Mekanika Teknik Soal Dan ian Metode Clapeyron

April 6, 2018 | Author: Muh Desmaone | Category: N/A
Share Embed Donate


Short Description

Download Mekanika Teknik Soal Dan ian Metode Clapeyron...

Description

Tugas Mekanika Teknik By: Muh_Desmawan_EWD

Gambarkan moment dan lintangnya,.!! Penyelesaian: AKIBAT MUATAN LUAR: Dukungan C πœ‘π‘1 + πœ‘π‘2

Dukungan D =

9 π‘ž1 . 𝑙2 3 𝑃. 𝑙1 2 . + 384 24 𝐸𝐼 16 𝐸𝐼

πœ‘π·1 + πœ‘π·2

9 5. 43 10. 62 . + 384 24 𝐸𝐼 16 𝐸𝐼 7,5 360 = + 24 𝐸𝐼 16 𝐸𝐼 22,81 = 𝐸𝐼

=

7 π‘ž1 . 𝑙2 3 π‘ž2 . 𝑙3 3 . + 384 24 𝐸𝐼 24 𝐸𝐼

7 5. 43 3. 43 . + 384 24 𝐸𝐼 16 𝐸𝐼 5,83 48 = + 24 𝐸𝐼 16 𝐸𝐼 2,24 = 𝐸𝐼

=

=

Jepitan B πœ‘π΅

π‘ž2 . 𝑙3 3 3. 43 2 = = = 24 𝐸𝐼 24𝐸𝐼 𝐸𝐼

AKIBAT MOMENT PERALIHAN: Dukungan C ∝𝐢1 +∝𝐢2

Dukungan D =

𝑀𝑐 𝑙1 𝑀𝑐 𝑙2 𝑀𝐷 𝑙2 + + 3 (𝐸𝐼) 3 (𝐸𝐼) 6 (𝐸𝐼)

=

𝑀𝑐 𝑙2 𝑀𝐷 𝑙2 𝑀𝐷 𝑙3 𝑀𝐡 𝑙3 + + + 6 (𝐸𝐼) 3 (𝐸𝐼) 3 (𝐸𝐼) 6 (𝐸𝐼)

=

𝑀𝑐 6 𝑀𝑐 4 𝑀𝐷 4 + + 3 (𝐸𝐼) 3 (𝐸𝐼) 6 (𝐸𝐼)

=

𝑀𝑐 4 𝑀𝐷 4 𝑀𝐷 4 𝑀𝐡 4 + + + 6 (𝐸𝐼) 3 (𝐸𝐼) 3 (𝐸𝐼) 6 (𝐸𝐼)

=

3,3 𝑀𝑐 0,67 𝑀𝐷 + 3 (𝐸𝐼) 6 (𝐸𝐼)

=

0,67 𝑀𝑐 2,67 𝑀𝐷 0,67 𝑀𝐡 + + 𝐸𝐼 𝐸𝐼 𝐸𝐼

=

𝑀𝐡 𝑙3 𝑀𝐷 𝑙3 + 3 (𝐸𝐼) 6 (𝐸𝐼)

=

𝑀𝐡 4 𝑀𝐷 4 + 3 (𝐸𝐼) 6 (𝐸𝐼)

=

1,3 𝑀𝐡 0,67𝑀𝐷 + 𝐸𝐼 𝐸𝐼

Jepitan B ∝𝐡

∝𝐷1 +∝𝐷2

Tugas Mekanika Teknik By: Muh_Desmawan_EWD Didapat persamaan belahan sbb: πœ‘π‘1 + πœ‘π‘2

= ∝𝐢1 +∝𝐢2

↔

πœ‘π·1 + πœ‘π·2

= ∝𝐷1 +∝𝐷2

↔

= ∝𝐡

↔

πœ‘π΅

3,3 𝑀𝑐 0,67 𝑀𝐷 22,81 = + 3 (𝐸𝐼) 6 (𝐸𝐼) 𝐸𝐼 2,24 0,67 𝑀𝑐 2,67 𝑀𝐷 0,67 𝑀𝐡 = + + 𝐸𝐼 𝐸𝐼 𝐸𝐼 𝐸𝐼 2 1,3 𝑀𝐡 0,67𝑀𝐷 = + 𝐸𝐼 𝐸𝐼 𝐸𝐼

Sehingga didapat: 22,81

= 3,3𝑀𝑐 + 0,67𝑀𝐷

2,24

= 0,67𝑀𝑐 + 2,67𝑀𝐷 + 0,67𝑀𝐡

2

= 1,3𝑀𝐡 + 0,67𝑀𝐷

Dengan cara eliminasi didapat: 𝑴𝑩 = 𝟐, πŸ‘πŸ’ 𝑴π‘ͺ = πŸ•, πŸπŸ‘ 𝑴𝑫 = βˆ’πŸ, πŸ“πŸ”

Bidang Moment Freebody AC RAV = RCV1 = 5 kN MMAX = RAV. Β½ l = 5.3m =15kNm (ditengah-tengah batang) Free body CD π‘ž1 . 2.3 5.2.3 30 𝑅𝐢𝑉2 = = = = 7,5 π‘˜π‘ 4 4 4 π‘ž1 . 2.1 5.2.1 10 𝑅𝐷𝑉2 = = = = 2,5 π‘˜π‘ 4 4 4 𝑅𝐢𝑉2 7,5 π‘₯= = = 1,5 (π‘‘π‘Žπ‘Ÿπ‘– π‘‘π‘–π‘‘π‘–π‘˜ 𝐢) π‘ž 5 𝑅𝐢𝑉2 2 7,52 𝑀𝑀𝐴𝑋 = = = 5,625 π‘˜π‘π‘š 2π‘ž 10 Free body DB π‘ž2 . 4.2 3.4.2 24 𝑅𝐷𝑉1 = 𝑅𝐡𝑉 = = = = 6 π‘˜π‘ 4 4 4 𝑀𝑀𝐴𝑋 = 𝑅𝐡𝑉 . 2 = 6.2 = 12 π‘˜π‘π‘š (π‘‘π‘–π‘‘π‘’π‘›π‘”π‘Ž β„Žβˆ’π‘‘π‘’π‘›π‘”π‘Ž β„Ž π‘π‘Žπ‘‘π‘Žπ‘›π‘” Reaksi gaya lintang pada tiap-tiap sendi: 𝑅𝐷𝐴 𝑅𝐷𝐢

𝑅𝐷𝐷

𝑅𝐷𝐡

𝑀𝐢 7,23 = = 3,795 π‘˜π‘ 𝑙1 6 𝑀𝐢 𝑀𝐢 𝑀𝐷 = 𝑅𝐢𝑉1 + 𝑅𝐢𝑉2 + + + 𝑙1 𝑙2 𝑙2 7,23 7,23 βˆ’1,56 = 5 + 7,5 + + βˆ’ = 15,9025 π‘˜π‘ 6 4 4 𝑀𝑐 𝑀𝐷 𝑀𝐷 𝑀𝐡 = 𝑅𝐷𝑉1 + 𝑅𝐷𝑉2 βˆ’ + + βˆ’ 𝑙2 𝑙2 𝑙3 𝑙3 7,23 (βˆ’1,56) (βˆ’1,56) 2,34 = 2,5 + 6 βˆ’ + + βˆ’ = 5,3275 4 4 4 4 𝑀𝐷 𝑀𝐡 (βˆ’1,56) 2,34 = 𝑅𝐡 βˆ’ + =6βˆ’ + = 6,975 𝑙3 𝑙3 4 4 = 𝑅𝐴𝑉 βˆ’

Tugas Mekanika Teknik By: Muh_Desmawan_EWD Gaya Lintang (D) 𝐷𝐴 π‘˜π‘–π‘Ÿπ‘– 𝐷𝐴 π‘˜π‘Žπ‘›π‘Žπ‘› 𝐷𝐴𝑐 π‘˜π‘–π‘Ÿπ‘– 𝐷𝐴𝐢 π‘˜π‘Žπ‘›π‘Žπ‘› 𝐷𝐢 π‘˜π‘–π‘Ÿπ‘– 𝐷𝐢 π‘˜π‘Žπ‘›π‘Žπ‘› 𝐷𝐢𝐷 π‘˜π‘–π‘Ÿπ‘– 𝐷𝐢𝐷 π‘˜π‘Žπ‘›π‘Žπ‘› 𝐷𝐷 π‘˜π‘–π‘Ÿπ‘– 𝐷𝐷 π‘˜π‘Žπ‘›π‘Žπ‘› 𝐷𝐡 π‘˜π‘–π‘Ÿπ‘– 𝐷𝐡 π‘˜π‘Žπ‘›π‘Žπ‘›

=0 = 𝑅𝐷𝐴 = 3,795 = 𝐷𝐴 π‘˜π‘Žπ‘›π‘Žπ‘› = 3,795 = 𝐷𝐴𝐢 π‘˜π‘–π‘Ÿπ‘– βˆ’ 𝑃 = 3,795 βˆ’ 10 = βˆ’6,205 = 𝐷𝐴𝐢 π‘˜π‘Žπ‘›π‘Žπ‘› = βˆ’6,205 = 𝐷𝐢 π‘˜π‘–π‘Ÿπ‘– + 𝑅𝐷𝐢 = βˆ’6,205 + 15,9025 = 9,6975 π‘˜π‘

= 𝐷𝐢 π‘˜π‘Žπ‘›π‘Žπ‘› βˆ’ π‘ž1 . 2 = 9,6975 βˆ’ 5.2 = βˆ’0,3025 π‘˜π‘ = 𝐷𝐢𝐷 π‘˜π‘–π‘Ÿπ‘– = βˆ’0,3025 = 𝐷𝐢𝐷 π‘˜π‘Žπ‘›π‘Žπ‘› = βˆ’0,3025 = 𝐷𝐷 π‘˜π‘–π‘Ÿπ‘– + 𝑅𝐷𝐷 = βˆ’0,3025 + 5,3275 = 5,025 π‘˜π‘ = 𝐷𝐷 π‘˜π‘Žπ‘›π‘Žπ‘› βˆ’ π‘ž2 . 4 = 5,025 βˆ’ 3.4 = βˆ’6,975 = 𝐷𝐡 π‘˜π‘–π‘Ÿπ‘– + 𝑅𝐷𝐡 = βˆ’6,975 + 6,975 = 0

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF