MFE FORMULA SHEET.pdf

July 28, 2019 | Author: leolong34 | Category: Option (Finance), Hedge (Finance), Greeks (Finance), Futures Contract, Business Law
Share Embed Donate


Short Description

Download MFE FORMULA SHEET.pdf...

Description

Exam MFE

Raise Your Odds® with Adapt

PUT-­‐CALL  PPUT-CALL ARITY  (PCP)     PARITY (PCP) Prepaid  Forward  &  Forward   ' 𝑆𝑆 ⋅ 𝑒𝑒 *($,")   𝐹𝐹",$ 𝑆𝑆 = 𝐹𝐹",$ ' 𝐹𝐹",$ (𝑆𝑆)   Dividend  Structure   No   𝑆𝑆"   Discrete   𝑆𝑆" − PV(Divs)   Continuous   𝑆𝑆" 𝑒𝑒 ,5($,")     𝐹𝐹",$ (𝑆𝑆)   Dividend  Structure   No   𝑆𝑆" 𝑒𝑒 *($,")   Discrete   𝑆𝑆" 𝑒𝑒 *($,") − AV(Divs)   Continuous   𝑆𝑆" 𝑒𝑒 (*,5)($,")   PCP  for  Stock   ' 𝐶𝐶 − 𝑃𝑃 = 𝐹𝐹",$ 𝑆𝑆 − 𝐾𝐾𝑒𝑒 ,*($,")   PCP  for  Exchange  Option   𝐶𝐶 𝐴𝐴, 𝐵𝐵   𝑃𝑃 𝐴𝐴, 𝐵𝐵   receive  𝐴𝐴, give  up  𝐵𝐵   give  up  𝐴𝐴, receive  𝐵𝐵   ' ' 𝐶𝐶(𝐴𝐴, 𝐵𝐵) − 𝑃𝑃(𝐴𝐴, 𝐵𝐵) = 𝐹𝐹",$ 𝐴𝐴 − 𝐹𝐹",$ 𝐵𝐵   𝐶𝐶 𝐴𝐴, 𝐵𝐵 = 𝑃𝑃 𝐵𝐵, 𝐴𝐴   PCP  for  Currency  Exchange   𝑆𝑆C → 𝑥𝑥C        𝑟𝑟 → 𝑟𝑟G        𝛿𝛿 → 𝑟𝑟I   𝐶𝐶 𝑥𝑥C , 𝐾𝐾 − 𝑃𝑃 𝑥𝑥C , 𝐾𝐾 = 𝑥𝑥C 𝑒𝑒 ,*J $ − 𝐾𝐾𝑒𝑒 ,*K $   L L ,  where  𝑥𝑥C  is  in  𝑑𝑑 /𝑓𝑓   𝐶𝐶G 𝑥𝑥C , 𝐾𝐾 = 𝑥𝑥C ⋅ 𝐾𝐾 ⋅ 𝑃𝑃I MN O

PCP  for  Bonds   𝐶𝐶 − 𝑃𝑃 = 𝐵𝐵" − 𝑃𝑃𝑉𝑉",$ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐾𝐾𝑒𝑒 ,*($,")   𝐵𝐵" = Bond  price  at  time  𝑡𝑡       COMPARING   OPTIONS   COMPARING OPTIONS Bounds  for  Option  Prices   Call  and  Put   𝑆𝑆 ≥ 𝐶𝐶bcd* ≥ 𝐶𝐶ef* ≥ max 0, 𝐹𝐹 ' 𝑆𝑆 − 𝐾𝐾𝑒𝑒 ,*$   𝐾𝐾 ≥ 𝑃𝑃bcd* ≥ 𝑃𝑃ef* ≥ max 0, 𝐾𝐾𝑒𝑒 ,*$ − 𝐹𝐹 ' 𝑆𝑆   European  vs.  American  Call   𝐹𝐹 ' 𝑆𝑆 ≥ 𝐶𝐶ef* ≥ max 0, 𝐹𝐹 ' 𝑆𝑆 − 𝐾𝐾𝑒𝑒 ,*$   𝑆𝑆 ≥ 𝐶𝐶bcd* ≥ max  (0, 𝑆𝑆 − 𝐾𝐾)   European  vs.  American  Put   𝐾𝐾𝑒𝑒 ,*$ ≥ 𝑃𝑃ef* ≥ max 0, 𝐾𝐾𝑒𝑒 ,*$ − 𝐹𝐹 ' 𝑆𝑆   𝐾𝐾 ≥ 𝑃𝑃bcd* ≥ max  (0, 𝐾𝐾 − 𝑆𝑆)   Early  Exercise  of  American  Option   American  Call   • Nondividend-­‐‑paying  stock   o Early  exercise  is  never  optimal.   o 𝐶𝐶bcd* = 𝐶𝐶ef*   • Dividend-­‐‑paying  stock   o Early  exercise  is  not  optimal  if   𝑃𝑃𝑃𝑃 Dividends <   𝑃𝑃𝑃𝑃 Interest  on  the  strike + Implicit  Put   American  Put   Early  exercise  is  not  optimal  if   𝑃𝑃𝑃𝑃 Interest  on  the  strike <   𝑃𝑃𝑃𝑃 Dividends + Implicit  Call   Different  Strike  Prices   For  𝐾𝐾L < 𝐾𝐾p < 𝐾𝐾q :   Call   • 𝐶𝐶 𝐾𝐾L > 𝐶𝐶 𝐾𝐾p > 𝐶𝐶 𝐾𝐾q   • 𝐶𝐶 𝐾𝐾L − 𝐶𝐶 𝐾𝐾p < 𝐾𝐾p − 𝐾𝐾L            European:  𝐶𝐶 𝐾𝐾L − 𝐶𝐶 𝐾𝐾p < 𝑃𝑃𝑃𝑃 𝐾𝐾p − 𝐾𝐾L   s Ot ,s Ou s O ,s Ov • > u   Ou ,Ot

Ov ,Ou

www.coachingactuaries.com

Put   • 𝑃𝑃 𝐾𝐾L < 𝑃𝑃 𝐾𝐾p < 𝑃𝑃(𝐾𝐾q )   • 𝑃𝑃 𝐾𝐾p − 𝑃𝑃 𝐾𝐾L < 𝐾𝐾p − 𝐾𝐾L            European:  𝑃𝑃 𝐾𝐾p − 𝑃𝑃 𝐾𝐾L < 𝑃𝑃𝑃𝑃 𝐾𝐾p − 𝐾𝐾L   ' Ou ,' Ot ' O ,'(Ou ) < v     Ou ,Ot

Ov ,Ou

    BINOMIAL MODEL BINOMIAL  MODEL   Replicating  Portfolio   An  option  can  be  replicated  by  buying  𝛥𝛥  shares     of  the  underlying  stock  and  lending  𝐵𝐵  at  the     risk-­‐‑free  rate.   𝑉𝑉f − 𝑉𝑉G 𝑢𝑢𝑉𝑉G − 𝑑𝑑𝑉𝑉f 𝛥𝛥 = 𝑒𝑒 ,5x                  𝐵𝐵 = 𝑒𝑒 ,*x   𝑆𝑆 𝑢𝑢 − 𝑑𝑑 𝑢𝑢 − 𝑑𝑑 𝑉𝑉 = 𝛥𝛥𝛥𝛥 + 𝐵𝐵         Call   Put   𝛥𝛥   +   −     𝐵𝐵   −   +     Risk-­‐‑neutral  Probability  Pricing   𝑒𝑒 *,5 x − 𝑑𝑑   𝑝𝑝∗ = 𝑢𝑢 − 𝑑𝑑 𝑉𝑉 = 𝑒𝑒 ,*x 𝑝𝑝∗ 𝑉𝑉f + 1 − 𝑝𝑝∗ 𝑉𝑉G   𝑆𝑆C 𝑒𝑒 *,5 x = 𝑝𝑝∗ 𝑆𝑆f + 1 − 𝑝𝑝∗ 𝑆𝑆G   Realistic  Probability  Pricing   𝑒𝑒 {,5 x − 𝑑𝑑   𝑝𝑝 = 𝑢𝑢 − 𝑑𝑑 ,|x 𝑝𝑝 𝑉𝑉f + 1 − 𝑝𝑝 𝑉𝑉G   𝑉𝑉 = 𝑒𝑒 𝑆𝑆C 𝑒𝑒 {,5 x = 𝑝𝑝 𝑆𝑆f + 1 − 𝑝𝑝 𝑆𝑆G   𝛥𝛥𝛥𝛥 {x 𝐵𝐵 *x 𝑒𝑒 |x = 𝑒𝑒 + 𝑒𝑒   𝑉𝑉 𝑉𝑉 Standard  Binomial  Tree  (Forward  Tree)   𝑢𝑢 = 𝑒𝑒 *,5 x}~ x                                  𝑑𝑑 = 𝑒𝑒 *,5 x,~ x   𝑒𝑒 *,5 x − 𝑑𝑑 1 𝑝𝑝∗ = =   𝑢𝑢 − 𝑑𝑑 1 + 𝑒𝑒 ~ x Cox-­‐‑Ross-­‐‑Rubinstein  Tree   𝑢𝑢 = 𝑒𝑒 ~ x                                                          𝑑𝑑 =   𝑒𝑒 ,~ x   Lognormal  Tree  (Jarrow-­‐‑Rudd  Tree)   u u 𝑢𝑢 = 𝑒𝑒 *,5,C.Ä~ x}~ x            𝑑𝑑 = 𝑒𝑒 *,5,C.Ä~ x,~ x   No-­‐‑Arbitrage  Condition   Arbitrage  is  possible  if  the  following  inequality  is   not  satisfied:   𝑑𝑑 < 𝑒𝑒 *,5 x < 𝑢𝑢   Option  on  Currencies   𝑆𝑆C → 𝑥𝑥C        𝑟𝑟 → 𝑟𝑟G        𝛿𝛿 → 𝑟𝑟I  

𝑢𝑢 = 𝑒𝑒 *K ,*J x}~ x                      𝑑𝑑 = 𝑒𝑒 *K ,*J x,~ x   𝑒𝑒 *K ,*J x − 𝑑𝑑   𝑝𝑝∗ = 𝑢𝑢 − 𝑑𝑑 Option  on  Futures  Contracts   𝐹𝐹",$Å = 𝑆𝑆" 𝑒𝑒 (*,5)($Å ,")   𝑇𝑇 = Expiration  date  of  the  option     𝑇𝑇Ö = Expiration  date  of  the  futures  contract    𝑇𝑇 ≤ 𝑇𝑇Ö   𝑆𝑆" → 𝐹𝐹",$Å        𝛿𝛿 → 𝑟𝑟   1 − 𝑑𝑑Ö 𝑉𝑉f − 𝑉𝑉G 𝑝𝑝∗ =                                𝛥𝛥 =   𝑢𝑢Ö − 𝑑𝑑Ö 𝐹𝐹 𝑢𝑢Ö − 𝑑𝑑Ö ,*x ∗ ∗ 𝑝𝑝 𝑉𝑉f + 1 − 𝑝𝑝 𝑉𝑉G   𝐵𝐵 = 𝑒𝑒

Utility  Values  and  State  Prices   𝑈𝑈f : Utility  value  per  dollar  in  the  up  state   𝑈𝑈G : Utility  value  per  dollar  in  the  down  state   𝑄𝑄f = 𝑝𝑝×𝑈𝑈f = 𝑝𝑝∗ ×𝑒𝑒 ,*x   𝑄𝑄G = 1 − 𝑝𝑝 ×𝑈𝑈G = 1 − 𝑝𝑝∗ ×𝑒𝑒 ,*x   𝑒𝑒 ,*x = 𝑄𝑄f + 𝑄𝑄G   𝑆𝑆 = 𝑄𝑄f 𝑆𝑆f 𝑒𝑒 5x + 𝑄𝑄G 𝑆𝑆G 𝑒𝑒 5x   𝑉𝑉 = 𝑄𝑄f 𝑉𝑉f + 𝑄𝑄G 𝑉𝑉G   𝑄𝑄f 𝑝𝑝∗ =   𝑄𝑄f + 𝑄𝑄G 𝑟𝑟, 𝛼𝛼, 𝛾𝛾sêëë , 𝛾𝛾'f"   𝛾𝛾'f" ≤ 𝑟𝑟 ≤ 𝛼𝛼 ≤ 𝛾𝛾sêëë       MODEL LOGNORMAL  LOGNORMAL MODEL   Lognormal  Model  for  Stock  Prices   𝑋𝑋~𝑁𝑁 𝑚𝑚, 𝑣𝑣 p ⟺ 𝑌𝑌 = 𝑒𝑒 ô ~𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑚𝑚, 𝑣𝑣 p   u • 𝐸𝐸 𝑌𝑌 = 𝑒𝑒 c}C.Äù   u • 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 = 𝐸𝐸 𝑌𝑌 p 𝑒𝑒 ù − 1   𝑆𝑆$ For  𝑇𝑇 > 𝑡𝑡, ln ~𝑁𝑁 𝑚𝑚, 𝑣𝑣 p   𝑆𝑆" • 𝑚𝑚 = 𝛼𝛼 − 𝛿𝛿 − 0.5𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡   • 𝑣𝑣 p = 𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡   𝐸𝐸 𝑆𝑆$ |𝑆𝑆" = 𝑆𝑆" 𝑒𝑒 ({,5)($,")   u 𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆$ |𝑆𝑆" = 𝐸𝐸 𝑆𝑆$ |𝑆𝑆" p 𝑒𝑒 ù − 1   u

𝑆𝑆$ = 𝑆𝑆" 𝑒𝑒 {,5,C.Ä~ $," }~ $,"⋅£  , 𝑍𝑍~𝑁𝑁(0,1)   u Median = 𝑆𝑆" 𝑒𝑒 {,5,C.Ä~ $,"   Covariance   𝑆𝑆$ ⋅ 𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆" 𝑆𝑆C   𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆" , 𝑆𝑆$ = 𝐸𝐸 𝑆𝑆" Probability   Pr 𝑆𝑆$ < 𝐾𝐾 = 𝑁𝑁 −𝑑𝑑p              Pr 𝑆𝑆$ > 𝐾𝐾 = 𝑁𝑁 +𝑑𝑑p   𝑆𝑆 ln " + (𝛼𝛼 − 𝛿𝛿 − 0.5𝜎𝜎 p )(𝑇𝑇 − 𝑡𝑡) 𝐾𝐾 𝑑𝑑p =   𝜎𝜎 𝑇𝑇 − 𝑡𝑡 Prediction  Interval  (Confidence  Interval)     The  (1 − 𝑝𝑝)  prediction  interval  is  given  by  𝑆𝑆$¶  and   𝑆𝑆$ß  such  that  Pr 𝑆𝑆$¶ < 𝑆𝑆$ < 𝑆𝑆$ß = 1 − 𝑝𝑝.   u © 𝑆𝑆$¶ = 𝑆𝑆" 𝑒𝑒 {,5,C.Ä~ $," }~ $,"⋅®   ß {,5,C.Ä~ u $," }~ $,"⋅® ™   𝑆𝑆$ = 𝑆𝑆" 𝑒𝑒 𝑝𝑝 𝑝𝑝 Pr 𝑍𝑍 < 𝑧𝑧 ¶ = ⇒ 𝑧𝑧 ¶ = 𝑁𝑁 ,L     2 2 𝑝𝑝   𝑧𝑧 ß = −𝑧𝑧 ¶ = −𝑁𝑁 ,L 2 Conditional  and  Partial  Expectation   𝑃𝑃𝑃𝑃 𝑆𝑆$ 𝑆𝑆$ < 𝐾𝐾   𝐸𝐸 𝑆𝑆$ 𝑆𝑆$ < 𝐾𝐾 = Pr 𝑆𝑆$ < 𝐾𝐾 {,5 $," 𝑁𝑁 −𝑑𝑑L 𝑆𝑆" 𝑒𝑒    = 𝑁𝑁 −𝑑𝑑p 𝑃𝑃𝑃𝑃 𝑆𝑆$ 𝑆𝑆$ > 𝐾𝐾   𝐸𝐸 𝑆𝑆$ 𝑆𝑆$ > 𝐾𝐾 = Pr 𝑆𝑆$ > 𝐾𝐾 {,5 $," 𝑁𝑁 +𝑑𝑑L 𝑆𝑆" 𝑒𝑒   = 𝑁𝑁 +𝑑𝑑p 𝑆𝑆 ln " + 𝛼𝛼 − 𝛿𝛿 + 0.5𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡 𝐾𝐾   𝑑𝑑L = 𝜎𝜎 𝑇𝑇 − 𝑡𝑡 𝑑𝑑p = 𝑑𝑑L − 𝜎𝜎 𝑇𝑇 − 𝑡𝑡   Expected  Option  Payoffs   𝐸𝐸 Call  Payoff = 𝑆𝑆" 𝑒𝑒 {,5 $," 𝑁𝑁 𝑑𝑑L − 𝐾𝐾𝐾𝐾 𝑑𝑑p   𝐸𝐸 Put  Payoff = 𝐾𝐾𝐾𝐾 −𝑑𝑑p − 𝑆𝑆" 𝑒𝑒  

{,5 $,"

𝑁𝑁 −𝑑𝑑L    

Copyright © 2016 Coaching Actuaries. All Rights Reserved. 1

BLACK-SCHOLES MODEL BLACK-­‐SCHOLES   PRICING  MPRICING ODEL   Generalized  B-­‐‑S  Formula   𝐶𝐶 = 𝐹𝐹 ' 𝑆𝑆 ⋅ 𝑁𝑁 𝑑𝑑L − 𝐹𝐹 ' 𝐾𝐾 ⋅ 𝑁𝑁 𝑑𝑑p   𝑃𝑃 = 𝐹𝐹 ' 𝐾𝐾 ⋅ 𝑁𝑁 −𝑑𝑑p − 𝐹𝐹 ' 𝑆𝑆 ⋅ 𝑁𝑁 −𝑑𝑑L   1 𝐹𝐹 ' 𝑆𝑆 + 𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡 ln ' 2 𝐹𝐹 𝐾𝐾 𝑑𝑑L =   𝜎𝜎 𝑇𝑇 − 𝑡𝑡 1 𝐹𝐹 ' 𝑆𝑆 − 𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡 ln ' 2 𝐹𝐹 𝐾𝐾 𝑑𝑑p = = 𝑑𝑑L − 𝜎𝜎 𝑇𝑇 − 𝑡𝑡   𝜎𝜎 𝑇𝑇 − 𝑡𝑡 B-­‐‑S  Formula  for  Stock   𝐶𝐶 = 𝑆𝑆" 𝑒𝑒 ,5 $," ⋅ 𝑁𝑁 𝑑𝑑L − 𝐾𝐾𝑒𝑒 ,* $," ⋅ 𝑁𝑁 𝑑𝑑p   𝑃𝑃 = 𝐾𝐾𝑒𝑒 ,* $," ⋅ 𝑁𝑁 −𝑑𝑑p − 𝑆𝑆" 𝑒𝑒 ,5 $," ⋅ 𝑁𝑁 −𝑑𝑑L   𝑆𝑆 1 ln " + 𝑟𝑟 − 𝛿𝛿 + 𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡 2 𝐾𝐾 𝑑𝑑L =   𝜎𝜎 𝑇𝑇 − 𝑡𝑡 𝑆𝑆 1 ln " + 𝑟𝑟 − 𝛿𝛿 − 𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡 2 𝐾𝐾 𝑑𝑑p =   𝜎𝜎 𝑇𝑇 − 𝑡𝑡

= 𝑑𝑑L − 𝜎𝜎 𝑇𝑇 − 𝑡𝑡   B-­‐‑S  Formula  for  Currency   𝑆𝑆C → 𝑥𝑥C        𝑟𝑟 → 𝑟𝑟G        𝛿𝛿 → 𝑟𝑟I   𝐶𝐶 = 𝑥𝑥C 𝑒𝑒 ,*J $," ⋅ 𝑁𝑁 𝑑𝑑L − 𝐾𝐾𝑒𝑒 ,*K $," ⋅ 𝑁𝑁 𝑑𝑑p   𝑃𝑃 = 𝐾𝐾𝑒𝑒 ,*K $," ⋅ 𝑁𝑁 −𝑑𝑑p − 𝑥𝑥C 𝑒𝑒 ,*J $," ⋅ 𝑁𝑁 −𝑑𝑑L   𝑥𝑥 1 ln C + 𝑟𝑟G − 𝑟𝑟I + 𝜎𝜎 p 𝑇𝑇 2 𝐾𝐾 𝑑𝑑L =   𝜎𝜎 𝑇𝑇 𝑥𝑥 1 ln C + 𝑟𝑟G − 𝑟𝑟I − 𝜎𝜎 p 𝑇𝑇 2 𝐾𝐾 𝑑𝑑p =   𝜎𝜎 𝑇𝑇

= 𝑑𝑑L − 𝜎𝜎 𝑇𝑇   B-­‐‑S  Formula  for  Futures   𝐹𝐹",$Å = 𝑆𝑆" 𝑒𝑒 (*,5)($Å ,")   𝑇𝑇 = Expiration  date  of  the  option     𝑇𝑇Ö = Expiration  date  of  the  futures  contract    𝑇𝑇 ≤ 𝑇𝑇Ö   𝑆𝑆C → 𝐹𝐹C,$Å        𝛿𝛿 → 𝑟𝑟   𝐶𝐶 = 𝐹𝐹C,$Å   𝑒𝑒 ,*$ ⋅ 𝑁𝑁 𝑑𝑑L − 𝐾𝐾𝑒𝑒 ,*$ ⋅ 𝑁𝑁 𝑑𝑑p   𝑃𝑃 = 𝐾𝐾𝑒𝑒 ,*$ ⋅ 𝑁𝑁 −𝑑𝑑p − 𝐹𝐹C,$Å   𝑒𝑒 ,*$ ⋅ 𝑁𝑁 −𝑑𝑑L   𝐹𝐹C,$Å   1 ln + 𝜎𝜎 p 𝑇𝑇 2 𝐾𝐾 𝑑𝑑L =   𝜎𝜎 𝑇𝑇 𝐹𝐹C,$Å   1 ln − 𝜎𝜎 p 𝑇𝑇 2 𝐾𝐾 𝑑𝑑p = = 𝑑𝑑L − 𝜎𝜎 𝑇𝑇   𝜎𝜎 𝑇𝑇 Greeks   Delta   ÆØ∞±≤≥  ¥±  µ ∂∑¥∏±  π∫¥ª≥ æø • 𝛥𝛥 = =   ÆØ∞±≤≥  ¥±  º∑∏ªΩ  π∫¥ª≥

æ¿

• 𝛥𝛥s = 𝑒𝑒 ,5$ 𝑁𝑁 𝑑𝑑L                 𝛥𝛥' = −𝑒𝑒 ,5$ 𝑁𝑁 −𝑑𝑑L   • 0 ≤ 𝛥𝛥s ≤ 1                                   −1 ≤ 𝛥𝛥' ≤ 0   • 𝛥𝛥¡ − 𝛥𝛥' = 𝑒𝑒 ,5$   • Delta  increases  as  the  stock  price  increases.   Gamma   • 𝛤𝛤 =

ÆØ∞±≤≥  ¥±  √ ≥ƒ∑∞

ÆØ∞±≤≥  ¥±  º∑∏ªΩ  π∫¥ª≥

=

æ≈ æ¿

=

æuø æ¿

  u

• 𝛤𝛤s ≥ 0       𝛤𝛤' ≥ 0   • 𝛤𝛤s = 𝛤𝛤'   Theta   • 𝜃𝜃   = Change  in  the  option  price     as  time  advances   𝜕𝜕𝜕𝜕 =   𝜕𝜕𝜕𝜕 • 𝜃𝜃  is  usually  negative.   Vega   ÆØ∞±≤≥  ¥±  µ ∂∑¥∏±  π∫¥ª≥ æø • 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = =   ÆØ∞±≤≥  ¥±  »∏ƒ∞∑¥ƒ¥∑…

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎s ≥ 0   𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎' ≥ 0   • 𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎s = 𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎'  

æ~

www.coachingactuaries.com

Rho   • 𝜌𝜌 =

ÆØ∞±≤≥  ¥±  µ ∂∑¥∏±  π∫¥ª≥

=

ÆØ∞±≤≥  ¥±  À¥ÃΩ,Õ∫≥≥  ∫∞∑≥

æø æ*

 

• 𝜌𝜌s ≥ 0                      𝜌𝜌' ≤ 0   Psi   ÆØ∞±≤≥  ¥±  µ ∂∑¥∏±  π∫¥ª≥ æø • 𝜓𝜓 = =   ÆØ∞±≤≥  ¥±  √ ¥œ¥–≥±–  —¥≥ƒ–

æ5

• 𝜓𝜓s ≤ 0                    𝜓𝜓' ≥ 0  

Greek '”*"I”ë‘” =



‘÷L

𝑁𝑁‘ ⋅ Greek ‘  

Elasticity   %  change  in  option  price 𝛥𝛥𝛥𝛥 =   𝛺𝛺 = 𝑉𝑉 %  change  in  stock  price 𝜎𝜎Ÿ⁄"‘”’ = 𝛺𝛺 𝜎𝜎¿"”¡€   𝛾𝛾 − 𝑟𝑟 = 𝛺𝛺(𝛼𝛼 − 𝑟𝑟)   𝛺𝛺sêëë ≥ 1                𝛺𝛺'f" ≤ 0   ’ 𝛥𝛥'”*"I”ë‘” ⋅ 𝑆𝑆 = 𝜔𝜔‘ 𝛺𝛺‘   𝛺𝛺'”*"I”ë‘” = 𝑉𝑉'”*"I”ë‘” ‘÷L

𝛾𝛾'”*"I”ë‘” − 𝑟𝑟 = 𝛺𝛺'”*"I”ë‘” (𝛼𝛼 − 𝑟𝑟)  

    DELTA  HEDGING  DELTA   HEDGING Overnight  Profit   3  components  in  overnight  profit:   • Gain  on  stocks   • Gain  on  options   • Interest  on  borrowed/lent  money   Breakeven   The  price  movement  with  no  gain  or  loss  to  delta-­‐‑ hedger  is:   ±𝑆𝑆𝑆𝑆 ℎ   Delta-­‐‑Gamma-­‐‑Theta  Approximation   1 𝑉𝑉"}x = 𝑉𝑉" + 𝛥𝛥" 𝜖𝜖 + 𝛤𝛤" 𝜖𝜖 p + 𝜃𝜃" ℎ   2 Boyle-­‐‑Emanuel  Formula   Boyle-­‐‑Emanuel  periodic  variance  of  return  when   rehedging  every  ℎ  in  period  𝑖𝑖 :   1 𝑉𝑉𝑉𝑉𝑉𝑉 𝑅𝑅x,‘ = 𝑆𝑆 p 𝜎𝜎 p 𝛤𝛤ℎ p   2 Boyle-­‐‑Emanuel  annual  variance  of  return  when   rehedging  every  ℎ  in  period  𝑖𝑖 :   1 𝑉𝑉𝑉𝑉𝑉𝑉 𝑅𝑅x,‘ = 𝑆𝑆 p 𝜎𝜎 p 𝛤𝛤 p ℎ   2 Greeks  for  Binomial  Trees   𝑉𝑉f − 𝑉𝑉G 𝛥𝛥 𝑆𝑆, 0 = 𝑒𝑒 ,5x   𝑆𝑆 𝑢𝑢 − 𝑑𝑑 𝛥𝛥 𝑆𝑆𝑆𝑆, ℎ − 𝛥𝛥(𝑆𝑆𝑆𝑆, ℎ) 𝛤𝛤 𝑆𝑆, 0 ≈ 𝛤𝛤 𝑆𝑆, ℎ =   𝑆𝑆(𝑢𝑢 − 𝑑𝑑) 𝜃𝜃 𝑆𝑆, 0 1 𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆, 2ℎ − 𝑉𝑉 𝑆𝑆, 0 − 𝛥𝛥 𝑆𝑆, 0 𝜖𝜖 − 𝛤𝛤 𝑆𝑆, 0 𝜖𝜖 p 2 =   2ℎ    

EXOTIC  OPTIONS   EXOTIC OPTIONS Asian  Option   𝐴𝐴 𝑆𝑆      arithmetic  average 𝑆𝑆 =   𝐺𝐺 𝑆𝑆      geometric  average  

𝐴𝐴 𝑆𝑆 =

‰ "÷L 𝑆𝑆"

𝑁𝑁

                                   𝐺𝐺 𝑆𝑆 =

𝐺𝐺 𝑆𝑆 ≤ 𝐴𝐴 𝑆𝑆     Average  Price   PayoffÆ∞ƒƒ   PayoffπÂ∑  

max 0, 𝑆𝑆 − 𝐾𝐾   max 0, 𝐾𝐾 − 𝑆𝑆  



"÷L

𝑆𝑆"

L ‰

 

Average  Strike   max 0, 𝑆𝑆 − 𝑆𝑆   max 0, 𝑆𝑆 − 𝑆𝑆  

The  value  of  an  Asian  option  is  less  than  or     equal  to  the  value  of  an  otherwise  equivalent   ordinary  option.   As  𝑁𝑁  increases:   • Value  of  average  price  option  decreases   • Value  of  average  strike  option  increases  

Barrier  Option   Three  types:   • Knock-­‐‑in   Goes  into  existence  if  barrier  is  reached.   • Knock-­‐‑out   Goes  out  of  existence  if  barrier  is  reached.   • Rebate   Pays  fixed  amount  if  barrier  is  reached.   Down  vs.  Up:   • If    𝑆𝑆C < 𝐵𝐵:   Up-­‐‑and-­‐‑in,  up-­‐‑and-­‐‑out,  up  rebate   • If  𝑆𝑆C > 𝐵𝐵:   Down-­‐‑and-­‐‑in,  down-­‐‑and-­‐‑out,  down  rebate   Knock-­‐‑in  +  Knock-­‐‑out  =  Ordinary  Option   Barrier  option ≤ Ordinary  Option   Special  relationships:   • If  barrier ≤ strike:     up-­‐‑and-­‐‑in  call  =  ordinary  call   • If  barrier ≥ strike:   down-­‐‑and-­‐‑in  put  =  ordinary  put   Compound  Option   The  value  of  the  underlying  option  at  time  𝑡𝑡L   = 𝑉𝑉 𝑆𝑆"t , 𝐾𝐾, 𝑇𝑇 − 𝑡𝑡L   The  value  of  the  compound  call  at  time  𝑡𝑡L   = max 0, 𝑉𝑉 𝑆𝑆"t , 𝐾𝐾, 𝑇𝑇 − 𝑡𝑡L − 𝑥𝑥   The  value  of  the  compound  put  at  time  𝑡𝑡L   = max 0, 𝑥𝑥 − 𝑉𝑉 𝑆𝑆"t , 𝐾𝐾, 𝑇𝑇 − 𝑡𝑡L   Put-­‐‑call  parity  for  compound  option:   • CallonCall − PutonCall = 𝐶𝐶ef* − 𝑥𝑥𝑒𝑒 ,*"t   • CallonPut − PutonPut = 𝑃𝑃ef* − 𝑥𝑥𝑒𝑒 ,*"t  

Gap  Option   𝐾𝐾L  :  Strike  Price   𝐾𝐾p  :  Trigger  Price   𝐾𝐾L  determines  the  amount  of  the  payoff.   𝐾𝐾p  determines  whether  the  option  will  have  a   payoff.   0, 𝑆𝑆$ ≤ 𝐾𝐾p PayoffË∞∂  Æ∞ƒƒ =   𝑆𝑆$ − 𝐾𝐾L , 𝑆𝑆$ > 𝐾𝐾p 𝐾𝐾L − 𝑆𝑆$ , 𝑆𝑆$ ≤ 𝐾𝐾p PayoffË∞∂  πÂ∑ =   0, 𝑆𝑆$ > 𝐾𝐾p ,5$ ,*$ GapCall = 𝑆𝑆C 𝑒𝑒 𝑁𝑁 𝑑𝑑L − 𝐾𝐾L 𝑒𝑒 𝑁𝑁 𝑑𝑑p   GapPut = 𝐾𝐾L 𝑒𝑒 ,*$ 𝑁𝑁 −𝑑𝑑p − 𝑆𝑆C 𝑒𝑒 ,5$ 𝑁𝑁 −𝑑𝑑L                                              where  𝑑𝑑L  and  𝑑𝑑p  are  based  on  𝐾𝐾p   GapCall − GapPut = 𝑆𝑆C 𝑒𝑒 ,5$ − 𝐾𝐾L 𝑒𝑒 ,*$   Exchange  Option   𝐶𝐶(𝐴𝐴, 𝐵𝐵) = 𝐹𝐹 ' 𝐴𝐴 ⋅ 𝑁𝑁 𝑑𝑑L − 𝐹𝐹 ' 𝐵𝐵 ⋅ 𝑁𝑁 𝑑𝑑p   𝑃𝑃(𝐴𝐴, 𝐵𝐵) = 𝐹𝐹 ' 𝐵𝐵 ⋅ 𝑁𝑁 −𝑑𝑑p − 𝐹𝐹 ' 𝐴𝐴 ⋅ 𝑁𝑁 −𝑑𝑑L   1 𝐹𝐹 ' 𝐴𝐴 + 𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡 ln ' 2 𝐹𝐹 𝐵𝐵 𝑑𝑑L =   𝜎𝜎 𝑇𝑇 − 𝑡𝑡 𝑑𝑑p = 𝑑𝑑L − 𝜎𝜎 𝑇𝑇 − 𝑡𝑡   𝜎𝜎 =

𝜎𝜎bp + 𝜎𝜎Èp − 2𝜌𝜌𝜎𝜎b 𝜎𝜎È  

All-­‐‑or-­‐‑nothing  Option   Option   Payoff   Time-­‐‑t  Price   0, 𝑆𝑆$ < 𝐾𝐾 Asset     𝑆𝑆" 𝑒𝑒 ,5 $," 𝑁𝑁 𝑑𝑑L   𝑆𝑆$ , 𝑆𝑆$ > 𝐾𝐾 Call   𝑆𝑆$ , 𝑆𝑆$ < 𝐾𝐾 Asset     𝑆𝑆" 𝑒𝑒 ,5 $," 𝑁𝑁 −𝑑𝑑L   0, 𝑆𝑆$ > 𝐾𝐾 Put   0, 𝑆𝑆$ < 𝐾𝐾 Cash     𝑒𝑒 ,* $," 𝑁𝑁 𝑑𝑑p   $1, 𝑆𝑆$ > 𝐾𝐾 Call   $1, 𝑆𝑆$ < 𝐾𝐾 Cash     𝑒𝑒 ,* $," 𝑁𝑁 −𝑑𝑑p   0, 𝑆𝑆$ > 𝐾𝐾 Put   Maxima  and  Minima   • max 𝐴𝐴, 𝐵𝐵 = max 0, 𝐵𝐵 − 𝐴𝐴 + 𝐴𝐴   max 𝐴𝐴, 𝐵𝐵 = max 𝐴𝐴 − 𝐵𝐵, 0 + 𝐵𝐵   • max 𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐 = 𝑐𝑐 ⋅ max 𝐴𝐴, 𝐵𝐵      𝑐𝑐 > 0   max 𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐 = 𝑐𝑐 ⋅ min 𝐴𝐴, 𝐵𝐵        𝑐𝑐 < 0   • max 𝐴𝐴, 𝐵𝐵 + min 𝐴𝐴, 𝐵𝐵 = 𝐴𝐴 + 𝐵𝐵   ⇒ min 𝐴𝐴, 𝐵𝐵 = − max 𝐴𝐴, 𝐵𝐵 + 𝐴𝐴 + 𝐵𝐵      

 

Copyright © 2016 Coaching Actuaries. All Rights Reserved. 2

Forward  Start  Option   For  a  call  option  expiring  at  time  𝑇𝑇  whose  strike  is   set  on  future  date  𝑡𝑡  to  be  𝑋𝑋 𝑆𝑆" :   𝐶𝐶 𝑆𝑆" , 𝑋𝑋𝑆𝑆" , 𝑇𝑇 − 𝑡𝑡   = 𝑆𝑆" 𝑒𝑒 ,5 $," 𝑁𝑁 𝑑𝑑L − 𝑋𝑋𝑆𝑆" 𝑒𝑒 ,* $," 𝑁𝑁 𝑑𝑑p   = 𝑆𝑆" 𝑒𝑒 ,5 $," 𝑁𝑁 𝑑𝑑L − 𝑋𝑋𝑒𝑒 ,* $," 𝑁𝑁 𝑑𝑑p   𝑆𝑆 ln " + 𝑟𝑟 − 𝛿𝛿 + 0.5𝜎𝜎 p 𝑇𝑇 − 𝑡𝑡 𝑋𝑋𝑆𝑆" 𝑑𝑑L =   𝜎𝜎 𝑇𝑇 − 𝑡𝑡 1 ln + (𝑟𝑟 − 𝛿𝛿 + 0.5𝜎𝜎 p )(𝑇𝑇 − 𝑡𝑡) 𝑋𝑋 =   𝜎𝜎 𝑇𝑇 − 𝑡𝑡 𝑑𝑑p = 𝑑𝑑L − 𝜎𝜎 𝑇𝑇 − 𝑡𝑡   The  time-­‐‑0  value  of  the  forward  start  option  is:   ' 𝑆𝑆 × 𝑒𝑒 ,5 $," 𝑁𝑁 𝑑𝑑L − 𝑋𝑋𝑒𝑒 ,* $," 𝑁𝑁 𝑑𝑑p   𝑉𝑉C = 𝐹𝐹C,"

Chooser  Option   For  an  option  that  allows  the  owner  to  choose  at   time  𝑡𝑡  whether  the  option  will  become  a  European   call  or  put  with  strike  𝐾𝐾  expiring  at  time  𝑇𝑇:   𝑉𝑉" = max 𝐶𝐶 𝑆𝑆" , 𝐾𝐾, 𝑇𝑇 − 𝑡𝑡 , 𝑃𝑃 𝑆𝑆" , 𝐾𝐾, 𝑇𝑇 − 𝑡𝑡   = 𝑒𝑒 ,5

$,"

𝑉𝑉C = 𝑒𝑒 ,5

max 0, 𝐾𝐾𝑒𝑒 ,

$,"

*,5 $,"

− 𝑆𝑆"

+ 𝐶𝐶 𝑆𝑆" , 𝐾𝐾, 𝑇𝑇 − 𝑡𝑡  

⋅ 𝑃𝑃 𝑆𝑆C , 𝐾𝐾𝑒𝑒 ,

*,5 $,"

, 𝑡𝑡 + 𝐶𝐶 𝑆𝑆C , 𝐾𝐾, 𝑇𝑇  

    CARLO VALUATION MONTE  CMONTE ARLO  VALUATION   Simulating  Standard  Normal  Variables   𝑧𝑧 =

Lp

‘÷L

𝑢𝑢‘ − 6                                    𝑧𝑧‘ = 𝑁𝑁 ,L 𝑢𝑢‘  

Simulating  Lognormal  Stock  Prices   • Not  interested  in  the  intermediate  prices:   u 𝑆𝑆$ = 𝑆𝑆" 𝑒𝑒 {,5,C.Ä~ $," }~ $,"⋅£   • Interested  in  the  intermediate  prices:   u 𝑆𝑆"}x = 𝑆𝑆" 𝑒𝑒 {,5,C.Ä~ x}~ x⋅£t   {,5,C.Ä~ u x}~ x⋅£u   𝑆𝑆"}px = 𝑆𝑆"}x 𝑒𝑒 .   .   .   u 𝑆𝑆$,x = 𝑆𝑆$,px 𝑒𝑒 {,5,C.Ä~ x}~ x⋅£ÌÓt   {,5,C.Ä~ u x}~ x⋅£Ì   𝑆𝑆$ = 𝑆𝑆$,x 𝑒𝑒 Risk-­‐‑neutral  vs.  True   • Use  the  risk-­‐‑neutral  distribution  only  when   discounting  is  needed.   • Use  the  true  distribution  when  discounting  is   not  needed.   Control  Variate  Method   𝑌𝑌 ∗ = 𝑌𝑌 + 𝛽𝛽 𝑋𝑋 − 𝑋𝑋     where   𝑌𝑌 ∗ = Control  variate  estimate  for  Option  𝑌𝑌   𝑌𝑌 = Monte  Carlo  estimate  for  Option  𝑌𝑌   𝑋𝑋 = Exact/True  price  of  Option  𝑋𝑋   𝑋𝑋 = Monte  Carlo  estimate  for  Option  𝑋𝑋     𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 ∗ = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 + 𝛽𝛽 p 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑌𝑌, 𝑋𝑋     𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 ∗  is  minimized  when:   ’ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌, 𝑋𝑋 ‘÷L 𝑌𝑌‘ − 𝑌𝑌 𝑋𝑋‘ − 𝑋𝑋 =   𝛽𝛽 = ’ p 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 ‘÷L 𝑋𝑋‘ − 𝑋𝑋   When  𝛽𝛽  is  set  to  minimize  𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 ∗ :   𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 ∗ = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 1 − 𝜌𝜌ô,Ò p  

Antithetic  Variate  Method   For  every  𝑢𝑢‘ ,  also  simulate  using  1 − 𝑢𝑢‘ .   For  every  𝑧𝑧‘ ,  also  simulate  using  – 𝑧𝑧‘ .   Stratified  Sampling   Break  the  sampling  space  into  equal  size  spaces.   Then,  scale  the  uniform  numbers  into  the  equal   size  spaces.  

www.coachingactuaries.com

MOTION BROWNIAN  MBROWNIAN OTION   Basics  of  Brownian  Motion   𝑍𝑍 𝑡𝑡 :  Pure/Standard  Brownian  Motion   Characteristics:   1. 𝑍𝑍 0 = 0   2. 𝑍𝑍 𝑡𝑡 + 𝑠𝑠 − 𝑍𝑍 𝑡𝑡 ~𝑁𝑁 0, 𝑠𝑠   𝑍𝑍 𝑡𝑡 − 𝑍𝑍 0 ~𝑁𝑁(0, 𝑡𝑡)   3. 𝑍𝑍 𝑡𝑡 + ℎ − 𝑍𝑍(𝑡𝑡)  is  independent  of     𝑍𝑍 𝑡𝑡 − 𝑍𝑍(𝑡𝑡 − 𝑠𝑠)     4. 𝑍𝑍(𝑡𝑡)  is  continuous   𝑍𝑍(𝑡𝑡)  is  a  martingale  if   • 𝐸𝐸 𝑍𝑍 𝑡𝑡 + ℎ − 𝑍𝑍 𝑡𝑡 = 0   • 𝐸𝐸 𝑍𝑍 𝑡𝑡 + ℎ 𝑍𝑍 𝑡𝑡 = 𝑍𝑍(𝑡𝑡)   Properties:   1. Quadratic  variation = 𝑇𝑇   2. Cubic  or  higher  order  variation = 0   3. Total  variation = ∞   Arithmetic  Brownian  Motion   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑎𝑎  𝑑𝑑𝑑𝑑 + 𝑏𝑏  𝑑𝑑𝑑𝑑 𝑡𝑡   𝑋𝑋 𝑇𝑇 − 𝑋𝑋 0 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏(𝑇𝑇)   𝑋𝑋 𝑡𝑡 − 𝑋𝑋 0 ~𝑁𝑁 𝑎𝑎𝑎𝑎, 𝑏𝑏 p 𝑡𝑡   Ornstein-­‐‑Uhlenbeck  Process   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝜆𝜆 𝛼𝛼 − 𝑋𝑋 𝑡𝑡 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝜎𝜎 𝑡𝑡   Geometric  Brownian  Motion   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑎𝑎𝑎𝑎 𝑡𝑡 𝑑𝑑𝑑𝑑 + 𝑏𝑏𝑏𝑏 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑡𝑡   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑎𝑎  𝑑𝑑𝑑𝑑 + 𝑏𝑏  𝑑𝑑𝑑𝑑 𝑡𝑡   𝑋𝑋 𝑡𝑡 1 𝑑𝑑 ln 𝑋𝑋 𝑡𝑡 = 𝑎𝑎 − 𝑏𝑏 p 𝑑𝑑𝑑𝑑 + 𝑏𝑏  𝑑𝑑𝑑𝑑(𝑡𝑡)   2 L u

𝑋𝑋 𝑡𝑡 = 𝑋𝑋 0 𝑒𝑒 ê,p˜ "}˜⋅£(")   1 𝑋𝑋 𝑡𝑡 ~𝑁𝑁 𝑚𝑚 = 𝑎𝑎 − 𝑏𝑏 p 𝑡𝑡, 𝑣𝑣 p =   𝑏𝑏 p 𝑡𝑡   ln 𝑋𝑋 0 2 The  followings  are  equivalent:   • The  Black-­‐‑Scholes  framework  applies.   • 𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝛼𝛼 − 𝛿𝛿   𝑆𝑆 𝑡𝑡  𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎 𝑡𝑡  𝑑𝑑𝑑𝑑 𝑡𝑡   G¿ " = (𝛼𝛼 − 𝛿𝛿  )  𝑑𝑑𝑑𝑑 + 𝜎𝜎  𝑑𝑑𝑑𝑑 𝑡𝑡   • ¿ "

• 𝑑𝑑 ln 𝑆𝑆 𝑡𝑡

L

= 𝛼𝛼 − 𝛿𝛿   − 𝜎𝜎 p 𝑑𝑑𝑑𝑑 + 𝜎𝜎  𝑑𝑑𝑑𝑑 𝑡𝑡   t {,5  , ~ u u

p

"}~£ "   • 𝑆𝑆 𝑡𝑡 = 𝑆𝑆 0 𝑒𝑒 ¿ " L ~𝑁𝑁 𝑚𝑚 = 𝛼𝛼 − 𝛿𝛿 − 𝜎𝜎 p 𝑡𝑡, 𝑣𝑣 p = 𝜎𝜎 p 𝑡𝑡   • ln ¿ C

Ito’s  Lemma  

p

1 𝑑𝑑𝑑𝑑 = 𝑉𝑉¿  𝑑𝑑𝑑𝑑 + 𝑉𝑉¿¿ 𝑑𝑑𝑑𝑑 p + 𝑉𝑉"  𝑑𝑑𝑑𝑑   2 Multiplication  Rules   𝑑𝑑𝑑𝑑  ×  𝑑𝑑𝑑𝑑 =  0                            𝑑𝑑𝑑𝑑  ×  𝑑𝑑𝑑𝑑 =  0   𝑑𝑑𝑑𝑑  ×  𝑑𝑑𝑑𝑑 =  0                        𝑑𝑑𝑑𝑑  ×  𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑  

Sharpe  Ratio   𝛼𝛼 − 𝑟𝑟   𝜙𝜙 = 𝜎𝜎 Two  Ito’s  processes  depending  on  the  same  𝑑𝑑𝑑𝑑(𝑡𝑡)   will  have  equal  Sharpe  ratios.   Risk-­‐‑free  Portfolio   For  a  portfolio  consisting  of  Asset  1  and  Asset  2:   Return  on  Asset  1  = 𝑑𝑑𝑆𝑆L + 𝛿𝛿L 𝑆𝑆L 𝑑𝑑𝑑𝑑   Return  on  Asset  2  = 𝑑𝑑𝑆𝑆p + 𝛿𝛿p 𝑆𝑆p 𝑑𝑑𝑑𝑑   Total  return  on  the  portfolio   = 𝑁𝑁L 𝑑𝑑𝑆𝑆L + 𝛿𝛿L 𝑆𝑆L 𝑑𝑑𝑑𝑑 + 𝑁𝑁p 𝑑𝑑𝑆𝑆p + 𝛿𝛿p 𝑆𝑆p 𝑑𝑑𝑑𝑑   The  coefficient  of  𝑑𝑑𝑑𝑑  = 𝑁𝑁L 𝜎𝜎L 𝑆𝑆L + 𝑁𝑁p 𝜎𝜎p 𝑆𝑆p   Risk-­‐‑free  ⇒ The  coefficient  of  𝑑𝑑𝑑𝑑 = 0   −𝑁𝑁p 𝜎𝜎p 𝑆𝑆p −𝑁𝑁L 𝜎𝜎L 𝑆𝑆L                 𝑁𝑁p =   𝑁𝑁L = 𝜎𝜎L 𝑆𝑆L 𝜎𝜎p 𝑆𝑆p Risk-­‐‑neutral  Pricing   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝛼𝛼 − 𝛿𝛿 𝑑𝑑𝑑𝑑 + 𝜎𝜎  𝑑𝑑𝑑𝑑(𝑡𝑡)   𝑆𝑆 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑟𝑟 − 𝛿𝛿 𝑑𝑑𝑑𝑑 + 𝜎𝜎  𝑑𝑑 𝑍𝑍(𝑡𝑡)   𝑆𝑆 𝑡𝑡 𝑑𝑑𝑍𝑍 𝑡𝑡 = 𝑑𝑑𝑑𝑑 𝑡𝑡 + 𝜙𝜙𝜙𝜙𝜙𝜙                            𝑍𝑍 𝑡𝑡 = 𝑍𝑍 𝑡𝑡 + 𝜙𝜙𝜙𝜙   True  Measure   Risk-­‐‑neutral  Measure   𝑍𝑍 𝑡𝑡 ~𝑁𝑁 0, 𝑡𝑡   𝑍𝑍 𝑡𝑡 ~𝑁𝑁 0, 𝑡𝑡   𝑍𝑍 𝑡𝑡 ~𝑁𝑁 −𝜙𝜙𝜙𝜙, 𝑡𝑡   𝑍𝑍 𝑡𝑡 ~𝑁𝑁 𝜙𝜙𝜙𝜙, 𝑡𝑡  

Proportional  Portfolio   𝑥𝑥 ∶ percentage  invested  in  Asset  𝐴𝐴   1 − 𝑥𝑥 ∶ percentage  invested  in  Asset  𝐵𝐵   𝑊𝑊 𝑡𝑡 ∶ value  of  the  portfolio  at  time  𝑡𝑡   𝑑𝑑𝑑𝑑 𝑡𝑡 + 𝛿𝛿˚  𝑑𝑑𝑑𝑑   𝑊𝑊 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑡𝑡 + 𝛿𝛿b  𝑑𝑑𝑑𝑑 + 1 − 𝑥𝑥 + 𝛿𝛿È  𝑑𝑑𝑑𝑑   = 𝑥𝑥 𝐴𝐴 𝑡𝑡 𝐵𝐵 𝑡𝑡 If  Asset  𝐴𝐴  is  a  risk-­‐‑fee  asset,  then:   𝑑𝑑𝑑𝑑 𝑡𝑡 + 𝛿𝛿b  𝑑𝑑𝑑𝑑 = 𝑟𝑟  𝑑𝑑𝑑𝑑   𝐴𝐴 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑡𝑡 + 𝛿𝛿˚  𝑑𝑑𝑑𝑑   𝑊𝑊 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑥𝑥 𝑟𝑟  𝑑𝑑𝑑𝑑 + 1 − 𝑥𝑥 + 𝛿𝛿È  𝑑𝑑𝑑𝑑   𝐵𝐵 𝑡𝑡 The  Black-­‐‑Scholes  Equation   𝑟𝑟 − 𝛿𝛿 𝑆𝑆𝑉𝑉¿ + 0.5𝜎𝜎 p 𝑆𝑆 p 𝑉𝑉¿¿ + 𝑉𝑉" = 𝑟𝑟 − 𝛿𝛿 ∗ 𝑉𝑉   𝑟𝑟 − 𝛿𝛿 𝑆𝑆𝑆𝑆 + 0.5𝜎𝜎 p 𝑆𝑆 p 𝛤𝛤 + 𝜃𝜃 = 𝑟𝑟 − 𝛿𝛿 ∗ 𝑉𝑉   where   𝛿𝛿: dividend  yield  on  stock   𝛿𝛿 ∗ : dividend  yield  on  derivative   S^a   u 𝐸𝐸 𝑆𝑆 𝑇𝑇 ê = 𝑆𝑆 𝑡𝑡 ê 𝑒𝑒 ê {,5 }C.Äê ê,L ~ ê 𝐹𝐹",$ 𝑆𝑆 𝑇𝑇   = 𝐸𝐸 ∗ 𝑆𝑆 𝑇𝑇 ê   u = 𝑆𝑆 𝑡𝑡 ê 𝑒𝑒 ê *,5 }C.Äê ê,L ~ $,"   𝛿𝛿 ∗ = 𝑟𝑟 − 𝑎𝑎 𝑟𝑟 − 𝛿𝛿 − 0.5𝑎𝑎 𝑎𝑎 − 1 𝜎𝜎 p   𝛾𝛾 = 𝑎𝑎 𝛼𝛼 − 𝑟𝑟 + 𝑟𝑟  

$,"

 

𝑑𝑑𝑆𝑆 ê = 𝑎𝑎 𝛼𝛼 − 𝛿𝛿 + 0.5𝑎𝑎 𝑎𝑎 − 1 𝜎𝜎 p 𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑎𝑎  𝑑𝑑𝑑𝑑 𝑡𝑡   𝑆𝑆 ê

   

INTEREST  RINTEREST ATE  MODELS  RATE MODELS General  Ito’s  Process  for  𝒓𝒓 𝒕𝒕  and  𝑷𝑷 𝒓𝒓, 𝒕𝒕, 𝑻𝑻   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑎𝑎 𝑟𝑟  𝑑𝑑𝑑𝑑 + 𝜎𝜎 𝑟𝑟  𝑑𝑑𝑑𝑑 𝑡𝑡   𝑑𝑑𝑑𝑑 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 = 𝛼𝛼 𝑟𝑟, 𝑡𝑡, 𝑇𝑇  𝑑𝑑𝑑𝑑 − 𝑞𝑞 𝑟𝑟, 𝑡𝑡, 𝑇𝑇  𝑑𝑑𝑑𝑑   𝑃𝑃 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 where   1 1 𝛼𝛼 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 = 𝑎𝑎 𝑟𝑟 ⋅ 𝑃𝑃* + 𝜎𝜎 𝑟𝑟 p ⋅ 𝑃𝑃** + 𝑃𝑃"     𝑃𝑃 2 𝑃𝑃* 𝑞𝑞 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 = − 𝜎𝜎 𝑟𝑟   𝑃𝑃 Sharpe  Ratio     𝛼𝛼 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 − 𝑟𝑟   𝜙𝜙 𝑟𝑟, 𝑡𝑡 = 𝑞𝑞 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 Partial  PDE  for  Bond   1 𝑟𝑟𝑟𝑟 = 𝜎𝜎 𝑟𝑟 p 𝑃𝑃** + 𝑎𝑎 𝑟𝑟 + 𝜎𝜎 𝑟𝑟 𝜙𝜙 𝑟𝑟, 𝑡𝑡 𝑃𝑃* + 𝑃𝑃"   2 Risk-­‐‑neutral  Process   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑎𝑎 𝑟𝑟 + 𝜎𝜎 𝑟𝑟 ⋅ 𝜙𝜙 𝑟𝑟, 𝑡𝑡  𝑑𝑑𝑑𝑑 + 𝜎𝜎 𝑟𝑟  𝑑𝑑 𝑍𝑍(𝑡𝑡)   𝑑𝑑𝑑𝑑 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 = 𝑟𝑟  𝑑𝑑𝑑𝑑 − 𝑞𝑞 𝑟𝑟, 𝑡𝑡, 𝑇𝑇  𝑑𝑑 𝑍𝑍(𝑡𝑡)   𝑃𝑃 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 𝑑𝑑𝑍𝑍 𝑡𝑡 = 𝑑𝑑𝑑𝑑 𝑡𝑡 − 𝜙𝜙 𝑟𝑟, 𝑡𝑡  𝑑𝑑𝑑𝑑  

𝑍𝑍 𝑡𝑡 = 𝑍𝑍 𝑡𝑡 −

"

C

𝜙𝜙 𝑟𝑟, 𝑠𝑠  𝑑𝑑𝑑𝑑  

Delta-­‐‑Gamma-­‐‑Theta  Approximation   1 𝑃𝑃 𝑡𝑡 + ℎ, 𝑇𝑇 − 𝑃𝑃(𝑡𝑡, 𝑇𝑇) = 𝛥𝛥𝛥𝛥 + 𝛤𝛤𝜖𝜖 p + 𝜃𝜃ℎ   2 𝜖𝜖 = 𝑟𝑟 𝑡𝑡 + ℎ − 𝑟𝑟(𝑡𝑡)   𝜕𝜕𝜕𝜕 𝜕𝜕 p 𝑃𝑃 𝜕𝜕𝜕𝜕 𝛥𝛥 =          𝛤𝛤 = p      𝜃𝜃 =   𝜕𝜕𝑟𝑟 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕              

 

Copyright © 2016 Coaching Actuaries. All Rights Reserved. 3

Rendlemen-­‐‑Bartter  Model     𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑎𝑎 ⋅ 𝑟𝑟 𝑡𝑡  𝑑𝑑𝑑𝑑 + 𝜎𝜎 ⋅ 𝑟𝑟 𝑡𝑡  𝑑𝑑𝑑𝑑 𝑡𝑡   1 𝑟𝑟 𝑡𝑡 ~𝑁𝑁 𝑚𝑚 = 𝑎𝑎 − 𝜎𝜎 p 𝑡𝑡, 𝑣𝑣 p = 𝜎𝜎 p 𝑡𝑡     ln 𝑟𝑟 0 2 L u

𝑟𝑟 𝑡𝑡 = 𝑟𝑟 0 𝑒𝑒 ê,p~ "}~£ "   Characteristics:   • No  mean-­‐‑reverting   • 𝑟𝑟  cannot  go  negative   • Volatility  varies  with  𝑟𝑟   Vasicek  Model   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑎𝑎 𝑏𝑏 − 𝑟𝑟 𝑡𝑡  𝑑𝑑𝑑𝑑 + 𝜎𝜎  𝑑𝑑𝑑𝑑 𝑡𝑡   𝑃𝑃 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 = 𝐴𝐴 𝑡𝑡, 𝑇𝑇 ⋅ 𝑒𝑒 ,È ",$ ⋅*   𝐴𝐴 𝑡𝑡, 𝑇𝑇 = Don" t  bother   1 − 𝑒𝑒 ,ê($,")   𝐵𝐵 𝑡𝑡, 𝑇𝑇 = 𝑎𝑎 $,"|ê = 𝑎𝑎 𝑞𝑞 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 = 𝐵𝐵 𝑡𝑡, 𝑇𝑇 ⋅ 𝜎𝜎   Yield  on  infinite  bond:   𝜎𝜎𝜎𝜎 1 𝜎𝜎 p 𝑟𝑟 = 𝑏𝑏 + −   𝑎𝑎 2 𝑎𝑎 p Useful  facts:   • 𝐴𝐴 𝑡𝑡 + 𝑐𝑐, 𝑇𝑇 + 𝑐𝑐 = 𝐴𝐴 𝑡𝑡, 𝑇𝑇     𝐵𝐵 𝑡𝑡 + 𝑐𝑐, 𝑇𝑇 + 𝑐𝑐 = 𝐵𝐵 𝑡𝑡, 𝑇𝑇   • 𝜙𝜙 𝑟𝑟, 𝑡𝑡  is  a  constant.   Characteristics:   • Mean-­‐‑reverting   • 𝑟𝑟  can  go  negative   • Volatility  does  not  vary  with  𝑟𝑟  

Cox-­‐‑Ingersoll-­‐‑Ross  Model   𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝑎𝑎 𝑏𝑏 − 𝑟𝑟 𝑡𝑡  𝑑𝑑𝑑𝑑 + 𝜎𝜎 𝑟𝑟  𝑑𝑑𝑑𝑑 𝑡𝑡   𝑃𝑃 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 = 𝐴𝐴 𝑡𝑡, 𝑇𝑇 ⋅ 𝑒𝑒 ,È ",$ ⋅*   𝐴𝐴 𝑡𝑡, 𝑇𝑇 = Don" t  bother   𝐵𝐵 𝑡𝑡, 𝑇𝑇 = Don" t  bother   𝑞𝑞 𝑟𝑟, 𝑡𝑡, 𝑇𝑇 = 𝐵𝐵 𝑡𝑡, 𝑇𝑇 ⋅ 𝜎𝜎 𝑟𝑟   𝜙𝜙 𝜙𝜙 𝑟𝑟, 𝑡𝑡 = ⋅ 𝑟𝑟   𝜎𝜎 Useful  facts:   • 𝐴𝐴 𝑡𝑡 + 𝑐𝑐, 𝑇𝑇 + 𝑐𝑐 = 𝐴𝐴 𝑡𝑡, 𝑇𝑇     𝐵𝐵 𝑡𝑡 + 𝑐𝑐, 𝑇𝑇 + 𝑐𝑐 = 𝐵𝐵 𝑡𝑡, 𝑇𝑇   • 𝜎𝜎 𝑟𝑟 ∝ 𝑟𝑟   • 𝜙𝜙(𝑟𝑟, 𝑡𝑡) ∝ 𝑟𝑟   Characteristics:   • Mean-­‐‑reverting   • 𝑟𝑟  cannot  go  negative   • Volatility  varies  with  𝑟𝑟  

Duration-­‐‑hedging   To  duration-­‐‑hedge  a  𝑇𝑇p -­‐‑year  bond  with  𝑇𝑇L -­‐‑year   bond:   𝑇𝑇p − 𝑡𝑡 ⋅ 𝑃𝑃 𝑡𝑡, 𝑇𝑇p   𝑁𝑁 = − 𝑇𝑇L − 𝑡𝑡 ⋅ 𝑃𝑃 𝑡𝑡, 𝑇𝑇L Delta-­‐‑hedging   To  delta-­‐‑hedge  a  𝑇𝑇p -­‐‑year  bond  with  𝑇𝑇L -­‐‑year  bond:   𝛥𝛥' ",$u 𝑁𝑁 = −   𝛥𝛥' ",$t

Black-­‐‑Derman-­‐‑Toy   1. Effective  interest  rates   2. 𝑝𝑝∗ = 0.5   3. The  ratio  between  two  consecutive  nodes  is   𝑒𝑒 p~$ x   𝜎𝜎" :  short-­‐‑term  volatility   𝑦𝑦 1, 𝑇𝑇, 𝑟𝑟f 1 Yield  volatility $ = ⋅ ln   𝑦𝑦 1, 𝑇𝑇, 𝑟𝑟G 2 ℎ Forward  Price   𝑃𝑃" 𝑇𝑇, 𝑇𝑇 + 𝑠𝑠 = 𝐹𝐹",$ 𝑃𝑃 𝑇𝑇, 𝑇𝑇 + 𝑠𝑠   𝑃𝑃" 𝑡𝑡, 𝑇𝑇 + 𝑠𝑠   𝑃𝑃" 𝑡𝑡, 𝑇𝑇 Black’s  Formula   𝐶𝐶 = 𝑃𝑃 0, 𝑇𝑇 𝐹𝐹 ⋅ 𝑁𝑁 𝑑𝑑L − 𝐾𝐾 ⋅ 𝑁𝑁 𝑑𝑑p     𝑃𝑃 = 𝑃𝑃 0, 𝑇𝑇 𝐾𝐾 ⋅ 𝑁𝑁 −𝑑𝑑p − 𝐹𝐹 ⋅ 𝑁𝑁 −𝑑𝑑L   𝐹𝐹 + 0.5𝜎𝜎 p 𝑇𝑇 ln 𝐾𝐾 𝑑𝑑L =     𝜎𝜎 𝑇𝑇 𝑑𝑑p = 𝑑𝑑L − 𝜎𝜎 𝑇𝑇   𝑃𝑃C (0, 𝑇𝑇 + 𝑠𝑠) 𝐹𝐹 = 𝐹𝐹C,$ 𝑇𝑇, 𝑇𝑇 + 𝑠𝑠 =   𝑃𝑃C (0, 𝑇𝑇)

=

𝜎𝜎 =

       0 < 𝑡𝑡 ≤ 𝑇𝑇  

Caplet   At  time  𝑇𝑇,  the  value  of   𝑇𝑇 + 1 -­‐‑year  caplet   max 0, 𝑅𝑅$ − 𝐾𝐾' =  ×  Notional   1 + 𝑅𝑅$ A  caplet  is  equivalent  to  1 + 𝐾𝐾'  puts  with  strike   L .     price    

www.coachingactuaries.com

𝑉𝑉𝑉𝑉𝑉𝑉 ln 𝐹𝐹C,$ 𝑇𝑇, 𝑇𝑇 + 𝑠𝑠 𝑡𝑡

L}O )

Copyright © 2016 Coaching Actuaries. All Rights Reserved. 4 Copyright © 2016 Coaching Actuaries. All Rights Reserved. 4 Personal copies permitted. Resale or distribution is prohibited.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF