Mechatronic Overview
Short Description
Slide Presentation...
Description
MECHATRONISCHE SYSTEME FÜR KRAFTFAHRZEUGE (Automotive Mechatronics) Prof. Dr.-Ing. R. Isermann Institut für Automatisierungstechnik Technische Universität Darmstadt
R. I. TU Darmstadt
2005
AUTOMOTIVE MECHATRONICS • INTRODUCTION • DESIGN PROCEDURE • HISTORICAL DEVELOPMENT • MECHATRONIC SUSPENSIONS • MECHATRONIC BRAKE SYSTEMS • MECHATRONIC STEERING SYSTEMS • ACTIVE FRONT STEERING CONTROL • CONCLUSIONS R. I. TU Darmstadt
2005
micro electronics power electronics sensors actuators
electronics
information technology
system theory modeling automation technology software computational intelligence
MECHATRONICS
mechanics
mechanical elements machines precision mechanics
Mechatronics: Synergetic integration of different disciplines R. I. TU Darmstadt
man/machine interface reference variables
monitored variables manipulated variables
information processing information flow
measured variables
energy flow
actuators
mechanics & energy converter
auxiliary energy supply
energy supply
sensors
energy consumer
mechanical hydraulic thermal electrical R. I. TU DarmstadtMechanical process and information processing develop towards mechatronic systems
o Definition • Many technical processes and products show an increasing integration of MECHAnics with elecTRONICS and information processing • The integration is between the components (hardware) and the information-driven functions (software) • Their development involves finding – an optimal balance between the basic mechanical structure, sensor and actuator implementation – automatic digital information processing – overall control
• This synergy results in innovative solutions IFAC T.C. Mechatronic Systems (2000)
R. I. TU Darmstadt
Mechatronic Systems
Mechatronic machine components - semi-active hydraulic dampers - automatic gears - magnetic bearings
R. I. TU Darmstadt
Mechatronic motion generators - integrated electrical servo drives - integrated hydraulic servo drives - integrated pneumatic servo drives - robots (multi-axis, mobile)
Mechatronic power producing machines
Mechatronic power consuming machines
- brushless DC motors - integrated AC drives - mechatronic combustion engines
- integrated multi-axis machine tools - integrated hydraulic pumps
Examples for mechatronic systems
Mechatronic automobiles
Mechatronic trains
- antilock brake (ABS) - electrohydraulic brake (EHB) - active suspension - active front steering
- tilting trains - active boogie - magnetic levitated trains (MAGLEV)
o Functions and integration of mechatronic systems • • • •
Distribution of functions Operating properties New functions Integration forms
R. I. TU Darmstadt
o Functions and integration of mechatronic systems • • • •
Distribution of functions Operating properties New functions Integration forms
R. I. TU Darmstadt
• New functions – Control of nonmeasurable variables • • • •
Tire slip Slip angle and ground speed of vehicles Internal temperatures or tensions Damping parameters
– Advanced supervision and fault diagnosis – Fault-tolerant systems with redundancy – Teleservice functions • monitoring, maintenance, repair
– Programmable functions • flexible adaptation through software change • changes during design, commissioning, after-sales • shorter time-to-market R. I. TU Darmstadt
• Integration forms - consideration of integrated overall system - generation of synergetic effects → classical mechanical-electronic system: microcomputer
actuators
process
sensors
“addition of available components” integration of components
R. I. TU Darmstadt
Spatial integration (integration of the components) integration of components microcomputer
actuators
process
sensors
“Integration of the components at different places” R. I. TU Darmstadt
actuator and microcomputer smart actuator process and microcomputer sensor and microcomputer smart sensor Hardware-Integration
integration by information processing knowledge base mathematical process models information gaining - identification - state observer
performance criteria
softwareintegration
design methods - control - supervision - optimization
online information processing control
supervision diagnosis
adaptation optimization
integration of components microcomputer R. I. TU Darmstadt
actuators
process
Mechatronic overall integration
sensors
hardwareintegration
Runge, ATZ 2000 R. I. Mechatronic TU Darmstadt
control module for a 6-gear-automatic transmission (ZF 6HP26)
History of ABS Systems ABS 2 kByte 200
ABS 5.0 6,2 kg
ABSR 5.7
128kByte
ABS 8 ABS 5.3
3
nd!
6
st e ige
T en d en z
kg
100
3,8 kg 2,6 kg 24kByte
16kByte
8kByte
1989
48kByte
2,5 kg
1992
1995
1998
Rob. Bosch GmbH R. I. TU Darmstadt
Anti-lock braking systems (ABS)
1,8 kg
2001
Quelle:ATZ/MTZ Extra „Der Neue Golf“ Oktober2003
Volkswagen R. I. TU Darmstadt
Direct automatic shift gear box with double clutch (2003)
Volkswagen R. I. TU Darmstadt
Q uelle:A TZ/M TZ E xtra „D er N eue G olf“ O ktober2003
Electro-hydraulic control system for DSG
AUTOMOTIVE MECHATRONIC SYSTEMS • INTRODUCTION • DESIGN PROCEDURE • HISTORICAL DEVELOPMENT • MECHATRONIC SUSPENSIONS • MECHATRONIC BRAKE SYSTEMS • MECHATRONIC STEERING SYSTEMS • ACTIVE FRONT STEERING CONTROL • CONCLUSIONS R. I. TU Darmstadt
2005
DESIGN PROCEDURE FOR MECHATRONIC SYSTEMS o Mechatronic engineering o Modelling and simulation o Software tools
R. I. TU Darmstadt
system definition requirements engineering (specification)
traditional engineering
integrated (concurrent) engineering
R. I. TU Darmstadt
mechanical & electrical engineering
electronic engineering
information & control engineering
operating engineering
process/ component design
electronic hardware design
inform. proccessing & software design
human-machine interface design
integration of components (hardware)
integration by information processing (software)
Design procedure for mechatronic systems (iterational steps not indicated)
integration of components (hardware)
integrated (concurrent) engineering
integration by information processing (software)
integrated mechan.electronic system generation of synergetic effects reliability & safety engineering manufacturing engineering
mechatronic system
R. I. TU Darmstadt
Design procedure for mechatronic systems (iterational steps not indicated)
o Modelling and Simulation for design and integration: – Software-in-the-loop simulation (SiL) • Process and controller (ECU) simulated
(not real-time)
– Rapid-control-prototyping (RCP) • Real process and high-performance prototyping computer (real-time)
– Hardware-in-the-loop simulation (HiL) • Simulated process and real ECU
R. I. TU Darmstadt
(real-time)
process-model
T2,stat
p2 θFW neng
T2
control algorithm
upwm
p2,Setpoint
H iL
simulation tool real-time
SiL
p2
C P
neng
p2,stat
R
θFW
ECU-model
high performance real-time computer (full pass, by pass)
real-time
integrated mechatronic system
real process
R. Isermann TU Darmstadt
real ECU + real actuator
Simulations for mechatronic development
Diesel engines
Truck engine R. I. TU Darmstadt
Passenger car engine
Hardware-in-the-Loop Simulator für truck engine control
IAT/DC 19921999
R. I. TU Darmstadt
HiL-Simulator, dSpace DSP & Power PC
R. I. TU Darmstadt
HiL-simulation of a single injection pump valve cut off
1 gear shifts 2 drive train oscillations 3 soot limitation 4 speed limitation 5 turbo charger inertness
R. I. TU Darmstadt
HiL-simulation of a full power acceleration of a 40 tons truck
AUTOMOTIVE MECHATRONIC SYSTEMS • INTRODUCTION • DESIGN PROCEDURE • HISTORICAL DEVELOPMENT • MECHATRONIC SUSPENSIONS • MECHATRONIC BRAKE SYSTEMS • MECHATRONIC STEERING SYSTEMS • ACTIVE FRONT STEERING CONTROL • CONCLUSIONS R. I. TU Darmstadt
2005
Wheel speed sensor
Anti-lock brake system (1979)
Acceleration sensor
Anti-skid control (1993) Electronic stability progr.
Yaw rate sensor
(1995)
Brake assist (1996)
Radar sensor
Adaptive Cruise Control (1999)
Active Body Control
Susp.deflect.
(2000)
Brake-by-Wire (EHB)(2001) Pedal position EHB-pressure EMB-force sensor
Active front steering (2003 ) Brake-by wire (20??) Steer-by-Wire (20??)
Collision Avoidance Figures: Continental Teves AG & Co. oHG R. I. TU Darmstadt
(20??)
Vehicle dynamics control systems
Sensors and actuators for gasoline engines Sensors
Actuators
Engine speed (1967), camshaft phase
Electronic fuel injection (1967, D-Jetronic)
Engine temperature (1967)
Knock sensor (1969)
Microelectronic controlled ignition and injection (1979, Motronic)
Airmass flap (1973)
Exhaust gas valve
Oxygen (lambda) (1976)
Tank vent valve
Manifold pressure manifold temperature (1967)
Airmass hot-film (1981) Ambient pressure Throttle- and pedal-position (1997, E-Gas) Tank pressure
ca. 15-25 measurements Combustion pressure (20??) ca. 6-8 manipulation variables ca. 80-120 look-up-tables Ion current (20??)
Secundary air valve (1994) Variable geometry manifold Electronic throttle (1997) Variable camshaft timing Variable valve lift(2001)
Abbildung: Adam Opel AG
R. I. TU Darmstadt
Sensors and actuators for gasoline engines
Mechatronic automobiles Mechatronic combustion engines
Mechatronic drive trains
- electrical throttle - mechatronic fuel injection - mechatronic valve trains - variable geometry turbocharger (VGT) - emission control - evaporative emission control - electrical pumps & fans
- automatic hydrodynamic transmission - automatic mechanic shift transm. - continuously variable transmission (CVT) - automatic traction control (ATC) - automatic speed and distance control (ACC)
R. I. TU Darmstadt
Mechatronic suspensions - semi-active shock-absorbers - active hydraulic suspension (ABC) - active pneumatic suspension - active anti-roll bars (dynamic drive control (DDC) or rollcontrol)
Mechatronic brakes - hydraulic antilock braking (ABS) - electronic stability program (ESP) - electro-hydraulic brake (EHB) - electromechanical brake (EMB) - electrical parking brake
Mechatronic steering - parameterizable powerassisted steering - electromechanical powerassisted steering (EPS) - active front steering (AFS)
40 - 75 Electronic Control Units 30 - 150 electrical motors 2- 4 km cables (harness): 40 - 80 kg 4 bussystems 2500 signals
Source: VDA 2001
R. I. TU Darmstadt
Control units and data exchange
Bordnetz des VW Phaeton
Quelle: ATZ Sonderheft VW Phaeton R. I. TU Darmstadt
VW Phaeton: Elektrisches Bordnetz
AUTOMOTIVE MECHATRONIC SYSTEMS • INTRODUCTION • DESIGN PROCEDURE • HISTORICAL DEVELOPMENT • MECHATRONIC SUSPENSIONS • MECHATRONIC BRAKE SYSTEMS • MECHATRONIC STEERING SYSTEMS • ACTIVE FRONT STEERING CONTROL • CONCLUSIONS R. I. TU Darmstadt
2005
VDA 2001 R. I. TU Darmstadt
Stabilisation through single wheel braking with ESP
VDA 2001 R. I. TU Darmstadt
Electro-Hydraulic Brake System
EHB1 Hydraulic Unit Components Suction connection Sealings for pressure sensor modul Contact spring Pressure sensor modul
Electric motor
ECU Valve
Accumulator with multilayer diaphragm
Magnet group
Pump element Medium separator Rob. Bosch GmbH R. I. TU Darmstadt
Electrohydraulic brake
Sealing for ECU
Chassis Systems Electro Hydraulic Brake System EHB1
Rob. Bosch GmbH R. I. TU Darmstadt
Continental Teves (2003)
R. I. TU Darmstadt
Electro-mechanical brake (prototype)
AUTOMOTIVE MECHATRONIC SYSTEMS • INTRODUCTION • DESIGN PROCEDURE • HISTORICAL DEVELOPMENT • MECHATRONIC SUSPENSIONS • MECHATRONIC BRAKE SYSTEMS • MECHATRONIC STEERING SYSTEMS • ACTIVE FRONT STEERING CONTROL • CONCLUSIONS R. I. TU Darmstadt
2005
Hydraulic Active Power Front Electrical Electrical Power Steering Assisted Steering PowerSteer-bySteering (HPS) (AFS) Wire (HPS + EPS) (EPS) (larger(SbW) vehicles) hydraulic pump
electrical steering torque motor for haptic feedback
Hydraulic Electrical Power Active Electrical Front Power Steering Assisted Steering Power Steering Steering (HPS) (HPS + EPS) (AFS) (EPS)
electrical actuator hydraulic hydraulic electrical electrical electrical hydraulic hydraulic additional actuator actuator generates actuator actuator actuatorsteering actuator valveangles in steering column R. I. TU Darmstadt
Mechatronic steering systems
Servo pinion Torsion rod Torque sensor Steer pinion
Servomotor ECU
VW R. I. TU Darmstadt
Q uelle:ATZ/M TZ Extra „Der Neue Golf“ Oktober2003
Electrical Power Steering (EPS)
Superposition of a steering angle
BMW (2003) R. I. TU Darmstadt
Active front steering
Development of driver assistance systems
R. I. TU Darmstadt
Automotive surrounding sensors
1. Close range: ultra sonic, radar 2. Medium range: lidar, radar, camera 3. Remote area: radar, camera
R. I. TU Darmstadt
Gemeinschaftsforschung mit der Industrie Arbeitskreise begleiten Forschungsvorhaben: 2-3 Jahre Finanzierung: 50% Industrie – 50% BMBF oder BMWi Auftragsumfang: 65.000 € pro Jahr und Vorhaben Verbrennungsmotoren Forschungsvereinigung Verbrennungskraftmaschinen FVV Dieselmotoren-Regelung (1992-1995) Dieselmotoren-Steuerung (1995-1997) Nebenaggregate-Management (1995-2000) Fehlerdiagnose an Dieselmotoren (1999-2002) Fehlerdiagnose an Ottomotoren (1999-2002)
Mechatronische Systeme Deutsche Forschungsgesellschaft für die Anwendung der Mikroelektronik DFAM Intelligente dezentrale elektromechanische Komponenten (1996-1999) Einfach anwendbare Diagnoseverfahren für mechatronische Komponenten (2001-2003)
DFAM
Mechatronische Pumpen Fachgemeinschaft Pumpen VDMA
Teleservice
Störungsfrüherkennung an oszillierenden Verdrängerpumpen (2002-2004)
Forschungszentrum Karlsruhe Projektträger des BMBF Verbundprojekt OKTEL Modellbasierte Telediagnose elektrischer Antriebe und Textilmaschinen R. I. TU Darmstadt
FG Regelungstechnik u. Prozessautomatisierung
Forschungskooperationen mit Firmen Forschungverträge: 1-3 Jahre, Finanzierung: 100% Industrie Auftragsumsatz: ca. € 700.000 pro Jahr
Verbrennungsmotoren
Kraftfahrzeuge Brake-by-Wire (seit 1995) Regelung und Rekonstruktion der Bremskraft einer EMB Intelligentes Bremspedal Regelung der Horizontaldynamik mit BbW-Aktuatoren (ABS/ESP) Aktive Fahrwerke (seit 2001) Zustandserkennung für aktive Fahrwerke Personenkraftwagen (seit 1990) On-line Simulationsmodelle Automatische Abstands- und Geschwindigkeitsregelung automatisches Parkassistenzsystem
Dieselmotoren (seit 1992) Modellbildung Echtzeit-Simulation Regelung Ottomotoren (seit 1996) BrennraumdruckRegelung AbgasrückführungsRegelung Ottomotoren (seit 2001) Optimierung der Verbrennung beim Direkteinspritzer VerbrennungsaussetzerErkennung (1996-2001) Druckanalyse im Abgasstrang Ionenstrommessung
Medizintechnik Dialysesysteme (seit 1998) Modellbildung Optimale Regelung Patientenadaption
R. I. TU Darmstadt
Energie-/Produktionstechnik W1 W2
Heizungssysteme (seit 1986) Modellbildung, Simulation Adaptive Regelung Fuzzy-Regelung Zementproduktion (1992-1997) Modellbildung, Simulation Strukturvariable Regelung von Mahlanlagen
FG Regelungstechnik u. Prozessautomatisierung
PRORETA
Elektronische Fahrerassistenz für ein unfallvermeidendes Fahrzeug
Regelung Aktorik Notlenken
Notbremsen
Steer-By-Wire
Sensorik Brake-By-Wire Radar In Kooperation mit R. I. TU Darmstadt
Lidar
CONCLUSIONS • Mechanical, hydraulic and pneumatic components are integrated with microelectronics • Software determines functions • Mechatronic components improve functionality, safety, economy and comfort • Modelling and simulation tools allow simultaneous engineering and fewer prototypes • Same mechatronic development for combustion engines, transmissions
→ Mechatronic components change the design of automobiles → Mechatronics: emerging area of innovative engineering R. I. TU Darmstadt
AUTOREG 2006 -Steuerung und Regelung von Fahrzeugen und MotorenWiesloch, 7. und 8. März 2006
FVT
Veranstalter: VDI/VDE-GMA und VDI-FVT Ausschuss “Steuerung und Regelung von Kraftfahrzeugen
GMA Steuerung und Regelung von Fahrzeugen und Motoren - AUTOREG 2004 Aufruf zur Einreichung von Beiträgen
und Verbrennungsmotoren-GMA 7.62”
AUTOREG 2006 (3.Tagung) – 2 Plenarvorträge – 64 Einzelvorträge in 3 parallelen Sitzungen – 15 Posterbeiträge
GMA
FVT
R. I. TU Darmstadt
www.vdi.de/gma/autoreg2006
END
80 Folien: 65 min effektiv benötigt.... Seoul ICCAS: 0.8 min/Folie.
R. I. TU Darmstadt
CONCLUSIONS • • • • • • • • •
Mechanical, hydraulic and pneumatic components are integrated with microelectronics Integrated components comprise hardware and software Hardware is partially simplified, software determines functions Mechatronic components improve functionality, safety, economy and comfort Mechatronic design allows parallel development of hardware , electronics and software Modelling and simulation tools allow simultaneous engineering and fewer prototypes Same mechatronic development for combustion engines, transmissions Next steps: surrounding sensors, collision avoidance, drive-by-wire Open issues: steer-by-wire (fault-tolerance? costs? advantages?) → Mechatronic components change the design of automobiles → Mechatronics: emerging area of innovative engineering
R. I. TU Darmstadt
CONCLUSIONS • • •
Mechanical, hydraulic and pneumatic components are integrated with microelectronics Integrated components comprise hardware and software Hardware is partially simplified, software determines functions
R. I. TU Darmstadt
CONCLUSIONS • • • • • •
Mechanical, hydraulic and pneumatic components are integrated with microelectronics Integrated components comprise hardware and software Hardware is partially simplified, software determines functions Mechatronic components improve functionality, safety, economy and comfort Mechatronic design allows parallel development of hardware , electronics and software Modelling and simulation tools allow simultaneous engineering and fewer prototypes
R. I. TU Darmstadt
CONCLUSIONS • • • • • •
• • •
Mechanical, hydraulic and pneumatic components are integrated with microelectronics Integrated components comprise hardware and software Hardware is partially simplified, software determines functions Mechatronic components improve functionality, safety, economy and comfort Mechatronic design allows parallel development of hardware , electronics and software Modelling and simulation tools allow simultaneous engineering and fewer prototypes Same mechatronic development for combustion engines, transmissions Next steps: surrounding sensors, collision avoidance, drive-by-wire Open issues: steer-by-wire (fault-tolerance? costs? advantages?)
R. I. TU Darmstadt
CONCLUSIONS • • • • • • • • •
Mechanical, hydraulic and pneumatic components are integrated with microelectronics Integrated components comprise hardware and software Hardware is partially simplified, software determines functions Mechatronic components improve functionality, safety, economy and comfort Mechatronic design allows parallel development of hardware , electronics and software Modelling and simulation tools allow simultaneous engineering and fewer prototypes Same mechatronic development for combustion engines, transmissions Next steps: surrounding sensors, collision avoidance, drive-by-wire Open issues: steer-by-wire (fault-tolerance? costs? advantages?) → Mechatronic components change the design of automobiles → Mechatronics: emerging area of innovative engineering
R. I. TU Darmstadt
OUTLOOK - Intelligent mechatronic systems adaptation, learning, decision making sensors, actuators, devices (optics, office, medicine)
R. I. TU Darmstadt
OUTLOOK - Intelligent mechatronic systems adaptation, learning, decision making sensors, actuators, devices (optics, office, medicine) - Fault- tolerant mechatronic systems highly reliable and safe systems (vehicles, engines, drive systems, production machinery) Medical devices (operation robots, implants) Aero-space systems
R. I. TU Darmstadt
OUTLOOK - Intelligent mechatronic systems adaptation, learning, decision making sensors, actuators, devices (optics,office, medicine) - Fault- tolerant mechatronic systems highly reliable and safe systems (vehicles, engines, drive systems, production machinery) Medical devices (operation robots, implants) Aero-space systems - x-by-wire mobile systems brake-by wire, steer-by wire, drive-by wire autopilot-driver assistance, auto-navigation mobile robots (agriculture, production, home) R. I. TU Darmstadt
(S.Niilola,Tekes)
R. I. TU Darmstadt
Six-legged walking forest machine (Finland)
View more...
Comments