Download Metodo Matricial de Las Rigideces (Armaduras)...
Description
Método de las Rigideces Matricial Armaduras Planas
M.C. Guillermo R. Andrade López
Rigideces de miembros de armaduras planas
Es conveniente, al tratar con miembros inclinados en una estructura reticular, hacer uso de cosenos directores. Los cosenos directores para el miembro mostrado en la figura anterior son los cosenos de los ángulos γ1 y γ2 entre los ejes del miembro y los ejes x e y, respectivamente. Estos ángulos seran siempre tomados en el extremo j del miembro.
Rigideces de miembro de una armadura plana para ejes de la estructura
La matriz de rigidez de miembro, para un miembro de una armadura plana, se formara por el método directo. Para este propósito es necesario considerar en ambos extremos del miembro, desplazamientos unitarios en las direcciones de x e y. El primero de estos desplazamientos se mostró en la primera figura anterior y consiste en una translación unitaria del extremo j del miembro en la dirección de x. como resultado de este desplazamiento se induce una fuerza axial en el miembro. Esta fuerza se puede calcular a partir del acortamiento axial del miembro, que es numéricamente igual al coseno director Cx en la dirección de x para el miembro. La fuerza de compresión axial en el miembro debido a este cambio de longitud es igual a:
La acción de restricción en el extremo j en la dirección de x, denominada SMD11, debe ser igual a la componente en x de la fuerza en el miembro. Por lo tanto, esta rigidez es igual al producto de la fuerza axial por el coseno director en x, como sigue:
También, la acción de restricción en j en la dirección de “y” es igual a la componente en la direccion de “y” de la fuerza en el miembro.
Las acciones de restricción en el extremo k del miembro de la primer figura, se encuentran rápidamente por equilibrio estático, como sigue:
Análisis de armaduras planas Como un paso inicial en el análisis de armaduras planas, deben ser numerados todos los nudos y todos los miembros. Los nudos de la estructura se numeran consecutivamente del 1 al nj, donde nj es el numero total de nodos. Además los miembros se numeran del 1 al m, donde m es el numero total de miembros.
Después de numerar los miembros y los nudos, el siguiente paso en el análisis es determinar todos los posibles desplazamientos de nodo y determinar los grados de libertad. El numero de grados de libertad será dos veces el numero de nudos, o 2nj, ya que cada nudo puede experimentar una translación tanto en la dirección de “x” como en la direccion de “y”. El numero de grados de libertad se da por la expresion n = 2nj – nr, en donde nr indica el numero de restricciones de apoyo.
Contribuciones de rigideces de miembro a rigideces de nudo
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.