Download Microsoft Word - Calculus 2 Formula Cheat Sheet...
Description
Calculus II Final Exam Cheat Sheet L’Hospital’s Rule: When taking a limit, if you get an indeterminate form i.e.
±∞ 0 , ,etc you take ±∞ 0
the derivative of the top and bottom and evaluate the limit again… again… Integration by Parts Trig Substitution If the integral contains the following root udv = uv − vdu use the given substitution and formula to
∫
∫
b
b
and = uv |a − a vdu choose u and dv from integral and compute du by differentiating u and computing v by integrating dv Trig Stuff sin 2 x = 2 sin x cos x sin 2 x + cos 2 x = 1 1 1 + tan 2 x = sec 2 x cos 2 x = (1 + cos 2 x) 2 1 + cot 2 = csc2 x 1 sin 2 x = (1 − cos 2 x) 2
convert into an integral involving trig functions. a a 2 − bx 2 ⇒ x = sin θ b a bx 2 − a 2 ⇒ x = sec θ b a a 2 + bx 2 ⇒ x = tan θ b
∫
Product and Quotients of Trig Functions n
n
m
m
For tan
For sin x cos xdx we have the following: 1. n odd. Strip 1 sine out and convert rest to cosines using sin 2 = 1 − cos 2 x , then use the substitution u = cos x . 2. m odd. Strip 1 cosine out and convert rest to sines using cos 2 = 1 − sin 2 x , then use the substitution u = sin x . 3. n and m both odd. Use either 1 or 2 4. n and m both even. Use double angle and/or half angle formulas to reduce the integral into a form that can be integrated.
sec xdx we have the following: n odd. Strip 1 tangent and 1 secant out and convert the rest to secants using tan 2 x = sec 2 x − 1 , then use the substitution u = sec x m even. Strip 2 secants out and covert rest to tangents using sec2 = 1 + tan 2 x , then use the substitution u = tan x . n odd and m even. Use either 1 or 2. n even and m odd. Each integral will
∫
∫
1.
2.
3. 4.
be dealt with differently. differently. Centroid b b _ _ 1 1 1 x = x[ f ( x) − g ( x)]dx y = [ f ( x)] )]2 − [ g ( x))]]2 } dx { A a A a 2
∫
∫
Parabola focus : (0, p ) x 2 = 4 py Directrix y = − p 2
= 4 px
focus : ( p, 0) directrix : x = − p
x 2
y2
+ = 1 a 2 b2 Vertices and foci are always on major axis c 2 = a 2 − b2 Make a box with sides determined by the square root of the denominators. Ellipse
x 2
y2
− = 1 or a2 b2 y 2 x 2 − = 1 a 2 b2 Foci and vertices are always on axis determined by positive squared term. Draw box and Hyperbola
make diagonal asymptotes. c 2 = a 2 + b2
∞
Taylor Series
∑
f '( a ))(( x − a) n n!
n =0
Ratio Test lim n →∞
an +1 an
Differential Equations P (t ) = P0e k ⋅t Exponential growth
Separable:
converges if < 1
dy dx
= g ( x ) f ( y ) cross multiply
dy + P ( x) y = Q ( x) use I.F.F Absolute Convergence: If the absolute value of the Linear: dx series converges the series is said to be absolutely convergent. Arc Length Cartesian b
L =
∫ a
2
b
dy 1 + dx if dx
= f ( x), a ≤ x ≤ b or L = ∫ a
2
dx 1 + dy if x = f ( y ), a ≤ x ≤ b dy
Parametric 2
b
L =
Polar 2
dx dy + dt dt dt
∫ a
2
b
L =
dr r + d θ d θ
∫
2
a
Surface Area
Cartesian & Parametric
Area of Polar (not surface area) b 1 2 A = r d θ θ
b
∫
∫
S = 2π r ⋅ L a
a
2 Cartesian to Polar: x = r cos θ y = r sin θ
Midpoint Rule b
∫
___
___
___
f ( x)dx ≈ ∆x[ f ( x1 ) + f ( x2 ) + ..... + f ( xn )] )]
a
Trapezoid Rule b ∆ x f ( x)dx ≈ [ f ( x0 ) + 2 f ( x1 ) + 2 f ( x2 ) + .. ... + 2 f ( xn −1 ) + f ( xn )] )] 2 a
∫
Simpson’s Rule b ∆ x f ( x)dx ≈ [ f ( x0 ) + 4 f ( x1 ) + 2 f ( x2 ) + 4 f ( x3 ) + ... + 2 f ( xn − 2 ) + 4 f ( xn−1 ) + f ( xn )] )] 3 a
∫
Polar to Cartesian: r 2 = x2 + y2
tan θ =
Common Integrals
∫ kdx = kx + c ∫ ∫ x
x n dx = −1
1 n +1
x n +1
dx = ln | x | +c
1
1
∫ ax + b dx = a ln | ax + b | +c ∫ ln udu = u ln(u ) − u + c n
∫ e du = e
u
+c
∫ cos udu = sin u + c ∫ sin udu = − cos u + c ∫ sec udu = tan u + c ∫ sec u tan udu = sec u + c ∫ csc u cot udu = − csc u + c ∫ csc udu = − cot u + c 2
2
∫ tan udu = ln | sec u | + c ∫ sec udu = ln | sec u + tan u | +c 1
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.