Counters used to monitor downlink MIMO with transmission modes adaptively configured

Counter ID

Counter Name

1526727391   L.ChMeas.MIMO.PR  B.CL.Rank1

Counter Description

Corresponding   Feature

Total number of physical resource blocks (PRBs) used for rank 1 transmission in downlink  closed-loop MIMO

DL 2x2 MIMO

1526727392   L.ChMeas.MIMO.PR  B.CL.Rank2

Total number of PRBs used for rank 2 transmission in downlink closed-loop MIMO

1526727393   L.ChMeas.MIMO.PR  B.OL.Rank1

Total number of PRBs used for rank 1 transmission in downlink open-loop MIMO

1526727394   L.ChMeas.MIMO.PR  B.OL.Rank2

Total number of PRBs used for rank 2 transmission in

DL 4x2 MIMO DL 4x4 MIMO

downlink open-loop MIMO  

Network Monitoring   None

5.7 DL 4x4 MIMO 5.7.1 Principles Downlink 4x4 MIMO can be used only in cells configured with at least four CRS ports, and only for 4R UEs. Figure 5-7 shows downlink 4x4 MIMO. Figure 5-7 Downlink 4x4 MIMO

5 -18 lists the parameters used for this feature. Table 5-18 Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

49

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Table 5-18 5 -18 Parameter used for downlink 4x4 MIMO

Parameter Name CRS Port Number 

 

Maximum number of  MIMO layers MIMO Adaptive Switch

 

Parameter ID

Setting Notes

Cell.CrsPortNum

Set this parameter to CRS_PORT_4.

CellDlschAlgo. MaxMimoR  MaxMimoR ankPara

Set this parameter to SW_MAX_SM_RANK_4 .

CellMimoParaCfg. MimoA  MimoA daptiveSwitch

Set this parameter to CL_ADAPTIVE.

  Downlink 4x4 MIMO supports scheduling of a maximum of four layers. If the UE category is 6 or higher (excluding 8 and 14), the maximum number of layers in TM3 or TM4 is controlled by the Tm3Tm4Max4LayerCtrlSwitch option of the ENodeBAlgoSwitch.CompatibilityCtrlSwitch parameter: l

If this option is selected, a maximum of four layers can be scheduled (that is, ranks 1 to 4 are supported).

l

If this option is deselected, a maximum of two layers can be scheduled (that is, ranks 1 and 2 are supported).

5.7.2 Network Analysis 5.7.2.1 Benefits Downlink 4x4 MIMO increases the downlink peak throughput by throughput by approximately 100% compared with downlink 2x2 MIMO. Table 5-19 5 -19 describes the other improvements over  downlink 2x2 MIMO. Table 5-19 5 -19 (FDD) Improvements of downlink 4x4 MIMO over downlink 2x2 MIMO

Transmission Mode

Average Downlink Throughput

Downlink Edge Throughput

Description

Open-loop

Increases by 20% to 60%.

Increases by 30% to 70%.

A single UE far away from the cell center will experience high gains.

Closed-loop

Increases by 50% to 90%.

Increases by 50% to 120%

An entire cell that accommodates many UEs far away from the cell center will experience high gains.

 

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

50

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Table 5-20 5 -20 (TDD) Improvements of downlink 4x4 MIMO over downlink 2x2 MIMO

Transmission Mode

Average Downlink Throughput

Description

TM4

Increases by 20% to 60%.

The better the channel quality, the higher the gain. The higher the proportion of 4R  UEs, the higher the gain.

  Downlink 4x4 MIMO requires that the feeders between physical antennas and RRUs be of the same type, the feeders be shorter than 75 m, and the difference in length between the feeders  be less than 1 m.

5.7.2.2 Impacts Network Impacts For FDD, there is no impact.

Function Impacts RAT

Function Name

Function Switch

FDD

DL 256QAM

Dl256Qam  Modulation Schemes Switch option of  the CellAlgoSw itch. Dl256   Dl256  QamAlgoS  witch  parameter 

TDD

Reference

Description A UE that supports both downlink 4x4 MIMO and 256QAM may not meet the requirements for 256QAM after entering 4x4 MIMO mode. As a result, 256QAM may offer lower or even no gains.

 

5.7.3 Requirements 5.7.3.1 Licenses RAT

Feature ID

Feature Name

Model

Sales Unit

FDD

LOFD-001001

DL 2x2 MIMO

LT1S0D2I2O00

Per Cell

FDD

LOFD-001003

DL 4x2 MIMO

LT1S0D4I2O00

Per Cell

FDD

LOFD-001060

DL 4x4 MIMO

LT1S0DMIMO 00

Per Cell

  Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

51

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

In addition to feature licenses, capacity licenses are required for MIMO. Each BBP is licensed  by default to provide two baseband TX channels channels and two baseband RX channels for each each cell. Each RF module is licensed by default to provide two RF TX channels and two RF RX channels. For details, see License see  License Control Control Item Lists (FDD). (FDD).

5.7.3.2 Software Before activating this function, ensure that its prerequisite functions have been activated and mutually exclusive functions have been deactivated. For detailed operations, see the relevant feature documents.

Prerequisite Functions  None

Mutually Exclusive Functions RAT

Function Name

Function Switch

Reference

FDD

None

None

None

 

5.7.3.3 Hardware Base Station Models This function requires 3900 or 5900 series base stations.

Boards This function requires 4T BBPs.

RF Modules  No requirements

5.7.3.4 Networking (FDD) In FDD, adjust antennas for 4T4R in the following scenarios: l

Reducing the antenna installation space Replace the original separated antennas with an integrated antenna, as shown in Figure 5-8. When using an integrated antenna for cells 1 and 2 in state 1, adjust the downtilt angles and azimuths, making them consistent between the cells.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

52

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Figure 5-8 Reconstruction for reducing the antenna installation space

l

Utilizing the original antennas When only two antenna ports are assigned to the original cells, use two more antenna  ports for the new 4T4R cell, cell, as shown in Figure 5-9.  Note the following regarding regarding state 3:



Case 1 (each 2T2R cell is changed to a 4T4R cell) Adjust the antenna downtilt angles of at least one cell. The downtilt angles must be



consistent between the two cells so that the signals of all antennas can be combined. Case 2 (cell 2 is changed from 2T4R to 4T4R) Adjust the antenna downtilt angles of cell 2 to the same direction so that tthe he 4T effects can be ensured.

Figure 5-9 Reconstruction for utilizing the original antennas

The differences in gains when moving between the different states in Figure 5-8 and Figure 5-9 are as follows: Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

53

 

eRAN MIMO Feature Parameter Description l

5 Downlink MIMO

From state 1 to state 2, there may be no gains or even performance loss during the adjustment of downtilt angles and azimuths. To achieve an overall improvement on 2T2R, ensure that the basic performance does not deteriorate during the adjustment.

l

From state 2 to state 3, there will be gains after 4T4R is deployed.

5.7.3.5 Others UEs must comply with 3GPP Release 10 or later and support 4R. To achieve stable benefits from closed-loop MIMO, it is recommended that RRU ports and antenna ports be connected using jumpers (or feeders) with the same length, regardless of  whether integrated or combined RRUs are used. If one or more jumpers (or feeders) are connected to a combiner, it is required that the difference in delay between channels induced 5 -21.  by the combiner and jumpers jumpers (or feeders) meet the requirements requirements in Table 5-21 Table 5-21 5 -21 Requirements for inter-channel inter-channel delay difference difference

System Bandwidth

Requirements for Inter-Channel Delay Difference

20 MHz

Less than 10 ns

15 MHz

Less than 13.3 ns

10 MHz

Less than 20 ns

5 MHz

Less than 40 ns

≤ 3 MHz

Less than 65 ns

  If the inter-channel delay difference does not meet the preceding requirements, there will be a significant deterioration in the performance of downlink 4x4 MIMO in closed-loop mode. The larger the delay difference, the higher the degree of deterioration. Assume that the  bandwidth is 10 MHz and inter-channel inter-channel delay delay difference difference is introduced at ports ports D and B. Then, the delay difference affects performance, performance, as listed in Table 5-22. Table 5-22 5 -22 Impact of inter-channel delay difference on performance

Issue 01 (2019-06-06)

Inter-Channel Delay Difference

Average Throughput (Mbit/s)

Average SINR (dB)

Proportion of Rank 2 Transmissions

Throughput Change

4x4 MIMO (baseline)

29.78

11.41

70.87%

-

4x4 MIMO + 10 ns

29.78

11.22

69.64%

Remains unchanged

4x4 MIMO + 20 ns

28.59

11.06

61.31%

-4.00%

Copyright © Huawei Technologies Co., Ltd.

54

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

Inter-Channel Delay Difference

Average Throughput (Mbit/s)

Average SINR (dB)

Proportion of Rank 2 Transmissions

Throughput Change

4x4 MIMO + 30 ns

23.75

11.21

34.86%

-20.25%

4x4 MIMO + 50 ns

22.37

11.34

33.96%

-24.88%

  The preceding test results are reference only for estimating the impact of inter-channel delay difference on 4T performance. The results will change with test conditions. If combiners are required in engineering, note the following: l

l

It is recommended that other channels be connected to the same types of combiners to ensure that the inter-channel delay difference meets the requirements in the preceding table. However, this solution increases component costs and engineering costs. If other channels are not connected to combiners, you need to measure the delay induced  by the existing combiner, combiner, estimate the delay difference difference caused caused by the difference difference between  jumpers (and feeders), feeders), and use MML commands commands to provide delay compensation compensation for other  channels.. This solut channels solution ion requires a VNA for combiner delay measurement.

5.7.4 Operation and Maintenance 5.7.4.1 Data Configuration 5.7.4.1.1 Data Preparation In actual applications, uplink MIMO and downlink MIMO are configured together together.. Therefore,  both uplink and downlink parameters parameters are listed here here while other cell-setup cell-setup parameters are are not. 5 -23 describes the parameters used for activation using the setup of a 4T4R cell as an Table 5-23 example. Table 5-23 5 -23 Parameters used for activation

Issue 01 (2019-06-06)

RAT

Parameter Name

Parameter ID

Option

Setting Notes

FDD

Cell transmission and reception mode

Cell.TxRxMod  e

 None

Set this parameter to 4T4R .

FDD

CRS Port  Number 

Cell.CrsPortNu  None m

Set this parameter to CRS_PORT_4.

FDD

CRSMapping Antenna Port

Cell.CrsPortM  ap

 None

Set this parameter to NOT_CFG .

Copyright © Huawei Technologies Co., Ltd.

55

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

RAT

Parameter Name

Parameter ID

Option

Setting Notes

FDD

Maximum number of  MIMO layers

CellDlschAlgo.  MaxMimoRan kPara

 None

Set this parameter to SW_MAX_SM_RANK   _4.

FDD

Compatibility Control Switch

ENodeBAlgoS witch.Compati  bilityCtrlSwitch

Tm3Tm4Max4 LayerCtrlSwitc h

Select this option.

 

5.7.4.1.2 Using MML Commands (FDD)

Activation Command Examples Change 2T2R and 2T4R cells to 4T4R cells. l

Changing a 2T2R cell to a 4T4R cell

//Deactivating cell 0 DEA CELL: LocalCellId=0; //Modifying sector and sector equipment configurations MOD SECTOR: SECTORID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D; MOD SECTOREQM: SECTOREQMID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D, ANTTYPE2=RXTX_MODE; //Changing the number of CRS ports and CRS port mapping. This is a high-risk operation and you are advised to use the following parameter settings when setting up the cell. MOD CELL: LocalCellId=0, CrsPortNum=CRS_PORT_4, TxRxMode=4T4R, CrsPortMap=NOT_CFG; //Setting the maximum number of MIMO layers MOD CELLDLSCHALGO: LocalCellId=0,MaxMimoRankPara=SW_MAX_SM_RANK_4; //Setting a fixed transmission mode for the cell MOD CELLMIMOPARACFG: LocalCellId=0,MimoAdaptiveSwitch=NO_ADAPTIVE,FixedMimoMode=TM4,InitialMimoType=ADA PTIVE; //Enabling MIMO at a maximum of four layers for UEs of categories 6 or higher (not category 5) MOD ENODEBALGOSWITCH: COMPATIBILITYCTRLSWITCH=Tm3Tm4Max4LayerCtrlSwitch-1; //Activating cell 0 ACT CELL: LocalCellId=0; l

Changing a 2T4R cell to a 4T4R cell

//Deactivating cell 0 DEA CELL: LocalCellId=0; //Modifying sector and sector equipment configurations MOD SECTOREQM: SECTOREQMID=0, OPMODE=DELETE, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D; MOD SECTOREQM: SECTOREQMID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D, ANTTYPE2=RXTX_MODE; //Changing theyou number CRS ports and CRS port mapping. Thissettings is a high-risk operation and are of advised to use the following parameter when setting up the cell.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

56

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

MOD CELL: LocalCellId=0, CrsPortNum=CRS_PORT_4, TxRxMode=4T4R, CrsPortMap=NOT_CFG; //Setting the maximum number of MIMO layers MOD CELLDLSCHALGO: LocalCellId=0,MaxMimoRankPara=SW_MAX_SM_RANK_4; //Setting a fixed transmission mode for the cell MOD CELLMIMOPARACFG: LocalCellId=0,MimoAdaptiveSwitch=NO_ADAPTIVE,FixedMimoMode=TM4,InitialMimoType=ADA PTIVE; //Enabling MIMO at a maximum of four layers for UEs of categories 6 or higher (not category 5) MOD ENODEBALGOSWITCH: COMPATIBILITYCTRLSWITCH=Tm3Tm4Max4LayerCtrlSwitch-1; //Activating cell 0 ACT CELL: LocalCellId=0;

Optimization Command Examples //Turning on switches related to CQI reporting optimization MOD CELLCQIADAPTIVECFG: LocalCellId=x, CqiPeriodAdaptive=ON, HoAperiodicCqiCfgSwitch=ON,SimulAckNackAndCqiSwitch=ON; MOD CELLALGOSWITCH: LocalCellId=0, DlSchSwitch=AperiodicCqiTrigOptSwitch-1; //Turning on the ApCqiAndAckAbnCtrlSwitch MOD ENODEBALGOSWITCH: CompatibilityCtrlSwitch=ApCqiAndAckAbnCtrlSwitch-1;

5.7.4.1.3 Using the CME For detailed operations, see CME-based Feature Configuration.

5.7.4.2 Verification and Monitoring  Activation Verification 5 -24 to monitor downlink MIMO with transmission modes Use the counters listed in Table 5-24 adaptively configured. If any counter related to rank 3 or 4 has a non-zero value, downlink  4x4 MIMO has taken effect. Table 5-24 5 -24 Counters used to monitor downlink MIMO with transmission modes adaptively configured

Counter ID

Counter Name

1526727391   L.ChMeas.MIMO.PR  B.CL.Rank1

Corresponding   Feature

Total number of physical resource blocks (PRBs) used for rank 1 transmission in downlink  closed-loop MIMO

DL 2x2 MIMO

1526727392   L.ChMeas.MIMO.PR  B.CL.Rank2

Total number of PRBs used for rank 2 transmission in downlink closed-loop MIMO

1526727393   L.ChMeas.MIMO.PR 

Total number of PRBs used

B.OL.Rank1

Issue 01 (2019-06-06)

Counter Description

DL 4x2 MIMO DL 4x4 MIMO

for rank 1 transmission in downlink open-loop MIMO

Copyright © Huawei Technologies Co., Ltd.

57

 

eRAN MIMO Feature Parameter Description

Counter ID

5 Downlink MIMO

Counter Name

Counter Description

1526727394   L.ChMeas.MIMO.PR  B.OL.Rank2

Total number of PRBs used for rank 2 transmission in downlink open-loop MIMO

1526728174   L.ChMeas.MIMO.PR  B.CL.Rank3

Total number of PRBs used for rank 3 transmission in downlink closed-loop MIMO

1526728175   L.ChMeas.MIMO.PR  B.CL.Rank4

Total number of PRBs used for rank 4 transmission in downlink closed-loop MIMO

1526728176   L.ChMeas.MIMO.PR  B.OL.Rank3

Total number of PRBs used for rank 3 transmission in downlink open-loop MIMO

1526728177   L.ChMeas.MIMO.PR  B.OL.Rank4

Total number of PRBs used for rank 4 transmission in downlink open-loop MIMO

Corresponding   Feature

DL 4x4 MIMO

 

Network Monitoring   None

5.8 TX Channel Calibration If the delay between TX signals increases, the performance of closed-loop MIMO deteriorates. If two RRUs are combined to serve a cell, TX channel calibration must be used to align the TX channels of the t he RRUs. TX channel calibration does not require the hardware modification of RRUs and physical antennas but requires software upgrade. It depends on the coupling of air interface signals  between physical antennas. antennas. In addition, it has the following requirements: l

RRU: Combined 2T2R RRUs or 2T4R RRUs (FDD) work in the same frequency band and connect to the same BBP. BBP. In the current version, TX channel calibration can be used on combined RRU3942 modules.

l

BBP: The BBP must be LBBPd, UBBPd, or UBBPe.

l

Physical antenna: An integrated antenna with four ports is recommended. Two Two physical antennas each with two ports can also be used, with a horizontal spacing of not greater  than 5 m. Physical antennas cannot be installed vertically.

l

Cell: The cell is a 4T4R cell, and the Cell. MultiRruCellFlag   MultiRruCellFlag  parameter  parameter is set to BOOLEAN_FALSE. The cell cannot be a 2T2R, 2T4R, or multi-RRU cell.

l

 Networking mode: RRU channels channels and physical antennas antennas are connected connected in non-crossconnection mode, as shown in Figure 5-10. CPRI ports can use the star or cascaded topology.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

58

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

TX channel calibration cannot be used on combined 1T2R RRUs. Therefore, open-loop 2x2 MIMO is recommended but closed-loop 2x2 MIMO is not recommended on commercial networks.

Figure 5-10 Example of topology for TX channel calibration

TX channel calibration is controlled by the RruJointCalParaCfg.TxChnCalSwitch  parameter: l

When the RruJointCalParaCfg.TxChnCalSwitch parameter is set to OFF: TX channel calibration is disabled, and the throughput of closed-loop 4x2 or 4x4 MIMO cannot be ensured.

l

When the RruJointCalParaCfg.TxChnCalSwitch parameter is set to ON: The first TX channel calibration starts after a cell is set up. Subsequent TX channel calibration is performed periodically. The throughput of closed-loop 4x2 or 4x4 MIMO increases by up to 30%. During the calibration (lasting for less than 1s), the downlink  throughput slightly decreases (by less than 5%) and the uplink throughput of cell edge users (CEUs) also decreases. The RruJointCalParaCfg.TxChnCalTime  and RruJointCalParaCfg.TxChnCalPeriod   parameters specify specify the local time and period period of TX channel calibration, calibration, respectively. respectively.

The DSP CELLCALIBRATION command can be used to query the calibration time, type, and effect of the last 10 TX channel calibrations.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

59

 

eRAN MIMO Feature Parameter Description

5 Downlink MIMO

5.9 Downlink-Only Module Channel Calibration (FDD) According to protocols, certain LTE LTE bands such as Band 29 and Band 32 include only downlink bands but no uplink bands. Cells served by RF modules working in these bands (such as 4T0R RF modules) have only downlink functions but no uplink functions. When closed-loop MIMO is used for 4T cells served by 4T0R RF modules, downlink channel calibration needs to be supported to implement strict alignment of TX channels between RF modules and improve downlink performance. To implement downlink-only module channel calibration, the following conditions must be met: l

BBPs must be UBBPe.

l

Cells must be 4T4R cells and the Cell. MultiRruCellFlag   MultiRruCellFlag  parameter  parameter is set to BOOLEAN_FALSE.

Downlink-only module channel calibration is controlled by the RruJointCalParaCfg. AauPassivePortCalibPeriod   AauPassivePortCalibPeriod  parameter.  parameter. l

When this parameter is set to 0, downlink-only module channel calibration does not take effect and the average downlink cell throughput of downlink 4x2 and 4x4 closed-loop MIMO is not guaranteed.

l

When this parameter is set to a non-zero value, downlink-only module channel calibration takes effect. The eNodeB periodically calibrates TX channels; the period is specified by this parameter. parameter. After downlink-only module channel calibration is enabled, the average downlink cell throughput of downlink 4x2 and 4x4 closed-loop MIMO can increase by up to 10%.

The DSP CELLCALIBRATION command can be used to query the calibration time, type (initial or periodic calibration), and result of the last 10 channel calibrations.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

60

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6

 Uplink MIMO

Uplink MIMO is a multiple-antenna reception technology of the eNodeB. It is used to provide the following solutions: receive diversity, diversity, multi-user MIMO (MU-MIMO), and single-user  MIMO (SU-MIMO). Figure 6-1 illustrates these solutions using uplink 2-antenna reception as an example. Figure 6-1 Uplink 2-antenna reception

6.1 UL 2-Antenna Receive Diversity 6.1.1 Principles Uplink 2-antenna receive diversity requires a cell to have at least two RX channels. The two RX channels receive the same signal of a UE from different directions to improve reception quality,, as shown in Figure 6-2. quality

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

61

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Figure 6-2 Uplink 2-antenna receive diversity

Uplink 2-antenna receive diversity can be deployed in 1T2R or 2T2R cells. The numbers of  TX and RX channels provided by the hardware must be greater than or equal to the numbers of TX and RX channels in the cell. The TX/RX mode of a cell is specified by the Cell.TxRxMode parameter.

6.1.1.1 1T2R Cell A 1T2R cell is set up on a 1T2R sector. A 1T2R sector can be served by a 1T2R RRU. This RRU is connected to the baseband unit (BBU) through optical fibers and to the physical antenna through feeders, as shown in Figure 6-3. Figure 6-3 1T2R sector deployment

A 1T2R sector can also be served by a 2T2R or higher-order RRU: l

Issue 01 (2019-06-06)

If a 2T2R or higher-order RRU is used, the redundant TX or RX channels can be used for other sectors. Copyright © Huawei Technologies Co., Ltd.

62

 

eRAN MIMO Feature Parameter Description l

6 Uplink MIMO

If a 2T4R or 4T4R RRU is used, the 1T2R sector can be set up only on channels A and C or channels B and D.

6.1.1.2 2T2R Cell Integrated RRU A 2T2R cell is set up on a 2T2R sector. A 2T2R sector can be served by a 2T2R RRU. Figure 6-4 illustrates the deployment. Figure 6-4 2T2R sector deployment (with an integrated RRU)

A 2T2R sector can also be served by a 2T4R or higher-order RRU: l

If a 2T4R or higher-order RRU is used, the redundant TX or RX channels can be used for other sectors.

l

If a 2T4R RRU is used, the 2T2R sector can be set up only on channels A and B.

l

If a 4T4R RRU is used, it is recommended that the 2T2R sector be set up on channels A and C, channels B and D, or channels A and B. All channels involved must work in TX/RX mode.

Combined RRUs A 2T2R sector can be served by two 1T2R RRUs. Figure 6-5 illustrates the deployment.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

63

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Figure 6-5 2T2R sector deployment (with combined RRUs)

6.1.2 Network Analysis 6.1.2.1 Benefits Uplink 2-antenna receive diversity is a basic feature. Its benefits are not detailed here.

6.1.2.2 Impacts Network Impacts  None

Function Impacts  None

6.1.3 Requirements 6.1.3.1 Licenses The TX/RX capabilities of cells depend on the TX/RX capabilities of baseband processing units (BBPs). For the TX/RX capabilities of BBPs, see Hardwar see Hardwaree Description in Description in product documentation. Each BBP is licensed by default to provide two baseband TX channels and two baseband RX channels for each cell. Each RF module is licensed by default to provide two RF TX channels and two RF RX channels. Therefore, 2T2R cell setup does not require additional licenses. Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

64

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6.1.3.2 Software Prerequisite Functions  None

Mutually Exclusive Functions  None

6.1.3.3 Hardware Base Station Models  No requirements

Boards  No requirements

RF Modules  No requirements

6.1.3.4 Others  None

6.1.4 Operation and Maintenance 6.1.4.1 Data Configuration 6.1.4.1.1 Data Preparation Uplink MIMO and downlink MIMO are configured together in actual applications. Therefore,  both uplink and downlink parameters parameters are listed here here while other parameters parameters for cell setup are not. Table 6-1 describes the parameters used for activation using the setup of a 2T2R cell as an example. Table 6-1 6 -1 Parameters used for activation

Issue 01 (2019-06-06)

RAT

Parameter Name

Parameter ID

Setting Notes

FDD

Cell transmission and reception mode

Cell.TxRxMode

Set this parameter to 2T2R .

FDD

CRS Port Number     Cell.CrsPortNum

Set this parameter to CRS_PORT_2.

FDD

Maximum number   of MIMO layers

Set this parameter to SW_MAX_SM_RANK_2 .

CellDlschAlgo. Max   Max   MimoRankPara

Copyright © Huawei Technologies Co., Ltd.

65

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

 

6.1.4.1.2 Using MML Commands (FDD)

Activation Command Examples Set up a 2T2R cell. //Adding a sector and a set of sector equipment after adding an RRU ADD SECTOR: SECTORID=0, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0A, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0B, CREATESECTOREQM=TRUE, SECTOREQMID=0; ADD SECTOREQM: SECTOREQMID=0, SECTORID=0, ANTCFGMODE=ANTENNAPORT, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0A, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0B, ANTTYPE2=RXTX_MODE; //Adding an FDD cell ADD CELL: LocalCellId=0, CellName="cell0", FreqBand=12, UlEarfcnCfgInd=NOT_CFG, DlEarfcn=5020, UlBandWidth=CELL_BW_N50, DlBandWidth=CELL_BW_N50, CellId=0, PhyCellId=0, FddTddInd=CELL_FDD, RootSequenceIdx=0, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, TxRxMode=2T2R,CrsPortNum=CRS_PORT_2; //Adding cell sector equipment ADD EUCELLSECTOREQM: LocalCellId=0, SectorEqmId=0; //Adding an operator for the cell ADD CELLOP: LocalCellId=0, TrackingAreaId=0; //Setting the maximum number of MIMO layers MOD CELLDLSCHALGO: LocalCellId=0, MaxMimoRankPara=SW_MAX_SM_RANK_2; //Activating cell 0 ACT CELL: LocalCellId=0;

Optimization Command Examples  N/A

6.1.4.1.3 Using the CME For detailed operations, see CME-based Feature Configuration.

6.1.4.2 Verification and Monitoring  Activation Verification Step 1 Start a received signal strength indicator (RSSI) monitoring task on the U2020 client to monitor the RSSIs of antennas.

Item for Monitoring 

Unit

Value Range

Description

Antenna y Antenna  y R  RS SSI

dBm

-140 to -50

Antenna y  y RSSI  RSSI in the system  bandwidth

 

Step 2 Check the monitoring results. Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

66

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Feature

Successful Result

UL 22-Ante Antenn nnaa R Reeceive eive Dive ivers rsit ity y

The The R RS SSIs of ant nteenna nnas 0 and 1 aare re not not N/A.

UL 44-Ante Antenn nnaa R Reeceive eive Dive ivers rsit ity y

The The R RS SSIs of ant nteenna nnas 0 to 3 are are not not N/A.

  ----End

Network Monitoring  Monitor the counters listed in Table 6-2 and calculate the uplink cell throughput. The more the antennas for a cell, the higher the cell throughput, under the same conditions such as the same cell, bandwidth, and total transmit power. Table 6-2 6 -2 Counters related to receive diversity

Counter ID

Counter Name

1526728259

 

L.Thrp.bits.UL

1526728998

 

L.Thrp.Time.Cell.UL.HighPrecision

  Monitor the counters listed in Table 6-3 to check the status of connections between antennas and RRU ports. If the average RSSI value of antenna x antenna  x is  is much less than those of the other  antennas, antenna x antenna x is  is not connected to an RRU port. In Figure 6-6, antennas 2 and 3 are not connected to RRU ports. Table 6-3 6 -3 Counters related to average RSSI values

Counter ID

Counter Name

1526737656 through 1526737663

 

L.CellSectorEQUIP.UL.RSSI.Avg.Ant0 through L.CellSectorEQUIP.UL.RSSI.Avg.Ant7

  Figure 6-6 Example of average RSSI values

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

67

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6.2 UL 4-Antenna Receive Diversity 6.2.1 Principles Uplink 4-antenna receive diversity requires that a cell have at least four RX channels. The four RX channels receive the same signal of a UE from different directions to improve reception quality, quality, as shown in Figure 6-7. Figure 6-7 Uplink 4-antenna receive diversity

Uplink 4-antenna 4-antenna receive  receive diversity can be deployed in 2T4R or 4T4R cells. The numbers of  TX and RX channels provided by the hardware must be greater than or equal to the numbers of TX and RX channels in the cell. The TX/RX mode of a cell is specified by the Cell.TxRxMode parameter.

6.2.1.1 2T4R Cell (FDD) Integrated RRU A 2T4R cell is set up on a 2T4R sector. A 2T4R sector can be served by a 2T4R RRU. Figure 6-8 illustrates the deployment.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

68

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Figure 6-8 2T4R sector deployment (with an integrated RRU)

A 2T4R sector can also be served by a 4T4R RRU. It is recommended that channels A and B work in TX/RX mode while channels C and D work in RX mode.

Combined RRUs A 2T4R sector can be served by two 1T2R RRUs. Figure 6-9 illustrates the deployment. RRU s) Figure 6-9 2T4R sector deployment (with combined 1T2R RRUs)

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

69

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

A 2T4R sector can be served by two 2T2R RRUs. Figure 6-10 illustrates the deployment. In this case, RRU 1 works in 2T2R mode and RRU 2 works in 0T2R mode. Compared with 1T2R+1T2R, this work mode can prevent downlink throughput from decreasing due to inconsistent feeder lengths, losses, or other factors. Figure 6-10 2T4R sector deployment (with combined 2T2R RRUs)

6.2.1.2 4T4R Cell Integrated RRU A 4T4R cell is set up on a 4T4R sector. A 4T4R sector can be served by a 4T4R RRU. Figure 6-11 illustrates the deployment.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

70

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Figure 6-11 4T4R sector deployment (with an integrated RRU)

Combined RRUs A 4T4R sector can be served by two 2T2R RRUs. Figure 6-12 illustrates the deployment. Figure 6-12 4T4R sector deployment (with combined 2T2R RRUs)

A 4T4R sector can be served by two 2T4R RRUs. Figure 6-13 illustrates the deployment. Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

71

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Figure 6-13 4T4R sector deployment (with combined 2T4R RRUs)

6.2.2 Network Analysis 6.2.2.1 Benefits 6 -4 describes the benefits offered by uplink 4-antenna receive diversity compared with Table 6-4 uplink 2-antenna receive diversity for FDD. Table 6-4 6 -4 Benefits offered by uplink 4-antenna receive diversity

Scenario

Improvement over Uplink 2-

Description

Antenna Receive Diversity Weak  coverage, medium interference, or high interference

Increases the Cell Uplink Average Throughput by 30% to 65%. Increases the uplink edge throughput by 50% to 170%.

Small intersite distance and low interference

Increases the Cell Uplink Average Throughput by up to 30%.

 None

Improves the uplink cell coverage coverage by 3

For a single UE, the farther  away it is from the cell center, center, the higher the gains are. For a cell, the more CEUs it accommodates, the higher the gains are.

Increases the uplink edge throughput by up to 60%.  None

dB to 5 dB.   Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

72

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Uplink 4-antenna receive diversity requires that the feeders between physical antennas and RRUs be of the same type and the difference in length between the feeders be less than 1 m. Otherwise, the gains may be reduced. For NB-IoT, NB-IoT, uplink 4-antenna receive diversity delivers better uplink performance than uplink  2-antenna receive diversity: l l

Increases the average uplink cell throughput by 10% to 50%. Offers higher diversity gains and array gains, and improves coverage by 1 dB to 3 dB.

l

Reduces the number of occupied uplink subcarriers and the uplink subcarrier usage.

The preceding benefits are affected by interference. The following uses the average uplink  cell throughput as an example: l

When the interference is weak, there is a significant increase in the average uplink cell throughput. In white noise scenarios, there is the most significant increase in the average uplink cell throughput.

l

When the interference is strong, there is a small increase in the average uplink cell throughput.

6.2.2.2 Impacts Network Impacts For FDD, there are no network impacts. For NB-IoT, NB-IoT, the service drop boundary is expanded as the coverage is improved by up to 3 dB in 4-antenna reception compared with 2-antenna reception. Accordingly, the interference with CEUs also increases. To avoid the poor channel quality of CEUs, prevent overshoot coverage during network planning. In LTE in-band deployment, when channel calibration is performed for combined LTE FDD RRUs: l

l

If the NB-IoT cell is activated, channel calibration affects NB-IoT services. The BERs of   NPDCCH and NPDSCH NPDSCH increase by no more more than 10%. In other situations, channel calibration does not affect NB-IoT services.

Function Impacts  None

6.2.3 Requirements 6.2.3.1 Licenses The following are license requirements.

Issue 01 (2019-06-06)

RAT

Feature ID

Feature Name

Model

Sales Unit

FDD

LOFD-001001

DL 2x2 MIMO

LT1S0D2I2O00

Per Cell

Copyright © Huawei Technologies Co., Ltd.

73

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

RAT

Feature ID

Feature Name

Model

Sales Unit

FDD

LOFD-001005

UL 4-Antenna Receive Diversity

LT1S0U4ARD00

Per Cell

 NB-IoT

MLOFD-121202

UL 4-Antenna

ML1S0U4ARD00

Per C Ceell

Receive Diversity   In addition to feature licenses, capacity licenses are required for MIMO. Each BBP is licensed  by default to provide two baseband TX channels channels and two baseband RX channels for each each cell. Each RF module is licensed by default to provide two RF TX channels and two RF RX channels. For details, see License see  License Control Control Item Lists (FDD). (FDD).

6.2.3.2 Software Prerequisite Functions  None

Mutually Exclusive Functions  None

6.2.3.3 Hardware Base Station Models For FDD, the following base stations are compatible with this function: l

3900 and 5900 series base stations

For NB-IoT, NB-IoT, 3900 and 5900 series base stations are compatible with this function.

Boards For FDD, BBPs must support 4R. For FDD, BBPs must be UBBPd4/UBBPd5/UBBPd6 or UBBPe2/UBBPe4/UBBPe5/ UBBPe6/UBBPg. For NB-IoT, BBPs must be UBBPe2/UBBPe4/UBBPe5/UBBPe6/UBBPe8/UBBPe9/ UBBPe2/UBBPe4/UBBPe5/UBBPe6/UBBPe8/UBBPe9/ UBBPd9/UBBPe10/UBBPe11/UBBPe12/UBBPg.

RF Modules Some RF modules cannot be combined to serve a 2T4R cell. These modules are RRU3201, RRU3203, RRU3808, and LRFU. If two MRFUd modules are combined, the recommended mode is 2T2R+0T2R. Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

74

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Cells If two antennas are combined, both uplink MIMO and downlink MIMO require that the antennas have the same azimuth and downtilt angle.

6.2.3.4 Others If two physical physical antennas antennas are combined to implement uplink 4-antenna receive diversity, the antennas must meet the following conditions to ensure uplink performance: l

The azimuths and downtilt angles of the antennas must be consistent.

l

The spacing between the antennas must meet isolation requirements.

l

The lengths and losses of feeders between the antennas and RRUs must be consistent.

6.2.4 Operation and Maintenance 6.2.4.1 Data Configuration 6.2.4.1.1 Data Preparation Uplink MIMO and downlink MIMO are configured together in actual applications. Therefore,  both uplink and downlink parameters parameters are listed here here while other parameters parameters for cell setup are not. For FDD, the following uses a 4T4R cell as an example to describe data preparation for  activation. Table 6-5 describes the related parameters. Table 6-5 6 -5 Parameters used for activation

RAT

Parameter Name

Parameter ID

Option

Setting Notes

FDD

Cell transmission and reception mode

Cell.TxRxMod  e

 None

Set this parameter to 4T4R .

FDD

CRS Port  Number 

Cell.CrsPortNu  None m

Set this parameter to CRS_PORT_4.

FDD

CRS Antenna Port Mapping

Cell.CrsPortM  ap

 None

Set this parameter to NOT_CFG.

FDD

Maximum number of  MIMO layers

CellDlschAlgo.  MaxMimoRan kPara

 None

Set this parameter to SW_MAX_SM_RANK   _4.

FDD

Compatibility Control Switch

ENodeBAlgoS witch.Compati  bilityCtrlSwitch

Tm3Tm4Max4 LayerCtrlSwitc h

You are advised to select this option.

  6 -6 describes the parameters related to NB-IoT. Table 6-6 Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

75

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Table 6-6 6 -6 NB-IoT parameters used for activation

Parameter Name

Parameter ID

Setting Notes

Local Cell ID

Cell. LocalCellId   LocalCellId 

-

 

CRS Port Number    Cell.CrsPortNum

Set this parameter based on the number of  downlink channels. Set this parameter to CRS_PORT_2 in 2T or 4T mode. Set this  parameter to CRS_PORT_1 in 1T mode.

Cell transmission and reception mode

Cell.TxRxMode

Set this parameter to a value consistent with the SECTOR . ANTNUM   parameter value.  ANTNUM  parameter Set this parameter to 1T1R, 1T2R, 2T2R, 2T4R, or 4T4R for NB-IoT.

CRS Antenna Port Mapping

Cell.CrsPortMap

Set this parameter to 4T2P_0101 when the Cell.TxRxMode Cell. TxRxMode parameter is set to 4T4R  and the Cell.CrsPortNum parameter is set to CRS_PORT_2. When NB-IoT is deployed in LTE in-band mode: l

l

PRB ID

 

EuPrbSectorEqm.

If the.CrsPortNum LTE FDD cell parameters  and Cell Cell.TxRxMode are set to CRS_PORT_4 and 4T4R , respectively,, then the NB-IoT cell respectively  parameters Cell.CrsPortNum and Cell.TxRxMode must be set to CRS_PORT_2 and 4T4R , respectively. If the LTE FDD cell parameters Cell.CrsPortNum and Cell.TxRxMode are set to other values, then the NB-IoT cell parameters Cell.CrsPortNum and Cell.TxRxMode must be set to the same values as the LTE FDD cell parameters.

-

 PrbId 

Sector Equipment ID

 S  EuPrbSectorEqm . S  ectorEqmId 

 

6.2.4.1.2 Using MML Commands (FDD)

Activation Command Examples Change 2T2R and 2T4R cells to 4T4R cells. l

Changing a 2T2R cell to a 4T4R cell

//Deactivating cell 0 DEA CELL: LocalCellId=0; //Modifying sector and sector equipment configurations

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

76

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

MOD SECTOR: SECTORID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D; MOD SECTOREQM: SECTOREQMID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D, ANTTYPE2=RXTX_MODE; //Changing the number of CRS ports and CRS port mapping. This is a high-risk operation and you are advised to use the following parameter settings when setting up the cell. MOD CELL: LocalCellId=0, CrsPortNum=CRS_PORT_4, TxRxMode=4T4R, CrsPortMap=NOT_CFG; //Setting the maximum number of MIMO layers MOD CELLDLSCHALGO: LocalCellId=0,MaxMimoRankPara=SW_MAX_SM_RANK_4; //Enabling MIMO at a maximum of four layers for UEs of categories 6 or higher (not category 5) MOD ENODEBALGOSWITCH: COMPATIBILITYCTRLSWITCH=Tm3Tm4Max4LayerCtrlSwitch-1; //Activating cell 0 ACT CELL: LocalCellId=0; l

Changing a 2T4R cell to a 4T4R cell

//Deactivating cell 0 DEA CELL: LocalCellId=0; //Modifying sector and sector equipment configurations MOD SECTOREQM: SECTOREQMID=0, OPMODE=DELETE, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D; MOD SECTOREQM: SECTOREQMID=0, OPMODE=ADD, ANTNUM=2, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0C, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0D, ANTTYPE2=RXTX_MODE; //Changing the number of CRS ports and CRS port mapping. This is a high-risk operation and you are advised to use the following parameter settings when setting up the cell. MOD CELL: LocalCellId=0, CrsPortNum=CRS_PORT_4, TxRxMode=4T4R, CrsPortMap=NOT_CFG; //Setting the maximum number of MIMO layers MOD CELLDLSCHALGO: LocalCellId=0,MaxMimoRankPara=SW_MAX_SM_RANK_4; //Enabling MIMO at a maximum of four layers for UEs of categories 6 or higher (not category 5) MOD ENODEBALGOSWITCH: COMPATIBILITYCTRLSWITCH=Tm3Tm4Max4LayerCtrlSwitch-1; //Activating cell 0 ACT CELL: LocalCellId=0;

Optimization Command Examples //Turning on switches related to CQI reporting optimization MOD CELLCQIADAPTIVECFG: LocalCellId=x, CqiPeriodAdaptive=ON, HoAperiodicCqiCfgSwitch=ON,SimulAckNackAndCqiSwitch=ON; MOD CELLALGOSWITCH: LocalCellId=0, DlSchSwitch=AperiodicCqiTrigOptSwitch-1; //Turning on the ApCqiAndAckAbnCtrlSwitch MOD ENODEBALGOSWITCH: CompatibilityCtrlSwitch=ApCqiAndAckAbnCtrlSwitch-1;

6.2.4.1.3 Using MML Commands (NB-IoT)

Configuring a 2T4R Cell (Integrated 2T4R RRU) //Adding a sector ADD SECTOR: SECTORID=0,SECNAME="huawei",LOCATIONNAME="huawei",ANTNUM=4,ANT1CN=0,ANT1SRN=60,ANT 1SN=0,ANT1N=R0A,ANT2CN=0,ANT2SRN=60,ANT2SN=0,ANT2N=R0B,ANT3CN=0,ANT3SRN=60,ANT3SN= 0,ANT3N=R0C,ANT4CN=0,ANT4SRN=60,ANT4SN=0,ANT4N=R0D,CREATESECTOREQM=FALSE; //Adding sector equipment ADD SECTOREQM: SECTOREQMID=0, SECTORID=0, ANTCFGMODE=ANTENNAPORT, ANTNUM=4, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0A, ANTTYPE1=RXTX_MODE, ANT2CN=0,

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

77

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

ANT2SRN=60, ANT2SN=0, ANT2N=R0B, ANTTYPE2=RXTX_MODE, ANT3CN=0, ANT3SRN=60, ANT3SN=0, ANT3N=R0C, ANTTYPE3=RX_MODE, ANT4CN=0, ANT4SRN=60, ANT4SN=0, ANT4N=R0D, ANTTYPE4=RX_MODE; //Adding a cell ADD CELL: LocalCellId=0, CellName="cell0", NbCellFlag=TRUE, CoverageLevelType=COVERAGE_LEVEL_0-1&COVERAGE_LEVEL_1-1&COVERAGE_LEVEL_2-1, CellId=0, PhyCellId=0, FddTddInd=CELL_FDD, EuCellStandbyMode=ACTIVE, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, TxRxMode=2T4R; //(Optional) In LTE in-band deployment, adding a PRB for the NB-IoT cell. For example, the frequency band is band 8, the uplink EARFCN is 21511, and the downlink EARFCN is 3590. ADD PRB: LocalCellId=0, PrbId=0, DeployMode=IN_BAND, FreqBand=8, UlEarfcnCfgInd=CFG, UlEarfcn=21511, UlFreqOffset=NEG_2, DlEarfcn=3590, DlFreqOffset=POS_0, LteCellId=1; //Adding PRB sector equipment ADD EUPRBSECTOREQM: LOCALCELLID=0,PrbId=0,SECTOREQMID=0; //Adding an operator to the cell ADD CELLOP: LocalCellId=0, TrackingAreaId=0;

Configuring a 2T4R Cell (1T2R+1T2R, 1T2R RRUs) //Adding a sector ADD SECTOR: SECTORID=0,SECNAME="huawei",LOCATIONNAME="huawei",ANTNUM=4,ANT1CN=0,ANT1SRN=60,ANT 1SN=0,ANT1N=R0A,ANT2CN=0,ANT2SRN=60,ANT2SN=0,ANT2N=R0B,ANT3CN=0,ANT3SRN=61,ANT3SN= 0,ANT3N=R0A,ANT4CN=0,ANT4SRN=61,ANT4SN=0,ANT4N=R0B,CREATESECTOREQM=FALSE; //Adding sector equipment ADD SECTOREQM: SECTOREQMID=0, SECTORID=0, ANTCFGMODE=ANTENNAPORT, ANTNUM=4, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0A, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0B, ANTTYPE2=RX_MODE, ANT3CN=0, ANT3SRN=61, ANT3SN=0, ANT3N=R0A, ANTTYPE3=RXTX_MODE, ANT4CN=0, ANT4SRN=61, ANT4SN=0, ANT4N=R0B, ANTTYPE4=RX_MODE; //Adding a cell ADD CELL: LocalCellId=0, CellName="cell0", NbCellFlag=TRUE, CoverageLevelType=COVERAGE_LEVEL_0-1&COVERAGE_LEVEL_1-1&COVERAGE_LEVEL_2-1, CellId=0, PhyCellId=0, FddTddInd=CELL_FDD, EuCellStandbyMode=ACTIVE, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, TxRxMode=2T4R; //(Optional) In LTE in-band deployment, adding a PRB for the NB-IoT cell. For example, the frequency band is band 8, the uplink EARFCN is 21511, and the downlink EARFCN is 3590. ADD PRB: LocalCellId=0, PrbId=0, DeployMode=IN_BAND, FreqBand=8, UlEarfcnCfgInd=CFG, UlEarfcn=21511, UlFreqOffset=NEG_2, DlEarfcn=3590, DlFreqOffset=POS_0, LteCellId=1; //Adding PRB sector equipment ADD EUPRBSECTOREQM:LOCALCELLID=0,PrbId=0,SECTOREQMID=0; //Adding an operator to the cell ADD CELLOP: LocalCellId=0, TrackingAreaId=0;

Configuring a 2T4R Cell (2T2R+0T2R, 2T2R RRUs) //Adding RRU chains and RRUs ADD RRUCHAIN: RCN=0, TT=CHAIN, BM=COLD, AT=LOCALPORT, HSRN=0, HSN=3, HPN=0, CR=AUTO, USERDEFRATENEGOSW=OFF; ADD RRUCHAIN: RCN=1, TT=CHAIN, BM=COLD, AT=LOCALPORT, HSRN=0, HSN=3, HPN=1, CR=AUTO, USERDEFRATENEGOSW=OFF; ADD SUBRACK: CN=0, SRN=4, TYPE=RFU; ADD RRU: CN=0, SRN=4, SN=0, TP=TRUNK, RCN=0, PS=0, RT=MRFU, RS=LO, RXNUM=2, TXNUM=2; ADD RRU: CN=0, SRN=4, SN=1, TP=TRUNK, RCN=1, PS=0, RT=MRFU, RS=LO, RXNUM=2, TXNUM=2; //Adding a sector ADD SECTOR: SECTORID=0, SECNAME="huawei",LOCATIONNAME="huawei", ANTNUM=4, ANT1CN=0, ANT1SRN=4, ANT1SN=0, ANT1N=R0A, ANT2CN=0, ANT2SRN=4, ANT2SN=0, ANT2N=R0B, ANT3CN=0, ANT3SRN=4, ANT3SN=1, ANT3N=R0A, ANT4CN=0, ANT4SRN=4,

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

78

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

ANT4SN=1, ANT4N=R0B, CREATESECTOREQM=FALSE; //Adding sector equipment ADD SECTOREQM: SECTOREQMID=0, SECTORID=0, ANTCFGMODE=ANTENNAPORT, ANTNUM=4, ANT1CN=0, ANT1SRN=4, ANT1SN=0, ANT1N=R0A, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=4, ANT2SN=0, ANT2N=R0B, ANTTYPE2=RXTX_MODE, ANT3CN=0, ANT3SRN=4, ANT3SN=1, ANT3N=R0A, ANTTYPE3=RX_MODE, ANT4CN=0, ANT4SRN=4, ANT4SN=1, ANT4N=R0B, ANTTYPE4=RX_MODE; //Adding a cell ADD CELL: LocalCellId=0, CellName="cell0", NbCellFlag=TRUE, CoverageLevelType=COVERAGE_LEVEL_0-1&COVERAGE_LEVEL_1-1&COVERAGE_LEVEL_2-1, CellId=0, PhyCellId=0, FddTddInd=CELL_FDD, EuCellStandbyMode=ACTIVE, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, TxRxMode=2T4R; //(Optional) In LTE in-band deployment, adding a PRB for the NB-IoT cell, for example, using frequency band 8, uplink EARFCN 21511, and downlink EARFCN 3590  ADD PRB: LocalCellId=0, PrbId=0, DeployMode=IN_BAND, FreqBand=8, UlEarfcnCfgInd=CFG, UlEarfcn=21511, UlFreqOffset=NEG_2, DlEarfcn=3590, DlFreqOffset=POS_0, LteCellId=1; //Adding PRB sector equipment ADD EUPRBSECTOREQM: LOCALCELLID=0,PrbId=0,SECTOREQMID=0; //Adding an operator to the cell ADD CELLOP: LocalCellId=0, TrackingAreaId=0;

Configuring a 4T4R Cell (Integrated 4T4R RRU) //Adding a sector and enabling automatic sector equipment addition ADD SECTOR: SECTORID=0,SECNAME="huawei",LOCATIONNAME="huawei",ANTNUM=4,ANT1CN=0,ANT1SRN=60,ANT 1SN=0,ANT1N=R0A,ANT2CN=0,ANT2SRN=60,ANT2SN=0,ANT2N=R0B,ANT3CN=0,ANT3SRN=60,ANT3SN= 0,ANT3N=R0C,ANT4CN=0,ANT4SRN=60,ANT4SN=0,ANT4N=R0D,CREATESECTOREQM=TRUE,SECTOREQMI D=0; //Adding a cell ADD CELL: LocalCellId=0, CellName="cell0", NbCellFlag=TRUE, CoverageLevelType=COVERAGE_LEVEL_0-1&COVERAGE_LEVEL_1-1&COVERAGE_LEVEL_2-1, CellId=0, PhyCellId=0, FddTddInd=CELL_FDD, EuCellStandbyMode=ACTIVE, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, TxRxMode=4T4R, CrsPortMap=4T2P_0101; //(Optional) In LTE in-band deployment, adding a PRB for the NB-IoT cell, for example, using frequency band 8, uplink EARFCN 21511, and downlink EARFCN 3590  ADD PRB: LocalCellId=0, PrbId=0, DeployMode=IN_BAND, FreqBand=8, UlEarfcnCfgInd=CFG, UlEarfcn=21511, UlFreqOffset=NEG_2, DlEarfcn=3590, DlFreqOffset=POS_0, LteCellId=1; //Adding PRB sector equipment ADD EUPRBSECTOREQM:LOCALCELLID=0,PrbId=0,SECTOREQMID=0; //Adding an operator to the cell ADD CELLOP: LocalCellId=0, TrackingAreaId=0;

Configuring a 4T4R Cell (2T2R+2T2R, 2T2R RRUs) //Adding a sector and enabling automatic sector equipment addition ADD SECTOR: SECTORID=0,SECNAME="huawei",LOCATIONNAME="huawei",ANTNUM=4,ANT1CN=0,ANT1SRN=60,ANT 1SN=0,ANT1N=R0A,ANT2CN=0,ANT2SRN=60,ANT2SN=0,ANT2N=R0B,ANT3CN=0,ANT3SRN=61,ANT3SN= 0,ANT3N=R0A,ANT4CN=0,ANT4SRN=61,ANT4SN=0,ANT4N=R0B,CREATESECTOREQM=TRUE,SECTOREQMI D=0; //Adding a cell ADD CELL: LocalCellId=0, CellName="cell0", NbCellFlag=TRUE, CoverageLevelType=COVERAGE_LEVEL_0-1&COVERAGE_LEVEL_1-1&COVERAGE_LEVEL_2-1, CellId=0, PhyCellId=0, FddTddInd=CELL_FDD, EuCellStandbyMode=ACTIVE, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, TxRxMode=4T4R, CrsPortMap=4T2P_0101; //(Optional) In LTE in-band deployment, adding a PRB for the NB-IoT cell, for example, using frequency band 8, uplink EARFCN 21511, and downlink EARFCN 3590

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

79

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

 ADD PRB: LocalCellId=0, PrbId=0, DeployMode=IN_BAND, FreqBand=8, UlEarfcnCfgInd=CFG, UlEarfcn=21511, UlFreqOffset=NEG_2, DlEarfcn=3590, DlFreqOffset=POS_0, LteCellId=1; //Adding PRB sector equipment ADD EUPRBSECTOREQM:LOCALCELLID=0,PrbId=0,SECTOREQMID=0; //Adding an operator to the cell ADD CELLOP: LocalCellId=0, TrackingAreaId=0;

Configuring a 4T4R Cell (2T2R+2T2R, 2T4R RRUs) //Adding a sector ADD SECTOR: SECTORID=0,SECNAME="huawei",LOCATIONNAME="huawei",ANTNUM=4,ANT1CN=0,ANT1SRN=60,ANT 1SN=0,ANT1N=R0A,ANT2CN=0,ANT2SRN=60,ANT2SN=0,ANT2N=R0B,ANT3CN=0,ANT3SRN=61,ANT3SN= 0,ANT3N=R0A,ANT4CN=0,ANT4SRN=61,ANT4SN=0,ANT4N=R0B,CREATESECTOREQM=FALSE; //Adding sector equipment ADD SECTOREQM: SECTOREQMID=0, SECTORID=0, ANTCFGMODE=ANTENNAPORT, ANTNUM=4, ANT1CN=0, ANT1SRN=60, ANT1SN=0, ANT1N=R0A, ANTTYPE1=RXTX_MODE, ANT2CN=0, ANT2SRN=60, ANT2SN=0, ANT2N=R0B, ANTTYPE2=RXTX_MODE, ANT3CN=0, ANT3SRN=61, ANT3SN=0, ANT3N=R0A, ANTTYPE3=RXTX_MODE, ANT4CN=0, ANT4SRN=61, ANT4SN=0, ANT4N=R0B, ANTTYPE4=RXTX_MODE; //Adding a cell ADD CELL: LocalCellId=0, CellName="cell0", NbCellFlag=TRUE, CoverageLevelType=COVERAGE_LEVEL_0-1&COVERAGE_LEVEL_1-1&COVERAGE_LEVEL_2-1, CellId=0, PhyCellId=0, FddTddInd=CELL_FDD, EuCellStandbyMode=ACTIVE, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, TxRxMode=4T4R, CrsPortMap=4T2P_0101; //(Optional) In LTE in-band deployment, adding a PRB for the NB-IoT cell, for example, using frequency band 8, uplink EARFCN 21511, and downlink EARFCN 3590  ADD PRB: LocalCellId=0, PrbId=0, DeployMode=IN_BAND, FreqBand=8, UlEarfcnCfgInd=CFG, UlEarfcn=21511, UlFreqOffset=NEG_2, DlEarfcn=3590, DlFreqOffset=POS_0, LteCellId=1; //Adding cell sector equipment ADD EUPRBSECTOREQM:LOCALCELLID=0,PrbId=0,SECTOREQMID=0; //Adding an operator to the cell ADD CELLOP: LocalCellId=0, TrackingAreaId=0;

Deactivation Command Examples MOD CELL: LocalCellId=0,TxRxMode=1T1R;

6.2.4.1.4 Using the CME For detailed operations, see CME-based Feature Configuration.

6.2.4.2 Verification and Monitoring  Activation Verification Step 1 Start an RSSI monitoring task on the U2020 client to monitor the RSSIs of antennas. Item for Monitoring 

Unit

Value Range

Description

Antenna y Antenna  y R  RS SSI

dBm

-140 to -50

Antenna y  y RSSI  RSSI in the system  bandwidth

 

Issue 01 (2019 06 06)

Copyright © Huawei Technologies Co., Ltd.

80

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Step 2 Check the monitoring results. Feature

Successful Result

UL 2-Antenna Receive Diversity

The RSSIs of antennas 0 and 1 are not N/A.

UL 4-Antenna Receive Diversity

The RSSIs of antennas 0 to 3 are not N/A.

  ----End

Network Monitoring  For FDD, monitor the counters listed in Table 6-7 and calculate the uplink cell throughput. The more the antennas for a cell, the higher the cell throughput, under the same conditions such as the same cell, bandwidth, and total transmit power power.. Table 6-7 6 -7 Counters related to receive diversity

Counter ID

Counter Name

1526728259

 

L.Thrp.bits.UL

1526728998

 

L.Thrp.Time.Cell.UL.HighPrecision

  Monitor the counters listed in Table 6-8 to check the status of connections between antennas and RRU ports. If the average RSSI value of antenna x antenna  x is  is much less than those of the other  antennas, antenna x antenna x is  is not connected to an RRU port. In Figure 6-14, antennas 2 and 3 are not connected to RRU ports. Table 6-8 6 -8 Counters related to average RSSI values

Counter ID 1526737656 through 1526737663

Counter Name  

  Figure 6-14 Example of average RSSI values

L.CellSectorEQUIP.UL.RSSI.Avg.Ant0 through L.CellSectorEQUIP.UL.RSSI.Avg.Ant7

Issue 01 (2019 06 06)

Copyright © Huawei Technologies Co., Ltd.

81

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

For NB-IoT, NB-IoT, the values of the following performance indicators will increase after uplink 4antenna receive diversity is enabled. l

Average uplink MCS index = (1 x L.NB.ChMeas.NPUSCH.MCS.1  + 2 x L.NB.ChMeas.NPUSCH.MCS.2  + ... + 13 x L.NB.ChMeas.NPUSCH.MCS.13 ) / (L.NB.ChMeas.NPUSCH.MCS.0  + L.NB.ChMeas.NPUSCH.MCS.1  + L.NB.ChMeas.NPUSCH.MCS.2  + ... + L.NB.ChMeas.NPUSCH.MCS.13 )

l

Average uplink throughput = L.NB.Thrp.bits.UL / L.NB.Thrp.Time.UL

If the received power is not balanced between two of the four antennas due to interference or feeder  length difference, the advantage of 4-antenna receive diversity over 2-antenna receive diversity will be affected.

6.3 UL 2x2 MU-MIMO (FDD) 6.3.1 Principles Uplink MU-MIMO is controlled by the UlVmimoSwitch option of the CellAlgoSwitch.UlSchSwitch parameter. To enable 2x2 MU-MIMO in a cell, select this option and ensure that the cell works in at least 2R mode. This feature can be used for UEs when channel conditions are favorable.

The eNodeB attempts to pair UEs in each transmission time interval (TTI). If the pairing succeeds, the eNodeB performs 2x2 MU-MIMO, as shown in Figure 6-15. Figure 6-15 Uplink 2x2 MU-MIMO

UE Selection In each TTI, the eNodeB schedules UEs in sequence. If all resources are used up but some UEs are still not scheduled, the eNodeB attempts to pair unscheduled UEs with scheduled UEs.

Pairing Judgment Based on the pre-pairing SINR and inter-UE channel correlation, the eNodeB calculates the  post-pairing SINR and then then calculates the post-pairing post-pairing spectral efficiency efficiency.. The eNodeB pairs two UEs only if the total post-pairing spectral efficiency is higher than the total pre-pairing spectral efficiency.

6.3.2 Network Analysis

Issue 01 (2019 06 06)

Copyright © Huawei Technologies Co., Ltd.

82

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6.3.2.1 Benefits Uplink MU-MIMO provides a higher Cell Uplink Average Throughput than uplink receive diversity.. Uplink MU-MIMO can offer significant gains when the following conditions are diversity met: l

The PUSCH load is high. That is, the uplink physical resource block (PRB) usage

l

exceeds 90%. There are adequate PDCCH resources for UE pairing. That is, the control channel element (CCE) usage is less than 80%.

6.3.2.2 Impacts Network Impacts Uplink coverage may deteriorate and CEU throughput may decrease in high interference scenarios because more UEs are scheduled in uplink MU-MIMO.

Function Impacts Function

Function

Name

Switch

VoIP semi persistent scheduling

UL CoMP

 

Reference

Description

SpsSchSwitch option of the CellAlgoSwitc h.UlSchSwitch  parameter 

VoLTE 

To ensure good post-pairing demodulation performance, VoIP UEs are not involved in pairing for  MU-MIMO when the number of  RBs semi-persistently scheduled for such a UE is less than 2.

UlJointRecepti onSwitch option of the CellAlgoSwitc h.UplinkComp  Switch

UL CoMP 

UEs selected for UL CoMP are not involved in pairing for uplink MUMIMO. Type-1 UL CoMP has the highest priority, uplink MUMIMO the second, and type-2 UL CoMP the third.

 parameter  PSIC receiver    MumimoPusch  PSIC Receiver  PsicSwitch option of the CellAlgoSwitc h. PsicSwitch  PsicSwitch  parameter  High speed mobility

Cell. HighSpeed   HighSpeed   High Speed   Mobility Flag 

The PSIC receiver can be used in uplink MU-MIMO to improve signal reception quality for paired UEs.

UEs moving at high speed are not involved in pairing for uplink MUMIMO.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

83

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Function Name

Function Switch

Reference

Description

Uplink joint reception in an SFN cell

CellAlgoSwitc h. SfnUplinkCo  SfnUplinkCo mpSwitch

SFN 

UEs selected for uplink joint reception in an SFN cell are not involved in pairing for uplink MUMIMO. Uplink joint reception takes precedence over uplink MUMIMO.

Uplink  enhancement for remote interference suppression

 Interference RMT_INF_PU  Interference SCH_ENH_S  Detection and  W option of the Suppression UlInterfSuppr essCfg. RemoteI   RemoteI  nfULEnhanceS  w parameter 

Superior uplink  coverage

CellAlgoExtSw itch.UlCoverag  eEnhancement   Sw

 NSA networking  based on EPC

NSA_DC_CAP  NSA ABILITY_SW  Networking  ITCH option of  based on EPC  the NsaDcMgmtC  NsaDcAl  onfig. NsaDcAl   goSwitch  parameter 

If this function is enabled and the eNodeB has detected atmospheric duct remote interference, uplink  MU-MIMO does not take effect.

Superior Uplink  UEs under enhanced coverage are not involved in UE pairing for  Coverage MU-MIMO. (FDD)

l

When TDM power control is in  progress, uplink MU-MIMO cannot take effect.

l

If TDM needs to be triggered for a UE while uplink MUMIMO is being performed on the UE, then the UE exits uplink MU-MIMO, not  participating in pairing.

 

6.3.3 Requirements 6.3.3.1 Licenses Feature ID

Feature Name

Model

Sales Unit

LOFD-001002

UL 2x2 MUMIMO

LT1S0U2I2O00

Per Cell

  In addition to feature licenses, capacity licenses are required for MIMO. Each BBP is licensed  by default to provide two baseband TX channels channels and two baseband RX channels for each each cell. Each RF module is licensed by default to provide two RF TX channels and two RF RX channels. For details, see License see  License Control Control Item Lists (FDD). (FDD).

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

84

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6.3.3.2 Software Before activating this function, ensure that its prerequisite functions have been activated and mutually exclusive functions have been deactivated. For detailed operations, see the relevant feature documents.

Prerequisite Functions  None

Mutually Exclusive Functions Function Name Short TTI

Function Switch

Reference

SHORT_TTI_SW option Short TTI (FDD) of the CellShortTtiAlgo. SttiAlgoS   SttiAlgoS  witch parameter 

 

Static Shared Beam

 None

 Massive MIMO (FDD) (FDD)

Dynamic Dedicated Beam Intelligent beam shaping

 

MM_INTELLIGENT_BE  Massive MIMO (FDD) (FDD) AM_SHAPING_SW option of the  SectorSp SectorSplitGroup . SectorSp litSwitch parameter 

 

6.3.3.3 Hardware Base Station Models The following base stations are compatible with this function: l l

3900 and 5900 series base stations DBS3900 LampSite and DBS5900 LampSite

Boards This function requires 2R BBPs.

RF Modules  No requirements

6.3.3.4 Others  None

6.3.4 Operation and Maintenance

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

85

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6.3.4.1 Data Configuration 6.3.4.1.1 Data Preparation 6 -9 describes the parameters used for function activation. Table 6-9 Table 6-9 6 -9 Parameters used for activation

Parameter Name

Parameter ID

Option

Setting Notes

Uplink schedule switch

CellAlgoSwitch.Ul   SchSwitch

UlVmimoSwitch

Select tth his op opti tio on.

 

6.3.4.1.2 Using MML Commands

Activation Command Examples //Configuring uplink MU-MIMO MOD CELLALGOSWITCH: LocalCellId=0,UlSchSwitch=UlVmimoSwitch-1;

Optimization Command Examples  N/A

Deactivation Command Examples //Disabling uplink MU-MIMO MOD CELLALGOSWITCH: LocalCellId=0,UlSchSwitch=UlVmimoSwitch-0;

6.3.4.1.3 Using the CME For detailed operations, see CME-based Feature Configuration.

6.3.4.2 Verification and Monitoring  Activation Verification Step 1 Start an MU-MIMO monitoring task on the U2020 client to monitor the number of UE pairs in uplink MU-MIMO.

Item for Monitoring 

Unit

Value Range

Description

Mimo UE Pair   Num

Pair

0 to 32000

This item indicates the total number of UE pairs in all TTIs of  a monitoring period. This number  increases by one when two UEs are paired for MU-MIMO in a TTI.

 

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

86

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Step 2 Enable multiple UEs to access the network. Step 3 Check whether uplink MU-MIMO has taken effect. Item for Monitoring

Monitoring   Result

Description

Mimo UE Pair Num

Not N/A

MU-MIMO is active.

Greater than 0

UEs are successfully paired.

  ----End

Network Monitoring  Tablee 6-10 to monitor monitor uplink MU-MIMO. If any counter has a nonUse the counters listed in Tabl zero value, uplink MU-MIMO is functioning properly. properly. If the counter values are always zero, uplink MU-MIMO is not functioning properly. properly.

In these counters, the L.Traffic.VMIMO.2ndLayer.TB.bits counter measures the number of   bits in the TBs of paired UEs UEs at the second layer. layer. Table 6-10 6 -10 Counters related to uplink MU-MIMO

Counter ID

Counter Name

1526728349

 

L.ChMeas.VMIMO.PairPRB.Succ

1526728350

 

L.ChMeas.VMIMO.PairPRB.Tot

1526747756

 

L.Traffic.VMIMO.2ndLayer.TB.bits

 

6.4 UL 2x4 MU-MIMO 6.4.1 Principles Uplink MU-MIMO is controlled by the UlVmimoSwitch option of the CellAlgoSwitch.UlSchSwitch parameter. To enable 2x4 MU-MIMO in a cell, select this option and ensure that the cell works in at least 4R mode. This function can be used for UEs when channel conditions are favorable. The eNodeB attempts to pair UEs in each TTI. If the pairing succeeds, the eNodeB performs 2x4 MU-MIMO. Figure 6-16 shows uplink uplink 2x4 MU-MIMO. MU-MIMO.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

87

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Figure 6-16 Uplink 2x4 MU-MIMO

UE Selection In each TTI, the eNodeB schedules UEs in sequence. If all resources are used up but some UEs are still not scheduled, the eNodeB attempts to pair unscheduled UEs with scheduled UEs.

Pairing Judgment Based on the pre-pairing SINR and inter-UE channel correlation, the eNodeB calculates the  post-pairing SINR and then then calculates the post-pairing post-pairing spectral efficiency efficiency.. The eNodeB pairs two UEs only if the total post-pairing spectral efficiency is higher than the total pre-pairing spectral efficiency.

6.4.2 Network Analysis 6.4.2.1 Benefits Uplink MU-MIMO provides a higher Cell Uplink Average Throughput than uplink receive diversity.. Uplink MU-MIMO can offer significant gains when the following conditions are diversity met: l l

In FDD, PUSCH load is high. That is, i s, the uplink PRB usage exceeds 90%. There are adequate PDCCH resources for UE pairing. That is, the CCE usage is less than 80%.

6.4.2.2 Impacts Network Impacts Uplink coverage may deteriorate and CEU throughput may decrease in high interference scenarios because more UEs are scheduled in uplink MU-MIMO.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

88

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Function Impacts RAT

Function Name

Function Switch

Reference

Description

FDD

VoIP semi persistent

SpsSchSwitc h option of 

VoLTE 

To ensure good post pairing demodulation

scheduling

the CellAlgoSwit ch.UlSchSwit  ch parameter 

FDD

UL CoMP

 

UlJointRece ptionSwitch option of the CellAlgoSwit ch.UplinkCo mpSwitch  parameter 

 performance, VoIP UEs are not involved in  pairing for MU-MIMO MU-MIMO when the number of RBs semi-persistently scheduled for such a UE is less than 2. UL CoMP 

UEs selected for UL CoMP are not involved in pairing for uplink  MU-MIMO. Type-1 UL CoMP has the highest  priority,, uplink MU priority MIMO the second, and type-2 UL CoMP the third.

FDD

PSIC receiver     MumimoPus  PSIC Receiver  chPsicSwitch option of the CellAlgoSwit  PsicSwitc ch. PsicSwitc h parameter 

The PSIC receiver can  be used in uplink MUMIMO to improve signal reception quality for   paired UEs.

FDD

High speed mobility

Cell. HighSpe  HighSpe  High Speed  edFlag   Mobility

UEs moving at high speed are not involved in  pairing for uplink MUMIMO.

FDD

Uplink joint reception in an SFN cell

CellAlgoSwit  SfnUplink  ch. SfnUplink  CompSwitch

SFN 

UEs selected for uplink   joint reception in an SFN SFN cell are not involved in  pairing for uplink MUMIMO. Uplink joint reception takes  precedence over uplink  MU-MIMO.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

89

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

RAT

Function Name

Function Switch

Reference

FDD

NSA networking  based on EPC

NSA_DC_C APABILITY  _SWITCH

 NSA  Networking  based on EPC 

option of the NsaDcMgmt Config. NsaD  NsaD cAlgoSwitch  parameter 

FDD

Superior uplink   CellAlgoExt coverage Switch.UlCo verageEnhan cementSw

Description l

l

Superior  Uplink  Coverage (FDD)

When TDM power  control is in progress, uplink MU-MIMO cannot take effect. If TDM needs to be triggered for a UE while uplink MUMIMO is being  performed on the UE, UE, then the UE exits uplink MU-MIMO, not participating in  pairing.

UEs under enhanced coverage are not involved in UE pairing for MU-MIMO.

 

6.4.3 Requirements 6.4.3.1 Licenses RAT

Feature ID

Feature Name

Model

Sales Unit

FDD

LOFD-001002

UL 2x2 MU-MIMO

LT1S0U2I2O00

Per Cell

FDD

LOFD-001005

UL 4-Antenna Receive Diversity

LT1S0U4ARD00

Per C Ceell

FDD

LOFD-001058

UL 2x4 MU-MIMO

LT1S0UMIMO00

Per Cell

  In addition to feature licenses, capacity licenses are required for MIMO. Each BBP is licensed  by default to provide two baseband TX channels channels and two baseband RX channels for each each cell. Each RF module is licensed by default to provide two RF TX channels and two RF RX channels. For details, see License see  License Control Control Item Lists (FDD). (FDD).

6.4.3.2 Software Before activating this function, ensure that its prerequisite functions have been activated and mutually exclusive functions have been deactivated. For detailed operations, see the relevant feature documents.

Prerequisite Functions  None

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

90

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Mutually Exclusive Functions RAT

Function Name

Function Switch

Refe Re fere renc nce e

Desc Descri ript ptio ion n

FDD

Static Shared Beam

 None

 Massive  MIMO

 None

Dynamic Dedicated Beam FDD

Intelligent beam shaping

(FDD) MM_INTELL  Massive  MIMO IGENT_BEA M_SHAPING_  (FDD) SW option of  the SectorSplitGro up. SectorSplitS   SectorSplitS  witch parameter 

 

6.4.3.3 Hardware Base Station Models This function requires 3900 or 5900 series base stations.

Boards This function requires 4R BBPs.

RF Modules  No requirements

6.4.3.4 Others  None

6.4.4 Operation and Maintenance 6.4.4.1 Data Configuration (FDD) 6.4.4.1.1 Data Preparation Table 6-11 describes the parameters used for function activation.

 None

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

91

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Table 6-11 Parameters used for activation

Parameter Name

Parameter ID

Option

Setting Notes

Uplink schedule switch

CellAlgoSwitch.Ul   SchSwitch

UlVmimoSwitch

Select tth his op opti tio on.

 

6.4.4.1.2 Using MML Commands

Activation Command Examples //Configuring uplink MU-MIMO MOD CELLALGOSWITCH: LocalCellId=0,UlSchSwitch=UlVmimoSwitch-1;

Optimization Command Examples  N/A

Deactivation Command Examples //Disabling uplink MU-MIMO MOD CELLALGOSWITCH: LocalCellId=0,UlSchSwitch=UlVmimoSwitch-0;

6.4.4.1.3 Using the CME For detailed operations, see CME-based Feature Configuration.

6.4.4.2 Verification and Monitoring  Activation Verification Step 1 Start an MU-MIMO monitoring task on the U2020 client to monitor the number of UE pairs in uplink MU-MIMO.

Item for Monitoring 

Unit

Value Range

Description

Mimo UE Pair Num

Pair

0 to 32000

This item indicates the total number of   UE pairs in all TTIs of a monitoring  period. This number increases increases by one when two UEs are paired for MUMIMO in a TTI.

 

Step 2 Enable multiple UEs to access the network. Step 3 Check whether uplink MU-MIMO has taken effect. Item for Monitoring 

Monitoring Result

Description

Mimo UE Pair Num

Not N/A

Uplink MU-MIMO has taken effect.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

92

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Item for Monitoring 

Monitoring Result

Description

Greater than 0

UEs are successfully paired.

  ----End

Network Monitoring  6 -12 to monitor uplink MU-MIMO. If any counter has a nonUse the counters listed in Table 6-12 zero value, uplink MU-MIMO is functioning properly. properly. If the counter values are always zero, uplink MU-MIMO is not functioning properly. properly. Table 6-12 6 -12 Counters related to uplink MU-MIMO

Counter ID

Counter Name

1526728349

 

L.ChMeas.VMIMO.PairPRB.Succ

1526728350

 

L.ChMeas.VMIMO.PairPRB.Tot

1526739789

 

L.ChMeas.VMIMO.PairPRB.Succ.VoLTE

1526739782

 

L.ChMeas.VMIMO.PairPRB2Layer.Succ

1526740469

 

L.ChMeas.VMIMO.Succ.SubFrameNum

1526747756

 

L.Traffic.VMIMO.2ndLayer.TB.bits

 

6.5 UL SU-MIMO 6.5.1 Principles Uplink SU-MIMO allows 2T UEs to work in transmission mode 2 (TM2).

6.5.1.1 Uplink Transmission Modes Uplink SU-MIMO is controlled by the ULSUMIMO2LayersSwitch  option of the CellAlgoSwitch.UlSuMimoAlgoSwitch parameter. l

When this option is deselected, all UEs in the cell can work only in TM1.

l

When this option is selected, 2T UEs in the cell can work in TM2.

Table 6-13 6 -13 describes the uplink transmission modes.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

93

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Table 6-13 6 -13 Uplink transmission modes

Transmission Mode

Number of Codewords

Numb Nu mbe er of La Lay yer erss

Rank ank

TM1

1

1

1

TM2

1 2

1 2

1 2

 

6.5.1.2 Rank Selection The rank selected in TM2 is specified by the CellUlMimoParaCfg.UlSuMimoRankPara  parameter..  parameter l

When this parameter is set to FixRank1, all UEs use rank 1 transmission.

l

When this parameter is set to FixRank2, all UEs use rank 2 transmission.

l

When this parameter is set to RankAdaptive, UE 1 in poor channel conditions uses rank  1 transmission i n good channel conditions uses rank 2 transmission, as shown in Figure 6-17.and UE 2 in

Figure 6-17 Adaptive rank selection

6.5.2 Network Analysis 6.5.2.1 Benefits Uplink SU-MIMO provides the following benefits when there are 2T UEs in a cell: l

 Nearly doubles the uplink peak throughput.

l

Increases the User Uplink Average Throughput of non-cell-edge UEs by 5% to 20%.

l

Increases the Cell Uplink Average Throughput.

SU-MIMO offers higher gains in the following conditions: l

The eNodeB has more RX antennas.

l

The average uplink SINR is higher. higher.

l

A larger proportion of UEs support SU-MIMO.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

94

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6.5.2.2 Impacts Network Impacts  None

Function Impacts RAT

Function Name

Function Switch

Reference

Description

FDD

Uplink 2x4 MU-MIMO

UlVmimoSwitc h option of the CellAlgoSwitc h.UlSchSwitch  parameter 

6.4 UL 2x4 MU-MIMO

UEs selected for uplink  SU-MIMO are not selected for MU-MIMO.

FDD

UL CoMP cell   UlJointRecepti onSwitch option of the CellAlgoSwitc h.UplinkComp  Switch  parameter 

UL CoMP 

This function does not apply to UEs performing rank 2 transmission in TM2.

FDD

PAMC

Scheduling 

PAMC is not performed on uplink SU-MIMO UEs.

FDD

Turbo receiver     CellAlgoSwitc h.TurboReceive rSwitch

Turbo Receiver 

FDD

Intra-eNodeB &

CellAlgoSwitc

Uplink 

This function does not apply to UEs performing rank 2 transmission in TM2.

inter-eNodeB uplink  interference cancellation

h.UplinkIcSwit   Interference  Interferenc e ch Cancellation (FDD)

FDD

NSA networking  based on EPC

NSA_DC_CAP  NSA ABILITY_SW  Networking  ITCH option of  based on EPC  the NsaDcMgmtC onfig. NsaDcAl   NsaDcAl   goSwitch  parameter 

FDD

Uplink joint reception

CellAlgoSwitc h. SfnUplinkCo  SfnUplinkCo mpSwitch

 

UlPAMCSwitc h option of the CellAlgoSwitc h.UlSchExtSwi  tch parameter 

SFN 

If uplink SU-MIMO has taken effect, TDM will not take effect.

Uplink joint reception does not apply to UEs  performing rank 2 transmission in TM2.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

95

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

RAT

Function Name

FDD

Short TTI

 

Function Switch

Reference

Description

SHORT_TTI_  SW option of  the

Short TTI  (FDD)

UEs scheduled in short TTI mode do not support uplink SU-MIMO.

CellShortTtiAl go. SttiAlgoSwit   SttiAlgoSwit  ch parameter 

FDD

Superior up uplink   coverage

CellAlgoExtSw itch.UlCoverag  eEnhancement   Sw

Superior Uplink  Uplink SU-MIMO is not Coverage applicable to UEs under  (FDD) enhanced coverage.

 

6.5.3 Requirements 6.5.3.1 Licenses RAT

Feature ID

Feature Name

Model

Sales Unit

FDD

LOFD-130 201

UL SU-MIMO

LT1SULSUMI MO

Per Cell

  In addition to feature licenses, capacity licenses are required for MIMO. Each BBP is licensed  by default to provide two baseband TX channels channels and two baseband RX channels for each each cell. Each RF module is licensed by default to provide two RF TX channels and two RF RX channels. For details, see License see  License Control Control Item Lists (FDD). (FDD).

6.5.3.2 Software

Before activating this function, ensure that its prerequisite functions have been activated and mutually exclusive functions have been deactivated. For detailed operations, see the relevant feature documents.

Prerequisite Functions

 

RAT

Function Name

Function Switch

Reference

FDD

None

None

None

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

96

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Mutually Exclusive Functions RAT

Function Name

Function Switch

FDD

High speed mobility   Cell. HighSpeedFlag   HighSpeedFlag 

 High Speed   Mobility

TDD

Uplink FDD+TDD CA

InterFddTddCaSwitch  option of  the CaMgtCfg .CellCaAlgoSwitch  parameter 

Carrier   Aggregation

FDD

Static Shared Beam

 None

 Massive MIMO (FDD)

TDD FDD

Dynamic Dedicated Beam FDD

Intelligent beam shaping

Reference

MM_INTELLIGENT_BEAM_S  Massive MIMO (FDD) HAPING_SW option of the SectorSplitGroup . SectorSplitSwit   SectorSplitSwit  ch parameter 

 

6.5.3.3 Hardware Base Station Models For FDD, the following base stations are compatible with this function: l

3900 and 5900 series base stations

l

DBS3900 LampSite and DBS5900 LampSite

l

BTS3912E

l

BTS3911E

Boards BBPs must be UBBPd or UBBPe.

RF Modules  No requirements

Cells Cells must have a bandwidth of 10 MHz or higher and have two or more RX channels.

6.5.3.4 Others UEs must comply with 3GPP Release 8 or later and support 2T.

6.5.4 Operation and Maintenance

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

97

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6.5.4.1 Data Configuration (FDD) 6.5.4.1.1 Data Preparation 6 -14 describes the parameters used for function activation. Table 6-14 Table 6-14 6 -14 Parameters used for activation

Parameter Name

Parameter ID

Option

Setting Notes

UL SU-MIMO Algorithm Switch

CellAlgoSwitch.UlS  ULSUMIMO2Layer  Selecting this option uMimoAlgoSwitch sSwitch is recommended.

UpLink SU-MIMO Rank 

CellUlMimoParaCf   None g.UlSuMimoRankP  ara

The value RankAdaptive is recommended.

  Table 6-15 6 -15 describes the parameters used for function optimization. Table 6-15 6 -15 Parameters used for optimization

Parameter Name

Parameter ID

Option

Setting Notes

SRS Configuration Indicator 

SRSCfg. SrsCfgInd   SrsCfgInd 

 None

The value BOOLEAN_TRUE is recommended.

FDD SRS Configuration Mode

SRSCfg.FddSrsCfg   None  Mode

The value DEFAULTMODE is recommended.

Uplink schedule switch

CellAlgoSwitch.UlS  SchedulerCtrlPochSwitch werSwitch

Selecting this option is recommended if  uplink SU-MIMO is enabled.

CA UE RLC Parameter Adaptive Threshold

RlcPdcpParaGrou p.CaUeRlcParaAdp tiveThd 

 None

Set this parameter to the recommended value.

CA UE Reordering Timer(ms)

RlcPdcpParaGrou  None p.CaUeReorderingT  imer 

Set this parameter to the recommended value.

CA UE Status Prohibit Timer(ms)

RlcPdcpParaGrou p.CaUeStatProhTi  mer 

 None

Set this parameter to the recommended value.

Uplink power  control algorithm

CellAlgoSwitch.Ul   PcAlgoSwitch

UlCaPuschPcOptSwitch

Selecting this option is recommended.

switch  

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

98

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

6.5.4.1.2 Using MML Commands

Activation Command Examples //Enabling uplink SU-MIMO and rank adaptation MOD CELLALGOSWITCH: LOCALCELLID=0, UlSuMimoAlgoSwitch = ULSUMIMO2LayersSwitch-1; MOD CELLULMIMOPARACFG: LocalCellId=0, UlSuMimoRankPara = RankAdaptive;

Optimization Command Examples //Specifying an SRS configuration policy MOD SRSCFG: LocalCellId=0, SrsCfgInd=BOOLEAN_TRUE, FddSrsCfgMode=DEFAULTMODE; //Enabling power control by the uplink scheduler MOD CELLALGOSWITCH: LocalCellId=0, UlSchSwitch=SchedulerCtrlPowerSwitch-1;

Adjust parameters in uplink CA scenarios. //Configuring an RLC/PDCP parameter group MOD RLCPDCPPARAGROUP: RlcPdcpParaGroupId=5, RlcMode=RlcMode_AM, CaUeRlcParaAdptiveThd=10, CaUeReorderingTimer=Treordering_m20, CaUeStatProhTimer=m20; //Enabling PUSCH power control optimization for uplink CA UEs MOD CELLALGOSWITCH: LocalCellId=0, UlPcAlgoSwitch=UlCaPuschPcOptSwitch-1; UlPcAlgoSwitch=UlCaPuschPcOptSwitch-1;

Deactivation Command Examples //Disabling uplink SU-MIMO MOD CELLALGOSWITCH: LOCALCELLID=0, UlSuMimoAlgoSwitch = ULSUMIMO2LayersSwitch-0;

6.5.4.1.3 Using the CME For detailed operations, see CME-based Feature Configuration.

6.5.4.2 Verification and Monitoring  Activation Verification l

Uu DCI status monitoring Uplink SU-MIMO is active if PDCCH downlink control information (DCI) format 4 is used in TM2 at least once. The number of times this format can be obtained via Uu DCI status monitoring.

l

Counter observation Uplink SU-MIMO is active if any of the counters listed in Table 6-16 6 -16 has a value greater  than 0.

Table 6-16 6 -16 Counters related to uplink SU-MIMO

Counter ID

 

Counter Name

1526746681

 

L.Traffic.User.ULSUMIMO.Avg

1526743750

 

L.ChMeas.ULMIMO.PRB.CL.Rank1

1526743751

 

L.ChMeas.ULMIMO.PRB.CL.Rank2

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

99

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Benefit Monitoring  Uplink SU-MIMO increases the User Uplink Average Throughput and Cell Uplink  6 -17 lists the related counters. Average Throughput. Table 6-17 l

  User Uplink Average Throughput = (L.Thrp.bits.UL  – L.Thrp.bits.UE.UL.LastTTI)/L.Thrp.Time.UE.UL.RmvLastTTI

l

  Cell Uplink Average Throughput = L.Thrp.bits.UL / L.Thrp.Time.Cell.UL.H L.Thrp.T ime.Cell.UL.HighPrecision ighPrecision

A higher proportion of RBs used for rank 2 transmission indicates a higher increase in throughput. Proportion of RBs used for rank 2 transmission = L.ChMeas.ULMIMO.PRB.CL.Rank2  / L.ChMeas.PRB.PUSCH.Avg Table 6-17 6 -17 Counters for calculating the average uplink cell throughput

Counter ID

Counter Name

1526728259

 

L.Thrp.bits.UL

1526728998

 

L.Thrp.Time.Cell.UL.HighPrecision

1526729049

 

L.Thrp.bits.UE.UL.LastTTI

1526729050

 

L.Thrp.Time.UE.UL.RmvLastTTI

 

CCE Monitoring  When uplink SU-MIMO is active, DCI format 4 is used in scheduling. When uplink SUMIMO is inactive, DCI format 0 is used in scheduling. Compared with DCI format 0, DCI format 4 results in a higher payload. It may also result in higher CCE usage and greater values of the counters listed in Table 6-18 6 -18. The increase depends on UE quantity and cell load. Table 6-18 6 -18 CCE-related counters

Counter ID

Counter Name

1526728304

 

L.ChMeas.CCE.ULUsed

1526729295

 

L.ChMeas.CCE.ULUsed.Equivalent

526730844

 

L.ChMeas.CCE.UL.AllocFail

  The increase in CCE usage may result in changes in the values of the counters listed in Table 6-19.

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

100

 

eRAN MIMO Feature Parameter Description

6 Uplink MIMO

Table 6-19 6 -19 CCE-associated counters

Counter ID

Counter Name

1526728774

 

L.RRC.ConnSetup.TimeAvg

1526728775

 

L.RRC.ConnSetup.TimeMax

1526728776

 

L.E-RAB.Est.TimeAvg

1526728777

 

L.E-RAB.Est.TimeMax

 

Full Buffer Service Test Monitoring  The gains provided by uplink SU-MIMO decrease during a full buffer service test when the accuracy of uplink power control is affected by uplink interference. l

l

If the pre-test PRB usage is less than 50%, you are advised to enable power control by the uplink scheduler to maintain the benefits provided by uplink SU-MIMO during the full buffer service test. This power control function is controlled by the SchedulerCtrlPowerSwitch  option of the CellAlgoSwitch.UlSchSwitch parameter. If the pre-test PRB usage is not less than 50% or the full buffer service test is not  performed, you are are advised to disable power power control by the uplink scheduler scheduler.. If this 6 -20 may increase. function is enabled, the values of counters listed in Table 6-20

PRB usage = L.ChMeas.PRB.UL.Used.Avg / Total number of uplink PRBs of the system bandwidth

Table 6-20 6 -20 Counters related to uplink interference

Counter ID

Counter Name

1526728297

 

L.UL.Interference.Max

1526728298

 

L.UL.Interference.Avg

1526743751

 

L.UL.Interference.Min

1526743709

 

L.UL.Interference.LinearAvg

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

101

 

eRAN MIMO Feature Parameter Description

7 Parameters

7

 Parameters

The following hyperlinked EXCEL files of parameter documents match the software version with which this document is released. l l

 Node Parameter Reference: contains contains device and transport transport parameters. eNodeBFunction Parameter Reference: Reference: contains all parameters related to radio access functions, including air interface management, access control, mobility control, and radio resource management.

l

eNodeBFunction Used Reserved Parameter List: contains the reserved parameters that are in use and those that have been disused.

You can find the EXCEL files of parameter reference and used reserved parameter list for the software version used on the live network from the product documentation delivered with that version.

FAQ 1: How do I find the parameters related to a certain feature from parameter reference?

Step 1 Open the EXCEL file of parameter reference. Step 2 On the Parameter List sheet, filter the Feature ID column. Click Text Filters and choose Contains. Enter the feature ID, for example, LOFD-001016 or TDLOFD-001016.

Step 3 Click OK . All parameters related to the feature are displayed. ----End FAQ 2: How do I find the information about a certain reserved parameter from the used reserved parameter list?

Step 1 Open the EXCEL file of the used reserved parameter list. Step 2 On the Used Reserved Parameter List sheet, use the MO, Parameter ID, and BIT columns to locate the reserved parameter, which may be only a bit of a parameter. View its information, including the meaning, values, impacts, and product version in which it is activated for use. ----End

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

102

 

eRAN MIMO Feature Parameter Description

8 Counters

8

 Counters

The following hyperlinked EXCEL files of performance counter reference match the software version with which this document is released. l l

 Node Performance Performance Counter Summary: Summary: contains device and transport transport counters. eNodeBFunction Performance Performance Counter Summary: contains all counters related to radio access functions, air interface management, access control, mobility control, and radio resourceincluding management.

You can find the EXCEL files of performance counter reference for the software version used on the live network from the product documentation delivered with that version.

FAQ: How do I find the counters related to a certain feature from performance counter reference?

Step 1 Open the EXCEL file of performance counter reference. Step 2 On the Counter Summary(En) sheet, filter the Feature ID column. Click Text Filters and choose Contains. Enter the feature ID, for example, LOFD-001016 or TDLOFD-001016.

Step 3 Click OK . All counters related to the feature are displayed. ----End

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

103

 

eRAN MIMO Feature Parameter Description

9 Glossary

9

 Glossary

For the acronyms, abbreviations, terms, and definitions, see Glossary Glossary..

Issue 01 (2019-06-06)

Copyright © Huawei Technologies Co., Ltd.

104

 

eRAN MIMO Feature Parameter Description

10 Reference Documents

10

 Reference Documents

1.

3GPP 3GPP TS 36.21 36.211, 1, ""Phy Physic sical al C Chan hannel nelss an and d Modul Modulati ation" on"

2.

3GPP 3GPP T TS S 36.2 36.213, 13, "Ph "Physi ysica call la layer yer pro proced cedure ures" s"

3.

3GPP TS 36.306, 36.306, "Use "Userr Equipme Equipment nt (UE) (UE) radi radio o acces accesss capabi capabilities lities""

4.

3GPP 3GPP T TR R 36.8 36.814 14,, "P "Phy hysi sica call Laye Layerr As Aspe pect cts" s"

5. 6.

eMIMO (FDD) Hard Hardwa ware re Des Desccripti iptio on

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF