Mechanics of Materials Solutions Chapter12 Probs1 8

June 14, 2019 | Author: ArishChoy | Category: Stress (Mechanics), Trigonometric Functions, Copyright, Materials Science, Solid Mechanics
Share Embed Donate


Short Description

Mechanics of Materials Solutions Chapter12 Probs1 8...

Description

The stresses shown in the figure act at a point in a stressed  body. Using the equilibrium equation approach, determine the normal and shear stresses at this point on the inclined plane shown. 12.1

Fig. P12.1 Solution Σ Fn = σ  n dA − (215 σ  n

189.10 1021 21 MPa MPa = = 189.

Σ Ft = τ  nt dA + ( 215 τ  nt 

MPa) co cos 25 25°(dA cos 25 25° ) − (70 MPa) sin 25 25° (dA sin 25 25° ) = 0

= −55.5382

189. 189.1 1 MPa (T)

Ans.

MPa) sin 25 25°(dA cos 25 25° ) − (70 MPa) cos 25 25° (dA sin 25 25° ) = 0

MP MPa =

− 55.5

MPa

Ans.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that  permitted by Sections 107 or 108 of the 1976 United States Copyright Copyright Act without the permission of the copyright copyright owner is unlawful. unlawful.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

The stresses shown in the figure act at a point in a stressed  body. Using the equilibrium equation approach, determine the normal and shear stresses at this point on the inclined plane shown. 12.2

Fig. P12.2 Solution

000 Σ Fn = σ  n dA + (3, 00 σ  n

,061.902 022 2 = 1,061.9

psi psi = 1,062 psi psi (T)

Σ Ft = τ  nt dA + (3, 00 000 τ  nt 

psi) co cos 70 70°(dA cos 70 70° ) − (1, 60 600 psi) si sin 70 70° (dA sin 70 70° ) = 0

,478.4115 = −1,478

Ans.

psi) si sin 70 70°(dA cos 70 70°) + (1, 60 600 psi) co cos 70 70° (dA sin 70 70° ) = 0

psi =

,478 − 1,478

psi

Ans.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

The stresses shown in the figure act at a point in a stressed  body. Using the equilibrium equation approach, determine the normal and shear stresses at this point on the inclined plane shown. 12.3

Fig. P12.3 Solution Σ Fn = σ  n dA − (190 σ  n

= −20.7197

MP MPa = 20.7 MP MPa (C (C)

Σ Ft = τ  nt dA − (190 τ  nt 

=

MP MPa) co cos 40 40° (dA cos 40 40° ) + (320 MP MPa) sin 40 40° (dA sin 40 40° ) = 0 Ans.

MP MPa) sin 40 40°(dA cos 40 40°) − (320 MP MPa) co cos 40 40° (dA sin 40 40° ) = 0

251.1260 MPa = 251 MPa

Ans.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

The stresses shown in the figure act at a point in a stressed  body. Using the equilibrium equation approach, determine the normal and shear stresses at this point on the inclined plane shown. 12.4

Fig. P12.4 Solution Σ Fn = σ  n dA + ( 21.0 σ  n

15.296 964 4 = −15.2

ksi ksi = 15.3 15.30 0 ksi ksi (C)

Σ Ft = τ  nt dA − ( 21.0 τ  nt 

= 3.9937

ks ksi) co cos 55 55°(dA cos 55 55° ) + (12.5 ksi) sin 55 55° (dA sin 55 55° ) = 0 Ans.

ks ksi) sin 55 55°(dA cos 55 55°) + (12.5 ksi) co cos 55 55° (dA sin 55 55° ) = 0

ks ksi = 3.99 ks ksi

Ans.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

The stresses shown in the figure act at a point in a stressed  body. Using the equilibrium equation approach, determine the normal and shear stresses at this point on the inclined plane shown. 12.5

Fig. P12.5 Solution Σ Fn = σ  n dA − (270 −(125 σ  n

= 310.7 0.7532

MPa) sin 30 30°(dA cos 30°) − (125 MPa) co cos 30 30° (dA sin 30 30° ) = 0 MPa = 311 MPa (T)

Σ Ft = τ  nt dA + ( 270 −(125 τ  nt 

= −54.4134

MPa) co cos 30 30° (dA cos 30 30° )

Ans.

MPa) si sin 30 30°(dA cos 30 30°)

MPa) co cos 30 30° (dA cos 30 30° ) + (125 MPa) sin 30 30° (dA sin 30 30° ) = 0 MPa =

− 54.4

MPa

Ans.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

The stresses shown in the figure act at a point in a stressed  body. Using the equilibrium equation approach, determine the normal and shear stresses at this point on the inclined plane shown. 12.6

Fig. P12.6 Solution

300 Σ Fn = σ  n dA − (2, 30 + ( 400 σ  n

.7089 = 984.70

psi) sin 55 55°(dA cos 55°) + (400 psi) cos 55°(dA sin 55 55° ) = 0 ps psi = 985 985 ps psi (T)

300 Σ Ft = τ  nt dA + ( 2, 30 + ( 400 τ  nt 

= −520.9768

psi) co cos 55 55°(dA cos 55 55° ) − (900 psi) si sin 55 55° (dA sin 55 55° )

Ans.

psi) si sin 55 55°(dA cos 55 55°) − (900 psi) co cos 55 55° (dA sin 55 55° )

ps psi) co cos 55°(dA cos 55° ) − (400 ps psi) sin 55 55° (dA sin 55 55° ) = 0

psi =

− 521 psi

Ans.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

The stresses shown in the figure act at a point in a stressed  body. Using the equilibrium equation approach, determine the normal and shear stresses at this point on the inclined plane shown. 12.7

Fig. P12.7 Solution Σ Fn = σ  n dA − (35 + ( 25 σ  n

=

MPa) sin 75 75°(dA cos 75° ) + (25 MPa) cos 75° (dA sin 75 75° ) = 0

20.15 .1554 MPa = 20.2 MPa (T)

Σ Ft = τ  nt dA + (35 −( 25 τ  nt 

MP MPa) si sin 75 75°(dA sin 75 75°)

= −30.4006

Ans.

MP MPa) co cos 75 75°(dA sin 75 75°)

MPa) cos 75 75°(dA cos 75° ) + (25 MP MPa) sin 75 75° (dA sin 75 75° ) = 0 MPa =

− 30.4

MPa

Ans.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

Trusted by over 1 million members

Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.

The stresses shown in the figure act at a point in a stressed  body. Using the equilibrium equation approach, determine the normal and shear stresses at this point on the inclined plane shown. 12.8

Fig. P12.8 Solution Σ Fn = σ  n dA + (7.4 −(9.3 σ  n

ksi) sin 25 25°(dA cos 25 25°) − (9.3 ksi) cos 25 25° (dA sin 25 25° ) = 0

.6535 = 3.65

ks ksi = 3.65 ks ksi (T)

Σ Ft = τ  nt dA + (7.4 + (9.3 τ  nt 

= −14.4044

ksi) co cos 25 25°(dA cos 25 25° ) − (14.6 ksi) si sin 25 2 5° (dA sin 25 2 5° )

Ans.

ksi) si sin 25 2 5°( dA cos 25 25°) + (14.6 ksi) co cos 25 25° (dA sin 25 2 5° )

ksi) cos 25 25°(dA cos 25 25°) − (9.3 ksi) sin 25 25°(dA sin 25 25° ) = 0 ks ksi =

− 14.40

ks ksi

Ans.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF