Métodos de integración de la ecuación dinámica
Short Description
Download Métodos de integración de la ecuación dinámica...
Description
4.4 Métodos de integración de la ecuación dinámica.
Para el cálculo de perfiles de flujo gradualmente variado se utiliza la ecuación (4.4a y/o 4.12) que no tiene solución explícita puesto que ni la pendiente de fricción en flujos reales ni el número de Froude son conocidos, por lo que hay que recurrir a métodos numéricos que tratan de aproximar una solución. Se deben hacer algunas suposiciones, entre ellas: Se consideran sub-tramos de análisis relativamente pequeños, de tal forma que se pueda considerar flujo uniforme y así determinar la pendiente de fricción utilizando una ecuación de resistencia al flujo, usualmente Manning. La pendiente del canal es pequeña, por ende la profundidad del flujo medida verticalmente
es
aproximadamente
igual
a
la
profundidad
medida
perpendicularmente al fondo, es decir que no se requiere corregir la profundidad de flujo por la pendiente. El coeficiente de rugosidad es independiente del tirante hidráulico y constante en todo el tramo en consideración. Para conocer la variación de la profundidad del flujo gradualmente variado en relación con la longitud del canal ya sea hacia aguas arriba o aguas debajo de la sección de control, se emplean métodos teóricos aproximados entre los cuales los más usados son: El método de integración directa, método de integración grafica, método del paso estándar, método del paso directo. Independientemente del método de cálculo seleccionado es importante resaltar que para los cómputos se debe considerar el tipo de flujo, ya sea subcrítico o supercrítico, crítico, o con pendiente horizontal o adversa y definir el tipo de perfil de flujo: M, S, C H o A, respectivamente. También, se deben localizar los respectivos controles al flujo, puesto que en flujo subcrítico el cálculo se hace desde aguas abajo y en flujo supercrítico desde aguas arriba. La pendiente de fricción se debe determinar a partir de alguna ecuación de resistencia al flujo, por ejemplo la de Manning.
El proceso de cálculo es usualmente el siguiente: 1. Determinar parámetros básicos de diseño: topografía, suelos, caudal, etc.
2. Diseñar completamente el canal por tramos y conocer todos los elementos. 3. Determinar el tipo de pendiente del canal: subcrítica, supercrítica, crítico, horizontal o adversa. 4. Identificar los controles del flujo: compuertas, presas, vertederos, cambios de pendiente y caídas. 5. Determinar los elementos hidráulicos en la sección de control. 6. Analizar los perfiles de flujo que se presentan aguas arriba y aguas abajo del control: M, S, C, H,A. 7. Calcular los perfiles de flujo a partir de la sección de control. En general, existen dos casos de cálculo: a) Solución directa.
Se conoce la variación de profundidades del agua dy y el problema es encontrar la distancia entre ellas (dx). b) Solución por iteraciones.
Se desconoce la variación de profundidades del agua (dy) y se conoce la distancia entre ellas (dx). Como tanto Sf como FR son funciones de y; y ésta solo se conoce en la sección de control, la profundidad del agua en la siguiente sección debe encontrarse por aproximaciones sucesivas.
4.5 Método de Integración Directa.
La ecuación diferencial de flujo gradualmente variado no puede expresarse explícitamente en términos de “d” para todos los tipos de secciones transversales del canal; por consiguiente una integración directa y exacta de la ecuación dinámica del flujo gradualmente variado es casi imposible. Inicialmente solo se aplico a determinadas secciones del canal, pero luego se generalizó. El método descrito aquí es el resultado de un estudio sobre muchos de los métodos existentes. Mediante este método, los exponentes hidráulicos para el flujo crítico y normal, M y N, son las constantes. Este método realiza una integración directa y exacta de la Ecuación del flujo gradualmente variado, considerando que los exponentes hidráulicos para flujo crítico y normal, M y N, son constantes:
La ecuación del flujo gradualmente variado es:
Sustituyendo estos valores del flujo crítico y normal en la ecuación del flujo gradualmente variado (4.16) donde C1, C2 son coeficientes se tiene:
Esta ecuación puede integrarse para la longitud L del perfil, considerando que N y M son constantes, porque al integrarse a la expresión (4.17):
Donde:
Cuando se calcula un perfil de flujo, por este método, primero se analiza el flujo en el canal y luego se divide el canal en tramos. Después se determina la longitud de cada tramo mediante la ecuación (4.24) a partir de profundidades conocidas o supuestas en los extremos de cada tramo. El procedimiento del cálculo es como sigue: 1. Calcule el tirante normal del canal (dn) y el tirante crítico (dc) a partir de los datos proporcionados Q, S0, n y talud (si el canal es trapecial). 2. Determine los exponentes hidráulicos N y M para una profundidad del flujo promedio estimado en cada tramo auxiliándose de la figura 6.2 (Curvas de valores de N) que varia dentro de un rango de 2.0 a 5.3, entrando con el valor obtenido de la relación dn/d y el valor del talud del canal se determina el valor de N. Para encontrar el valor de M, se utilizara la figura 4.2 (Curvas de valores de M) entrando con el valor de N y el talud del canal.
5. A partir de la función de flujo variado dada en la tabla del apéndice D, encuentre los valores a F (u,N) y F(v,J).
6. Calcule la longitud del tramo a partir de la ecuación (4.24).
4.6 Método de Integración Gráfica.
Este método tiene como objetivo integrar la ecuación dinámica de flujo gradualmente variado mediante un procedimiento grafico. Consideremos dos secciones de canal (fig. 4.9a) localizada a unas distancias x1 y x2 respectivamente desde un origen seleccionado y con los tirantes de agua d1 y d2 correspondientes. La distancia a lo largo del canal es:
Supongamos varios valores de “d” y calcule los valores correspondientes de dx/dd,
el cuales el recíproco del lado derecho de la ecuación de flujo gradualmente variado, es decir de la ecuación (4.12). Luego se construye una curva de d contra dx/dy (fig. 4.9b). De acuerdo con la ecuación (4.25), es claro que el valor de x es el área sombreada formada por la curva el eje “y” y las ordenadas de dx/dd correspondientes a d1 y d1. Luego puede medirse esta área y determinarse el valor de x. El valor de dx/dd será:
Este método tiene una aplicación muy amplia. Se aplica al flujo de canales prismáticos y no prismáticos de cualquier forma y pendiente. El procedimiento es sencillo y fácil de seguir. Sin embargo puede volverse muy complejo cuando se aplica a problemas reales, para facilitar el cálculo de la longitud del perfil se recomienda llenar la tabla 4.2 de cálculo de la longitud del perfil y para dibujar dicho perfil.
El valor de para casos prácticos se desprecia y vale la unidad, para casos teóricos el valor de alfa puede valer 1.10 o más.
View more...
Comments