Memoria Cálculo Estructural cercha plataforma

February 14, 2018 | Author: Elmer Bustamante Valdivia | Category: Truss, Steel, Structural Analysis, Wind Speed, Peru
Share Embed Donate


Short Description

Descripción: memoria de cálculo estructural...

Description

Memoria de Cálculo Estructural

MEMORIA DE CÁLCULO ESTRUCTURAL

“TECHADO PLATAFORMA DEPORTIVA - CAJAMARCA"

Cajamarca,

-0-

Junio 2012

Memoria de Cálculo Estructural

“MEMORIA DE CÁLCULO ESTRUCTURAL TECHO PLATAFORMA DEPORTIVA” 1.00 ANTECEDENTES Con el desarrollo del presente proyecto se busca beneficiar a la comunidad, mediante el mejoramiento de la Plataforma Deportiva techándolo con cercha y cobertura liviana. El proyecto obedece a los requerimientos y necesidades de la población en lo que se refiere a las instalaciones Deportivas. Con la finalidad de evaluar el desempeño de la estructura proyectada, acorde con las normas vigentes de diseño Sismorresistente, norma de estructuras de Acero, se realizaron los modelos estructurales correspondientes, teniendo como resultado un comportamiento adecuado según lo estipulado en las Normas antes mencionadas. 2.00 RESUMEN El presente documento describe el análisis del techo de Plataforma Deportiva. El modelo consta de la modelación de la cercha para la cobertura de Plataforma Deportiva.  Cercha Plataforma: Consta de una cercha de Armazón de acero estructural (Tubo cuadrado). Esta cercha ha sido proyectada en base a un sistema de pórticos de concreto armado.

3.00 CARÁCTERÍSTICAS DE LAS EDIFICACIONES 3.1

Cercha de Plataforma:

3.1.1 3.1.2

Cercha proyectada en base a un sistema de Pórticos de Concreto Armado. Número de pisos proyectados: El proyecto contempla la construcción de la cercha teniendo como base los pórticos de concreto armado.

-1-

Memoria de Cálculo Estructural

4.00 PARAMETROS UTILIZADOS PARA EL ANÁLISIS 4.1

Características de la Estructura: Tipo de Estructura: Sistema Aporticado. Número de Pisos: 2 Pisos.  Acero(A615-G60) fy = 4200kg/cm2 γ = 7.85 t/m3  Concreto Armado f’c = 210 kg/cm2E = 15,000 √f’c = 217370.651Kg/cm2. γ = 2.4 t/m3

γ = 1.8 t/m3

 Mampostería (Solida) f’m = 65 kg/cm2 E = 500f’m 4.2

Especificaciones de análisis y diseño: CARGAS PERMANENTES (G). Carga Muerta: Cobertura Eternit (Superforte) en tijerales

0.0100 Tn/m2

CARGAS VARIABLES (Q). Cargas Vivas: Cobertura Sobre techo tijerales 0.015 Tn/m2 Granizo en Techo de Tijerales (Cubiertas - CG) 0.010 Tn/m2 Para calcular la carga de granizo asumimos una altura de acumulación de granizo de 10 mm. G = Peso especifico del granizo * altura de acumulación = 1000(Kg/m3)*0.010m SNOW = 10 Kg/m2. Carga Viva para el montaje, Se considerara a dos personas con un peso promedio de 70 Kg, se tiene: L=

nùmeropersonas * peso 2 * 70( Kg ) = luz 27.38m

LIVE = 5.11 Kg/m

-2-

Memoria de Cálculo Estructural

Techo en tijerales (Cubiertas): Velocidad de diseño del viento: La velocidad de diseño del viento hasta 10 m de altura será la velocidad máxima adecuada a la zona de ubicación de la edificación (Ver Anexo 2) pero no menos de 75 Km/h. La velocidad de diseño del viento en cada altura de la edificación se obtendrá de la siguiente expresión, según anexo 2.

Vh V H

: velocidad de diseño en la altura h en Km/h : velocidad de diseño hasta 10 m de altura en Km/h : altura sobre el terreno en metros Para Cajamarca la velocidad de diseño hasta 10m de altura V = 40km/h, por lo que consideraremos 75 Km/h, la altura. Pero

Vh

: 71.41 Km/h

Inclinación de techo 27º Carga de Viento: Velocidad básica del viento: Barlovento (Coeficiente eólico de presión) Dirección del viento Sotavento (Coeficiente eólico de Succión) en las caras opuestas a la dirección del viento

Variación de temperatura:

71.41 Km/hora Cp = +0.43 Cs = -0.60 20º C

CARGAS ACCIDENTALES (A). Carga de Sismo : Análisis Modal. 4.3

Características de los materiales:     

Módulo de Elasticidad del Acero Estructural:  Ec = 2100000 Kg / cm2. Peso Unitario Acero Estructural :  = 7850.0 Kg / m3. Esfuerzo de fluencia Acero Estructural : fy = 2530.00 Kg / cm2. Resistencia a la fractura : f´u = 4080.0 Kg / cm2. Relación de Poisson Acero Estructural : µ = 0.30

-3-

Memoria de Cálculo Estructural

4.4

Parámetros Empleados para el Análisis Dinámico: DETERMINACIÓN DEL PERIODO FUNDAMENTAL DE LA ESTRUCTURA

DATOS GENERALES DE DISEÑO Departamento Zona Sísmica Factor de Zona Edificación

Cajamarca 3 Z=

PLAT AFORMA

Tipo de Edificación Comunes Categoría de la Edificación C Factor de Uso U= Pórticos de Sistema Estructural Concreto Factor de Ductilidad Configuración Estructural Coeficiente de Reducción Tipo de Suelo Descripción del Suelo Factor de Suelo

0.40

R= Regular R=

MÉTODO DINÁMICO ANÁLISIS POR SUPERPOSICIÓN ESPECTRAL Aceleración Espectral

1.00

S a = Z.U.C.S.g .R -1 Determinación del Factor de Amplificación Sismica y la Aceleración Espectral Factor de Amplificación Sísmica

8.00

C = 2.5 ( T p / T ) < 2.5

8.00

Incremento del Periodo Fundamental Inicio del Periodo Fundamental

S3 Suelos Flexibles o con estratos de S= 1.4 Tp = 0.90

Periodo

Facto de

Fundamental de la Estructura T ( seg )

Amplificación Sísmica C

g =9.81m/s2Aceleración de la gravedad.

-4-

0.20 seg 0.10 seg

Espectral Aceleración Sa / g

Memoria de Cálculo Estructural

5.00 DEFINIR COMBINACIONES DE CARGA DE DISEÑO. Las combinaciones de diseño se realizaran empleando los coeficientes de amplificación dados en la norma peruana.  U = 1.4 CM + 1.7 CV  U = 1.25 (CM + CV ) ± Cs  U = 0.9 CM ± Cs

Combinación de carga de diseño para las estructuras de Acero.           

COMBA1 = 1.4 CM COMBA2 = 1.2 CM + 1.6CV + 0.5R COMBA3 = 1.2 CM + 1.6CV + 0.8Vientox COMBA4= 1.2 CM + 1.3Vientox + 0.5CV + 0.5R COMBA5 = 1.2 CM + 1Csx + 0.5CV COMBA6 = 1.2 CM – 1Csx + 0.5CV COMBA7 = 0.9 CM + 1.3Vientox COMBA8 = 0.9 CM - 1.3Vientox COMBA9 = 1.2 CM + 1Csy + 0.5CV COMBA10 = 1.2 CM – 1Csy + 0.5CV ENVOLAx = COMBA1+ COMBA2+ COMBA3+ COMBA4+ COMBA5+ COMBA6+ COMBA7+ COMBA8  ENVOLAy = COMBA1+ COMBA2+ COMBA3+ COMBA4+ COMBA7+ COMBA8+ COMBA9+ COMBA10

R = Carga de lluvia o de granizo (Se utilizo carga de granizo). No será necesario considerar acciones de sismo y viento simultáneamente. Las cargas de granizo se consideraran como carga vivas.

-5-

Memoria de Cálculo Estructural

6.00 ANALISIS ESTRUCTURAL DE LA ESTRUCTURA RESISTENTE

La edificación se idealizó como un ensamblaje de elementos de acero estructural para formar una cercha resistente a las cargas accidentales y cargas vivas. Cabe indicar que el presente análisis es del tipo tridimensional por combinación modal Espectral, considerándose el 100 % del espectro de respuesta de pseudoaceleración en cada dirección por separado según la norma vigente E030. El análisis estructural de la estructura resistente, se la realizó íntegramente en el programa ETABS NON LINEAL versión 9.7.0 Las formas de modo y frecuencias, factores de participación modal y porcentajes de participación de masas son evaluados por el programa. Se consideró una distribución espacial de masas y rigidez adecuada para el comportamiento dinámico de la estructura analizada. Para la determinación de los desplazamientos máximos se trabajo con el espectro de diseño de la norma E030, multiplicando los desplazamientos máximos por el factor 0.75R, obteniéndose estos valores conforme a la norma vigente. 7.00 CÁLCULO DE LOS DESPLAZAMIENTOS SEGÚN NORMA DE DISEÑO SISMO RESISTENTE E - 030. A. CERCHA DE PLATAFORMA: Cercha Consta un armazón de Acero Estructural para la cubierta de la Plataforma Deportiva. Para el cálculo de los desplazamientos y derivas, a los resultados del análisis los multiplicamos por el 75% del coeficiente de reducción sísmica “R” y comprobamos si están sobre el valor máximo que estipula la norma. El desplazamiento máximo en cualquier punto evaluado para estructuras de de acero debe ser mayor al 1.0 % de la altura al nivel de referencia al que se evalúa, por lo tanto la deriva máxima será = 0.01 Procedemos a evaluar los desplazamientos Sólo nos interesan los resultados del análisis dinámico. Máximos desplazamientos de puntos para estructuras de acero 1.0%. MAXIMO DESPLAZAMIENTOS MAYOR DESPLAZAMIENTO CERCHA multiplicado por 0.75R

UX

UY

UZ

RX

RY

RZ

0.0007 0.0046 0.001 0.0038 0.00034 0.00192 0.0042 0.0276 0.0060 0.0230 0.0020 0.0115 OK OK OK OK OK OK

-6-

Memoria de Cálculo Estructural

BIBLIOGRAFÍA

1. Normas Peruanas de Estructuras. Normas Técnicas para Suelos y Cimentaciones E050 , Normas Técnicas para Concreto Armado E060 , Norma Técnicas de Albañilería E070 , Norma Técnica de Edificación E030 Diseño Sismo resistente , Norma de Cargas E020 . Lima Perú. 2. Capítulo Peruano del American Concrete Institute ACI 318 – 2003: Normas de Construcciones en Concreto Estructural I , Edición 2000 , Lima - Perú. 3. Dr. Jorge Alva Hurtado, Dr. Hugo Scaletti Farina, Ingº. Julio Rivera Feijóo, Ingº. Roberto Morales M., Ingº. Luis Zegarra C., Ingº. Eduardo Gamio A., Ingº. Cesar Fuentes Ortiz, Ingº. Carlos Casabonne R.: Cimentaciones de Concreto Armado en Edificaciones, ACI, Segunda Edición 1993. 4. Dr. Luis Miguel Bozzo Rotondo, Dr. Horia Alejandro Barbat Barbat: Diseño Sismorresistente de Estructuras, Instituto de la Construcción y Gerencia, Edición 2001 - 2002. 5. Ing. Angel San Bartolomé, Análisis de Edificios, Pontificia Universidad Católica del Perú, 1998 Lima - Perú 6. Ing. Roberto Morales Morales : Diseño en Concreto Armado, Instituto de la Construcción y Gerencia, Edición 2001 - 2002. 7. Ponencias II Congreso Nacional de Estructuras y Construcción, ACI Perú, Diciembre del 2000. 8. Ponencias XIII Congreso Nacional de Ingeniería Civil, XIII CONEIC 2001 Puno, Noviembre del 2001 9. Juan Ortega García: Concreto Armado I y II, Cuarta Edición, Setiembre 1993. Lima - Perú. 10. Wilson E. – Habibullac: The ETABS 9.7.0.

-7-

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF