Metalurgia Del Zinc

July 29, 2017 | Author: Henry Marco Espinoza Ordoñez | Category: Zinc, Sulfuric Acid, Zinc Oxide, Aluminium, Iron
Share Embed Donate


Short Description

Download Metalurgia Del Zinc...

Description

3. METALURGIA DEL ZINC Como ocurre normalmente en metalurgia extractiva, las distintas menas, antes de su tratamiento químico extractivo, necesitan de una preparación física y química mediante operaciones de muy distinta naturaleza. Por ello, a continuación, se estudian la concentración de los minerales y su tratamiento por tostación y sinterización.

3.1. Concentración de menas. La concentración por flotación ha venido a resolver el problema de las menas mixtas las cuales, por otra parte, son cada vez más comunes. No obstante, antes de esta operación se hace precisa una molienda que libere los distintos componentes del mineral y que, a veces, exige moler por debajo de 50 µm. Hay que plantearse un proyecto de molienda-flotación que haga el tratamiento de la mena económico. La práctica normal de la flotación en menas mixtas es flotar primero los minerales de cobre, deprimiendo los de zinc y plomo. A continuación, se flota la galena, luego la blenda y. a veces, finalmente, la pirita. La flotación de minerales de zinc ha evolucionado tanto desde comienzos de siglo que, hoy día, se pueden tratar una gran variedad de menas sulfuradas con un éxito económico asegurado. Se han desarrollado técnicas, por ejemplo, que llegan a flotar carbonato de zinc activando su superficie con sulfuro sódico y usando colectores, como en Cerdeña.

3.2. Tostación y sinterización. Al comienzo de la producción del zinc metal (1746 en Europa) se usaron las calaminas para la obtención del metal. Sólo era precisa una calcinación para descomponer el silicato hidratado, y dejar así un silicato activado del que el óxido de zinc era reducido, en retortas especiales, con carbón. Pero la blenda, que es un sulfuro y, además, el más abundante, pronto se intentó beneficiar aunque no pueda reducirse directamente con carbón. Pronto se supo que un tratamiento de tostación convertía el mineral en óxido y éste ya se podía reducir, pero no se utilizó este descubrimiento, por lo tedioso del proceso de tostación, hasta que las calaminas se hicieron escazas. Agotados los yacimientos de calamina hubo que recurrir a la blenda siendo necesario desarrollar una técnica adecuada para su tostación. El descubrimiento de la flotación puso en disposición de tratamiento cantidades importantes de blenda y hoy se puede decir que casi la totalidad de la producción mundial de zinc se obtiene a partir de sulfuros concentrados por flotación.

El primer paso es, hoy en día, es la obtención de un óxido por tostación del sulfuro que, para su reducción por vía térmica en horno de cuba, precisa ser sinterizado facilitándose así las reacciones en el horno.

3.2.1. El proceso de tostación En este proceso, la blenda tiene que oxidarse y convertirse, progresivamente, en óxido a medida que el oxígeno penetra en las partículas sólidas y se evacua hacia su superficie el SO2. Esta conversión en óxido de la blenda se exige tanto para la vía pirometalúrgica de tratamiento como para la hidrometalúrgica, puesto que el sulfuro no se ataca con facilidad por ácidos o bases y, además, es inerte a la reducción con carbón. No procede tampoco la fusión para mata al ser un metal muy poco noble. La reacción básica es la siguiente: 3 ZnS  O 2  ZnO SO 2 2 Ec. 3.1  H 431 kJ 12000 K  mol La tostación debe efectuarse por encima de los 700ºC, en aire y con continua agitación. El exceso de aire hay que controlarlo con el fin de que no baje del 4,5% el contenido de SO2 en los gases del horno; esto para el control del proceso y para los requerimientos de la planta de ácido sulfúrico. En la figura 3.1 se puede ver el diagrama de Kellog para el sistema Zn-S-O a 800 y 1200 K. En el diagrama de la figura se ha señalado la zona de trabajo del tostador en la que se garantiza la conversión total del sulfuro en óxido a la mayor temperatura. A la temperatura de 900ºC, la reacción 3.1 se desplaza rápidamente hacia la derecha. Mientras en los antiguos procesos el contenido final de azufre del tostado era del 1%, en la tostación en lecho fluido moderna el contenido es inferior al 0,5%. Este resultado es debido a que aunque el contenido en oxígeno en el lecho es bajo, 3-5% a la salida de gases, el excelente contacto sólido-gas hace que se lleve a cabo la reacción hasta el extremo indicado; por otra parte, la carga fresca se diluye mucho dentro de la masa de material calcinado del lecho. En condiciones normales de temperatura, por encima de los 900ºC, el sulfato de zinc no debería estar en el horno (como se muestra en los diagrama de Kellog de la figura 3.1). Se puede demostrar fácilmente que si bien a 725ºC no existe sulfato en ausencia de SO2, en la atmósfera del horno, con un 6-12% de SO2 se forma un sulfato básico, el 2 ZnSO4∙ZnO, que es estable hasta 850ºC.

Figura 3.1. Diagrama de Kellog para el sistema Zn-S-O a 800 y 1200 K.

Se puede producir una sulfatación del polvo que sale del horno a medida que se enfrían los gases. La producción de SO3 se incrementa con la concentración de O2 en el gas por lo que el exceso de aire debe ser controlado (10-15%). Así el SO3 es inferior al 1% del azufre total tostado y el peligro de sulfatación disminuye.

Figura 3.2. Distribución del SO2 en una máquina de sinterización.

Aunque hubo unos primeros hornos, muy antiguos e imperfectos, para tostar, las técnicas para conseguir un buen tostado no se tuvieron hasta el desarrollo de los hornos de solera Wedge y Herreshof; estos hornos casi funcionaban de forma autógena con ayuda de pequeñas cantidades de combustible. No obstante, presentaban problemas de pegaduras y de altos costos de mantenimiento por lo que, aunque se utilizaron profusamente, hoy están en desuso habiendo sido reemplazados por los hornos de lecho fluido, que son ideales para tostar los finos de flotación. Así pues, se puede decir que en las plantas hidrometalúrgicas actuales (electrolíticas) solamente se instalan tostadores de lecho fluido. Estas unidades tienen una capacidad de producción alta y bajos costos operativos y de mantenimiento. La tostación no se puede utilizar en plantas con hornos de reducción dado que se precisan materiales sintetizados con buenas características mecánicas, y con porosidad y tamaño adecuados. La tostación por suspensión fue un paso intermedio entre el horno Wedge y el horno de lecho fluido. Cuando se vio que el proceso de tostar se producía al caer el material de solera a solera, se pensó en mejorar el contacto gas-sólido mediante un quemador de blenda fina, cayendo el producto en una cámara de combustión que se mantenía a 950ºC. La blenda se incendia y cae, tostándose rápidamente. La blenda se secaba en las dos soleras superiores, se retiraba del horno para moler y, luego, se enviaba a los quemadores. Aproximadamente, el 40% del producto se retiraba por el conducto de gases del que se separaba utilizando ciclones y filtros. El calor del gas podía recuperarse en una caldera. Las unidades usadas en Canadá por Consolidated M.S.C. procesaban 300 Mg de blenda diaria y desplazaron a los tostadores giratorios de soleras (Wedge). Pero el proceso que se impuso definitivamente fue la tostación en lecho fluido que había tenido aplicaciones previas para reacciones gas-sólido y que se impuso también, en este caso, para la tostación de blenda. El tamaño de partícula y la velocidad del aire son fundamentales. Al principio, se pretendía tostar para llegar a un producto que, lixiviado, produjera la máxima cantidad de zinc con la mínima cantidad de hierro debido a los problemas que acarreaba este metal al intentar su separación como hidróxido gelatinoso. Se sabe que cuando se calientan a cierta temperatura los óxidos de zinc y de hierro forman un compuesto: la ferrita de zinc, ZnO∙Fe 2O3. Si el hierro está en forma sustitucional en la blenda, la formación de la ferrita es inmediata y completa. Incluso si el hierro está como pirita, a la temperatura de tostación de 900ºC, se fija el 90% del Fe como ferrita. Estos hechos hicieron el que, al principio, la lixiviación se llevara a un pH en el cual no se disolviera la ferrita para no contaminar la disolución. Las capacidades de tratamiento de estos hornos varían entre 500 y 1000 Mg de blenda diaria. Son hornos de bajo coste de mantenimiento y, además, el gas tiene una concentración en SO2 que llega al 10% con lo que el rendimiento de la planta de ácido sulfúrico es excelente. Energéticamente, son muy eficaces produciendo en una caldera, a la salida de gases, un kilogramo de vapor de alta por cada kilogramo de blenda tostada.

Como tostación previa a la lixiviación, el proceso es ideal para la mayoría de los concentrados; solamente, si los contenidos de plomo superan el 3%, pueden producirse aglomeraciones que interfieren la operación del lecho. Este tostado fino sólo podría usarse en procesos de piro-reducción, utilizando un briquetado intermedio. El rendimiento de tostación es de dos toneladas de azufre por metro cuadrado de superficie de parrilla y día. Si se carga la alimentación del horno en forma de papilla, el rendimiento baja al 70%. Los tiempos de residencia medios en el lecho son de cinco horas, que disminuyen a una hora para los finos; se considera que el lecho se renueva completamente después de 20 horas. La eliminación de azufre como sulfuro llega a ser de hasta del 0,1%, estando el azufre también presente como sulfato en cantidades todavía mayores que varían entre el 0.5 y el 2,5%. Este sulfato es beneficioso pues sirve para paliar las pérdidas de ácido en el circuito, eso sí, siempre que no sea una cantidad excesiva ya que exigiría descargas periódicas. La altura del lecho en los tostadores es de 1-1,5 m. La carga del horno es en sólido, por cinta o en papilla. El control de la temperatura es importante, fijándose en 900-980ºC para evitar aglomeraciones. La exotermicidad de la oxidación de la blenda es tal que hace que sea preciso refrigerar mediante pulverizadores de agua cuando la carga es seca. El tamaño de partícula de las blendas tostadas está entre 50 y 300 µm (media 200 µm). El volumen de hueco es del 0,6 al 0,8 y la velocidad es de 30-35 m/s con un exceso de aire del 10% sobre el teórico para tostar. El SO 2 del gas está entre el 8 y el 10%. Las partículas finas se arrastran y el 40% de la blenda tostada se recoge por los rebosaderos. El gas se enfría en las calderas a 350ºC y se precisa limpiar los tubos y paredes pues en ellos se producen pegaduras. El gas se limpia en ciclones y, finalmente, en separadores electrostáticos. Así pues, el material calcinado se recoge, por ejemplo, de esta manera: 40% en los rebosaderos del horno; 20% en las calderas; 35% en los ciclones; y 5% en los precipitadores electrostáticos. Estas cantidades varían en función de la granulometría de la alimentación.

3.2.2. Sinterización. La sinterización de los concentrados de blenda se lleva a cabo en una cinta máquina Dwight-Lloyd (D.LL.). Se carga automáticamente con una capa de 15-18 cm de mineral que se enciende, en su parte alta, en la primera caja horizontal, comenzando la aspiración hacia abajo de los gases de combustión. La zona de reacción se mueve, por tanto, hacia abajo a una velocidad de 0,25 mm/s siendo la velocidad del gas a través del lecho 1000 veces superior. La temperatura en la zona de reacción puede llegar a alcanzar los 1450ºC. Aproximadamente, en unos veinte minutos el lecho ha reaccionado por completo ajustándose la aspiración y la velocidad de avance. El contenido de azufre del producto sinterizado se ha reducido por debajo del 1% y se somete a tratamiento de machacado y clasificación.

Es esencial disponer, para producir un buen sínter, de una distribución granulométrica con las condiciones adecuadas y de una buena mezcla de los ingredientes. El proceso depende, fundamentalmente, de la consecución de una zona de combustión estrecha que viaje a través del lecho. Si no hay uniformidad, el producto sinterizado puede estar tostado de forma incompleta. En cuanto al contenido de azufre de la carga, éste debe ser suficiente para conseguir el combustible necesario, pues si hay azufre en defecto, la sinterización y tostación será parcial, y si lo hay en exceso, la zona caliente fundirá y se perderá porosidad dando un producto imperfecto. Un 6% de azufre se considera óptimo para la sinterización con aspiración inferior. Como la blenda tiene un 30% de azufre, no se puede sinterizar directamente exigiéndose bien una tostación parcial previa o bien recircular los cinco sextos de la carga sinterizada con moliendas intermedias para diluir el material. A pesar de que éste pasa cinco veces por el sínter, esta práctica se usa en bastantes plantas. La porosidad del lecho es otro aspecto determinante para producir un flujo uniforme de gases. La operación fundamental para controlar el tamaño del sólido es la criba de los materiales ya que son el constituyente mayoritario de la carga. Se realiza tamizando por debajo de 4 mm. La humedad debe estar entre el 6 y el 7% para asegurar un buen contacto de la carga pero si la humedad es excesiva se pierde porosidad. La carga se debe dosificar de la mejor manera posible; el material de retorno, y los minerales y fundentes que se almacenan en las tolvas, se pesan y dosifican en forma continua y se mezclan para producir una carga con la composición adecuada. Estas operaciones de mezcla se hacen en mezcladores de naturaleza diversa. La mezcla se hace humedeciendo la carga de forma simultánea. Hay también dispositivos para alimentar a la máquina D.L.L. la cantidad exacta de lecho sobre las parrillas, lo cual se hace controlando su altura. El contenido en SO2 de los gases debe de ser suficiente para que funcionen bien las plantas de ácido. Para ello, se evitan las entradas de aire por juntas o agujeros en la carga. La distribución del SO2 en los gases se representa en la figura 3.2 tanto para una máquina con aspiración superior como con inferior. La máxima concentración se obtiene en la parte central: 10-12%. Para conseguir enriquecer el gas se utiliza la recirculación del mismo pasándolo de parte de las cajas aspirantes de nuevo por el lecho en la zona anterior. Así, el gas recirculado pasa del 2,5 al 7% de SO2. El cadmio y el plomo sufren movilizaciones en la carga del sínter durante el proceso. El 70% del cadmio se volatiliza, fundamentalmente, como sulfuro de cadmio que se condensa en las salidas de gases. Se recupera de las barras de forma automática por golpeo y se obtiene un producto con un 6% de cadmio que se puede lixiviar. El plomo llega a volatilizarse en un 20% y se recoge en el sistema de purificación de la planta ácida como barros de sulfato de plomo. En la tabla 3.1 se presentan los datos operativos de una instalación Dwight-Lloyd.

El sinterizado aspirado por abajo es adecuado para la carga en retortas. Pero el desarrollo del horno Imperial Smelting (ISF) exige un producto grueso, 2,5-10 cm, y resistente. Además, surgen problemas en este tipo de horno por la reducción del plomo cuando se utilizan menas mixtas Zn-Pb, según la reacción: 2PbO

 PbS 

3Pb  SO

2

Ec. 3.2 Ya que se taponan las cajas de viento cuando se aspira por abajo. Por esta razón, se ha desarrollado el sistema de soplado desde abajo que comporta el que el plomo se retenga en el lecho de sínter (PortPire y Stolberg) obteniéndose el denominado sínter duro (figura 3.3). Este desarrollo ha permitido el éxito técnico del horno ISF de reducción simultánea de Zn y Pb a partir de menas mixtas.

Figura 3.3. Diagrama de una instalación con máquina de sinterización de soplado inferior

El funcionamiento de esta sinterización invertida requiere de la ignición por abajo de una capa de coque y de carga del lecho de material que entra inmediatamente en la zona de soplado. Para enriquecer el gas en SO2, las soplantes sólo introducen aire en la parte inicial del sínter. El gas se recoge y pasa a través de las parrillas anteriores; lo mismo se hace con el gas de ignición. En la sinterización soplada hacia arriba es muy importante el tamaño de las partículas, su buen mezclado y el acondicionado para que no se produzcan arrastres de material. El sínter obtenido con el soplado hacia arriba se denomina sínter duro porque hay que producir trozos gruesos en oposición al sínter blando producido con aspirado hacia abajo. El material se machaca a menos de 15 cm y luego se tamiza a un tamaño de unos 2 cm siendo este producto apto para la carga de los hornos. Lo que queda de menos de 2 cm se tritura hasta menos de 4 mm y se manda al retorno para reducir el azufre de la carga por mezclado (6,5%). Para los procesos en retortas o para el electrotérmico, el sintetizado es una etapa para la reducción del contenido en azufre, es decir, para la tostación. Para el ISF el

sinterizado supone, además, la preparación de la carga. El briquetado del sínter blando no es una alternativa económica para el horno de reducción ISF. Para los procesos de lixiviación se siguen las técnicas antes mencionadas de tostación en lecho fluido como sistema de obtención de un producto apto para su ataque.

4. Las diferentes etapas de la producción de zinc La extracción del zinc puede efectuarse en las minas a cielo abierto o en yacimientos profundos. La elección del tipo de explotación depende del entorno y del capital invertido. Cuando se decide explotar una mina a cielo abierto, los mineros cavan huecos con la ayuda de taladros neumáticos manuales, en los que colocan cargas explosivas. Una vez extraídas, las rocas son transportadas hasta la fábrica de transformación, que generalmente se encuentra en la misma mina, para comenzar la fase de concentración.

Esquema de la cadena

4.1. Separación de concentrados de zinc En esta etapa, el mineral es triturado con el fin de obtener partículas muy finas que, según la naturaleza del mineral, van a ser sometidas a diversos tratamientos químicos. Se trata de extraer del mineral un máximo de elementos extraños e impurezas. Más tarde, los diferentes concentrados presentes en la roca son separados por un proceso de flotación como en el caso de la familia de los platinoides (platino y paladio). Esta técnica se basa en el hecho de que cuando están en suspensión, las partículas minerales recubiertas de ciertos productos químicos se aglutinan en forma de burbujas de aire que son insufladas por la parte de abajo de la célula de flotación, para subir luego a la superficie. Se forma entonces en la superficie, un depósito espumoso que será recuperado y enviado a través de varios filtros. A la salida de este proceso, se recogen diferentes concentrados de zinc.

4.2. Refinado Esta es sin duda la más importante etapa del proceso. Con el fin de obtener el metal bruto, la industria metalúrgica del zinc utiliza dos procedimientos: la hidrometalurgia y la pirometalurgia.

4.3. La Extracción hidrometalurgia)

por

vía

húmeda

(por

electrólisis

o

La hidrometalurgia consiste en la producción, purificación o la eliminación de metales o de componentes de metales a través de reacciones químicas. Este método es principalmente utilizado en el tratamiento de las rocas que tienen un alto contenido de hierro. Se desarrolla en cuatro fases que son respectivamente: el tueste, la lixiviación, la purificación y la electrólisis.

4.3.1. El Tueste El tueste transforma el sulfuro de zinc en óxido. El dióxido de azufre obtenido permitirá obtener ácido sulfúrico que, por una parte entrará en el proceso de fabricación de agentes fertilizantes, y por otra parte continuará su proceso hacia la etapa siguiente denominada lixiviación. ° El dióxido de azufre que se obtiene gracias a este proceso es transformado en ácido sulfúrico. ° El mineral de zinc, después de la tostación, es llamado calcina.

4.3.2.

Lixiviación

Durante la fase de lixiviación, la calcina es tratada mediante una solución diluida de ácido sulfúrico (180-190 g/l). Esta operación se realiza a una temperatura de proximadamente 60°C y dura entre una y tres horas. En esta fase, queda todavía un porcentaje que varía entre 10 y 25% de zinc insoluble que va a ser recuperado gracias a una operación complementaria.

4.3.3.

Purificación de la solución

Después de la lixiviación, algunos elementos externos están todavía presentes en la solución. Su eliminación se realizará con la ayuda de polvo de zinc. La cantidad necesaria de polvo de zinc depende del porcentaje de impurezas que contiene la solución. Esta purificación dura entre una y ocho horas. Al final del proceso, se recuperan las partículas de zinc por filtración.

4.3.4.

Electrolisis

Una vez purificada la solución, se vierte en depósitos de electrolisis (tanques de cemento revestidos de PVC), constituidos por ánodos de plomo y de cátodos de aluminio. Esta operación necesita entre 30 y 40°C y va a permitir al zinc depositarse en el cátodo de dónde se le despegará por pelaje (o stripping) cada 24, 48 o 72 horas, según el caso. ° La producción por celda que contiene hasta 86 cátodos de 1,6 m², puede alcanzar 3 t/día ° El zinc obtenido es muy puro (99,995 %). Contiene menos de 50 ppm de impurezas, siendo el plomo la principal. Finalmente el zinc obtenido es fundido y moldeado en lingotes, que es como será comercializado en el mercado industrial.

4.4. La Extracción por vía seca (conocida también como vía térmica o pirometalurgia) Se presentan, a continuación, los procesos pirometalúrgicos que conducen a la obtención del zinc metal. Se comienza por los procesos de reducción térmica y luego se presentarán los procedimientos que acaparan, en la actualidad, el mayor tonelaje de metal.

4.4.1. Procesos de reducción térmica. Aunque hay vestigios, que datan del siglo XIV, de producción de zinc en Asia, los procesos que suponían reducción y condensación eran totalmente empíricos. En 1917, se intentó explicar este proceso mediante las reacciones siguientes, de características reversibles: ZnOs COg  Zng CO2 gEc. 4.1 CsCO2g2COgEc. 4.2. Los primeros estudios termodinámicos se hicieron por C.G. Maier en el U.S. Bureau of Mines de EEUU. De los datos termodinámicos calculados se pudo deducir la temperatura a la que se podía producir la reducción continua del óxido de zinc y las proporciones del Zn vapor, CO y CO 2 en equilibrio a diferentes temperaturas de tratamiento.

De las reacciones anteriores se puede deducir que el CO 2 generado en la primera tiende a descomponerse en la segunda. Las condiciones de equilibrio de ambas reacciones se pueden calcular sabiendo que en dichas condiciones rG = 0 . Por otro lado: 

Para la reacción total, o de reducción directa, se tiene: ZnOsCs Zng COg Ec. 4.6 Cuya energía libre estándar asociada se calcula sumando la ecuación 4.3 y 4.4:   





Si ahora se tiene en cuenta la expresión de la isoterma de Van’t Hoff, se puede poner que para la reacción 4.6: Gº R

4.6

= 83380 - 67,52T 4,575T log P P Zn

Ec. 4.8 CO

En una retorta y suponiendo muy pequeña la presión de CO 2 a una atmósfera de presión total (mostrada en la figura 4.1 de la cual se deducen los bajos valores de la presión de CO2, para los dos equilibrios anteriores, que a las temperaturas representadas son inferiores a 4 kPa), se tiene entonces PZn=PCO=0,5 atm con lo que:  





r

4.6) 

83380 -67,52T 4,575T

log 0,5 0,5  Ec. 4.9

Con lo que a partir de esta expresión se pueden calcular la temperatura de equilibrio la cual resulta ser igual a 1187 K (915ºC). Se deduce, pues, que la reducción directa de la blenda no se puede llevar a cabo hasta alcanzar temperaturas superiores a los 915ºC ya que el proceso no es termodinámicamente posible hasta que se alcanzan dichas condiciones. Existen algunas otras vías de llegar a esta misma conclusión basándose en los equilibrios de las ecuaciones 4.1 y 4.2. En la reducción directa, de la estequiometría de la reacción se deduce que NZn NO, es decir, que el número de átomos de zinc es igual al número de átomos de oxígeno y, teniendo en cuenta las reacciones 4.1 y 4.2 los átomos de oxígeno son iguales a las moléculas de CO más dos veces las de CO2 por lo que: NZn NO NCO 2NCO2 Y, por tanto, las presiones serán:

Ec. 4.10

PZn PCO 2P CO2

Ec. 4.11

Siendo la presión total igual a: Ptotal PZn

PCO 2PCO2

Ec. 4.12

En la figura 4.1 se representa la variación de la PCO (kPa) para los equilibrios de las ecuaciones 4.1 y 4.2 en función de la temperatura. Según esta representación parece evidente que la reducción continua del oxido de zinc no tendrá lugar por debajo de los 1000ºC. A temperaturas superiores, debido a que la reacción 4.6 es más lenta que la 4.2, se alcanzará el estado de equilibrio con una relación CO 2/CO en el gas cerca de la que determine el equilibrio del óxido de zinc; la fuerza impulsora de la reacción será la diferencia entre la composición actual y la requerida para el equilibrio según la reacción 4.6 lo que viene representado por las distancias entre las dos curvas de la figura.

Ya que se ha considerado que la presión de CO2 es pequeña, sustituyendo en las expresiones anteriores los valores de K4.1y K4.2como funciones de la temperatura, tal como vienen expresados en la isoterma de Van't Hoff, se pueden calcular las distintas presiones de zinc, CO y CO2, y la presión total como funciones de T-1; su representación se incluye en la figura 4.2.a. Se puede comprobar, una vez más, que la presión total alcanza 1 atm a los 920ºC, aproximadamente. En esta figura la presión de vapor del zinc líquido puro está también representada en función de la temperatura. Se puede ver que a 920ºC ésta es mayor que la presión de zinc en la mezcla reaccionante de lo que se deduce que el zinc se forma como vapor no saturado. Del gráfico se deduce que a 1110ºC la presión del zinc alcanza la saturación y los valores que corresponden son PZn = 5 atm y Ptotal = 10 atm, por lo que a altas temperaturas y presiones sería posible obtener zinc, por reducción directa del ZnO, en forma líquida. A partir de la figura 4.2.b) se pueden explicar también las condiciones de reducción del zinc por vía térmica y se pueden ver los efectos de variar las presiones de Zn vapor y de CO. La intersección de las líneas a presiones de 0,5 atm para ambos gases se produce a 920ºC, aproximadamente. Del mismo gráfico se puede deducir cómo la reducción del zinc en presencia de cobre, caso de obtención directa de un latón (como se pudo hacer en tiempos de los romanos), se puede realizar fácilmente. Si el Zn se recoge como una aleación Cu-Zn, su actividad pasa a ser, por ejemplo, 0,1 y esta curva corta a la de PCO igual a 1 atm a 890ºC; como se puede ver, la temperatura de reducción ha disminuido considerablemente. La cinética de la reducción del ZnO con C puede explicarse a través de las siguientes etapas: 1. Reducción con CO en la superficie del ZnO. 2. Reacción de Boudouard en la superficie del carbón. 3. Difusión de gases entre las dos superficies. De éstas, la etapa que controla el proceso es la tercera. El método utilizado para facilitar este proceso es aumentar el área superficial y aproximar al máximo los reactivos sólidos ZnO y C. Se debe pues tener una mezcla muy íntima de ambos. La temperatura de equilibrio debe sobrepasarse para tener una velocidad de reducción aceptable (1000-1100ºC). La velocidad de reacción intrínseca es mayor entre el gas y el ZnO que entre el gas y el C por lo que un exceso de éste facilita la reducción del CO2 obteniéndose una mayor velocidad en el proceso. Además, así se aminora la reoxidación del zinc. Esta reoxidación del zinc con CO 2 por inversión de la reacción 4.1 es algo que puede suceder. Si no se toman las debidas precauciones, un 1% de CO2 en el gas oxidará un 2% de Zn y el óxido de zinc formado cubrirá las gotitas de zinc evitando su coalescencia y formando un polvo azul. Contra esto se puede luchar enfriando súbitamente, lo que no es posible en una retorta. El ciclo de la retorta está dibujado en la Línea a-a de la figura 4.2.b).

La reoxidación se produce cuando se cruza la línea de presión parcial de zinc de 0,5 atm. Como se ve la relación CO2/CO disminuye. Cuando la presión del Zn es igual a su presión de saturación, se condensa el metal. Esto sucede a 840ºC y a una presión parcial de zinc de 0,5 atm. Para conseguir el 99% de condensación, la presión parcial del zinc debe ser del orden de 0,01 atm, a una presión total de una atmósfera, lo que sucede a unos 600ºC. En la práctica, hay un sobreenfriamiento grande: 500ºC. Se verán más adelante las formas de evitar la reversión de la reacción de reoxidación. La reacción 4.6 es endotérmica consumiendo 238 kJ∙mol-1. A 1000ºC, siendo necesario calentar reactivos y productos, además de evaporar el Zn, el calor pasa a ser de 376 kJ∙mol-1 o, lo que es lo mismo, 5751 kJ por kg de zinc. Como se indicaba, este calor hay que suministrarlo a la retorta a través de la pared.

Figura 4.2. a) Presiones de equilibrio de Zn, CO y CO2 b) Relación CO2/CO para la reducción del ZnO(s) a Zn(l).

La velocidad de reducción total en la retorta se determina, sin embargo, por la relación de transferencia de calor de forma que cada elemento de carga alcance una temperatura tal que la velocidad de absorción de calor, debida a la reacción, se corresponda con la ganancia de calor por conducción térmica. Es difícil medir la temperatura de la carga en una retorta, o la temperatura y la composición del gas. En retortas horizontales, y por métodos indirectos, parece que anda entre 980 y 1000ºC. Como en una retorta hay carbón en exceso, la relación CO2/CO vendrá dictada por la reacción de gasificación 4.2 produciéndose una concentración de CO2 baja. El gas está compuesto, de forma aproximada, por proporciones iguales de Zn vapor y de CO gas con un 1% de CO2, aproximadamente y al enfriar, para recuperar el zinc, se deben tener precauciones especiales. El punto de rocío de esta mezcla es de 830ºC y el zinc comenzará a condensar tan pronto se alcance esta temperatura. El problema que se presenta es que la reacción 4.1 se invierte tan pronto como la temperatura desciende, produciéndose la oxidación del zinc y formándose polvo azul. Si no se enfría rápidamente, la cantidad que se produce de polvo azul puede ser importante. Como ya se ha indicado, el oxido, que cubre al zinc metálico, impide la coalescencia de gotas para formar zinc metal líquido. Sin embargo, si la temperatura desciende mucho, se formará zinc metálico sólido que también estará en forma de polvo. Por estas razones, la temperatura de los condensadores debe estar por encima de 419ºC pero con suficiente superficie para eliminar el calor de los vapores. Así, el zinc condensa en forma líquida sobre las paredes del condensador recolectándose con menos del 5% de óxido. El diseño del condensador deberá ser adecuado en cuanto a tamaño, forma, conductividad térmica, temperatura, etc. Así pues, el producir zinc térmicamente es más difícil que hacerlo con otros metales. Hasta que el condensador de plomo se desarrolló en Inglaterra (1937), el horno de cuba no funcionó y se seguía produciendo zinc en retortas. Al necesitarse temperaturas sobre los 900ºC como condicionante termodinámico para producir zinc, se precisaron hornos que alcanzasen este nivel de temperatura dentro de las retortas, y además por largos períodos de tiempo. El material de las retortas es otro condicionante del proceso, así como el de los condensadores.

4.4.2. Proceso de retortas horizontales. El proceso belga en retortas horizontales produjo el 90% del zinc total hasta el desarrollo, en 1917, del proceso electrolítico que supuso un verdadero impulso para la industria del zinc. En 1969 había 26 plantas operando del proceso con retorta horizontal que producían un 15% del zinc mundial. En 1974 solo quedaban 12, de las que hoy no trabaja prácticamente ninguna. El horno típico se representa en la figura 4.3 en la que se ven cuatro filas de retortas a cada lado del horno. Estos hornos quemaban carbón o gas y utilizaban regeneradores para precalentar el aire. Cada sección del horno tenía 96 retortas de arcilla, cuidadosamente

elaborada y cocida. Las retortas, de sección elíptica, medían 1700 270 210 mm3 con una capacidad de 0,07 m3. Cada retorta producía unos 35 kg de zinc diarios. El ciclo de un horno era de 24 horas al final de las cuales se descargaban desmontando previamente los condensadores. Se introducía nueva carga que consistía en blenda tostada y sínter molido a menos de 6 mm. La mezcla de reacción estaba formada por 100 partes de sínter, 30 de antracita y 2-3 de sal, que beneficiaba la condensación. La carga y descarga eran manuales y, por tanto, muy penosas. Esto hizo que en EEUU se intentase mecanizar estas instalaciones pero sin buenos resultados. El calentamiento del horno se hacía progresivo hasta alcanzar al final de la operación los 1370ºC. El metal condensado se retiraba, a intervalos regulares, en cantidades de 7 a 9 kg. El hierro y el plomo incrementaban en las sucesivas descargas concentrándose el cadmio en el primer metal retirado. Se exigían para este proceso las calidades siguientes: Prime (EEUU), con un 1,60% de plomo y un 0,08% de hierro; y G.O.B. (GB), con 1,35% de plomo y 0,04% de hierro. Sólo el primer metal obtenido cumplía estas especificaciones por lo que el resto del metal se sometía a afino. El metal se vertía en un horno de reverbero en el que la tempera era solo ligeramente superior a la de fusión del zinc. En estas condiciones, se producía la sedimentación del plomo y del hierro. El metal afinado tenía 1,1-1,2% de Pb y 0,02-0,025% de Fe, satisfaciendo bien las especificaciones. Para operar en estos hornos se precisaba de un grado alto de pericia y era muy conveniente que las cargas fuesen homogéneas conteniendo menos de 1% de azufre. Los americanos utilizaron esta técnica en Texas por la abundancia de gas natural. Los hornos eran simples y el ciclo de 48 horas con lo que se conseguía una vida más larga de las retortas aunque la productividad era inferior y mayor el consumo de combustible. Las desventajas del proceso de retortas horizontales eran: 1. Exceso de trabajo manual: 20-24 horas-hombre por Mg de zinc (dos a tres veces el necesario en un aplanta moderna). 2. Operación toxica y peligrosa. 3. Operación discontinua. 4. Alto consumo energético: Energía: 540 MJ; Antracita para la reducción: 540 kg; Carbón para calentamiento: 1800 kg (Proceso Overpelt: 1400 kg); Producción de vapor de baja: 2000 kg.

Figura 4.3. Horno belga de retortas horizontales para reducción del zinc.

4.4.3. Proceso de retortas verticales. A finales de los años 20, la compañía New Jersey Zinc, de Pennsylvania, en EEUU, hizo un esfuerzo notable para resolver los problemas inherentes al desarrollo de una retorta de operación continua con alta eficacia térmica. El problema estaba en encontrar el material de la retorta que suministrarse el calor necesario para la reacción 4.6 que requiere 5279 kJ por kg de Zn producido, cantidad muy superior a la necesaria para reducir plomo, estaño o cobre. Los vapores de zinc necesitan para llegar a 1100ºC un calor que se evalúa en 1172 kJ por kg de Zn. Además, hay que suministrar calor para calentar la carga y reducir otros óxidos metálicos presentes como los de plomo y cadmio. Por tanto, la cantidad total de calor necesaria, por kg de zinc, era del orden de 7227 kJ. Estas retortas verticales (figura 4.4.a) se usaron para la coquización del carbón pero, en este caso, el ladrillo de sílice era suficiente dadas las necesidades térmicas. Para la destilación del zinc fue preciso contar con un nuevo material, el carburo de silicio (carborundo), que tiene una conductividad térmica (15,9 W∙(m∙k∙h)-1 a 1300ºC) nueve veces

superior a la del ladrillo de sílice. Las retortas se realizan con ladrillos de 115 mm de grueso, 1850 mm de largo y 305 de anchos (figura 4.4.b). Estos ladrillos están diseñados para acoplarse y construir una retorta de 12 m de altura que puede producir diez toneladas de zinc al día. Calentadas por encima de los 1300ºC, pueden durar tres años en los que tratan 23000 Mg de carga.

Figura 4.4. a) Horno de retorta vertical New Jersey; y b) Sección transversal de la retorta.

Sobre la zona calentada hay otra zona de 3-4 m, llamada eliminador, que tiene por fin facilitar la reacción de reversión 4.1. Así, consumido el CO2, de los gases y producido el polvo azul sobre la carga descendente, se evita que dicho polvo llegue al condensador, o que se forme en él, con lo que se permite una mejor coalescencia de las gotas de metal que,

como se sabe, tienen tendencia a recubrirse de polvo dificultándose dicha coalescencia. El eliminador también ayuda a reducir el contenido de plomo de los vapores que dejan el horno. Las retortas se construyen en baterías de ocho. Se calientan con gas natural o gas de gasógeno. Se precisan 1,8  1010 J por tonelada de zinc, de los que el 30% los suministra el gas CO de tragante. El gas se quema en las cámaras de combustión, con aire caliente y en diferentes puntos, para conseguir una combustión uniforme; esto es muy importante para la vida de la retorta. La temperatura normal es de 1300ºC. Los gases de combustión pasan los recuperadores que calientan el aire a 550ºC. Algo que ha sido consustancial al desarrollo del proceso New Jersey ha sido la producción de briquetas las cuales deben ser de un tamaño adecuado para la mejor transmisión del calor. Tienen forma de panecillos, de 100 75 65 mm3 lo que les permite recibir la radiación de la pared y una transmisión de calor adecuada. Para fabricar las briquetas se prepara una mezcla de blenda sinterizada con carbón bituminoso de alto poder aglutinante, antracita y pequeñas proporciones de arcilla y lejía de sulfito. Se mezcla bien, se amasa y se conforma en prensas de rodillo. Las briquetas deben cocerse posteriormente en un horno de descenso. La temperatura del horno se mantiene por combustión de la materia volátil del carbón no necesitándose aporte energético exterior. Después de cocidas las briquetas, se cargan calientes (800ºC) en la retorta. En la figura 4.5 se presenta el diagrama completo de una planta de retortas verticales. La condensación del metal es problemática. Se sabe que para evitar la reacción inversa a la 8.1 es decir: Zn

 CO2 

ZnO  CO

Ec. 4.18

Se precisa enfriar los vapores tan rápido como sea posible. Para hacer esto, se hace pasar el vapor que deja el eliminador a una caja en la que se mantiene un baño de zinc fundido regulado constantemente a 500ºC por medio de tubos refrigerantes. Este baño de zinc se agita mediante una turbina de carborundo produciéndose una suspensión de gotitas de zinc en la cámara, que enfría instantáneamente los gases de la retorta con lo que el zinc condensa en forma metálica sobre las gotas evitando la posibilidad de reoxidación. Aproximadamente, el 96% del zinc que entra en el condensador condensa como metal y menos del 4% como polvo azul. El gas que deja el condensador se lava en venturis y se alimenta a la cámara de combustión de las retortas aportando el 30% de energía necesaria. El metal colado tiene: 0,1 - 0,2% de Pb: 0,03 - 0,06% de Cd; y 0.005 -0,015% de Fe. El futuro de las retortas verticales está casi agotado. A pesar del gran avance que supuso este proceso sobre el de retorta horizontal, las retortas verticales tienen sus propias desventajas. Aunque se consigue un proceso continuo y con ahorro energético, los costos de primera instalación son altos, así

como los costes de mantenimiento. El proceso está muy determinado por la existencia de carbón bituminoso que es el que da estructura a las briquetas. Además, los concentrados han de ser bajos en hierro, pues si no, se pueden formar placas de hierro en las retortas que interfieren la marcha de las briquetas. Las briquetas gastadas suponen un problema como residuo a almacenar. Así y todo, hasta no hace mucho tiempo, funcionaban algunas plantas en New Jersey, en Estados Unidos, y en Inglaterra; también funcionaron en Francia, Alemania y Japón pero hoy estas plantas están paradas y no se van a construir nuevas instalaciones en el futuro empleando esta tecnología.

4.4.4. Proceso Electrotérmico En 1926, a la vez que la New Jersey, la compañía Saint Joseph estaba tratando de desarrollar un proceso alternativo que utilizara un método del calentamiento directo de la carga basándose en los estudios hechos a principios de siglo en Suecia para intentar reducir el zinc en hornos eléctricos de arco. Estos primeros intentos fracasaron por el hecho de que no condensaban bien el vapor y no escorificaban bien las cargas. Saint Joseph desarrolló un método en el que el calor se generaba sobre la carga por efecto Joule y el proceso era continuo. Hubo que resolver un cierto número de problemas tal como se expone a continuación. En principio, se cargó igual cantidad de sinter que de coque y no se intentó condensar el zinc vapor, sino que éste se obtenía en una cámara que rodeaba al horno en la que el zinc se oxidaba recogiéndose como óxido tipo pigmento. Así, se puso de manifiesto la posibilidad de la reducción y el problema se centraba entonces en desarrollar un método de condensación. Se intentó condensar haciendo pasar los vapores metálicos a través de una piscina de zinc fundido. Este fue un método exitoso y fue la primera vez que se intentó enfriar el vapor con metal líquido. Se conseguían, así, condensar cantidades importantes de zinc metal sin la práctica producción de polvo azul. Se fijó un condensador de este tipo a un horno productor de óxido obteniéndose un buen resultado: cinco toneladas diarias de zinc. Hoy día, con una sola unidad de condensación, se pueden producir casi cien toneladas de metal. En la figura 4.6.a se puede ver un esquema de la instalación Saint Joseph. El horno se construye con una serie de sectores de refractario soportados individualmente. Los vapores producidos en el horno se recogen en un anillo central del que se aspiran a través del condensador a una temperatura entre 800 y 850ºC. Este anillo y el condensador se construyen con ladrillos de carburo de silicio. La corriente eléctrica atraviesa el horno por medio de ocho pares de electrodos que entran dentro del mismo: cuatro en la parte alta y cuatro en la baja. La carga de coque y blenda sinterizada se calienta por el CO gas hasta 750ºC; entonces, se alimenta en el horno a través de un distribuidor rotatorio y se descarga por el fondo a una cierta velocidad por medio de una mesa giratoria asistida por brazos mecánicos refrigerados. La operación se gobierna automáticamente por un indicador de nivel del horno.

La potencia del horno Saint Joseph es 10000 kW. La tensión entre electrodos es de 200-250 V. El consumo del horno es de 3050 kWh por Mg de zinc necesitándose, además, 0,6 toneladas de coque.

Figura 4.6. a) Planta de producción de zinc por procedimiento St. Joseph. b) Horno de zinc electrotérmico tipo St. Joseph.

El condensador está formado por dos tubos verticales conectados a una zona inclinada con respecto a la horizontal, con 2 m2 de área interna. Éste está conectado a un pozo enfriador del metal en el que el zinc se enfría mediante serpentines para que la temperatura del metal esté entre 480 y 500ºC. Aproximadamente el 93% del zinc que entra en el condensador se condensa como tal. El gas, con el zinc residual, se lava para separar aquel que tiene una composición aproximada de 79% de CO, 3% de CO2 y 18% de N2. Este gas pasa por una bomba de vacío que succiona con un efecto de 33,3-40 kPa (250-300 mm Hg). Este vacío es suficiente para hacer pasar el gas a través del condensador. Se producen 1,42 moles de CO por mol de Zn vaporizado. El gas tiene un poder calorífico de 93 105 J∙m-3 el cual se utiliza, en un 60%, para calentar la carga y el resto, en la producción de vapor. Los residuos del horno precisan ser tratados para extraer de ellos el Zn (aumentando la recuperación hasta el 95-96%). Un separador magnético elimina los materiales ferrosos. El 90% del coque se recupera en mesas neumáticas y, finalmente, un proceso en medios densos recupera un concentrado de zinc; tanto este concentrado como el coque se reciclan. A pesar de los esfuerzos y desarrollos aplicados al proceso Saint Joseph su extensión ha sido limitada. Unidades similares se han desarrollado en la antigua Unión Soviética, Japón y Alemania. Las unidades mayores producían 100 Mg por día, cantidad considerablemente inferior a la producida por el horno de cuba ISF. Por otro lado, el coste de inversión por unidad de zinc es bastante alto. Además, se precisan concentrados de bajo contenido en hierro. Por estas razones, se explica que el proceso no se extendiera y que prácticamente las plantas St. Joseph no operen en la actualidad si se exceptúa la planta de Monaca, en Pennsylvania (EEUU), que trabaja en condiciones óptimas al haber mejorado la tostación-sinterización y teniendo la posibilidad de usar polvos de acería.

4.4.5. Horno de Cuba de zinc. Proceso ISF. Ha habido muchos intentos de producir zinc a través del horno de cuba; sin embargo, si ya presenta problemas condensar un gas de retorta con un 45% de Zn, un 50% de CO y un 1% CO2, es fácil imaginar el problema que supondría condensar el zinc de un gas que solo tiene un 6-7% de Zn y un 12% de CO2. El proceso desarrollado por la Imperial Smelting Corporation, en Inglaterra, ha sido, en vía pirometalúrgica, el más destacado y, en la actualidad, el único capaz de competir con la obtención electrolítica de zinc. Hubo un primer intento en 1939, con un horno que trataba sínter y coque, con soplado superior e inferior, retirándose los vapores por el centro de la cuba. Efectivamente, mediante un enfriamiento rápido en tubos refrigerados se obtenía zinc en polvo pero la inversión de la reacción era suficiente para recubrir de óxido este polvo y hacer impracticable la fusión del polvo de zinc ya que este no coalescía. Fue preciso, pues,

desarrollar otro método de condensación. Se propuso condensar el zinc vapor sobre gotas de plomo fundido a una temperatura ligeramente superior a la del punto de fusión del zinc. Una lluvia de gotas de plomo lava los gases de zinc que condensan en forma líquida disolviéndose en el plomo. Después de enfriar este metal, se producía la segregación del zinc que, así, se separaba al alcanzar la saturación. El plomo era recirculado al condensador. A continuación, se resumen las solubilidades, a distintas temperaturas, de plomo y zinc, el uno en el otro y viceversa: T (ºC) 417,8 450 500 550 600 650 700 775 790

Pb en Zn Zn en Pb 0,7 2 1,4 3,2 2,3 3 4 4 5,9 6 9 8 15 12 32 26 Total Total

Tabla 4.1. Solubilidad del zinc y plomo a distintas temperaturas.

Después de la Segunda Guerra Mundial se profundizó en estos primeros estudios con resultados alentadores. Se hicieron estudios termodinámicos que indicaban que era posible reducir el contenido de Zn de las escorias a niveles bajos sin producir hierro metal, hecho este último que hubiera acarreado consumos innecesarios de coque. Esto se confirmó en la práctica y también que el óxido de plomo se reducía en la parte alta del horno por el CO presente. Ya que esta reacción es exotérmica, no se precisaba coque adicional y la capacidad del horno para producir zinc no se veía afectada. El plomo fundido desciende por la carga y actúa como colector del cobre y de los metales preciosos. Así, se llegaba a un resultado magnífico: el horno podía usarse para obtener, simultáneamente, plomo y zinc a partir de menas mixtas. Esto se comprobó pronto, pero se precisó de un cierto tiempo para fijar los parámetros del proceso y para hacer que éste trabajase sin problemas. Uno de estos problemas, y además serio, fue el hecho de que altas cantidades de zinc se depositaban en la parte alta del horno y en los conductos hasta el condensador. El gas salía de la parte alta del horno en condiciones en las que la reacción de reducción indirecta estaba en equilibrio por lo que, tan pronto como la temperatura bajaba, se producía la deposición del óxido de zinc. Esto llevaba a que el horno dejase de trabajar por atasco. Se desarrolló una solución simple sacada de la química-física del sistema. Un gas típico de horno, en condiciones de equilibrio, puede reaccionar adiabáticamente con carbón pero el contenido en CO2, disminuye, la temperatura baja y el gas es más proclive a

producir óxido de zinc. Si, por otra parte, el gas reacciona con oxígeno, el aumento de temperatura hace posible que el gas pueda reducir al óxido de zinc, a pesar de incrementar su contenido en CO2, desapareciendo también el peligro de reversión de las reacciones. Así pues, se propuso adicionar aire en la parte alta del horno para quemar parcialmente el gas y evitar la deposición de óxido de zinc. El principio resultó eficaz, se simplificó el diseño del horno y, aunque el aire de soplado superior producía algo de óxido en la parte alta del horno, su aparición quedaba reducida a la entrada del condensador de donde podía ser retirado. Se precisó modificar la calidad del sínter y el tipo de máquina para poder tratar menas con plomo. Esto se consiguió por la idea Port Pire de sinterización con soplado inferior, probada ya con éxito para sintetizar la galena. Todo el desarrollo se concretó, en 1960, en una instalación en Gales (Gran Bretaña) que producía, con 17,1 m2 de sección, 30000 Mg de zinc y 15000 Mg de plomo al año. Se mejoró el diseño inicial, se introdujo aire caliente a 750ºC, se utilizó un control automático más extendido y se pudo aumentar la producción. Otro horno entró en producción en Australia poco después. En 1962 arrancó un horno en Zambia y otro en la Sociedad Peñarroya, en Francia. En 1965 se instaló un nuevo horno en Duisburg (Alemania), en el 66 otro en Rumania y en Japón, en el 68 en Polonia, en el 69 en Japón nuevamente, en 1972 y 1973 en Italia y Yugoslavia, respectivamente, y en el 78 y 80 en China y en Polonia. En la figura 8.7 se representa un esquema general del horno de cuba ISF.

Figura 4.7. Horno de cuba de zinc ISF

5. Recuperación del zinc a partir de chatarras. La recuperación de metales a partir de chatarras está aumentando cada vez más por razones medioambientales, de ahorro de materias primas y de ahorro energético. El reciclado del zinc supone un ahorro del 70% en energía. La obtención de zinc de los polvos volados de acería tiene en su contra un mayor consumo energético que la producción directa. La escasez de minerales en Europa incrementa el interés del reciclado. En 1992, se ha reciclado el 24% del consumo (6,5 106 t).

El zinc reciclable procede del automóvil (5 kg de galvanizado y unas 100 de piezas de inyección). También se recicla zinc de las escorias y residuos metálicos de galvanizado. Se refunden, además, tubos bajantes, chapas y canaletas de zinc, así como piezas de electrodomésticos. En Europa, en donde se consume el 37% del zinc, se recolecta el 43% de la chatarra mientras que en Asia, donde se consume el 30%, sólo se recolecta el 22%; en América, estas cifras son, respectivamente, del 28 y 30%. La mayor proporción de zinc secundario corresponde al reciclado del latón (32%). Los residuos de galvanización suponen un 23% (éstos se usan mayoritariamente en la producción de óxido de zinc). La chatarra de piezas de fundición supone el 16% y las de chapa el 10%. El zinc de los polvos de acería supone el 8%. Los principales usuarios de la chatarra de zinc son las industrias del latón, las fundiciones primarias de zinc y la industria de compuestos del metal. Del consumo anual del zinc, la mitad se utiliza en el galvanizado y en la protección del acero. Está claro que de esta chatarra se recupera el zinc con dificultad. En el reciclado por fusión de la chatarra de acero, se generan cantidades crecientes de óxido de zinc procedente de la vaporización del metal contenido en los galvanizados los cuales son difíciles de reprocesar. En cuanto a las piezas de moldeo automático es difícil de planificar su recuperación a pesar de ser grande el consumo de zinc por este concepto. Los latones se recuperan desde hace tiempo por los valores intrínsecos del cobre y del zinc. La recuperación del óxido de los neumáticos está iniciándose y puede extenderse en un futuro inmediato. El reciclado del zinc es complicado lo que hace difícil una industria de chatarras para la obtención de metal. Solamente se reprocesa el 5% de la chatarra de zinc para zinc metal o sus aleaciones.

6. Compuestos de zinc. Existen varios compuestos de zinc de uso extendido entre los que se pueden citar el sulfuro, el sulfato, el cloruro y el óxido. De ellos, el más importante es el óxido de zinc cuyo consumo supone entre el 5 y el 10% de la producción de zinc de un país desarrollado. El sulfuro de zinc, que es blanco, se usa en materiales de recubrimiento altos en contenido de pigmento. También en cargas para imprimaciones y en masas plásticas. En pinturas precisa muy poca cantidad de ligante, dispersándose bien, por lo que a veces se mezcla con TiO2 pues, además, tiene propiedades fungicidas y alguicidas. Se producen unas 200000 t de sulfuro de zinc (litophone). De los compuestos de zinc, el óxido supone más del 80% del consumo y por ello, a continuación, se hace una mención especial de sus usos y aplicaciones. Al óxido de zinc se le denominaba blanco de zinc cuando su uso estaba restringido a

las cargas de pinturas. Su conocimiento viene de antiguo al producirse de forma espontánea en los humos de reducción del cobre. Se usaba al principio para fabricar latón ("oro blanco") a partir de los humos recogidos. La producción del óxido de zinc se desarrolló a mediados del siglo XIX por combustión del vapor de metal. El óxido producido reemplazó al óxido de plomo por la toxicidad de éste. El procedimiento americano de reducción del óxido mineral y de su reoxidación en el mismo horno, a la salida, también se desarrolló a mediados del XIX. En la segunda mitad de ese siglo se desarrolló el uso del óxido para la goma, pues reduce el tiempo de vulcanización. El óxido de zinc es un polvo blanco que se vuelve amarillo si se calienta a 300ºC. El producto son cristales, más o menos redondos, con tamaños de entre 0,5 y 5 µm. Tiene una densidad de 5,66 g/cm3 y un índice de refracción de 2, fundiendo a 1975ºC. Del óxido producido, el 2% se obtiene por vía química, el 15% por vía directa y el resto por vía indirecta. La vía directa consiste en calentar materiales, con zinc oxidado y residuos, mezclados con carbón, en un horno rotativo. Los gases y vapores producidos se reoxidan produciendo el óxido que se recoge en un filtro de mangas. La vía indirecta consiste en volatilizar el zinc de las chatarras y residuos, quemando los vapores y obteniendo, así, el óxido de zinc. Este proceso se denomina proceso francés. Para conseguir la calidad adecuada, se regula la turbulencia y el exceso de aire de combustión. La pureza depende, fundamentalmente, de la pureza del vapor de zinc. Los hornos usados pueden ser de mufla, con dos cámaras y rotatorios. También se pueden utilizar columnas de destilación para separar las impurezas y quemar el vapor purificado a la salida. El proceso húmedo produce carbonato básico, el cual se precipita a partir de disoluciones de cloruro o de sulfato purificadas. Por calcinación de la sal se obtiene el óxido que es de una elevada área superficial. El producto final tiene unas especificaciones dependientes de la vía de producción según se muestra en la tabla 6.1. El óxido de zinc se usa en la industria de la goma en la que actúa como catalizador de la vulcanización.

Para este uso se consume el 50% del óxido producido. El óxido también mejora la durabilidad de la goma y su conductividad térmica. El contenido en la goma varía entre el 2 y el 6%. También se utiliza en pinturas, en recubrimientos, en cosmética y farmacia, en la industria del vidrio, en la de cerámica y en la de esmaltes. Se usa para producir diversos compuestos químicos, como catalizador (metanol) y para fabricar varistores. El consumo mundial de óxido supera las 500000 toneladas.

7. Polvo de zinc. El polvo de zinc se obtiene por dos vías. Una, es la volatilización a 900ºC y el enfriamiento posterior del metal, que se recoge en los filtros en forma de partículas esferoidales fluyentes. El otro, consiste en la dispersión fina (atomización) en minúsculas gotitas de metal fundido (spray) que se solidifican al aire recubierto de una fina capa de óxido de zinc transparente. La reducción de menas oxidadas, cuando no se propicia una condensación, produce vapor de zinc que al enfriar se convierte en polvo de zinc oxidado superficialmente. Si a la salida del vapor se favorece la oxidación en una cámara apropiada, se puede obtener óxido de zinc, blanco de zinc, tal como se producía en el horno eléctrico St. Joseph. La regulación de la oxidación, es decir, la temperatura de contacto vapor-aire y la velocidad de enfriamiento, produce o bien óxido blanco o bien polvo azul. Las propiedades del polvo de zinc son: más del 99% de zinc, del cual un 95% debe ser zinc metálico, un tamaño de partícula en torno a 3 µm y una cantidad de residuo insoluble en ácido del 0,1%.

8. El zinc, el medio ambiente y la toxicidad. El zinc metal, y la mayoría de sus compuestos, tienen muy baja toxicidad en comparación con los otros metales pesados. La intoxicación por zinc, aunque rara, se puede producir por alimentos que lo contienen a partir de los recipientes que los guardan o por inhalación de vapores del metal o del óxido. El zinc es necesario para la vida humana y animal, para el crecimiento, la piel, procesos metabólicos, etc. Está ligado a las proteínas y se elimina con relativa facilidad. El cuerpo humano contiene 33 ppm. La ingestión tóxica se puede producir al tomar alimentos o bebidas acidas con alto contenido de metal, lo que puede producir trastornos gástricos. La ingestión de cloruro de zinc también puede ser peligrosa para el estómago, así como para los pulmones lo es la inhalación de vapores de esta sal. Los vapores de zinc o de su óxido se consideran responsables de la denominada fiebre del humo metálico, que aparece dentro de las 6 horas de exposición y desaparece después de dos días; es común a otros metales, el cuerpo se acostumbra y suele reaparecer después del descanso del trabajador por desintoxicación y nueva inhalación. No parece que existan degeneraciones cancerosas en trabajadores en contacto con el zinc por su exposición a los vapores metálicos. El cloruro de zinc es letal por ingestión de 35 g siendo el sulfato mucho menos dañino. La ingestión de agua de tuberías galvanizadas puede producir pequeña toxicidad si la contaminación del agua alcanza 40 ppm.

9. Conclusiones y discusiones. El proceso del zinc es un proceso en que el mineral se obtiene mediante concentración de menas del mineral, con sus respectivos procesos como la flotación, la tostación, la sinterización, etc. Al principio se usa la calamina como materia prima principal para la obtención del metal llegando al proceso en donde se realiza la tostación de los minerales de zinc, el cual utiliza la blenda como materia fundamental, la que se oxida y se convierte paulatinamente en óxido. La producción del metal se obtiene mediante procesos como son la reducción térmica, por retortas horizontales y verticales, el proceso electrotérmico y a la utilización del horno de cuba para el proceso ISF. Otro punto importante tratado en este informe fue la recuperación de zinc a través de chatarras y los aspectos ambientales tanto en la naturaleza como en la salud llegando a la conclusión de que el zinc es metal prácticamente inofensivo y no debe crear mayor problema el trabajar con él.

10. BIBLIOGRAFIA. Antonio Ballester, José Sancho, Luis Felipe Verdeja: “Metalurgia Extractiva Volumen II. Procesos de Obtención.”. Capitulo 6 Páginas 320 a 374 Editorial Síntesis S.A. Madrid, España.

11. ANEXOS

19.1. Diagrama de flujo de la planta de Cominco en Trail (British Columbia, Canadá)

19.2. Diagrama de flujo de la etapa de lixiviación a presión de la planta e Cominco en Trail (British Columbia, Canadá)

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF