Micronics.nl Sample

April 27, 2017 | Author: Elvin Dionicio | Category: N/A
Share Embed Donate


Short Description

CCIE SEC...

Description

CCIE  Security  V4  Lab  Workbook   SAMPLE  Sample   Piotr Matusiak CCIE #19860 R&S, Security C|EH, CCSI #33705

Narbik Kocharians CCIE #12410 R&S, Security, SP CCSI #30832

Micronics Training Inc. © 2013

CCIE SECURTY v4 Lab Workbook

Table of Contents ASA Firewall LAB 1.1.

BASIC ASA CONFIGURATION 8

LAB 1.2.

BASIC SECURITY POLICY

LAB 1.3.

DYNAMIC ROUTING PROTOCOLS

LAB 1.4.

ASA MANAGEMENT

46

LAB 1.5.

STATIC NAT (8.2)

59

LAB 1.6.

DYNAMIC NAT (8.2)

67

LAB 1.7.

NAT EXEMPTION (8.2) 77

LAB 1.8.

STATIC POLICY NAT (8.2)

81

LAB 1.9.

DYNAMIC POLICY NAT (8.2)

91

LAB 1.10.

STATIC NAT (8.3+)

LAB 1.11.

DYNAMIC NAT (8.3+) 115

LAB 1.12.

BIDIRECTIONAL NAT (8.3+)

LAB 1.13.

MODULAR POLICY FRAMEWORK (MPF)

LAB 1.14.

FTP ADVANCED INSPECTION 138

LAB 1.15.

HTTP ADVANCED INSPECTION

LAB 1.16.

INSTANT MESSAGING ADVANCED INSPECTION

LAB 1.17.

ESMTP ADVANCED INSPECTION

159

LAB 1.18.

DNS ADVANCED INSPECTION

164

LAB 1.19.

ICMP ADVANCED INSPECTION

169

LAB 1.20.

CONFIGURING VIRTUAL FIREWALLS 175

LAB 1.21.

ACTIVE/STANDBY FAILOVER 198

LAB 1.22.

ACTIVE/ACTIVE FAILOVER

212

LAB 1.23.

REDUNDANT INTERFACES

239

LAB 1.24.

TRANSPARENT FIREWALL

246

LAB 1.25.

THREAT DETECTION 260

LAB 1.26.

CONTROLLING ICMP AND FRAGMENTED TRAFFIC 264

LAB 1.27.

TIME BASED ACCESS CONTROL

LAB 1.28.

QOS - PRIORITY QUEUING

276

LAB 1.29.

QOS – TRAFFIC POLICING

280

LAB 1.30.

QOS – TRAFFIC SHAPING

285

LAB 1.31.

QOS – TRAFFIC SHAPING WITH PRIORITIZATION

LAB 1.32.

SLA ROUTE TRACKING

296

LAB 1.33.

ASA IP SERVICES (DHCP)

303

LAB 1.34.

URL FILTERING AND APPLETS BLOCKING

LAB 1.35.

TROUBLESHOOTING USING PACKET TRACER AND CAPTURE TOOLS

17 29

99 126 131

146 156

270

Page 2 of 100

290

310 314

CCIE SECURTY v4 Lab Workbook

Site-to-Site VPN LAB 1.36.

BASIC SITE TO SITE IPSEC VPN MAIN MODE (IOS-IOS)

326

LAB 1.37.

BASIC SITE TO SITE IPSEC VPN AGGRESSIVE MODE (IOS-IOS)

LAB 1.38.

BASIC SITE TO SITE VPN WITH NAT (IOS-IOS)

LAB 1.39.

IOS CERTIFICATE AUTHORITY

LAB 1.40.

SITE-TO-SITE IPSEC VPN USING PKI (ASA-ASA)

396

LAB 1.41.

SITE-TO-SITE IPSEC VPN USING PKI (IOS-IOS)

410

LAB 1.42.

SITE-TO-SITE IPSEC VPN USING PKI (STATIC IP IOS-ASA) 420

LAB 1.43.

SITE-TO-SITE IPSEC VPN USING PKI (DYNAMIC IP IOS-ASA)

440

LAB 1.44.

SITE-TO-SITE IPSEC VPN USING PSK (IOS-ASA HAIRPINNING)

461

LAB 1.45.

SITE-TO-SITE IPSEC VPN USING EASYVPN NEM (IOS-IOS) 475

LAB 1.46.

SITE-TO-SITE IPSEC VPN USING EASYVPN NEM (IOS-ASA)

LAB 1.47.

SITE-TO-SITE IPSEC VPN USING EASYVPN WITH ISAKMP PROFILES (IOS-IOS)

LAB 1.48.

GRE OVER IPSEC

550

LAB 1.49.

DMVPN PHASE 1

567

LAB 1.50.

DMVPN PHASE 2 (WITH EIGRP)

584

LAB 1.51.

DMVPN PHASE 2 (WITH OSPF)

603

LAB 1.52.

DMVPN PHASE 3 (WITH EIGRP)

623

LAB 1.53.

DMVPN PHASE 3 (WITH OSPF)

643

LAB 1.54.

DMVPN PHASE 2 DUAL HUB (SINGLE CLOUD)

LAB 1.55.

DMVPN PHASE 2 DUAL HUB (DUAL CLOUD) 697

LAB 1.56.

GET VPN (PSK)

LAB 1.57.

GET VPN (PKI) 760

LAB 1.58.

GET VPN COOP (PKI) 779

352

369

385

484

667

738

Remote Access VPN LAB 1.59.

CONFIGURING REMOTE ACCESS IPSEC VPN USING EASYVPN (IOS TO IOS)

LAB 1.60.

CONFIGURING REMOTE ACCESS IPSEC VPN USING EASYVPN (IOS TO ASA)

LAB 1.61.

CONFIGURING RA VPN USING CISCO VPN CLIENT AND ASA (PSK) 831

LAB 1.62.

CONFIGURING RA VPN USING CISCO VPN CLIENT AND ASA (PKI) 841

LAB 1.63.

CONFIGURING SSL VPN (IOS)

865

LAB 1.64.

CONFIGURING SSL VPN (ASA)

882

LAB 1.65.

ANYCONNECT 3.0 BASIC SETUP

895

LAB 1.66.

ANYCONNECT 3.0 ADVANCED FEATURES

LAB 1.67.

EASYVPN SERVER ON ASA WITH LDAP AUTHENTICATION 922

Advanced VPN Features LAB 1.68.

IPSEC STATEFUL FAILOVER 954

Page 3 of 100

912

CCIE SECURTY v4 Lab Workbook

LAB 1.69.

IPSEC STATIC VTI

967

LAB 1.70.

IKE ENCRYPTED KEYS

LAB 1.71.

IPSEC DYNAMIC VTI 981

LAB 1.72.

REVERSE ROUTE INJECTION (RRI) 991

LAB 1.73.

CALL ADMISSION CONTROL FOR IKE

1008

LAB 1.74.

IPSEC LOAD BALANCING (ASA CLUSTER)

1016

976

Content Security - IPS LAB 2.1.

SENSOR INITIALIZATION

6

LAB 2.2.

PROMISCUOUS MODE

20

LAB 2.3.

INLINE MODE 36

LAB 2.4.

INLINE VLAN PAIR MODE (ON-A-STICK)

LAB 2.5.

SIGNATURE TUNING 53

LAB 2.6.

CUSTOM HTTP SIGNATURE 62

LAB 2.7.

CUSTOM STRING TCP SIGNATURE 69

LAB 2.8.

CUSTOM ATOMIC IP SIGNATURE

LAB 2.9.

META SIGNATURE

LAB 2.10.

BLOCKING AND RATE LIMITING

LAB 2.11.

RULES 133

LAB 2.12.

ANOMALY DETECTION

LAB 2.13.

VIRTUAL SENSORS

LAB 2.14.

EVENT SUMMARIZATION

LAB 2.15.

APPLICATION INSPECTION AND LOGGING

46

78

86 98

148

156 166 181

Content Security - WSA LAB 2.16.

WSA BOOTSTRAPPING (OPTIONAL) 196

LAB 2.17.

DNS AND ROUTING CONFIGRATION 206

LAB 2.18.

WSA IDENTITIES AND ACCESS POLICIES

LAB 2.19.

ACTIVE DIRECTORY INTEGRATION 223

LAB 2.20.

USER AUTHENTICATION

LAB 2.21.

CUSTOM URL CATEGORIES 243

LAB 2.22.

DECRYPTION POLICIES

LAB 2.23.

BANDWIDTH AND FILE TYPE LIMITS 255

LAB 2.24.

APPLICATION VISIBILITY AND CONTROL

LAB 2.25.

WEB REPUTATION AND DVS 265

LAB 2.26.

TRANSPARENT PROXY WITH ASA

212

228 249

271

Page 4 of 100

260

CCIE SECURTY v4 Lab Workbook

Identity Management - ACS LAB 2.27.

ACS BOOTSTRAPPING

281

LAB 2.28.

SETUP AAA CLIENTS 290

LAB 2.29.

USER AUTHENTICATION AND AUTHORIZATION (IOS)

LAB 2.30.

LOCAL USER AUTHENTICATION AND AUTHORIZATION USING AAA (IOS) 306

LAB 2.31.

TACACS+ USER AUTHENTICATION (IOS)

LAB 2.32.

TACACS+ AUTHENTICATION AND AUTHORIZATION (IOS)

LAB 2.33.

ACCOUNTING USING TACACS+ AND RADIUS (IOS) 357

LAB 2.34.

IOS AUTHENTICATION PROXY

367

LAB 2.35.

AUTHENTICATION PROXY ON ASA

386

LAB 2.36.

ACS EXTERNAL IDENTITY STORE

395

300

318 336

Identity Management - ISE LAB 3.1.

ISE INSTALLATION (OPTIONAL)

9

LAB 3.2.

GENERATE AND INSTALL A CERTIFICATE

LAB 3.3.

ADMINISTRATIVE ACCESS TO ISE

LAB 3.4.

INTEGRATION WITH ACTIVE DIRECTROY

LAB 3.5.

CONFIGURE ISE FOR MAB

LAB 3.6.

CONFIGURE MAC WHITELIST 48

LAB 3.7.

MAB WITH VLAN AUTHORIZATION

LAB 3.8.

WINDOWS 7 AD INTEGRATION (OPTIONAL) 61

LAB 3.9.

CONFIGURE WIRED 802.1X

LAB 3.10.

WIRED 802.1X VLAN ASSIGNMENT

89

LAB 3.11.

CONFIGURE WIRELESS 802.1X

99

LAB 3.12.

LOCAL WEB AUTHENTICATION (LWA) FOR WIRED 121

LAB 3.13.

CENTRAL WEB AUTHENTICATION (CWA) FOR WIRED

LAB 3.14.

CENTRAL WEB AUTHENTICATION (CWA) FOR WIRELESS 151

LAB 3.15.

CONFIGURE ISE FOR GUEST ACCESS

LAB 3.16.

CONFIGURE ISE PROFILER

LAB 3.17.

ANYCONNECT NAM

LAB 3.18.

MACSEC SWITCH-TO-HOST 195

LAB 3.19.

MACSEC SWITCH-TO-SWITCH

19

28 33

38 53

64

165

176

186 203

IOS Advanced Security LAB 3.20.

BASIC ROUTER SECURITY

211

LAB 3.21.

STANDARD NAMED ACCESS LIST

LAB 3.22.

CONTROLLING TELNET ACCESS AND SSH 223

LAB 3.23.

EXTENDED ACCESS LIST IP AND ICMP

229

LAB 3.24.

EXTENDED ACCESS LIST OSPF & EIGRP

235

220

Page 5 of 100

136

CCIE SECURTY v4 Lab Workbook

LAB 3.25.

EXTENDED ACCESS LIST WITH ESTABLISHED

LAB 3.26.

DYNAMIC ACCESS LIST

242

LAB 3.27.

REFLEXIVE ACCESS-LISTS

252

LAB 3.28.

ACCESS-LIST AND TIME-RANGE

LAB 3.29.

CONFIGURING BASIC CBAC 264

LAB 3.30.

CONFIGURING ADVANCED CBAC

LAB 3.31.

CONFIGURING CBAC & JAVA BLOCKING

LAB 3.32.

CONFIGURING PAM

LAB 3.33.

ZONE BASED POLICY FIREWALL (ZFW)

LAB 3.34.

IMPLEMENTING SECURITY RFCS

LAB 3.35.

USING MQC AS A FILTERING TOOL 315

LAB 3.36.

BLACKHOLE ROUTING USING PBR

LAB 3.37.

CONFIGURING NAT

LAB 3.38.

NAT WITH OVERLAPPING NETWORKS

LAB 3.39.

NAT TCP LOAD BALANCING 342

LAB 3.40.

STATEFUL HIGH AVAILABILITY NAT 345

LAB 3.41.

NAT VIRTUAL INTERFACE

LAB 3.42.

TCP INTERCEPT

LAB 3.43.

CONFIGURING NBAR 365

LAB 3.44.

CONFIGURING NETFLOW

371

LAB 3.45.

CONFIGURING IOS IPS

376

239

258 266 273

275 277

311 322

326 336

355

361

Control and Management Plane Security LAB 3.46.

CPU PROTECTION MECHANISMS

389

LAB 3.47.

DISABLING UNNECESSARY SERVICES

LAB 3.48.

CONFIGURING SNMP 401

LAB 3.49.

CONFIGURING SYSLOG

LAB 3.50.

CONFIGURING NTP

LAB 3.51.

PROTOCOL AUTHENTICATION AND ROUTE FILTERING

LAB 3.52.

CONTROL PLANE POLICY (COPP)

395

409

414 419

433

Network Attacks LAB 3.53.

PROTECTING AGAINST FRAGMENTATION ATTACKS

442

LAB 3.54.

PROTECTING AGAINST MALICIOUS IP OPTION USAGE

447

LAB 3.55.

PROTECTING AGAINST NETWORK MAPPING

LAB 3.56.

PROTECTING AGAINST DOS ATTACKS USING CAR 458

LAB 3.57.

PREVENTING PORT REDIRECTION ATTACKS

LAB 3.58.

PROTECTING AGAINST SMURF ATTACKS

LAB 3.59.

PORT SECURITY

LAB 3.60.

PREVENTING VLAN HOPING ATTACKS

462

465

Page 6 of 100

472

454 460

CCIE SECURTY v4 Lab Workbook

LAB 3.61.

VLAN ACCESS LIST

476

LAB 3.62.

DHCP SNOOPING AND DYNAMIC ARP INSPECTION 480

LAB 3.63.

IP SOURCE GUARD

LAB 3.64.

PROTECTING AGAINST BROADCAST STORMS

LAB 3.65.

PROTECTING SPANNING-TREE PROTOCOL 497

LAB 3.66.

PREVENTING IP SPOOFING 501

491

Page 7 of 100

495

CCIE SECURTY v4 Lab Workbook

Physical Topology

Page 8 of 100

CCIE SECURTY v4 Lab Workbook

Page 9 of 100

CCIE SECURTY v4 Lab Workbook

This page is intentionally left blank.

Page 10 of 100

CCIE SECURTY v4 Lab Workbook

Advanced CCIE SECURITY v4 LAB WORKBOOK

Site-to-Site VPNs

Narbik Kocharians CCIE #12410 R&S, Security, SP Piotr Matusiak CCIE #19860 R&S, Security

www.MicronicsTraining.com

Page 11 of 100

CCIE SECURTY v4 Lab Workbook

LAB 2.1. DMVPN Phase 1

Lab Setup  R1’s F0/0 and R2’s G0/0 interface should be configured in VLAN 12  R2’s S0/1/0 and R5’s S0/1/0 interface should be configured in a frame-relay point-to-point manner  R2’s S0/1/0 and R4’s S0/0/0 interface should be configured in a frame-relay point-to-point manner  Configure Telnet on all routers using password “cisco”  Configure default routing on R1, R4 and R5 pointing to the R2 IP Addressing Device

Interface

IP address

R1

Lo0

192.168.1.1/24

F0/0

10.1.12.1/24

Page 12 of 100

CCIE SECURTY v4 Lab Workbook

R2

R4 R5

F0/0

10.1.12.2/24

S0/1/0.25

10.1.25.2/24

S0/1/0.24

10.1.24.2/24

Lo0

192.168.4.4/24

S0/0/0.42

10.1.24.4/24

Lo0

192.168.5.5/24

S0/1/0.52

10.1.25.5/24

Task 1 Configure Hub-and-Spoke GRE tunnels between R1, R4 and R5, where R1 is acting as a Hub. Traffic originated from every Spoke’s loopback interface should be transmitted securely via the Hub to the other spokes. You must use EIGRP dynamic routing protocol to let other spokes know about protected networks. Use the following settings when configuring tunnels: •

Tunnel Parameters o IP address: 172.16.145.0/24 o IP MTU: 1400 o Tunnel Authentication Key: 12345



NHRP Parameters o NHRP ID: 12345 o NHRP Authentication key: cisco123 o NHRP Hub: R1



Routing Protocol Parameters o EIGRP 145

Encrypt the GRE traffic using the following parameters: •

ISAKMP Parameters o Authentication: Pre-shared o Encryption: 3DES o Hashing: SHA o DH Group: 2

Page 13 of 100

CCIE SECURTY v4 Lab Workbook

o Pre-Shared Key: cisco123 •

IPSec Parameters o Encryption: ESP-3DES o Authentication: ESP-SHA-HMAC



Dynamic Multipoint Virtual Private Network (DMVPN) has been introduced by Cisco in late 2000. This technology has been developed to address needs for automatically created VPN tunnels when dynamic IP addresses on the spokes are in use. In GRE over IPSec (described in the previous lab) both ends of the connection must have static/unchangeable IP address. It is possible however, to create many GRE Site-to-Site tunnels from company’s branches to the Headquarters. This is pure Hub-and-Spoke topology where all branches may communicate with each other securely through the Hub. In DMVPN may have dynamic IP addresses on the spokes, but there must be static IP address on the Hub. There is also an additional technology used to let the hub know what dynamic IP addresses are in use by the spokes. This is NHRP (Next Hop Resolution Protocol) which works like ARP but for layer 3. All it does is building a dynamic database stored on the hub with information about spokes’ IP addresses. Now the Hub knows IPSec peers and can build the tunnels with them. The Hub must be connected to many spokes at the same time so there was another issue to solve: how to configure the Hub to not have many Tunnel interfaces (each for Site-to-Site tunnel with spoke). The answer is: use GRE multipoint type of tunnel, where we do not need to specify the other end of the tunnel statically. That being said, there are three DMVPN mutations called phases: 

Phase 1: simple Hub and Spoke topology were dynamic IP addresses on the spokes may be used



Phase 2: Hub and Spoke with Spoke to Spoke direct communication allowed



Phase 3: Hub and Spoke with Spoke to Spoke direct communication allowed with better scalability using NHRP Redirects

All above phases will be described in more detail in the next few labs.

Configuration Complete these steps:

Page 14 of 100

CCIE SECURTY v4 Lab Workbook

Step 1

R1 configuration. First we need ISAKMP Policy with pre-shared key configured. Note that in DMVPN we need to configure so-called “wildcard PSK” because there may be many peers. This is why more common sulution in DMVPN is to use certificates and PKI. In DMVPN Phase 1 there is no need for wildcard PSK as there is only Hub to Spoke tunnel, so that we know the peers. R1(config)#crypto isakmp policy 1 R1(config-isakmp)#encr 3des R1(config-isakmp)#authentication pre-share R1(config-isakmp)#group 2 R1(config-isakmp)#crypto isakmp key cisco123 address 0.0.0.0 0.0.0.0 R1(config)#crypto ipsec transform-set TSET esp-3des esp-sha-hmac R1(cfg-crypto-trans)# mode transport The “mode transport” is used for decreasing IPSec packet size (an outer IP header which is present in tunnel mode is not added in the transport mode). R1(cfg-crypto-trans)#crypto ipsec profile DMVPN R1(ipsec-profile)#set transform-set TSET R1(ipsec-profile)#exi There is only one interface Tunnel on every DMVPN router. This is because we use GRE multipoint type of the tunnel. R1(config)#interface Tunnel0 R1(config-if)#ip address 172.16.145.1 255.255.255.0 R1(config-if)#ip mtu 1400 Maximum Transmission Unit is decreased to ensure that DMVPN packet would not exceed IP MTU set on non-tunnel IP interfaces – usually a 1500 bytes (When “transport mode” is used then DMVPN packet consists of original IP Packet, GRE header, ESP header and outer IPSec IP header. If oryginal IP packet size is close to the IP MTU set on real IP interface then adding GRE and IPSec headers may lead to exceeding that value) R1(config-if)#ip nhrp authentication cisco123 R1(config-if)#ip nhrp map multicast dynamic R1(config-if)#ip nhrp network-id 12345 The Hub works as NHS (Next Hop Server). The NHRP configuration on the Hub is straight forward. First, we

Page 15 of 100

CCIE SECURTY v4 Lab Workbook

need NHRP network ID to identify the instance and authenticate key to secure NHRP registration. There is a need for NHRP static mapping on the Hub. The Hub must be able to send down all multicast traffic so that dynamic routing protocols can distribute routes between spokes. The line “ip nhrp map multicast dynamic” simply tells the NHRP server to replicate all multicast traffic to all dynamic entries in the NHRP table (entries with flag “dynamic”). R1(config-if)#no ip split-horizon eigrp 145 Since we use EIGRP between the Hub and the Spokes, we need to disable Split Horizon for that protocol to be able to send routes gathered from one Spoke to the other Spoke. The Split Horizon rule says: “information about the routing is never sent back in the direction from which it was received”. This is basic rule for loop prevention. R1(config-if)#tunnel source FastEthernet0/0 R1(config-if)#tunnel mode gre multipoint R1(config-if)#tunnel key 12345 R1(config-if)#tunnel protection ipsec profile DMVPN A regular GRE tunnel usually needs source and destination of the tunnel to be specified. However in the GRE multipoint tunnel type, there is no need for a destination. This is because there may be many destinations, as many Spokes are out there. The actual tunnel destination is derived form NHRP database. The tunnel has a key for identification purposes, as there may be many tunnels on one router and the router must know what tunnel the packet is destined to. Finally, we must encrypt the traffic. This is done by using IPSec Profile attached to the tunnel. I recommend to leave that command aside for a while when configuring DMVPN and add it to the configuration once we know the tunnels work fine. DMVPN may work without any encryption, so no worries. R1(config-if)#exi %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON Tunnel0 has changed its state to “UP”. ISAKMP protocol is enabled and operates on the router. R1(config)#router eigrp 145 R1(config-router)#network 172.16.145.0 0.0.0.255 R1(config-router)#network 192.168.1.0 R1(config-router)#no auto-summary R1(config-router)#exi

Page 16 of 100

CCIE SECURTY v4 Lab Workbook

Finally we need a routing protocol over the tunnel. Remember, this protocol will be used to carry the info about networks behind the Spokes (or Hub). Be careful when configuring it as there is a chance to get into “recursive loop”. This means we shouldn’t use the same dynamic routing protocol instance for prefixes available over the tunnel and to achieve underlaying connectivity between Hub and Spokes.

Step 2

R5 configuration. R5 is our first Spoke. Again, we need ISAKMP Policy configuration and PSK. R5(config)#crypto isakmp policy 1 R5(config-isakmp)# encr 3des R5(config-isakmp)# authentication pre-share R5(config-isakmp)# group 2 R5(config-isakmp)#crypto isakmp key cisco123 address 0.0.0.0 0.0.0.0 R5(config)#crypto ipsec transform-set TSET esp-3des esp-sha-hmac R5(cfg-crypto-trans)# mode transport R5(cfg-crypto-trans)#crypto ipsec profile DMVPN R5(ipsec-profile)# set transform-set TSET R5(ipsec-profile)#exi The tunnel interface configuration is slightly different on the Spoke than on the Hub. This is because the Spoke works as NHRP Client to the Hub (NHS). Most of belove commands have been described already. R5(config)#interface Tunnel0 R5(config-if)# ip address 172.16.145.5 255.255.255.0 R5(config-if)# ip mtu 1400 R5(config-if)# ip nhrp authentication cisco123 R5(config-if)# ip nhrp map 172.16.145.1 10.1.12.1 R5(config-if)# ip nhrp network-id 12345 R5(config-if)# ip nhrp holdtime 360 R5(config-if)# ip nhrp nhs 172.16.145.1 NHRP Client configuration. We need our Spoke to register in NHS, so that we need to configure the following: 

NHRP authentication key – to authenticate successfully to the NHS



NHRP Network ID – to be authenticated to correct NHS instance



NHRP Holdtime – to tell the NHS for how long

Page 17 of 100

CCIE SECURTY v4 Lab Workbook

it should treat the registered spokes’ IP address as valid 

NHS – IP address of NHRP Server; note this is its Private (tunnel) IP address. To resolve this address to the Public (Physical) IP address of the NHS, we need the last command which is:



NHRP static mapping – to resolve NHS’ Physical IP address

This mapping is very important as it causes the Spoke to initiate the GRE tunnel to the Hub. Without this the Spoke has no clue how to register to the NHS.

R5(config-if)# tunnel source Serial0/1/0.52 R5(config-if)# tunnel destination 10.1.12.1 R5(config-if)# tunnel key 12345 R5(config-if)# tunnel protection ipsec profile DMVPN The tunnel configuration is also different. On the Spoke there is no reason for using GRE multipoint tunnel mode. This is because there is only one tunnel (Spoke to Hub) in DMVPN Phase 1. Hence, we are obligated to provide both: source and destination of the tunnel. %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON R5(config-if)#exi R5(config)#router eigrp 145 R5(config-router)# network 172.16.145.0 0.0.0.255 R5(config-router)# network 192.168.5.0 R5(config-router)# no auto-summary R5(config-router)#ex %DUAL-5-NBRCHANGE: IP-EIGRP(0) 145: Neighbor 172.16.145.1 (Tunnel0) is up: new adjacency R5(config-router)#exi The router has established EIGRP adjancency through the tunnel. Note that the adjancency has been established with the DMVPN hub (172.16.145.1).

Step 3

R4 configuration. The beauty of this technology is that there is exactly the same configuration on all Spokes! R4(config)#crypto isakmp policy 1

Page 18 of 100

CCIE SECURTY v4 Lab Workbook

R4(config-isakmp)# encr 3des R4(config-isakmp)# authentication pre-share R4(config-isakmp)# group 2 R4(config-isakmp)#crypto isakmp key cisco123 address 0.0.0.0 0.0.0.0 R4(config)#crypto ipsec transform-set TSET esp-3des esp-sha-hmac R4(cfg-crypto-trans)# mode transport R4(cfg-crypto-trans)#crypto ipsec profile DMVPN R4(ipsec-profile)# set transform-set TSET R4(ipsec-profile)#exi R4(config)#interface Tunnel0 R4(config-if)# ip address 172.16.145.4 255.255.255.0 R4(config-if)# ip mtu 1400 R4(config-if)# ip nhrp authentication cisco123 R4(config-if)# ip nhrp map 172.16.145.1 10.1.12.1 R4(config-if)# ip nhrp network-id 12345 R4(config-if)# ip nhrp holdtime 360 R4(config-if)# ip nhrp nhs 172.16.145.1 R4(config-if)# tunnel source Serial0/0/0.42 R4(config-if)# tunnel destination 10.1.12.1 R4(config-if)# tunnel key 12345 R4(config-if)# tunnel protection ipsec profile DMVPN %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON R4(config-if)#exi R4(config)#router eigrp 145 R4(config-router)# network 172.16.145.0 0.0.0.255 R4(config-router)# network 192.168.4.0 R4(config-router)# no auto-summary %DUAL-5-NBRCHANGE: IP-EIGRP(0) 145: Neighbor 172.16.145.1 (Tunnel0) is up: new adjacency R4(config-router)#exi

Verification R1#sh ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route

Page 19 of 100

CCIE SECURTY v4 Lab Workbook

o - ODR, P - periodic downloaded static route Gateway of last resort is 10.1.12.2 to network 0.0.0.0 172.16.0.0/24 is subnetted, 1 subnets C

172.16.145.0 is directly connected, Tunnel0

D

192.168.4.0/24 [90/27008000] via 172.16.145.4, 00:00:17, Tunnel0

D

192.168.5.0/24 [90/27008000] via 172.16.145.5, 00:00:55, Tunnel0 Spokes have sent updates about their networks (loopback interfaces) to the Hub. Now Hub must send that information down to the other Spokes. The Hub may do that as long as Split Horizon rule is disabled for the routing protocol. 10.0.0.0/24 is subnetted, 1 subnets

C

10.1.12.0 is directly connected, FastEthernet0/0

C

192.168.1.0/24 is directly connected, Loopback0

S*

0.0.0.0/0 [1/0] via 10.1.12.2

R1#sh ip nhrp 172.16.145.4/32 via 172.16.145.4 Tunnel0 created 00:00:33, expire 00:05:26 Type: dynamic, Flags: unique registered NBMA address: 10.1.24.4 172.16.145.5/32 via 172.16.145.5 Tunnel0 created 00:01:08, expire 00:04:51 Type: dynamic, Flags: unique registered NBMA address: 10.1.25.5 NHRP database displayed on the DMVPN hub. Note that “sh ip nhrp” shows mapping between Tunnel0 ip address and ip address of Serial interface which is used for reaching the tunnel endpoint. The entries in NHRP database on the hub are dynamic (dynamically obtained from the spokes). R1#sh ip eigrp neighbor IP-EIGRP neighbors for process 145 H

Address

Interface

Hold Uptime

SRTT

(sec)

(ms)

RTO

Q

Seq

Cnt Num

1

172.16.145.4

Tu0

11 00:00:38

10

1362

0

3

0

172.16.145.5

Tu0

11 00:01:16

29

1362

0

3

EIGRP adjacency established with the spokes. R1#sh ip eigrp interface IP-EIGRP interfaces for process 145

Interface

Peers

Xmit Queue

Mean

Pacing Time

Multicast

Pending

Un/Reliable

SRTT

Un/Reliable

Flow Timer

Routes

Tu0

2

0/0

19

Lo0

0

0/0

0

R1#sh crypto isakmp sa

Page 20 of 100

6/227 0/1

80

0

0

0

CCIE SECURTY v4 Lab Workbook

IPv4 Crypto ISAKMP SA dst

src

state

conn-id status

10.1.12.1

10.1.25.5

QM_IDLE

1001 ACTIVE

10.1.12.1

10.1.24.4

QM_IDLE

1002 ACTIVE

IPv6 Crypto ISAKMP SA R1#sh crypto ipsec sa interface: Tunnel0 Crypto map tag: Tunnel0-head-0, local addr 10.1.12.1 protected vrf: (none) local

ident (addr/mask/prot/port): (10.1.12.1/255.255.255.255/47/0)

remote ident (addr/mask/prot/port): (10.1.24.4/255.255.255.255/47/0) Local and remote identities used for the tunnel. Note that GRE protocol is transported in the tunnel (IP protocol 47). It is automatically achieved by assigning IPSec profile to the tunnel interface (configuring crypto ACLs is no longer needed) current_peer 10.1.24.4 port 500 PERMIT, flags={origin_is_acl,} #pkts encaps: 19, #pkts encrypt: 19, #pkts digest: 19 #pkts decaps: 19, #pkts decrypt: 19, #pkts verify: 19 Note that traffic is going through the tunnel established between the hub (R1) and the spoke (R4). #pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0 #pkts not decompressed: 0, #pkts decompress failed: 0 #send errors 0, #recv errors 0 local crypto endpt.: 10.1.12.1, remote crypto endpt.: 10.1.24.4 path mtu 1500, ip mtu 1500, ip mtu idb FastEthernet0/0 current outbound spi: 0x97564348(2539012936) PFS (Y/N): N, DH group: none inbound esp sas: spi: 0x2A3D155F(708646239) transform: esp-3des esp-sha-hmac , in use settings ={Transport, } conn id: 2003, flow_id: NETGX:3, sibling_flags 80000006, crypto map: Tunnel0head-0 sa timing: remaining key lifetime (k/sec): (4568792/3536) IV size: 8 bytes replay detection support: Y Status: ACTIVE Inbound SPI (Security Parameter Index) has been negotiated.

Page 21 of 100

CCIE SECURTY v4 Lab Workbook

inbound ah sas: inbound pcp sas: outbound esp sas: spi: 0x97564348(2539012936) transform: esp-3des esp-sha-hmac , in use settings ={Transport, } conn id: 2004, flow_id: NETGX:4, sibling_flags 80000006, crypto map: Tunnel0head-0 sa timing: remaining key lifetime (k/sec): (4568792/3536) IV size: 8 bytes replay detection support: Y Status: ACTIVE Outbound SPI (Security Parameter Index) has been negotiated. outbound ah sas: outbound pcp sas: protected vrf: (none) local

ident (addr/mask/prot/port): (10.1.12.1/255.255.255.255/47/0)

remote ident (addr/mask/prot/port): (10.1.25.5/255.255.255.255/47/0) Local and remote identities used for tunnel established between hub (R1) and one of the spokes (R5). current_peer 10.1.25.5 port 500 PERMIT, flags={origin_is_acl,} #pkts encaps: 34, #pkts encrypt: 34, #pkts digest: 34 #pkts decaps: 29, #pkts decrypt: 29, #pkts verify: 29 #pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0 #pkts not decompressed: 0, #pkts decompress failed: 0 #send errors 0, #recv errors 0 local crypto endpt.: 10.1.12.1, remote crypto endpt.: 10.1.25.5 path mtu 1500, ip mtu 1500, ip mtu idb FastEthernet0/0 current outbound spi: 0x423D37C6(1111308230) PFS (Y/N): N, DH group: none inbound esp sas: spi: 0xE65FFF26(3865050918) transform: esp-3des esp-sha-hmac , in use settings ={Transport, } conn id: 2001, flow_id: NETGX:1, sibling_flags 80000006, crypto map: Tunnel0head-0 sa timing: remaining key lifetime (k/sec): (4492833/3501) IV size: 8 bytes

Page 22 of 100

CCIE SECURTY v4 Lab Workbook

replay detection support: Y Status: ACTIVE inbound ah sas: inbound pcp sas: outbound esp sas: spi: 0x423D37C6(1111308230) transform: esp-3des esp-sha-hmac , in use settings ={Transport, } conn id: 2002, flow_id: NETGX:2, sibling_flags 80000006, crypto map: Tunnel0head-0 sa timing: remaining key lifetime (k/sec): (4492832/3501) IV size: 8 bytes replay detection support: Y Status: ACTIVE outbound ah sas: outbound pcp sas:

R4#sh ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is 10.1.24.2 to network 0.0.0.0 172.16.0.0/24 is subnetted, 1 subnets C

172.16.145.0 is directly connected, Tunnel0

C

192.168.4.0/24 is directly connected, Loopback0

D

192.168.5.0/24 [90/28288000] via 172.16.145.1, 00:03:22, Tunnel0 10.0.0.0/24 is subnetted, 1 subnets

C

10.1.24.0 is directly connected, Serial0/0/0.42

D

192.168.1.0/24 [90/27008000] via 172.16.145.1, 00:03:22, Tunnel0

S*

0.0.0.0/0 [1/0] via 10.1.24.2 The networks of R1 and R5 loopbacks are present in the R4’s routing table. These networks are reachable through the hub (R1) over the DMVPN network.

R4#sh ip route 192.168.5.0 Routing entry for 192.168.5.0/24 Known via "eigrp 145", distance 90, metric 28288000, type internal Redistributing via eigrp 145

Page 23 of 100

CCIE SECURTY v4 Lab Workbook

Last update from 172.16.145.1 on Tunnel0, 00:03:34 ago Routing Descriptor Blocks: * 172.16.145.1, from 172.16.145.1, 00:03:34 ago, via Tunnel0 Next hop IP address followed by the information source (R1 – the hub) Route metric is 28288000, traffic share count is 1 Total delay is 105000 microseconds, minimum bandwidth is 100 Kbit Reliability 255/255, minimum MTU 1400 bytes Loading 1/255, Hops 2 R4#sh ip cef 192.168.5.0 192.168.5.0/24 nexthop 172.16.145.1 Tunnel0 The CEF entries displayed for R5 loopback network. This indicates an IP address of next hop which have to be used for reaching 192.168.5.0/24. R4#sh ip nhrp 172.16.145.1/32 via 172.16.145.1 Tunnel0 created 00:04:04, never expire Type: static, Flags: NBMA address: 10.1.12.1 The NHRP database entries displayed. This shows the mapping between hub’s tunnel interface IP address and hub’s real interface IP address through which the tunnel endpoint is reachable. Note that NHRP database entries related to the hub are static and never expires (the hub must be always reachable for the spoke and cannot be dynamic). R4#sh crypto isakmp sa IPv4 Crypto ISAKMP SA dst

src

state

10.1.12.1

10.1.24.4

QM_IDLE

conn-id status 1001 ACTIVE

This indicates that ISAKMP tunnel is established and active (QM_IDLE means that ISAKMP SA is authenticated and Quick Mode – IPSec Phase 2 is fininshed. IPv6 Crypto ISAKMP SA R4#sh crypto ipsec sa interface: Tunnel0 Crypto map tag: Tunnel0-head-0, local addr 10.1.24.4 protected vrf: (none) local

ident (addr/mask/prot/port): (10.1.24.4/255.255.255.255/47/0)

remote ident (addr/mask/prot/port): (10.1.12.1/255.255.255.255/47/0) current_peer 10.1.12.1 port 500 PERMIT, flags={origin_is_acl,} #pkts encaps: 67, #pkts encrypt: 67, #pkts digest: 67

Page 24 of 100

CCIE SECURTY v4 Lab Workbook

#pkts decaps: 68, #pkts decrypt: 68, #pkts verify: 68 #pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0 #pkts not decompressed: 0, #pkts decompress failed: 0 #send errors 1, #recv errors 0 IPSec proxy IDs on the spoke indicates that traffic between tunnel endpoint will be encrypted/decrypted. Also, packet counters are incrementing as there are routing updates crossing the tunnel. local crypto endpt.: 10.1.24.4, remote crypto endpt.: 10.1.12.1 path mtu 1500, ip mtu 1500, ip mtu idb Serial0/0/0.42 current outbound spi: 0x2A3D155F(708646239) PFS (Y/N): N, DH group: none inbound esp sas: spi: 0x97564348(2539012936) transform: esp-3des esp-sha-hmac , in use settings ={Transport, } conn id: 2001, flow_id: NETGX:1, sibling_flags 80000006, crypto map: Tunnel0head-0 sa timing: remaining key lifetime (k/sec): (4571034/3344) IV size: 8 bytes replay detection support: Y Status: ACTIVE inbound ah sas: inbound pcp sas: outbound esp sas: spi: 0x2A3D155F(708646239) transform: esp-3des esp-sha-hmac , in use settings ={Transport, } conn id: 2002, flow_id: NETGX:2, sibling_flags 80000006, crypto map: Tunnel0head-0 sa timing: remaining key lifetime (k/sec): (4571034/3344) IV size: 8 bytes replay detection support: Y Status: ACTIVE outbound ah sas: outbound pcp sas: R4#pi 192.168.5.5 so lo0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.5.5, timeout is 2 seconds: Packet sent with a source address of 192.168.4.4 !!!!!

Page 25 of 100

CCIE SECURTY v4 Lab Workbook

Success rate is 100 percent (5/5), round-trip min/avg/max = 32/34/36 ms Now ping the other spoke using its loopback IP address as source. This should simulate end-to-end connectivity through the DMVPN network. R4#sh crypto isakmp sa IPv4 Crypto ISAKMP SA dst

src

state

10.1.12.1

10.1.24.4

QM_IDLE

conn-id status 1001 ACTIVE

IPv6 Crypto ISAKMP SA Note: No new ISAKMP SA or NHRP mappings created. R4#sh ip nhrp 172.16.145.1/32 via 172.16.145.1 Tunnel0 created 00:04:40, never expire Type: static, Flags: NBMA address: 10.1.12.1

The same bunch of commands should be run on the other spoke. R5#sh ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is 10.1.25.2 to network 0.0.0.0 172.16.0.0/24 is subnetted, 1 subnets C

172.16.145.0 is directly connected, Tunnel0

D

192.168.4.0/24 [90/28288000] via 172.16.145.1, 00:01:24, Tunnel0

C

192.168.5.0/24 is directly connected, Loopback0 10.0.0.0/24 is subnetted, 1 subnets

C

10.1.25.0 is directly connected, Serial0/1/0.52

D

192.168.1.0/24 [90/27008000] via 172.16.145.1, 00:02:02, Tunnel0

S*

0.0.0.0/0 [1/0] via 10.1.25.2

R5#sh ip cef 192.168.4.0 192.168.4.0/24 nexthop 172.16.145.1 Tunnel0 R5#sh ip nhrp 172.16.145.1/32 via 172.16.145.1 Tunnel0 created 00:02:11, never expire Type: static, Flags:

Page 26 of 100

CCIE SECURTY v4 Lab Workbook

NBMA address: 10.1.12.1 R5#sh crypto isakmp sa IPv4 Crypto ISAKMP SA dst

src

state

10.1.12.1

10.1.25.5

QM_IDLE

conn-id status 1001 ACTIVE

IPv6 Crypto ISAKMP SA R5#sh crypto ipsec sa interface: Tunnel0 Crypto map tag: Tunnel0-head-0, local addr 10.1.25.5 protected vrf: (none) local

ident (addr/mask/prot/port): (10.1.25.5/255.255.255.255/47/0)

remote ident (addr/mask/prot/port): (10.1.12.1/255.255.255.255/47/0) current_peer 10.1.12.1 port 500 PERMIT, flags={origin_is_acl,} #pkts encaps: 40, #pkts encrypt: 40, #pkts digest: 40 #pkts decaps: 46, #pkts decrypt: 46, #pkts verify: 46 #pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0 #pkts not decompressed: 0, #pkts decompress failed: 0 #send errors 1, #recv errors 0 local crypto endpt.: 10.1.25.5, remote crypto endpt.: 10.1.12.1 path mtu 1500, ip mtu 1500, ip mtu idb Serial0/1/0.52 current outbound spi: 0xE65FFF26(3865050918) PFS (Y/N): N, DH group: none inbound esp sas: spi: 0x423D37C6(1111308230) transform: esp-3des esp-sha-hmac , in use settings ={Transport, } conn id: 2001, flow_id: NETGX:1, sibling_flags 80000006, crypto map: Tunnel0head-0 sa timing: remaining key lifetime (k/sec): (4430458/3455) IV size: 8 bytes replay detection support: Y Status: ACTIVE inbound ah sas: inbound pcp sas: outbound esp sas: spi: 0xE65FFF26(3865050918) transform: esp-3des esp-sha-hmac , in use settings ={Transport, }

Page 27 of 100

CCIE SECURTY v4 Lab Workbook

conn id: 2002, flow_id: NETGX:2, sibling_flags 80000006, crypto map: Tunnel0head-0 sa timing: remaining key lifetime (k/sec): (4430459/3455) IV size: 8 bytes replay detection support: Y Status: ACTIVE outbound ah sas: outbound pcp sas: R5#pi 192.168.4.4 so lo0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.4.4, timeout is 2 seconds: Packet sent with a source address of 192.168.5.5 !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 32/35/40 ms Note: No new ISAKMP SA or NHRP mappings created. R5#sh crypto isakmp sa IPv4 Crypto ISAKMP SA dst

src

state

10.1.12.1

10.1.25.5

QM_IDLE

IPv6 Crypto ISAKMP SA R5#sh ip nhrp 172.16.145.1/32 via 172.16.145.1 Tunnel0 created 00:03:01, never expire Type: static, Flags: NBMA address: 10.1.12.1

Page 28 of 100

conn-id status 1001 ACTIVE

CCIE SECURTY v4 Lab Workbook

Advanced CCIE SECURITY v4 LAB WORKBOOK

Content Security WSA

Narbik Kocharians CCIE #12410 R&S, Security, SP Piotr Matusiak CCIE #19860 R&S, Security

www.MicronicsTraining.com

Page 29 of 100

CCIE SECURTY v4 Lab Workbook

Logical Topology for WSA labs

WSA is connected to the network using two interfaces: •

P1 – data interface, placed in VLAN 30 (ASA DMZ)



M1 – management interface, placed in VLAN 10 (ASA Inside)

Page 30 of 100

CCIE SECURTY v4 Lab Workbook

LAB 2.2. Transparent Proxy with ASA Objectives This lab shows how integrate WSA with ASA to do transparen proxy services for users.

IP Addressing and devices Device

Interface

IP address

WSA

M1

10.1.10.80/24

P1

10.1.30.80/24

Lo0

1.1.1.1/32

E0/0

10.1.10.1/24

E0/1

172.31.1.1/24

0/0 (outside)

100.2.2.10/24

0/1 (inside)

10.1.10.10/24

0/2 (dmz)

10.1.30.10/24

Lo0

2.2.2.2/32

E0/0

100.2.2.2/24

WinXP

NIC

10.1.10.50/24

Win7

NIC

10.1.10.104/24

AD

NIC

172.31.1.200/24

R1

ASA

R2

Task Reconfigure WSA to provide Transparent Proxy services to all users. THE WSA should use it’s M1 interface and talk to ASA using WCCP v2 protocol. Messages exchanged between WSA and ASA should be authenticated using ‘cisco123’ shared secret. Enable Transparent proxy for http and HTTPS. Disable CONNECT method for explicit proxy.

Page 31 of 100

CCIE SECURTY v4 Lab Workbook

Configuration Complete these steps: Step 1 Configure WCCP on ASA. ! access-list WCCP permit tcp 10.1.10.0 255.255.255.0 any eq 80 access-list WCCP permit tcp 10.1.10.0 255.255.255.0 any eq 443 ! wccp 90 redirect-list WCCP password cisco123 wccp interface inside 90 redirect in !

Step 2 Reconfigure interfaces on WSA. •

Go to Network > Interfaces and click Edit Settings… Uncheck Restrict M1 port to appliance management services only option and erase P1 interface configuration. Click Submit.



Note the following message. Click Continue.



Review the configuration and click Commit Changes.

Page 32 of 100

CCIE SECURTY v4 Lab Workbook

Step 2 Enable Transparent Proxy services. •

Go to Network > Transparent Redirection and click Edit Device…



From the drop-down list select WCCP v2 Router and click Submit.



Click Add Service…



Provide name for WCCP service e.g. asa-wccp and select Dynamic service ID option. Set the ID to 90 and associate Port Numbers of 80,443. Put 10.1.10.10 (ASA’s inside interface IP) as Router IP Address and tick Enable Security for Service option configuring ‘cisco123’ as password. Click Submit.

Page 33 of 100

CCIE SECURTY v4 Lab Workbook



Review configuration and click Commit Changes.

Step 3 Win7 client PC configuration. •

Open up web browser and go to Tools > Internet Options > Connections > LAN Settings and uncheck Use a proxy server for your LAN option.

Page 34 of 100

CCIE SECURTY v4 Lab Workbook

Verification •

On Win7 client PC open up web browser and go to http://www.google.com. Authenticate as user from Employees group.

// there is 401 returned by the proxy which is authentication request. 1360089008.110 0 10.1.10.104 TCP_DENIED/401 0 GET http://proxy.micronics.local/B0000D0000N0001F0000S0000R0004/http://www.google.com/ NONE/- - OTHER-NONE-NONE-NONE-NONE-NONE-NONE // after authentication the request is proceeded normally 1360089020.203 413 10.1.10.104 TCP_MISS/200 31422 GET http://www.google.com/ "MICRONICS\employee1@AD" DIRECT/www.google.com text/html ALLOW_WBRS_12-EmployeesDefaultGroup-NONE-NONE-NONE-DefaultGroup -



Connect to http://www.facebook.com. The FB is redirecting the user to HTTPS by default, so you should get certificate error (the certificate is not trusted because it is signed by WSA). You should be connected after accepting the certificate.

Page 35 of 100

CCIE SECURTY v4 Lab Workbook

// HTTP request to facebook.com 1360089089.513 271 10.1.10.104 TCP_MISS/302 405 GET http://www.facebook.com/ "MICRONICS\employee1@AD" DIRECT/www.facebook.com text/html DEFAULT_CASE_12-EmployeesDefaultGroup-NONE-NONE-NONE-DefaultGroup // TCP Connect to 443, redirected to WSA. 1360089089.703 183 10.1.10.104 TCP_MISS_SSL/200 0 TCP_CONNECT 31.13.64.23:443 "MICRONICS\employee1@AD" DIRECT/31.13.64.23 - DECRYPT_AVC_7-DefaultGroup-DefaultGroupNONE-NONE-NONE-DefaultGroup // check connection table on ASA – there should be NO connections from Win7 PC ASA1(config)# sh conn 11 in use, 77 most used TCP outside 2.16.216.40:443 inside 10.1.10.80:57688, idle 0:00:07, bytes 32361, flags UIO TCP outside 2.16.216.40:443 inside 10.1.10.80:57686, idle 0:00:07, bytes 27805, flags UIO TCP outside 2.16.216.40:443 inside 10.1.10.80:57685, idle 0:00:07, bytes 74840, flags UIO TCP outside 2.16.216.40:443 inside 10.1.10.80:57684, idle 0:00:07, bytes 75426, flags UIO TCP outside 2.16.216.40:443 inside 10.1.10.80:57683, idle 0:00:08, bytes 11142, flags UIO TCP outside 2.16.216.40:443 inside 10.1.10.80:57682, idle 0:00:08, bytes 83528, flags UIO TCP outside 2.16.216.40:443 inside 10.1.10.80:57680, idle 0:00:14, bytes 2593, flags UfFrIO TCP outside 2.16.216.40:443 inside 10.1.10.80:57679, idle 0:00:14, bytes 45467, flags UfFrIO TCP outside 195.12.233.137:443 inside 10.1.10.80:57666, idle 0:00:15, bytes 2548, flags UIO TCP outside 31.13.64.23:443 inside 10.1.10.80:53205, idle 0:00:17, bytes 30380, flags UIO

Check ASA WCCP commands output. ASA1(config)# deb wccp packet WCCP-PKT:D90: Received valid Here_I_Am packet from 10.1.10.80 w/rcv_id 00000112 WCCP-PKT:D90: Sending I_See_You packet to 10.1.10.80 w/ rcv_id 00000113

ASA1(config)# sh wccp Global WCCP information: Router information: Router Identifier:

100.2.2.10

Protocol Version:

2.0

Service Identifier: 90 Number of Cache Engines:

1

Number of routers:

1

Total Packets Redirected:

11464

Redirect access-list:

WCCP

Total Connections Denied Redirect:

0

Total Packets Unassigned:

6

Page 36 of 100

CCIE SECURTY v4 Lab Workbook

Group access-list:

-none-

Total Messages Denied to Group:

0

Total Authentication failures:

0

Total Bypassed Packets Received:

0

ASA1(config)# sh wccp 90 detail WCCP Cache-Engine information: Web Cache ID:

10.1.10.80

Protocol Version:

2.0

State:

Usable

Initial Hash Info:

00000000000000000000000000000000

Assigned Hash Info:

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Hash Allotment:

256 (100.00%)

Packets Redirected:

11464

Connect Time:

00:00:18

00000000000000000000000000000000 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

ASA1(config)# sh wccp 90 service WCCP service information definition: Type:

Dynamic

Id:

90

Priority:

240

Protocol:

6

Options:

0x00000012

-------Hash:

DstIP

Alt Hash:

-none-

Ports:

Destination:: 80 443 0 0 0 0 0 0

Page 37 of 100

CCIE SECURTY v4 Lab Workbook

Advanced CCIE SECURITY v4 LAB WORKBOOK

Identity Management ACS

Narbik Kocharians CCIE #12410 R&S, Security, SP Piotr Matusiak CCIE #19860 R&S, Security

www.MicronicsTraining.com

Page 38 of 100

CCIE SECURTY v4 Lab Workbook

Logical Topology for ACS labs

ACS 5 is connected to the network behind Router1 and has IP address of 172.31.1.100. Default gateway should be set to R1. Management access to ACS should be allowed from WinXP PC (10.1.10.50).

Page 39 of 100

CCIE SECURTY v4 Lab Workbook

LAB 2.3. ACS Bootstrapping Objectives This lab introduces Cisco Secure Access Control Server v5.3 and verifies basic connectivity with other network elements.

IP Addressing and devices Device

Interface

IP address

ACS

NIC

172.31.1.100

R1

Lo0

1.1.1.1/32

E0/0

10.1.10.1/24

E0/1

172.31.1.1/24

Lo0

2.2.2.2/32

E0/0

100.2.2.2/24

NIC

10.1.10.50/24

R2 WinXP

Page 40 of 100

CCIE SECURTY v4 Lab Workbook

Task 1 – Verify ACS installation Connect to ACS console using SSH and username/password of admin/Micronics1. Check and note the following: •

ACS application version



ACS daemon status



Interface configuration



Routing table (with default gateway)



Clock configuration



Timezone configuration

Configure the following: •

NTP server set to 172.31.1.1



Connect to the GUI and install the license located on WinXP desktop (ACS5.lic)

Configuration Complete these steps: Step 1

Run Putty and connect to IP address of 172.31.1.100

Step 2

Verify that ACS is installed properly ACS5/admin# show application



acs

Cisco Secure Access Control System 5.3 Cisco ACS is an application installed on underlying operating system called Cisco ADE. Once you’re connected to ADE you must check what applications are installed. Then you can use application name (in our case ‘acs’) in all other commands.

Step 3

Check ACS version ACS5/admin# show application version acs Cisco ACS VERSION INFORMATION

Page 41 of 100

CCIE SECURTY v4 Lab Workbook

----------------------------Version : 5.3.0.40 Internal Build ID : B.839.EVAL The main version is 5.3 and the patch level is 40. The build depends on the development stage and also indicates that we use evaluation version of ACS. You can install production license or evaluation license (90 days). Remember that if the ACS was installed with 60GB disk

(minimum)

there

will

be

no

option

to

run

it

with

no-eval

license. The 60GB is a minimum value and can only be used in lab environment.

Step 4

Check status of ACS processes ACS5/admin# show application status acs ACS role: PRIMARY Process 'database'

running

Process 'management'

running

Process 'runtime'

running

Process 'view-database'

running

Process 'view-jobmanager'

running

Process 'view-alertmanager'

running

Process 'view-collector'

running

Process 'view-logprocessor'

running

If there is other status than ‘running’ it means theres something wrong with a particular ACS subsystem/process. To fix that you can try to restart ACS application using ‘application stop acs’ and then ‘application start acs’. Be patient as it may take a while to start all ACS processes.

Step 5

Check interface configuration and verify IP address and netmask ACS5/admin# show interface eth0

Link encap:Ethernet

HWaddr 00:50:56:AE:83:F6

inet addr:172.31.1.100

Bcast:172.31.1.255

Mask:255.255.255.0

inet6 addr: fe80::250:56ff:feae:83f6/64 Scope:Link UP BROADCAST RUNNING MULTICAST

MTU:1500

Metric:1

RX packets:12645 errors:0 dropped:0 overruns:0 frame:0 TX packets:16627 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1105589 (1.0 MiB)

TX bytes:19717105 (18.8 MiB)

Interrupt:177 Base address:0x2000

Page 42 of 100

CCIE SECURTY v4 Lab Workbook

Make sure that you see RX and TX packets and no error counters increasing. This is a first indicator that something can be wrong with connectivity. If you do not see eth0 interface that usually means the interface is down.

lo

Link encap:Local Loopback inet addr:127.0.0.1

Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING

MTU:16436

Metric:1

RX packets:1939218 errors:0 dropped:0 overruns:0 frame:0 TX packets:1939218 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:300253955 (286.3 MiB) sit0

TX bytes:300253955 (286.3 MiB)

Link encap:IPv6-in-IPv4 NOARP

MTU:1480

Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b)

Step 6

TX bytes:0 (0.0 b)

Check routing table and default gateway ACS5/admin# show ip route Kernel IP routing table Destination

Gateway

Genmask

Flags Metric Ref

Use

172.31.1.0

0.0.0.0

255.255.255.0

U

0

0

0 eth0

0.0.0.0

172.31.1.1

0.0.0.0

UG

0

0

0 eth0

Iface

Step 7

Check basic connectivity to the gateway and to other network elements ACS5/admin# ping 172.31.1.1 PING 172.31.1.1 (172.31.1.1) 56(84) bytes of data. 64 bytes from 172.31.1.1: icmp_seq=0 ttl=255 time=10.0 ms 64 bytes from 172.31.1.1: icmp_seq=1 ttl=255 time=0.642 ms 64 bytes from 172.31.1.1: icmp_seq=2 ttl=255 time=0.690 ms 64 bytes from 172.31.1.1: icmp_seq=3 ttl=255 time=0.784 ms --- 172.31.1.1 ping statistics --4 packets transmitted, 4 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.642/3.049/10.083/4.061 ms, pipe 2 ACS5/admin# ping 10.1.10.10 PING 10.1.10.10 (10.1.10.10) 56(84) bytes of data.

Page 43 of 100

CCIE SECURTY v4 Lab Workbook

--- 10.1.10.10 ping statistics --4 packets transmitted, 0 received, 100% packet loss, time 3027ms Note that you cannot reach ASA firewall at this stage. This is because the ASA has no route back to network 172.31.1.0/24. You will fix this later.

ACS5/admin# ping 10.1.10.50 PING 10.1.10.50 (10.1.10.50) 56(84) bytes of data. 64 bytes from 10.1.10.50: icmp_seq=0 ttl=127 time=0.812 ms 64 bytes from 10.1.10.50: icmp_seq=1 ttl=127 time=1.02 ms 64 bytes from 10.1.10.50: icmp_seq=2 ttl=127 time=1.02 ms 64 bytes from 10.1.10.50: icmp_seq=3 ttl=127 time=10.8 ms --- 10.1.10.50 ping statistics --4 packets transmitted, 4 received, 0% packet loss, time 3009ms rtt min/avg/max/mdev = 0.812/3.429/10.860/4.291 ms, pipe 2

Step 8

Check the name server and domain configuration. Verify if DNS works asking to resolve FQDN of acs5.micronics.local ACS5/admin# show running-config | inc name hostname ACS5 ip domain-name micronics.local ip name-server 172.31.1.200 username admin password hash $1$Vlgou3Zx$hWKQ2lqIKFZF./OlFJ/Wi1 role admin ACS5/admin# ping 172.31.1.200 PING 172.31.1.200 (172.31.1.200) 56(84) bytes of data. 64 bytes from 172.31.1.200: icmp_seq=0 ttl=128 time=0.551 ms 64 bytes from 172.31.1.200: icmp_seq=1 ttl=128 time=0.331 ms 64 bytes from 172.31.1.200: icmp_seq=2 ttl=128 time=0.401 ms 64 bytes from 172.31.1.200: icmp_seq=3 ttl=128 time=0.415 ms --- 172.31.1.200 ping statistics --4 packets transmitted, 4 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.331/0.424/0.551/0.082 ms, pipe 2 ACS5/admin# nslookup acs5.micronics.local Trying "acs5.micronics.local" ;; ->>HEADER Users and click Create. Add new user with a name of student1 and password of student123, select Students under Identity Groups and click Submit.

Page 50 of 100

CCIE SECURTY v4 Lab Workbook

Verification There is no Verification for this task.

Page 51 of 100

CCIE SECURTY v4 Lab Workbook

Task 2 – Adding the router as AAA client in ACS Configure R1 router as AAA client in ACS using TACACS+ with secret key of cisco123. Make sure the device is sourcing TACACS+ traffic from its loopback0 interface and uses only one TCP connection for whole AAA conversation. The new AAA client should be added as Device Type = Routers in Location = HQ. Configure AAA on the router and use test aaa command to verify your solution.

Configuration Complete these steps: Step 1 Connect to ACS from WinXP PC and authenticate using acsadmin. Add new entry to Device Type and Location NDGs (Network Device Groups). •

Go to Network Resources > Network Device Groups > Location and click Create. Add name HQ under All Locations and click Submit.

Page 52 of 100

CCIE SECURTY v4 Lab Workbook

Devices can be differentiated based on their type and/or location. There are two pre-defined containers in ACS: one for location and second for type. This information can be further used in authorization policies and it is recommended to add new devices to correct categories.



Go to Network Resources > Network Device Groups > Device Type and click Create. Add name Routers under All Device Types and click Submit.

Step 2 Add new AAA client to the ACS. •

Go to Network Resources > Network Device and AAA Clients and click Create. Add new client with name of R1, select Location = HQ and Device Type = Routers, configure IP address of 1.1.1.1, select TACACS+ as a protocol and configure Shared Secret of cisco123. Select Single Connect Device option and click Submit.

Page 53 of 100

CCIE SECURTY v4 Lab Workbook

Step 3 Router configuration. ! interface Loopback0 ip address 1.1.1.1 255.255.255.255 ! aaa new-model ! tacacs server ACS address ipv4 172.31.1.100 key cisco123 single-connection ! Notice that we do not need to configure ‘aaa authentication…’ command here. It is enough to specify TACACS server in the configuration and then we can use it in ‘test aaa’ command. Also note that you can specify AAA server in three ways: 1.

using old command structure like ‘tacacs-server host…’

2.

using new command structure as configured above

3.

using AAA groups with commands like ‘aaa group server…’

The first option is deprecated and is not recommanded to be used in IOS 15.0 and above.

Page 54 of 100

CCIE SECURTY v4 Lab Workbook

Verification Use test aaa command to check user authentication. R1#test aaa group tacacs+ student1 student123 legacy Attempting authentication test to server-group tacacs+ using tacacs+ User was successfully authenticated.

Check logs on ACS. Go to Monitoring and Reports and launch Authentications – TACACS – Today report.

Page 55 of 100

CCIE SECURTY v4 Lab Workbook

Task 3 – Adding the switch as AAA client in ACS Configure SW1 switch as AAA client in ACS using RADIUS with secret key of cisco123. Make sure the device is sourcing RADIUS traffic from vlan10 interface with IP address of 10.1.10.7/24. The new AAA client should be added as Device Type = Switches in Location = HQ. Configure AAA on the switch and use test aaa command to verify your solution.

Configuration Complete these steps: Step 1 Connect to ACS from WinXP PC and authenticate using acsadmin. •

Go to Network Resources > Network Device Groups > Device Type and click Create. Add name Switches under All Device Types and click Submit.

Step 2 Add new AAA client to the ACS. •

Go to Network Resources > Network Device and AAA Clients and click Create. Add new client with name of SW1, select Location = HQ and Device Type = Switches, configure IP address of 10.1.10.7,

Page 56 of 100

CCIE SECURTY v4 Lab Workbook

select RADIUS as a protocol and configure Shared Secret of cisco123 and click Submit.

Step 3 Switch configuration. ! interface Vlan10 ip address 10.1.10.7 255.255.255.0 ! aaa new-model ! ip default-gateway 10.1.10.1 ip radius source-interface Vlan10 radius-server host 172.31.1.100 key cisco123 ! Note that when you enable ‘aaa new-model’ the router will start asking for Username/Password on VTY lines. You must either configure ‘login authentication’ command on VTYs or create some backup/fallback username in the local router’s database. It is always recommended to have such local user account. ! username backup password backup !

Page 57 of 100

CCIE SECURTY v4 Lab Workbook

Verification Use test aaa command to check user authentication. SW1#ping 172.31.1.100 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.31.1.100, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/205/1015 ms SW1#test aaa group radius student1 student123 legacy Attempting authentication test to server-group radius using radius User was successfully authenticated.

Check logs on ACS. Go to Monitoring and Reports and launch Authentications – RADIUS – Today report.

Page 58 of 100

CCIE SECURTY v4 Lab Workbook

LAB 2.5.

User authentication and authorization (IOS)

Objectives This lab shows how to configure routers to perform basic authentication and authorization.

IP Addressing and devices Device

Interface

IP address

R1

Lo0

1.1.1.1/32

E0/0

10.1.10.1/24

E0/1

172.31.1.1/24

Lo0

2.2.2.2/32

E0/0

100.2.2.2/24

R2



The router may authenticate remote users using its local user database. Every user connecting to the router must be authenticated and authorized to perform specific tasks. There are 16 privilege levels on the router. The levels are defined with a number of 0 through 15. By default only three levels are configured: •

Level 0 – basic level which is accessible by every user with only access to basic commands like “exit” and “logout”



Level 1 – user without administrative permissions has this level assigned. Usually every user in non-privileged router mode (non-enable mode) is on this level



Level 15 – user with administrative privileges is on this level. All commands are available on this level by default. When a user enters “enable” command and authenticates successfully, he/she is by default authorized on level 15.

Page 59 of 100

CCIE SECURTY v4 Lab Workbook

Rest of the levels (2-14) is user configurable so that we can assign commands to a specific level. The term “assign” is unfortunate here as we are able to only “move” a command between levels. For example, if a command is by default on level 15 (remember that most of the configuration commands are available only on level 15) we can move it down to level 10. However, this command will be now available on level 10 and on all levels above up to level 15. The router can have different passwords for every privilege level, so that we can authenticate to a specified level by entering command “enable ”. Note that because most configuration commands are available on level 15, entering level 5 for example will not give us any access to other commands. We need to “move” specific commands first to that level to be able to use them.

Page 60 of 100

CCIE SECURTY v4 Lab Workbook

Task 1 – Local user authentication on router On R2 configure local user “luser1” with a password of “luser1” and allow him to issue only “show” commands when accessing the router using TELNET session. Use strong encryption for enable password if possible. You are not allowed to use any AAA commands or views to accomplish this task.

Configuration Complete these steps: Step 1 Configure R2 as follows: ! privilege exec all level 3 show ! enable secret level 3 enable3 ! username luser1 password luser1 ! line vty 0 4 login local !

Verification R1#telnet 100.2.2.2 Trying 100.2.2.2 ... Open

User Access Verification Username: luser1 Password: R2>show priv ^

 ”show” command is not accessible for level 1 user – it is now on

level 3 % Invalid input detected at '^' marker. R2>enable % No password set  there’s no enalble password for level 15 configured R2>enable 3 Password:

 “enable3” password works for privilege level 3 only

R2#sh priv Current privilege level is 3

Page 61 of 100

CCIE SECURTY v4 Lab Workbook

R2#show ? aaa

Show AAA values

aal2

Show commands for AAL2

access-expression

List access expression

access-lists

List access lists

accounting

Accounting data for active sessions

adjacency

Adjacent nodes

alarm-interface

Display information about a specific Alarm Interface Card

aliases

Display alias commands

alignment

Show alignment information

alps

Alps information

appfw

Application Firewall information

appletalk

AppleTalk information

arap

Show Appletalk Remote Access statistics

archive

Archive of the running configuration information

arp

ARP table

ase

Display ASE specific information

async

Information on terminal lines used as router interfaces

auto

Show Automation Template

autoupgrade

Show autoupgrade related information

backhaul-session-manager

Backhaul Session Manager information

R2#conf t ^  higher level commands are not accessible for level 3 user % Invalid input detected at '^' marker. R2#exit [Connection to 100.2.2.2 closed by foreign host] R1#

Page 62 of 100

CCIE SECURTY v4 Lab Workbook

This page is intentionally left blank.

Page 63 of 100

CCIE SECURTY v4 Lab Workbook

Advanced CCIE SECURITY v4 LAB WORKBOOK

Identity Management ISE

Narbik Kocharians CCIE #12410 R&S, Security, SP Piotr Matusiak CCIE #19860 R&S, Security

www.MicronicsTraining.com

Page 64 of 100

CCIE SECURTY v4 Lab Workbook

Logical Topology for ISE labs

ISE v1.1 is connected to the network behind Router1 and has IP address of 172.31.1.20. Default gateway should be set to R1. Management access to ISE should be allowed from WinXP PC (10.1.10.50).

Page 65 of 100

CCIE SECURTY v4 Lab Workbook

LAB 2.6. ISE Installation (optional) Objectives This lab introduces Identity Service Engine v1.1 and verifies basic connectivity with other network elements.

IP Addressing and devices Device

Interface

IP address

ISE

NIC

172.31.1.20

R1

Lo0

1.1.1.1/32

E0/0

10.1.10.1/24

E0/1

172.31.1.1/24

Lo0

2.2.2.2/32

E0/0

100.2.2.2/24

NIC

10.1.10.50/24

R2 WinXP

This is an optional task. If the ISE is already pre-installed, you can go directly to next task.

Task Perform ISE installation and bootstrapping. Provide the following information during the installation process: •

Hostname: ISE



IP Address and mask: 172.31.1.20/24



Default gateway: 172.31.1.1



Domain name and nameserver: micronics.local, 172.31.1.200



NTP server and timezone: 172.31.1.200, UTC

Page 66 of 100

CCIE SECURTY v4 Lab Workbook

Configuration Complete these steps: Step 1 Log into the ISE Virtual Appliance console (if you have access to it). You should see the following prompt: ********************************************** Please type ‘setup’ to configure the appliance ********************************************** localhost login:

Enter setup as a username to start configuration wizard. Step 2 Go through the configuration wizard. Press ‘Ctrl-C’ to abort setup Enter hostname[]: ise Enter IP address []: 172.31.1.20 Enter IP default netmask[]: 255.255.255.0 Enter IP default gateway[]: 172.31.1.1 Enter default DNS domain[]: micronics.local Enter Primary nameserver[]: 172.31.1.200 Add secondary nameserver? Y/N [N]: Enter Primary NTP server[time.nist.gov]: 172.31.1.1 Add another NTP server? Y/N [N]: Enter system timezone[UTC]: Enter username[admin]: Enter password: Micronics1 Enter password again: Micronics1 Bringing up network interface... Pinging the gateway... Pinging the primary nameserver ... Virtual machine detected, configuring VMware tools... Do not use ‘Ctrl-C’ from this point on... Appliance is configured Installing applications... Installing ise ... The mode has been set to licensed.

Step 3 ISE installation. Provide passwords for ISE databased during installation. Application bundle (ise) installed successfully === Initial Setup for Application: ise ===

Page 67 of 100

CCIE SECURTY v4 Lab Workbook

Welcome to the ISE initial setup. The purpose of this setup is to provision the internal ISE database. This setup requires you create a database administrator password and also create a database user password. Please follow the prompts below to create the database administrator password. Enter new database admin password: Micronics1234 Confirm new database admin password: Micronics1234 Successfully created database administrator password. Please follow the prompts below to create the data base user password: Enter new database user password: Micronics1234 Confirm new Database user password: Micronics1234 Successfully created database user password. Running database cloning script... Running database network config assistant tool... Extracting ISE database content... Starting ISE database processes... Creating ISE M&T session directory... Performing ISE database priming... Generating configuration... Rebooting...

Verification Connect to ISE using SSH and provide username/password of admin/Micronics1. Check and note the following: •

ISE application version



ISE daemon status



Interface configuration



Routing table (with default gateway)



Clock configuration



Timezone configuration

Connect to the GUI from WinXP desktop and check license and ISE deployment options.

Page 68 of 100

CCIE SECURTY v4 Lab Workbook

Run Putty and connect using SSH to IP address of 172.31.1.20 Verify that ISE is installed properly Cisco ISE is an application installed on underlying operating system called Cisco ADE. Once you’re connected to ADE you must check what applications are installed. Then you can use application name (in our case ‘ise) in all other commands.

ISE/admin# show application



ise

Cisco Identity Services Engine

ISE/admin#

Check ISE version ISE/admin# show application version ise Cisco Identity Services Engine --------------------------------------------Version

: 1.1.0.665

Build Date

: Wed Mar

7 22:51:03 2012

Install Date : Wed Jan

2 17:12:33 2013

The

main

version

development

stage.

is By

1.1

and

the

patch

default

ISE

is

level

in

EVAL

is mode

665. for

The 90

build days.

depends You

can

on

the

install

production license or use evaluation license. You do not need to provide any license file for ISE to be working.

Check status of ISE processes ISE/admin# show application status ise ISE Database listener is running, PID: 4166 ISE Database is running, number of processes: 26 ISE Application Server is running, PID: 5694 ISE M&T Session Database is running, PID: 3826 ISE M&T Log Collector is running, PID: 5921 ISE M&T Log Processor is running, PID: 6005 ISE M&T Alert Process is running, PID: 5840 % WARNING: ISE DISK SIZE NOT LARGE ENOUGH FOR PRODUCTION USE % RECOMMENDED DISK SIZE: 200 GB, CURRENT DISK SIZE: 64 GB

Page 69 of 100

CCIE SECURTY v4 Lab Workbook

If there is other status than ‘is running’ it means theres something wrong with a particular ISE subsystem/process. To fix that you can try to restart ISE application using ‘application stop ise’ and then ‘application start ise’. Be patient as it may take a while to start all ISE processes.

Check interface configuration and verify IP address and netmask ISE/admin# show interface GigabitEthernet 0 Link encap:Ethernet

HWaddr 00:50:56:AE:A1:34

inet addr:172.31.1.20

Bcast:172.31.1.255

Mask:255.255.255.0

inet6 addr: fe80::250:56ff:feae:a134/64 Scope:Link UP BROADCAST RUNNING MULTICAST

MTU:1500

Metric:1

RX packets:70970 errors:0 dropped:0 overruns:0 frame:0 TX packets:90676 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:8304352 (7.9 MiB)

TX bytes:15921119 (15.1 MiB)

Interrupt:59 Base address:0x2024 lo

Link encap:Local Loopback inet addr:127.0.0.1

Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING

MTU:16436

Metric:1

RX packets:29034318 errors:0 dropped:0 overruns:0 frame:0 TX packets:29034318 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:501930492 (478.6 MiB) sit0

TX bytes:501930492 (478.6 MiB)

Link encap:IPv6-in-IPv4 NOARP

MTU:1480

Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b)

TX bytes:0 (0.0 b)

Make sure that you see RX and TX packets and no error counters increasing. This is the first indicator that something can be wrong with connectivity. If you do not see GigabitEhernet0 interface that usually means the interface is down. You may see more interfaces depending on ISE installation. Some interfaces may be used for profiling services.

Check routing table and default gateway

Page 70 of 100

CCIE SECURTY v4 Lab Workbook

ISE/admin# show ip route Kernel IP routing table Destination

Gateway

Genmask

Flags Metric Ref

172.31.1.0

0.0.0.0

255.255.255.0

U

0

0

Use Iface 0 eth0

0.0.0.0

172.31.1.1

0.0.0.0

UG

0

0

0 eth0

Note that there is still interface ‘eth0’ in the command output. This interface is a pointer to GigabitEthernet0.

Check basic connectivity to the gateway and to other network elements ISE/admin# ping 172.31.1.1 PING 172.31.1.1 (172.31.1.1) 56(84) bytes of data. 64 bytes from 172.31.1.1: icmp_seq=1 ttl=255 time=0.853 ms 64 bytes from 172.31.1.1: icmp_seq=2 ttl=255 time=0.810 ms 64 bytes from 172.31.1.1: icmp_seq=3 ttl=255 time=0.776 ms 64 bytes from 172.31.1.1: icmp_seq=4 ttl=255 time=0.886 ms --- 172.31.1.1 ping statistics --4 packets transmitted, 4 received, 0% packet loss, time 3003ms rtt min/avg/max/mdev = 0.776/0.831/0.886/0.046 ms ISE/admin# ping 10.1.10.10 PING 10.1.10.10 (10.1.10.10) 56(84) bytes of data. 64 bytes from 10.1.10.10: icmp_seq=1 ttl=254 time=67.9 ms 64 bytes from 10.1.10.10: icmp_seq=2 ttl=254 time=1.17 ms 64 bytes from 10.1.10.10: icmp_seq=3 ttl=254 time=16.3 ms 64 bytes from 10.1.10.10: icmp_seq=4 ttl=254 time=57.0 ms --- 10.1.10.10 ping statistics --4 packets transmitted, 4 received, 0% packet loss, time 3001ms rtt min/avg/max/mdev = 1.172/35.622/67.910/27.663 ms

You may not reach ASa firewall at this stage. If not, check if ASA has static route to 172.31.1.0/24 network configured.

ISE/admin# ping 10.1.10.50 PING 10.1.10.50 (10.1.10.50) 56(84) bytes of data. 64 bytes from 10.1.10.50: icmp_seq=1 ttl=127 time=0.862 ms 64 bytes from 10.1.10.50: icmp_seq=2 ttl=127 time=0.909 ms 64 bytes from 10.1.10.50: icmp_seq=3 ttl=127 time=1.00 ms 64 bytes from 10.1.10.50: icmp_seq=4 ttl=127 time=0.896 ms --- 10.1.10.50 ping statistics ---

Page 71 of 100

CCIE SECURTY v4 Lab Workbook

4 packets transmitted, 4 received, 0% packet loss, time 3002ms rtt min/avg/max/mdev = 0.862/0.917/1.004/0.064 ms

Check the name server and domain configuration. Verify if DNS works asking to resolve FQDN of ise.micronics.local ISE/admin# show running-config | inc name hostname ISE ip domain-name micronics.local ip name-server 172.31.1.200 username admin password hash $1$pAzQ9DDO$zWBNlRgM8m1mlZPZLRh0Y1 role admin no-username ISE/admin# ping 172.31.1.200 PING 172.31.1.200 (172.31.1.200) 56(84) bytes of data. 64 bytes from 172.31.1.200: icmp_seq=1 ttl=128 time=0.345 ms 64 bytes from 172.31.1.200: icmp_seq=2 ttl=128 time=0.348 ms 64 bytes from 172.31.1.200: icmp_seq=3 ttl=128 time=0.382 ms 64 bytes from 172.31.1.200: icmp_seq=4 ttl=128 time=0.417 ms --- 172.31.1.200 ping statistics --4 packets transmitted, 4 received, 0% packet loss, time 3003ms rtt min/avg/max/mdev = 0.345/0.373/0.417/0.029 ms ISE/admin# nslookup ise.micronics.local Trying "ise.micronics.local" ;; ->>HEADER System -> Licensing.

Page 75 of 100

CCIE SECURTY v4 Lab Workbook

LAB 2.7. Configure Wired 802.1x Objectives This lab shows how to configure 802.1x for wired environment.

IP Addressing and devices Device

Interface

IP address

ISE

NIC

172.31.1.20

R1

Lo0

1.1.1.1/32

E0/0

10.1.10.1/24

E0/1

172.31.1.1/24

AD

NIC

172.31.1.200

WinXP

NIC

10.1.10.50/24

SW1

VLAN10

10.1.10.7/24

Task There is a Windows 7 host connected to SW1 port 0/7 through the IP Phone. The IP Phone is authenticated using MAB configured in previous tasks. Configure Win7 PC to use its native supplicant with PEAP/MS-CHAPv2 only. Use Active Directory user employee1 and computer’s account (member of Domain Computers AD group) for authentication. Upon successful authentication the user and machine should get full access to the network. Enable 802.1x low impact mode on the port and allow only DHCP, DNS, TFTP and ICMP traffic. Ensure the following authentication order: o

802.1x

o

MAB

The switch should time out 802.1x authentication method after 15 seconds and allow only one MAC address to be seen behind the IP Phone. If there are more MAC addresses the switch should NOT authenticate them and silently drop the packets.

Page 76 of 100

CCIE SECURTY v4 Lab Workbook

You can disable Whitelist authorization rule and put the IP Phone back to the default Cisco-IP-Phone group.

Page 77 of 100

CCIE SECURTY v4 Lab Workbook

Configuration Complete these steps: Step 1 Switch configuration. ! ip access-list extended DEFAULT remark DHCP permit udp any eq bootpc any eq bootps remark DNS permit udp any any eq domain remark TFTP permit udp any any eq tftp remark Ping permit icmp any any ! interface GigabitEthernet0/7 ip access-group DEFAULT in authentication open authentication order dot1x mab dot1x timeout tx-period 5 ! ip device tracking radius vsa send !

Step 2 Create allowed protocols object. •

Go to Policy > Policy Elements > Results > Authentication > Allowed Protocols and click Add. Enter PEAP_Only as name, pick Allow PEAP with Allow EAP-MS-CHAPv2, uncheck all other methods and click Submit.

Page 78 of 100

CCIE SECURTY v4 Lab Workbook

Step 3 Create authorization profile for AD clients to get full network access upon successful authorization. •

Go to Policy > Policy Elements > Results > Authorization > Authorization Profiles and click Add. Enter AD_Success_Profile as name, pick DACL Name checkbox and chose default PERMIT_ALL_TRAFFIC from the drop-down list. Click Submit.

Page 79 of 100

CCIE SECURTY v4 Lab Workbook

Step 4 Move IP Phone MAC address to the default Identity Group and disable Whitelist authorization rule. •

Go to Administration > Identity Management > Identities > Endpoints and click Cisco-IP-Phone (an entry with IP Phone MAC address). Change the Identity Group Assignment to Cisco-IPPhone. Click Save.

Page 80 of 100

CCIE SECURTY v4 Lab Workbook



Go to Policy > Authorization and click Edit link next to the Whitelist rule. Click on the green icon and chose Disabled. Click Done and Save.

Step 5 Add new authentication rule or edit default one. •

Go to Policy > Authentication and click orange arrow next to Allowed Protocols in Dot1X rule. Pick PEAP_Only from configured objects. Then click black arrow to show more options of the rule and change default identity source to AD1. Click Save.

Page 81 of 100

CCIE SECURTY v4 Lab Workbook

Step 6 Create new authorization rule for domain users. •

Go to Policy > Authorization and insert new rule as a second to last (before the default one). Enter a name e.g. Domain User and create new Compound Condition where AD1:ExternalGroup = micronics.local\Users/employees.



As Permissions chose AD_Success_Profile already created in the previous steps. Click Done.

Step 7 Create authorization rule for domain computers.

Page 82 of 100

CCIE SECURTY v4 Lab Workbook



Go to Administration > Identity Management > External Identity Sources > Active Directory and click Add > Select Groups From Directory on Groups tab. Click Retrieve Groups and pick micronics.local/Users/Domain Computers group. Click OK.



Click Save Configuration.



Go to Policy > Authorization and insert new rule before Domain User rule. Enter a name e.g. Domain Computer and create new

Page 83 of 100

CCIE SECURTY v4 Lab Workbook

Compound Condition where AD1:ExternalGroup = micronics.local\Users/Domain Computers.



As Permissions chose AD_Success_Profile already created in the previous steps. Click Done.



Click Save.

Page 84 of 100

CCIE SECURTY v4 Lab Workbook

Step 8 Win7 PC native supplicant configuration. •

Go to Services (services.msc) and Enable/Start WiredAutoConfig service.



Go to Network Connections right click on LAB-Network and select Properties. You should see Authentication tab.

Page 85 of 100

CCIE SECURTY v4 Lab Workbook



On the Authentication tab select options as follows:

Click on Settings button and uncheck Validate server certificate option.

Page 86 of 100

CCIE SECURTY v4 Lab Workbook



Click on Configure button and uncheck the option:



Click OK and go back to the Authentication tab. Click Additional Settings button and check Specify authentication mode and select User or computer authentication. Click OK and close network adapter properties window.

Page 87 of 100

CCIE SECURTY v4 Lab Workbook

Verification Enable debugging on the switch: debug radius debug dot1x event

Bounce the switchport and check debug output. SW1#conf t Enter configuration commands, one per line.

End with CNTL/Z.

SW1(config)#int g0/7 SW1(config-if)#shut SW1(config-if)#no shu SW1(config-if)#^Z // see the AuthManager state before authentication. The domain is UNKNOWN at the moment but there is MAC address on the port. Note that dot1x is running but it will fail over to mab after timeout. SW1#sh auth sess int g0/7 Interface: MAC Address: IP Address:

GigabitEthernet0/7 0021.a084.6ff4 Unknown

Status:

Running

Domain:

UNKNOWN

Security Policy:

Should Secure

Security Status:

Unsecure

Oper host mode: Oper control dir:

multi-domain both

Session timeout:

N/A

Idle timeout:

N/A

Common Session ID:

0A010A070000002F00ED9839

Acct Session ID:

0x00000034

Handle:

0x3500002F

Runnable methods list: Method

State

dot1x

Running

mab

Not run

// First the IP Phone is being authenticated. dot1x-ev(Gi0/7): New client notification from AuthMgr for 0x04000059 - 0021.a084.6ff4 %AUTHMGR-5-START: Starting 'dot1x' for client (0021.a084.6ff4) on Interface Gi0/7 AuditSessionID 0A010A070000002F00ED9839 %LINK-3-UPDOWN: Interface GigabitEthernet0/7, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/7, changed state to up // two dot1x retransmissions are configured by default

Page 88 of 100

CCIE SECURTY v4 Lab Workbook

dot1x-ev(Gi0/7): Sending EAPOL packet to 0021.a084.6ff4 dot1x-ev(Gi0/7): Role determination not required dot1x-ev(Gi0/7): Sending out EAPOL packet dot1x-ev(Gi0/7): Sending EAPOL packet to 0021.a084.6ff4 dot1x-ev(Gi0/7): Role determination not required dot1x-ev(Gi0/7): Sending out EAPOL packet dot1x-ev(Gi0/7): Received an EAP Timeout %DOT1X-5-FAIL: Authentication failed for client (0021.a084.6ff4) on Interface Gi0/7 AuditSessionID dot1x-ev(Gi0/7): Sending event (2) to Auth Mgr for 0021.a084.6ff4 %AUTHMGR-7-RESULT: Authentication result 'no-response' from 'dot1x' for client (0021.a084.6ff4) on Interface Gi0/7 AuditSessionID 0A010A070000002F00ED9839 dot1x-ev(Gi0/7): Received Authz fail for the client

0x04000059 (0021.a084.6ff4)

dot1x-ev(Gi0/7): Deleting client 0x04000059 (0021.a084.6ff4) %AUTHMGR-7-FAILOVER: Failing over from 'dot1x' for client (0021.a084.6ff4) on Interface Gi0/7 AuditSessionID 0A010A070000002F00ED9839 // dot1x has failed for IP Phone because the phone has no dot1x supplicant, now the MAB is running %AUTHMGR-5-START: Starting 'mab' for client (0021.a084.6ff4) on Interface Gi0/7 AuditSessionID 0A010A070000002F00ED9839 dot1x-ev:Delete auth client (0x04000059) message dot1x-ev:Auth client ctx destroyed dot1x-ev:Aborted posting message to authenticator state machine: Invalid client RADIUS/ENCODE(00000034):Orig. component type = DOT1X RADIUS(00000034): Config NAS IP: 10.1.10.7 RADIUS/ENCODE(00000034): acct_session_id: 52 RADIUS(00000034): sending // RADIUS authentication message is sent to ISE. Note that username is MAC address of the IP Phone and we have Service-Type=10 and NAS-Port-Type=15 in the message. The ISE will match that connection to the correct authentication rule based on those attributes. RADIUS(00000034): Send Access-Request to 172.31.1.20:1812 id 1645/160, len 209 RADIUS:

authenticator B9 13 0A 78 2E E0 32 C7 - 75 A0 6C 56 0D D3 27 93

RADIUS:

User-Name

RADIUS:

User-Password

[2]

18

*

RADIUS:

Service-Type

[6]

6

Call Check

RADIUS:

Framed-MTU

[12]

6

1500

RADIUS:

Called-Station-Id

[30]

19

"C4-64-13-6C-E8-07"

RADIUS:

Calling-Station-Id

[31]

19

"00-21-A0-84-6F-F4"

RADIUS:

Message-Authenticato[80]

18

RADIUS:

[1]

14

"0021a0846ff4" [10]

48 AF 08 93 30 FB 6C FA FD FB 10 37 56 E1 42 F5

[ H0l7VB]

RADIUS:

EAP-Key-Name

[102] 2

RADIUS:

Vendor, Cisco

[26]

49

*

RADIUS:

Cisco AVpair

[1]

43

"audit-session-id=0A010A070000002F00ED9839"

RADIUS:

NAS-Port-Type

[61]

6

Ethernet

Page 89 of 100

[15]

CCIE SECURTY v4 Lab Workbook

RADIUS:

NAS-Port

[5]

6

50007

RADIUS:

NAS-Port-Id

[87]

20

"GigabitEthernet0/7"

RADIUS:

NAS-IP-Address

[4]

6

10.1.10.7

RADIUS(00000034): Started 5 sec timeout // RADIUS reply is received. This is an Access-Accept RADIUS message type so it contains some additional attributes. The most important attributes here are ‘device-traffic-class=voice’ and dACL name. The first attribute is very important in case of Multi-Auth. The switch knows what ‘authentication domain’ to use. Without this attribute the IP Phone could be authenticated in DATA domain as the MAC address of the phone is ‘visible’ in two VLANs (data vlan and voice vlan). Also note that there is just dACL name in the RADIUS message. There are no dACL entries yet. The switch must ask for that dACL again to download ACEs (Access List Entries). RADIUS: Received from id 1645/160 172.31.1.20:1812, Access-Accept, len 297 RADIUS:

authenticator 89 F8 81 A9 CD 82 74 B9 - C0 87 50 16 98 AF B0 7A

RADIUS:

User-Name

[1]

19

RADIUS:

State

[24]

40

"00-21-A0-84-6F-F4"

RADIUS:

52 65 61 75 74 68 53 65 73 73 69 6F 6E 3A 30 41

[ReauthSession:0A]

RADIUS:

30 31 30 41 30 37 30 30 30 30 30 30 32 46 30 30

[010A070000002F00]

RADIUS: RADIUS:

45 44 39 38 33 39 Class

[ ED9839] [25]

50

RADIUS:

43 41 43 53 3A 30 41 30 31 30 41 30 37 30 30 30

RADIUS:

30 30 30 32 46 30 30 45 44 39 38 33 39 3A 49 53

[0002F00ED9839:IS]

RADIUS:

45 2F 31 34 33 35 35 38 35 35 33 2F 33 30 32 39

[ E/143558553/3029]

RADIUS:

Termination-Action

RADIUS:

Message-Authenticato[80]

RADIUS:

[29]

6

[CACS:0A010A07000]

1

18

53 41 4D 42 74 C4 90 4F AB 57 80 A8 86 99 66 5D

RADIUS:

Vendor, Cisco

RADIUS:

Cisco AVpair

RADIUS:

Vendor, Cisco

RADIUS:

Cisco AVpair

[26]

34

[1]

28

[26]

75

[1]

69

[ SAMBtOWf]]

"device-traffic-class=voice" "ACS:CiscoSecure-Defined-ACL=#ACSACL#-IP-

PERMIT_ALL_TRAFFIC-4f57e406" RADIUS:

Vendor, Cisco

RADIUS:

Cisco AVpair

[26]

35

[1]

29

"profile-name=Cisco-IP-Phone"

RADIUS(00000034): Received from id 1645/160 RADIUS/DECODE: parse unknown cisco vsa "profile-name" - IGNORE %MAB-5-SUCCESS: Authentication successful for client (0021.a084.6ff4) on Interface Gi0/7 AuditSessionID 0A010A070000002F00ED9839 %AUTHMGR-7-RESULT: Authentication result 'success' from 'mab' for client (0021.a084.6ff4) on Interface Gi0/7 AuditSessionID 0A010A070000002F00ED9839 %EPM-6-POLICY_REQ: IP 0.0.0.0| MAC 0021.a084.6ff4| AuditSessionID 0A010A070000002F00ED9839| AUTHTYPE DOT1X| EVENT APPLY %EPM-6-AAA: POLICY xACSACLx-IP-PERMIT_ALL_TRAFFIC-4f57e406| EVENT DOWNLOAD-REQUEST RADIUS/ENCODE(00000000):Orig. component type = INVALID RADIUS(00000000): Config NAS IP: 10.1.10.7 RADIUS(00000000): sending

Page 90 of 100

CCIE SECURTY v4 Lab Workbook

// The switch must download ACL from ISE. This is done by another RADIUS request where username is a dACL name. There must be three things configured on the switch to make this happen: -

aaa authorization network

-

ip device tracking

-

radius vsa send

RADIUS(00000000): Send Access-Request to 172.31.1.20:1812 id 1645/161, len 147 RADIUS:

authenticator D4 CD 40 0E F3 F8 F9 70 - 58 99 86 E7 AB 82 94 42

RADIUS:

NAS-IP-Address

[4]

6

10.1.10.7

RADIUS:

User-Name

[1]

41

"#ACSACL#-IP-PERMIT_ALL_TRAFFIC-4f57e406"

RADIUS:

Vendor, Cisco

[26]

32

[1]

26

[26]

30

RADIUS:

Cisco AVpair

RADIUS:

Vendor, Cisco

RADIUS: RADIUS: RADIUS:

Cisco AVpair

[1]

Message-Authenticato[80]

24

"aaa:service=ip_admission" "aaa:event=acl-download"

18

D6 19 B1 96 C2 84 8C 39 B6 F8 59 11 B4 D5 CE 32

[ 9Y2]

RADIUS(00000000): Started 5 sec timeout // with the RADIUS Access-Accept message the switch gets ACl entries. RADIUS: Received from id 1645/161 172.31.1.20:1812, Access-Accept, len 211 RADIUS:

authenticator FA 1C F2 32 B9 39 44 C8 - 62 9D 53 67 81 1D 8C EF

RADIUS:

User-Name

[1]

41

RADIUS:

State

[24]

40

"#ACSACL#-IP-PERMIT_ALL_TRAFFIC-4f57e406"

RADIUS:

52 65 61 75 74 68 53 65 73 73 69 6F 6E 3A 61 63

[ReauthSession:ac]

RADIUS:

31 66 30 31 31 34 30 30 30 30 30 42 37 32 35 31

[1f011400000B7251]

RADIUS: RADIUS:

30 36 42 36 44 44 Class

[ 06B6DD] [25]

50

RADIUS:

43 41 43 53 3A 61 63 31 66 30 31 31 34 30 30 30

RADIUS:

30 30 42 37 32 35 31 30 36 42 36 44 44 3A 49 53

[00B725106B6DD:IS]

RADIUS:

45 2F 31 34 33 35 35 38 35 35 33 2F 33 30 33 30

[ E/143558553/3030]

RADIUS:

Termination-Action

RADIUS:

Message-Authenticato[80]

RADIUS:

[29]

6

[CACS:ac1f0114000]

1

18

8D 04 C6 C4 03 39 C9 E4 71 09 BB 6B D7 76 9F 5D

RADIUS:

Vendor, Cisco

RADIUS:

Cisco AVpair

[26]

36

[1]

30

[ 9qkv]]

"ip:inacl#1=permit ip any any"

RADIUS(00000000): Received from id 1645/161 %EPM-6-AAA: POLICY xACSACLx-IP-PERMIT_ALL_TRAFFIC-4f57e406| EVENT DOWNLOAD-SUCCESS %EPM-6-IPEVENT: IP 0.0.0.0| MAC 0021.a084.6ff4| AuditSessionID 0A010A070000002F00ED9839| AUTHTYPE DOT1X| EVENT IP-WAIT %AUTHMGR-5-SUCCESS: Authorization succeeded for client (0021.a084.6ff4) on Interface Gi0/7 AuditSessionID 0A010A070000002F00ED9839 RADIUS/ENCODE(00000034):Orig. component type = DOT1X RADIUS(00000034): Config NAS IP: 10.1.10.7 RADIUS(00000034): sending // if RADIUS accounting is enabled, another message is sent RADIUS(00000034): Send Accounting-Request to 172.31.1.20:1813 id 1646/26, len 290 RADIUS:

authenticator 53 F1 C6 46 5A C5 72 97 - DC 43 AF C1 61 2B 4F 96

RADIUS:

Acct-Session-Id

[44]

10

"00000034"

Page 91 of 100

CCIE SECURTY v4 Lab Workbook

RADIUS:

Vendor, Cisco

RADIUS:

Cisco AVpair

[26]

49

[1]

43

"audit-session-id=0A010A070000002F00ED9839" "00-21-A0-84-6F-F4"

RADIUS:

User-Name

[1]

19

RADIUS:

Vendor, Cisco

[26]

32

RADIUS:

Cisco AVpair

[1]

26

RADIUS:

Acct-Authentic

[45]

6

RADIUS

[1]

RADIUS:

Acct-Status-Type

[40]

6

Start

[1]

RADIUS:

NAS-Port-Type

[61]

6

Ethernet

[15]

RADIUS:

NAS-Port

[5]

6

50007

RADIUS:

NAS-Port-Id

[87]

20

"GigabitEthernet0/7"

RADIUS:

Called-Station-Id

[30]

19

"C4-64-13-6C-E8-07"

RADIUS:

Calling-Station-Id

[31]

19

"00-21-A0-84-6F-F4"

RADIUS:

Class

[25]

50

"connect-progress=Call Up"

RADIUS:

43 41 43 53 3A 30 41 30 31 30 41 30 37 30 30 30

[CACS:0A010A07000]

RADIUS:

30 30 30 32 46 30 30 45 44 39 38 33 39 3A 49 53

[0002F00ED9839:IS]

45 2F 31 34 33 35 35 38 35 35 33 2F 33 30 32 39

[ E/143558553/3029]

RADIUS: RADIUS:

Service-Type

[6]

6

Framed

RADIUS:

NAS-IP-Address

[4]

6

10.1.10.7

RADIUS:

Unsupported

[151] 10

RADIUS: RADIUS:

44 45 37 41 45 41 43 37 Acct-Delay-Time

[2]

[ DE7AEAC7]

[41]

6

0

RADIUS(00000034): Started 5 sec timeout RADIUS: Received from id 1646/26 172.31.1.20:1813, Accounting-response, len 20 RADIUS:

authenticator 61 24 0C 05 95 95 5F 37 - 32 D5 DA 19 89 98 FD 40

// check the authentication session again. You should see correct domain (VOICE) based on the attribute received from the ISE, and ACL name. You will not see ACL entries here. SW1#sh auth sess int g0/7 Interface: MAC Address: IP Address: User-Name:

GigabitEthernet0/7 0021.a084.6ff4 Unknown 00-21-A0-84-6F-F4

Status:

Authz Success

Domain:

VOICE

Security Policy:

Should Secure

Security Status:

Unsecure

Oper host mode: Oper control dir: Authorized By: ACS ACL:

multi-domain both Authentication Server xACSACLx-IP-PERMIT_ALL_TRAFFIC-4f57e406

Session timeout:

N/A

Idle timeout:

N/A

Common Session ID:

0A010A070000002F00ED9839

Acct Session ID:

0x00000034

Handle:

0x3500002F

Runnable methods list: Method

State

Page 92 of 100

CCIE SECURTY v4 Lab Workbook

dot1x

Failed over

mab

Authc Success

Bounce the Win7 NIC (LAB-Network) to trigger dot1x and check debug output. Click on the balloon message that appears and provide user/pass of employee1/Micronics1 to authenticate.

dot1x-ev(Gi0/7): Dot1x authentication started for 0xC300005B (0026.55d0.0d56) %AUTHMGR-5-START: Starting 'dot1x' for client (0026.55d0.0d56) on Interface Gi0/7 AuditSessionID 0A010A070000003100EE1DEA // you may see more dot1x reties here. It depends on configured tx-period and how quickly you provide username and password to the supplicant. dot1x-ev(Gi0/7): Sending EAPOL packet to 0026.55d0.0d56 dot1x-ev(Gi0/7): Role determination not required dot1x-ev(Gi0/7): Sending out EAPOL packet dot1x-ev(Gi0/7): Sending EAPOL packet to 0026.55d0.0d56 dot1x-ev(Gi0/7): Role determination not required dot1x-ev(Gi0/7): Sending out EAPOL packet dot1x-ev(Gi0/7): Role determination not required dot1x-ev:Enqueued the eapol packet to the global authenticator queue EAPOL pak dump rx EAPOL Version: 0x1

type: 0x0

length: 0x000E

dot1x-ev: dot1x_auth_queue_event: Int Gi0/7 CODE= 2,TYPE= 1,LEN= 14 dot1x-ev(Gi0/7): Received pkt saddr =0026.55d0.0d56 , daddr = 0180.c200.0003, pae-ether-type = 888e.0100.000e dot1x-ev(Gi0/7): dot1x_sendRespToServer: Response sent to the server from 0xC300005B (0026.55d0.0d56) RADIUS/ENCODE(00000036):Orig. component type = DOT1X RADIUS(00000036): Config NAS IP: 10.1.10.7 RADIUS/ENCODE(00000036): acct_session_id: 54 RADIUS(00000036): sending // RADIUS authentication message is sent. It includes provided username and Service-Type=2 and NAS-Port-Type=15 which should be matched by ISE to the correct authentication rule. Note that the ISE is configured with Allowed Protocols where only PEAP/MS-CHAPv2 is selected. This will trigger another set of RADIUS messages to negotiate and build TLS tunnel and authenticate securely over that tunnel. RADIUS(00000036): Send Access-Request to 172.31.1.20:1812 id 1645/162, len 204

Page 93 of 100

CCIE SECURTY v4 Lab Workbook

RADIUS:

authenticator 07 CE 7D 37 DF DA B8 D6 - 00 16 97 E8 97 BC 0F 4F

RADIUS:

User-Name

[1]

11

"employee1"

RADIUS:

Service-Type

[6]

6

Framed

RADIUS:

Framed-MTU

[12]

6

1500

RADIUS:

Called-Station-Id

[30]

19

"C4-64-13-6C-E8-07"

RADIUS:

Calling-Station-Id

[31]

19

"00-26-55-D0-0D-56"

RADIUS:

EAP-Message

[79]

16

RADIUS: RADIUS: RADIUS:

02 01 00 0E 01 65 6D 70 6C 6F 79 65 65 31 Message-Authenticato[80]

[2]

[ employee1]

18

9C 1F 81 CF 9F 9E 64 34 E5 DA AC 68 D2 57 C1 41

RADIUS:

EAP-Key-Name

[102] 2

RADIUS:

Vendor, Cisco

[26]

[ d4hWA]

*

49

RADIUS:

Cisco AVpair

[1]

43

"audit-session-id=0A010A070000003100EE1DEA"

RADIUS:

NAS-Port-Type

[61]

6

Ethernet

RADIUS:

NAS-Port

[5]

6

50007

RADIUS:

NAS-Port-Id

[87]

20

"GigabitEthernet0/7"

RADIUS:

NAS-IP-Address

[4]

6

10.1.10.7

[15]

RADIUS(00000036): Started 5 sec timeout // RADIUS challenge message is to negotiate PEAP and build TLS tunnel. RADIUS: Received from id 1645/162 172.31.1.20:1812, Access-Challenge, len 119 RADIUS:

authenticator 5B FB D9 3A 4B B5 74 93 - 4C 54 58 C8 BC A1 08 56

RADIUS:

State

[24]

73

RADIUS:

33 37 43 50 4D 53 65 73 73 69 6F 6E 49 44 3D 30

[37CPMSessionID=0]

RADIUS:

41 30 31 30 41 30 37 30 30 30 30 30 30 33 31 30

[A010A07000000310]

RADIUS:

30 45 45 31 44 45 41 3B 32 38 53 65 73 73 69 6F

[0EE1DEA;28Sessio]

RADIUS:

6E 49 44 3D 49 53 45 2F 31 34 33 35 35 38 35 35

[nID=ISE/14355855]

RADIUS:

33 2F 33 30 33 32 3B

RADIUS: RADIUS: RADIUS: RADIUS:

EAP-Message

[ 3/3032;]

[79]

8

01 47 00 06 19 21

[ G!]

Message-Authenticato[80]

18

48 01 CE 89 9D 3B 52 D4 77 5C 83 63 A8 16 D2 31

[ H;Rw\c1]

RADIUS(00000036): Received from id 1645/162 RADIUS/DECODE: EAP-Message fragments, 6, total 6 bytes dot1x-ev(Gi0/7): Sending EAPOL packet to 0026.55d0.0d56 dot1x-ev(Gi0/7): Role determination not required dot1x-ev(Gi0/7): Sending out EAPOL packet dot1x-ev(Gi0/7): Role determination not required dot1x-ev:Enqueued the eapol packet to the global authenticator queue EAPOL pak dump rx EAPOL Version: 0x1

type: 0x0

length: 0x007B

dot1x-ev: dot1x_auth_queue_event: Int Gi0/7 CODE= 2,TYPE= 25,LEN= 123 dot1x-ev(Gi0/7): Received pkt saddr =0026.55d0.0d56 , daddr = 0180.c200.0003, pae-ether-type = 888e.0100.007b dot1x-ev(Gi0/7): dot1x_sendRespToServer: Response sent to the server from 0xC300005B (0026.55d0.0d56) RADIUS/ENCODE(00000036):Orig. component type = DOT1X RADIUS(00000036): Config NAS IP: 10.1.10.7 RADIUS/ENCODE(00000036): acct_session_id: 54

Page 94 of 100

CCIE SECURTY v4 Lab Workbook

RADIUS(00000036): sending // another RADIUS request is sent. Note that RADIUS message does NOT contain any password. There is just username. The username/password will be carried securely by EAP which is sent using RADIUS AVP/79. RADIUS(00000036): Send Access-Request to 172.31.1.20:1812 id 1645/163, len 386 RADIUS:

authenticator F0 57 7F CA 9E 1E DE B0 - 69 9F 41 77 5C 32 EC CE

RADIUS:

User-Name

[1]

11

"employee1"

RADIUS:

Service-Type

[6]

6

Framed

RADIUS:

Framed-MTU

[12]

6

1500

RADIUS:

Called-Station-Id

[30]

19

"C4-64-13-6C-E8-07" "00-26-55-D0-0D-56"

RADIUS:

Calling-Station-Id

[31]

19

RADIUS:

EAP-Message

[79]

125

RADIUS:

[2]

02 47 00 7B 19 80 00 00 00 71 16 03 01 00 6C 01 00 00 68 03 01 51 06 B6 F7 BA

BC F9 9E 91 CF 87 8E 3C FF 03 AF E3 E6 F2 65 29 F8 20 0F D5 12 97 87 AF DA 54 E1 00 00 18 00 2F 00 35 00 05 00 0A C0 13 C0 14 C0 09 C0 0A 00 32 00 38 00 13 00 04 01 00 00 27 [G{qlhQX[TNQ[E'vs
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF