Micro Inverter for Cfl Lamps Docx

September 17, 2017 | Author: Hamed Raza | Category: Power Inverter, Rectifier, Force, Electrical Engineering, Electricity
Share Embed Donate


Short Description

hi...

Description

MICRO INVERTER FOR CFL LAMPS (Simple and affordable mini inverter for the rural)

Inverters become a necessary device for a common man. Especially, in summer, the power shortage is more. We can overcome from the difficulties caused by power shortage by using inverters. This project is designed for up to 45W load.

This project works on astable multivibrator principle. Two transistors are used to form an astable circuit. The astable is designed for 50 Hz square wave signal. The output of the astable multivibrator is amplified by Darlington pair amplifier. This amplified output of astable multivibrator is fed to a step up transformer. 230V / 12–0–12 V transformer can be used in reverse, which is commonly available in the market. These inverters play vital role especially in rural areas. A rechargeable 12V battery is used to store the energy during power availability. The back up time depends on the battery ampere – hour rating.

This project uses regulated 12V, 750mA power supply for charging the battery. 7812 three terminal voltage regulator is used for voltage regulation. Bridge type full wave rectifier is used to rectify the ac out put of secondary of 230/18V step down transformer.

BLOCK DIAGRAM

1st Stage Darlington Amplifier

Astable Multivibrator

Step Up Transformer

AC Output

Step down T/F

Bridge Rectifier

Filter Circuit

Regulato r

2nd Stage Darlington Amplifier

Push-Pull amplifier

Rechargea ble Battery

Power supply to all sections

CHAPTER 1 POWER INVERTER A power inverter, or inverter, is an electrical power converter that changes direct current (DC) to alternating current (AC) the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits. Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power. Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries. The inverter performs the opposite function of a rectifier. The electrical inverter is a high-power electronic oscillator. It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were "inverted", to convert DC to AC. Circuit description Basic designs In one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding. A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end of the primary winding and then the other. The alternation of the direction of current in the primary winding of the transformer produces alternating current (AC) in the secondary circuit.

The electromechanical version of the switching device includes two stationary contacts and a spring supported moving contact. The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact. The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly back and forth. This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios. A similar mechanism has been used in door bells, buzzers and tattoo guns. As they became available with adequate power ratings, transistors and various other types of semiconductor switches have been incorporated into inverter circuit designs. Certain ratings, especially for large systems (many kilowatts) use thyristors (SCR). SCRs provide large power handling capability in a semiconductor device, and can readily be controlled over a variable firing range. Output waveforms The switch in the simple inverter described above, when not coupled to an output transformer, produces a square voltage waveform due to its simple off and on nature as opposed to the sinusoidal waveform that is the usual waveform of an AC power supply. Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves. The sine wave that has the same frequency as the original waveform is called the fundamental component. The other sine waves, called harmonics, that are included in the series have frequencies that are integral multiples of the fundamental frequency.

The quality of the inverter output waveform can be expressed by using the Fourier analysis data to calculate the total harmonic distortion (THD). The total harmonic distortion (THD) is the square root of the sum of the squares of the harmonic voltages divided by the fundamental voltage:

The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load. Some loads need a nearly perfect sine wave voltage supply to work properly. Other loads may work quite well with a square wave voltage. Advanced designs

H-bridge inverter circuit with transistor switches and antiparallel diodes There are many different power circuit topologies and control strategies used in inverter designs. Different design approaches address various issues that may be more or less important depending on the way that the inverter is intended to be used. The issue of waveform quality can be addressed in many ways. Capacitors and inductors can be used to filter the waveform. If the design includes a transformer,

filtering can be applied to the primary or the secondary side of the transformer or to both sides. Low-pass filters are applied to allow the fundamental component of the waveform to pass to the output while limiting the passage of the harmonic components. If the inverter is designed to provide power at a fixed frequency, a resonant filter can be used. For an adjustable frequency inverter, the filter must be tuned to a frequency that is above the maximum fundamental frequency. Since most loads contain inductance, feedback rectifiers or antiparallel diodes are often connected across each semiconductor switch to provide a path for the peak inductive load current when the switch is turned off. The antiparallel diodes are somewhat similar to the freewheeling diodes used in AC/DC converter circuits. signal waveform

transitions per period

2

harmonics harmonics System eliminated amplified Description

-

-

2-level square wave

THD

~45%[4]

3-level 4

3, 9, 27,... -

"modified

>

square

23.8%[4]

wave" 5-level 8

"modified

>

square

6.5%[4]

wave"

2-level 10

3, 5, 9, 27 7, 11,...

very

slow

PWM 3-level 12

3, 5, 9, 27 7, 11,...

very

slow

PWM Fourier analysis reveals that a waveform, like a square wave, that is antisymmetrical about the 180 degree point contains only odd harmonics, the 3rd, 5th, 7th, etc. Waveforms that have steps of certain widths and heights can attenuate certain lower harmonics at the expense of amplifying higher harmonics. For example, by inserting a zero-voltage step between the positive and negative sections of the square-wave, all of the harmonics that are divisible by three (3rd and 9th, etc.) can be eliminated. That leaves only the 5th, 7th, 11th, 13th etc. The required width of the steps is one third of the period for each of the positive and negative steps and one sixth of the period for each of the zero-voltage steps.[6] Changing the square wave as described above is an example of pulse-width modulation (PWM). Modulating, or regulating the width of a square-wave pulse is often used as a method of regulating or adjusting an inverter's output voltage. When voltage control is not required, a fixed pulse width can be selected to reduce or eliminate selected harmonics. Harmonic elimination techniques are generally applied to the lowest harmonics because filtering is much more practical at high frequencies, where the filter components can be much smaller and less expensive. Multiple pulse-width or carrier based PWM control schemes produce waveforms that are composed of many narrow pulses. The frequency represented by the number of narrow pulses per second is called the switching frequency or carrier

frequency. These control schemes are often used in variable-frequency motor control inverters because they allow a wide range of output voltage and frequency adjustment while also improving the quality of the waveform. Multilevel inverters provide another approach to harmonic cancellation. Multilevel inverters provide an output waveform that exhibits multiple steps at several voltage levels. For example, it is possible to produce a more sinusoidal wave by having split-rail direct current inputs at two voltages, or positive and negative inputs with a central ground. By connecting the inverter output terminals in sequence between the positive rail and ground, the positive rail and the negative rail, the ground rail and the negative rail, then both to the ground rail, a stepped waveform is generated at the inverter output. This is an example of a three level inverter: the two voltages and ground.[7] Three phase inverters

3-phase inverter with wye connected load Three-phase inverters are used for variable-frequency drive applications and for high power applications such as HVDC power transmission. A basic three-phase inverter consists of three single-phase inverter switches each connected to one of the three load terminals. For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform. This creates a line-to-line output waveform that

has six steps. The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above. When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelope, of the waveform is retained so that the 3rd harmonic and its multiples are cancelled.

3-phase inverter switching circuit showing 6-step switching sequence and waveform of voltage between terminals A and C (23-2 states) To construct inverters with higher power ratings, two six-step three-phase inverters can be connected in parallel for a higher current rating or in series for a higher voltage rating. In either case, the output waveforms are phase shifted to obtain a 12-step waveform. If additional inverters are combined, an 18-step inverter is obtained with three inverters etc. Although inverters are usually combined for the purpose of achieving increased voltage or current ratings, the quality of the waveform is improved as well.

History

Early inverters From the late nineteenth century through the middle of the twentieth century, DCto-AC power conversion was accomplished using rotary converters or motorgenerator sets (M-G sets). In the early twentieth century, vacuum tubes and gas filled tubes began to be used as switches in inverter circuits. The most widely used type of tube was the thyratron. The origins of electromechanical inverters explain the source of the term inverter. Early AC-to-DC converters used an induction or synchronous AC motor directconnected to a generator (dynamo) so that the generator's commutator reversed its connections at exactly the right moments to produce DC. A later development is the synchronous converter, in which the motor and generator windings are combined into one armature, with slip rings at one end and a commutator at the other and only one field frame. The result with either is AC-in, DC-out. With an MG set, the DC can be considered to be separately generated from the AC; with a synchronous converter, in a certain sense it can be considered to be "mechanically rectified AC". Given the right auxiliary and control equipment, an M-G set or rotary converter can be "run backwards", converting DC to AC. Hence an inverter is an inverted converter.[8][9] Controlled rectifier inverters Since early transistors were not available with sufficient voltage and current ratings for most inverter applications, it was the 1957 introduction of the thyristor or silicon-controlled rectifier (SCR) that initiated the transition to solid state inverter circuits.

12-pulse line-commutated inverter circuit The commutation requirements of SCRs are a key consideration in SCR circuit designs. SCRs do not turn off or commutate automatically when the gate control signal is shut off. They only turn off when the forward current is reduced to below the minimum holding current, which varies with each kind of SCR, through some external process. For SCRs connected to an AC power source, commutation occurs naturally every time the polarity of the source voltage reverses. SCRs connected to a DC power source usually require a means of forced commutation that forces the current to zero when commutation is required. The least complicated SCR circuits employ natural commutation rather than forced commutation. With the addition of forced commutation circuits, SCRs have been used in the types of inverter circuits described above. In applications where inverters transfer power from a DC power source to an AC power source, it is possible to use AC-to-DC controlled rectifier circuits operating in the inversion mode. In the inversion mode, a controlled rectifier circuit operates as a line commutated inverter. This type of operation can be used in HVDC power

transmission systems and in regenerative braking operation of motor control systems. Another type of SCR inverter circuit is the current source input (CSI) inverter. A CSI inverter is the dual of a six-step voltage source inverter. With a current source inverter, the DC power supply is configured as a current source rather than a voltage source. The inverter SCRs are switched in a six-step sequence to direct the current to a three-phase AC load as a stepped current waveform. CSI inverter commutation methods include load commutation and parallel capacitor commutation. With both methods, the input current regulation assists the commutation. With load commutation, the load is a synchronous motor operated at a leading power factor. As they have become available in higher voltage and current ratings, semiconductors such as transistors or IGBTs that can be turned off by means of control signals have become the preferred switching components for use in inverter circuits. Rectifier and inverter pulse numbers Rectifier circuits are often classified by the number of current pulses that flow to the DC side of the rectifier per cycle of AC input voltage. A single-phase half-wave rectifier is a one-pulse circuit and a single-phase full-wave rectifier is a two-pulse circuit. A three-phase half-wave rectifier is a three-pulse circuit and a three-phase full-wave rectifier is a six-pulse circuit.[10] With three-phase rectifiers, two or more rectifiers are sometimes connected in series or parallel to obtain higher voltage or current ratings. The rectifier inputs are supplied from special transformers that provide phase shifted outputs. This has the

effect of phase multiplication. Six phases are obtained from two transformers, twelve phases from three transformers and so on. The associated rectifier circuits are 12-pulse rectifiers, 18-pulse rectifiers and so on... When controlled rectifier circuits are operated in the inversion mode, they would be classified by pulse number also. Rectifier circuits that have a higher pulse number have reduced harmonic content in the AC input current and reduced ripple in the DC output voltage. In the inversion mode, circuits that have a higher pulse number have lower harmonic content in the AC output voltage waveform. A solar inverter, or PV inverter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical component in a photovoltaic system, allowing the use of ordinary commercial appliances. Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Chapter 2 Classification Inverters may be classified into three broad types 

Stand-alone inverters, used in isolated systems where the inverter draws its DC energy from batteries charged by photovoltaic arrays. Many stand-alone inverters also incorporate integral battery chargers to replenish the battery from an AC source, when available. Normally these do not interface in any way with the utility grid, and as such, are not required to have anti-islanding protection.



Grid-tie inverters, which match phase with a utility-supplied sine wave. Grid-tie inverters are designed to shut down automatically upon loss of utility supply, for safety reasons. They do not provide backup power during utility outages.



Battery backup inverters, are special inverters which are designed to draw energy from a battery, manage the battery charge via an onboard charger, and export excess energy to the utility grid. These inverters are capable of supplying AC energy to selected loads during a utility outage, and are required to have anti-islanding protection.

Maximum power point tracking Main article: Maximum power point tracker Solar inverters use maximum power point tracking (MPPT) to get the maximum possible power from the PV array.[2] Solar cells have a complex relationship

between solar irradiation, temperature and total resistance that produces a nonlinear output efficiency known as the I-V curve. It is the purpose of the MPPT system to sample the output of the cells and determine a resistance (load) to obtain maximum power for any given environmental conditions.[3] Essentially, this defines the current that the inverter should draw from the PV in order to get the maximum possible power (since power equals voltage times current). The fill factor, more commonly known by its abbreviation FF, is a parameter which, in conjunction with the open circuit voltage and short circuit current of the panel, determines the maximum power from a solar cell. Fill factor is defined as the ratio of the maximum power from the solar cell to the product of Voc and Isc. There are three main types of MPPT algorithms: perturb-and-observe, incremental conductance and constant voltage.[5] The first two methods are often referred to as hill climbing methods; they rely on the curve of power plotted against voltage rising to the left of the maximum power point, and falling on the right.[6] Anti-islanding protection Main article: Islanding In the event of a power failure on the grid, it is generally required that any grid-tie inverters attached to the grid turn off in a short period of time. This prevents the inverters from continuing to feed power into small sections of the grid, known as "islands". Powered islands present a risk to workers who may expect the area to be unpowered, but equally important is the issue that without a grid signal to synchronize to, the power output of the inverters may drift from the tolerances required by customer equipment connected within the island.

Detecting the presence or lack of a grid source would appear to be simple, and in the case of a single inverter in any given possible physical island (between disconnects on the distribution lines for instance) the chance that an inverter would fail to notice the loss of the grid is effectively zero. However, if there are two inverters in a given island, things become considerably more complex. It is possible that the signal from one can be interpreted as a grid feed from the other, and vice versa, so both units continue operation. As they track each other's output, the two can drift away from the limits imposed by the grid connections, say in voltage or frequency. There are a wide variety of methodologies used to detect an islanding condition. None of these are considered fool-proof, and utility companies continue to impose limits on the number and total power of solar power systems connected in any given area. However, many in-field tests have failed to uncover any real-world islanding issues, and the issue remains contentious within the industry. Since 1999, the standard for anti-islanding protection in the United States has been UL 1741, harmonized with IEEE 1547.[7] Any inverter which is listed to the UL 1741 standard may be connected to a utility grid without the need for additional anti-islanding equipment, anywhere in the United States or other countries where UL standards are accepted.[8] Similar acceptance of the IEEE 1547 in Europe is also taking place, as most electrical utilities will be providing or requiring units with this capability

Solar micro-inverters Solar micro-inverters convert direct current (DC) from a single solar panel to alternating current (AC). The electric power from several micro-inverters is combined and sent to the consuming devices. The key feature of a micro-inverter is not its small size or power rating, but its one-to-one control over a single panel and its mounting on the panel or near it which allows it to isolate and tune the output of that panel.[10] Microinverters produce grid-matching power directly at the back of the panel. Arrays of panels are connected in parallel to each other and fed to the grid. This has the major advantage that a single failing panel or inverter will not take the entire string offline. Combined with the lower power and heat loads, and improved MTBF, it is suggested that overall array reliability of a microinverter-based system will be significantly greater than a string-inverter based one. Additionally, when faults occur, they are identifiable to a single point, as opposed to an entire string. This not only makes fault isolation easier, but unmasks minor problems that might never become visible otherwise - a single underperforming panel may not affect a long string's output enough to be noticed. Microinverters have become common where array sizes are small and maximizing performance from every panel is a concern. In these cases the differential in priceper-watt is minimized due to the small number of panels, and has little effect on overall system cost. The improvement in energy collection given a fixed size array can offset this difference in cost. For this reason, microinverters have been most successful in the residential market, where the limited space for panels constrains the array size, and shading from nearby trees or other homes is often an issue. Micro-inverter manufacturers list many installations, some as small as a single

panel and the majority under 50.[11] Another prime reason for the popularity of microinverters is the expandability, since additional panels with microinverters can be added to the existing system without as much system change as in upgrading a conventional system with solar inverters. A solar array can start with as little as 1 panel & gradually have additional added to it with no maximum size. This is important as a standard string inverter will have to be replaced if the array grows outside of its capabilities. Panels with built in inverters are also available, [12] including those that can be plugged in to an outdoor outlet, using a normal extension cord. [13] Both of which greatly simplify the installation of solar power, making it as simple as installing an air conditioner or a toaster. Grid tied solar inverters

An industrial grid-tied solar inverter

A PV inverter installed in a porch Solar grid-tie inverters are designed to quickly disconnect from the grid if the utility grid goes down. This is an NEC requirement that ensures that in the event of a blackout, the grid tie inverter will shut down to prevent the energy it produces from harming any line workers who are sent to fix the power grid. Grid-tie inverters that are available on the market today use a number of different technologies. The inverters may use the newer high-frequency transformers, conventional low-frequency transformers, or no transformer. Instead of converting direct current directly to 120 or 240 volts AC, high-frequency transformers employ a computerized multi-step process that involves converting the power to highfrequency AC and then back to DC and then to the final AC output voltage.[14] While there have historically concerns about having transformerless electrical systems feed into the public utility grid since the lack of galvanic isolation between the DC and AC circuits could allow the passage of dangerous DC faults to be transmitted to the AC side;[15] Since 2005, the NFPA's NEC allow transformerless (or non-galvanically) inverters. The VDE 0126-1-1 and IEC 6210 also have been amended to allow and define the safety mechanisms needed for such systems.

Primarily, residual or ground current detection is used to detect possible fault conditions. Also isolation tests are performed to insure DC to AC separation. Many solar inverters are designed to be connected to a utility grid, and will not operate when they do not detect the presence of the grid. They contain special circuitry to precisely match the voltage and frequency of the grid. See the AntiIslanding section for more details. Solar charge controller

A typical solar charge controller kit See also: Charge controller A charge controller may be used to power DC equipment with solar panels. The charge controller provides a regulated DC output and stores excess energy in a battery as well as monitoring the battery voltage to prevent under/over charging. More expensive units will also perform maximum power point tracking. An inverter can be connected to the output of a charge controller to drive AC loads. Solar pumping inverters

Advanced solar pumping inverters convert DC voltage from the solar array into AC voltage to drive submersible pumps directly without the need for batteries or other energy storage devices. By utilizing MPPT (maximum power point tracking), solar pumping inverters regulate output frequency to control speed of the pumps in order to save pump motor from damage. Inverter failure Solar inverters may fail due to transients from the grid or the PV panel, component aging and operation beyond the designed limits. Following are some common reasons specific components of inverters age quickly or fail: Capacitor failure 

Electrolytic materials age faster than polycarbonate and other dry dielectric materials



Voltage stress



Continuous operation under maximum voltage conditions



Frequent short-term voltage transients



Current stress



High current increases the internal temperature



Thermal stress on component terminals



Improper Charge and discharge rates



Not operating in ambient temperatures



Mechanical stress



Vibrations

Inverter bridge failure 

Usage beyond its rated operating limit



Overcurrent and overvoltage



Other malfunctioning components



Thermal shock



Thermal overload



Extremely cold operating temperature

Electro-mechanical wear 

Component stress



Contamination at contacts



Extreme temperature conditions

CHAPTER

Energy storage methods Thermal mass systems can store solar energy in the form of heat at domestically useful temperatures for daily or seasonal durations. Thermal storage systems generally use readily available materials with high specific heat capacities such as water, earth and stone. Welldesigned systems can lower peak demand, shift time-of-use to off-peak hours and reduce overall heating and cooling requirements. Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 TJ in its 68 m3 storage tank with an annual storage efficiency of about 99%. Off-grid PV systems have traditionally used rechargeable batteries to store excess electricity. With grid-tied systems, excess electricity can be sent to the transmission grid, while standard grid electricity can be used to meet shortfalls. Net metering programs give household systems a credit for any electricity they deliver to the grid. This is often legally handled by 'rolling back' the meter whenever the home produces more electricity than it consumes. If the net electricity use is below zero, the utility is required to pay for the extra at the same rate as they charge consumers. Other legal approaches involve the use of two meters, to measure electricity consumed vs. electricity produced. This is less common due to the increased installation cost of the second meter.

Pumped-storage hydroelectricity stores energy in the form of water pumped when energy is available from a lower elevation reservoir to a higher elevation one. The energy is recovered when demand is high by releasing the water to run through a hydroelectric power generator.

Development, deployment and economics Beginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum. [109]

The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. [110][111] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE). Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels.[114] As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999.[ Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007. The International Energy Agency has said that solar energy can make considerable contributions to solving some of the most urgent problems the world now faces:

The development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared In 2011, the International Energy Agency said that solar energy technologies such as photovoltaic panels, solar water heaters and power stations built with mirrors could provide a third of the world’s energy by 2060 if politicians commit to limiting climate change. The energy from the sun could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters. "The strength of solar is the incredible variety and flexibility of applications, from small scale to big scale.

Chapter Conclusion: Integrating features of all the hardware components used have been developed in it. Presence of every module has been reasoned out and placed carefully, thus contributing to the best working of the unit. Secondly, using highly advanced IC’s with the help of growing technology, the project has been successfully implemented. Thus the project has been successfully designed and tested.

BIBLIOGRAPHY 1.Concentrating Solar Power: Data and Directions for an Emerging Solar Technology 2. Energy Research Developments: Tidal Energy, Energy Efficiency and Solar Energy

3.Manual of Thurlby Thandar Instruments (PL 330DP) Programmable Power Supplies.

4.Electronic Theory by B. L. THEREJA.

5.http://www.linengineering.com/site/products/wiringcon.html

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF