Metodo Simplex Dual Final Completo
November 15, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Metodo Simplex Dual Final Completo...
Description
KMWC^VKAONKÞM FC JTCRONKJMC^
FJNCMVC< MSßC\ MSßC\ AK^CHHC HJRCMO ARSTJ# 2 KMVCAROMVC^< *ÏMACH IOR_SKMO IOR_SKM O OASKHOR *N[MV@KO @KFOHAJ TOHIO ^VCWCM HÞTC\ NSR^J< K^K-^-MJ-3-6
ICVJFJ ^KITHCP FSOH Kmvcstkaonkþm fc Jpcronkjmcs
Ch iëtjfj fuoh skiphcx cs jtrj nosj cspcnkoh fc ophknonkþm fch iëtjfj skiphcx y cm ch njmncptj fch outjr sc fcbc utkhkzor poro oquchhjs prjbhcios cm hjs quc sc kmvjhunrom rcstrknnkjmcs fch tkpj 8.
Ch iëtjfj fuoh skiphcx sc ophkno poro rcsjhvcr prjbhcios quc cipkczom njm gontkbkhkfof fuoh, cs fcnkr, þptkijs pcrj kmgontkbcs.
Hos poro iëtjfj séiphcx fuoh sjmcmtrc iuy chhjs porcnkfos hos fchporo iëtjfj Fc `cn`j, umo rcahos vcz quc sc ch kmknkom, ho ümkno fkgcrcmnko cs ch onrktcrkj chcakrséiphcx. hos vorkobhcs quc cmtrom y sohcm y ho rcaho poro fctcmcr ch ohajrktij.
NJMFKNKJM FC GONVKBKHKFOF Csto vorkobhc cs um pumtj cxtrcij quc sc cmnucmtro cm um nrktcrkj njmjnkfj njij ‘Njmfknkþm fc Gontkbkhkfof’, cm um ijfchj, yo sco fc jptkikzonkþm j ikmkikzonkþm, y sc rcgkcrc o ho vorkobhc bïskno osjnkofo njm ho iémkio rozþm mj mcaotkvo njm ch njcgknkcmtc ios mcaotkvj.
NJMFKNKJM FC JTVKIKFOF
Ho vorkobhc quc cmtro sc chkac cmtrc hos vorkobhcs mj bïsknos njij skauc. Vjic Vjic hjs njnkcmtcs fc hjs njcgknkcmtcs fc ho gumnkþm jblctkvj cmtrc hjs njcgknkcmtcs njrrcspjmfkcmtcs o ho cnuonkþm osjnkofo o ho vorkobhc quc sohc.
KNO^ NORONVCRK^V
◊
Cs um prjncsj ktcrotkvj quc pucfc acmcror vorkos oprjxkionkjmcs o ho sjhunkþm o trovës fc fkstkmtos tobhos fc sjhunkþm.
◊
^c pucfc kfcmtkgknor nuomfj sc `o hhcaofj o ho sjhunkþm jptkio.
◊
Csto bosofo cm ch iëtjfj fc Aouss „ Ljrfom.
◊
Cs iuy scmskbhc oh rcfjmfcj pjr hj quc sc sc rcnjikcmfo iomclor gronnkjmcs njiumcs
WCMVOLO^ [ FC^WCMVOL O^
◊
Tcriktc chkikmor um bosc kmknkoh kmgontkbhc cm ch nosj fc rcstrknnkjmcs fch tkpj 9 þ =, skm mcncskfof fc kmtrjfunkr vorkobhcs ortkgknkohcs.
◊
Trcscmto vcmtolos cm ohaumjs nosjs fc omïhksks fc scmskbkhkfof, njij ho ofknkþm fc mucvos rcstrknnkjmcs j mucvos vorkobhcs.
◊
Stkhkzo icmjs ktcronkjmcs.
◊
Ho fcsvcmtolo cs quc poro cipczor o ktcror cm cstc iëtjfj sc rcqukcrc fc ho njmfknkþm fc gontkbkhkfof fuoh.
Ohajrktij poro rcsjhvcr um ijfchj fc ioxkikzonkjm cs ch skaukcmtc<
?.
@ohhor @ohh or um umoo sjh sjhun unkþ kþm m bïs bïskn knoo kmgontkbhc c kmicljrobhc.
2.
Tru Tr ucbo fc gontk tkbk bkhk hkf fof
>.
Truc Tr ucbo bo fc km kmic iclj ljro robk bkhk hkfo fof f
kmknk kmk nkoh oh
Toro ho ophknonkjm fc cstc iëtjfj sc fcbc scaur ch skaukcmtc prjncfkikcmtj
Hhcvc ho gumnkþm jblctkvj o ioxkikzonkþm.
Icfkomtc ho utkhkzonkþm fc hos rcahos fc cqukvohcmnko, tromsgjric hos rcstrknnkjmcs cm kauohfofcs.
Iuhtkphkquc pjr icmjs umj tjfos hos rcstrknnkjmcs quc mj tkcmcm vcntjr umktorkj. (skciprc sjm hos rcstrknnkjmcs cm fjmfc sc `o rcstofj vorkobhc fc cxncsj).
CLCITH J ◊ CLCRNKNKJ
CLCITHJ FC OTHKNONKJM Ikmkikzor< \9 >x? + 2x2 s.o<
>x? + x2 = > 6x? + >x2 =7 x? + x2 8 > x? , x2 =4
^JHSNKJM<
Tosj ?< iuhtkphknoijs pjr (-?) o hos kmcnuonkjmcs quc scom ioyjrcs (=) poro tromsgjriorhos cm icmjrcs (8)<
Ikmkikzor< \9 >x? + 2x2 s.o.< >x? + x2 = > (-?) 6x? + >x2 =7 (-?) x? + x2 8 > x? , x2 =4
Ikmkikzor< \9 >x? + 2x2 s.o.< ->x? - x2 8 -> -6x? - >x2 8-7 x? + x2 8 > x? , x2 =4
Tosj 2x? +2x2 +4x> +4x> + 4x6 4x6+ + 4x3
s.o.< ->x? - x2 + x> +
9-> -6x? - >x2 + x6 + 9-7 x? + x2 + x3 9 > x? , x2, x>, x6, x3 = 4
Tosj >< Njmstrukijs ho tobho W. C W. Boskno
P?
P2
P>
P6
P3
^jhunkjm
\ P>
-> ->
-2 -?
4 ?
4 4
4 4
4 ->
P6
-6
->
4
?
4
-7
P3
?
?
4
4
?
>
W. ^ W.C.9 Workobhc fc cmtrofo x2 W.^.9 Workobhc fc sohkfo s ohkfo x?
Tosj 6< @ohhoijs ho vorkobhc fc cmtrofo Workobhc
x?
x2
x>
x6
x3
Rcmahþm fc \ (\?-N?)
->
-2
4
4
4
Rcmahþm fc x6, o6l
->
->
4
?
4
Rozþm 5 o6l584
>/6
2/>
-
-
-
Tosj 3< @ohhoijs ho mucvo cnuonkþm pkvjtc< *Mucvo cnuonkþm \< Cn. \ omtcrkjr -> -2 4 4 4 4 -(-2)(M.C.T) -(-2)(M .C.T) 0/> 2 4 -2/> 4 6 -?/> 4 4 -2/> 4 6 *Mucvo Cnuonkjm P>< Cn. P> omtcrkjr -> -? ? 4 4 -> -(-?)(M.C.T) -(-?)(M .C.T) 6/> ? 4 -?/> 4 2 -3/> 4 4 -?/> 4 -? *Mucvo Cnuonkjm P3< Cn. P3 omtcrkjr ? ? 4 4 ? > -(-?)(M.C.T) -(-?)(M .C.T) -6/> ? 4 ?/> 4 -2 -?/> 4 4 ?/> ? -?
Tosj 7< Njmstrukijs ho mucvo tobho W. C W. Boskno
P?
P2
P>
\ P>
-?/> -3/>
4 4
4 ?
P6
6/>
?
4
P3
-?/>
4
4
P6
Rozjm ?/3
-
-
2
-
W.C.9 Workobhc fc cmtrofo x? W.^.9 Workobhc fc sohkfo s ohkfo x2
W. ^
P3
-2/>
^jhunkjm
6
-?/>
4 4
--?
-?/>
4
-2
?/>
?
?
Tosj 1< @ohhoijs ho mucvo cnuonkþm pkvjtc< M.C.T9 ? 4 ->/3 ?/3 4 >/3 *Mucvo cnuonkþm \< Cn. \ omtcrkjr -?/> -?/> 4 4 -2/> 4 6 -(-?/>)(M.C.T) -(-?/>)(M.C .T) ?/> 4 -?/3 ?/3 4 ?/3 4
4 -?/3 ->/3 ->/3 4 2?/3
*Mucvo Cnuonkjm P>< Cn. P2 omtcrkjr 6/> ? 4 -?/> 4 2 -(6/>)(M.C.T) -(6/>)(M.C .T) -6/> 4 6/3 6/3 -6/?3 4 -6/3 4 ? 6/3 >/3 *Mucvo Cnuonkjm P3< Cn. P3 omtcrkjr -?/> 4 4 (M.C.T) ?/> 4 -?/3 ?/?3 4 4 -?/3 2/3
4 7/3 ?/> ? 4 ?/3 ? 7/3
?-(-?/>)
VOBHO JTVKIO GKMOH
W. Boskno
P?
P2
P>
\
4
4
-?/3
P>
?
4
->/3
P6
4
?
6/3
P3
4
4
-?/3
P6
P3
->/3
4
2?/3
?/3
4
>/3
->/3
4
2/3
?
^jhunkþm
7/3
7/3
Osk, hos sjhunkjmcs jptkios poro ch prjbhcio scrko< x? 9>/3 x2 97/3 z 92?/3
BKBHKJAROGKO *Trjaroionkþm Hkmcoh Aucrrcrj, @uibcrtj Aucrro ^ohos, *Trjaroionkþm Bjajtï Cnjc Cfknkjmcs, 244;.
*jrjicrjkj.bhjan jrjicrjkj.bhjankmforkj.nji/gkn kmforkj.nji/gkn`crjs/Ictjfj^kiph `crjs/Ictjfj^kiphcxF cxF uoh.pfg *`ttp.@VIH OF%24>.@VIH *`ttp
View more...
Comments