Mechanical Engineering Design Chapter 11 Solutions

March 29, 2018 | Author: JeffDavis91205 | Category: Bearing (Mechanical), Manufactured Goods, Machines, Nature
Share Embed Donate


Short Description

Shigley's 9th Edition...

Description

Chapter 11 11-1

For the deep-groove 02-series ball bearing with R = 0.90, the design life x D , in multiples of rating life, is L 60D nD 60  25000  350 xD  D    525 Ans. LR L10 106 The design radial load is FD  1.2  2.5   3.0 kN 1/3

Eq. (11-6):

  525   C10  3.0  1/1.483   0.02   4.459  0.02  ln 1/ 0.9   

C 10 = 24.3 kN Table 11-2:

Ans.

Choose an 02-35 mm bearing with C 10 = 25.5 kN.

Ans.

1.483 3     525  3 / 25.5  0.02   Eq. (11-18): R  exp   Ans.    0.920 4.459  0.02      ______________________________________________________________________________

11-2

For the angular-contact 02-series ball bearing as described, the rating life multiple is L 60D nD 60  40 000  520 xD  D    1248 LR L10 106 The design radial load is

FD  1.4  725  1015 lbf  4.52 kN Eq. (11-6): 1/3

  1248   C10  1015  1/1.483   0.02   4.459  0.02   ln 1/ 0.9     10 930 lbf  48.6 kN

Select an 02-60 mm bearing with C 10 = 55.9 kN. Ans. 1.483 3    1248  4.52 / 55.9   0.02   Eq. (11-18): R  exp   Ans.    0.945 4.439       ______________________________________________________________________________ Table 11-2:

Chapter 11, Page 1/28

11-3

For the straight-roller 03-series bearing selection, x D = 1248 rating lives from Prob. 11-2 solution. FD  1.4  2235  3129 lbf  13.92 kN  1248  C10  13.92    1 

Table 11-3:

3/10

 118 kN

Select an 03-60 mm bearing with C 10 = 123 kN.

Ans.

1.483 10/3    1248 13.92 /123  0.02   Eq. (11-18): R  exp      0.917 Ans. 4.459  0.02      ______________________________________________________________________________

11-4

The combined reliability of the two bearings selected in Probs. 11-2 and 11-3 is

R   0.945 0.917   0.867

Ans.

We can choose a reliability goal of 0.90  0.95 for each bearing. We make the selections, find the existing reliabilities, multiply them together, and observe that the reliability goal is exceeded due to the roundup of capacity upon table entry. Another possibility is to use the reliability of one bearing, say R 1 . Then set the reliability goal of the second as R2 

0.90 R1

or vice versa. This gives three pairs of selections to compare in terms of cost, geometry implications, etc. ______________________________________________________________________________ 11-5

Establish a reliability goal of contact ball bearing,

0.90  0.95 for each bearing. For an 02-series angular 1/3

  1248   C10  1015  1/1.483   0.02  4.439 ln 1/ 0.95    12822 lbf  57.1 kN Select an 02-65 mm angular-contact bearing with C 10 = 63.7 kN. 1.483 3    1248  4.52 / 63.7   0.02   RA  exp      0.962 4.439     

Chapter 11, Page 2/28

For an 03-series straight roller bearing, 3/10

  1248   C10  13.92  1/1.483   0.02  4.439  ln 1/ 0.95   

 136.5 kN

Select an 03-65 mm straight-roller bearing with C 10 = 138 kN.  1248 13.92 /138 10/3  0.02 1.483      RB  exp      0.953 4.439     

The overall reliability is R = (0.962)(0.953) = 0.917, which exceeds the goal. ______________________________________________________________________________ 11-6

For the straight cylindrical roller bearing specified with a service factor of 1, R = 0.95 and F R = 20 kN. 60D nD 60  8000  950 L xD  D    456 106 LR L10 3/10

  456   C10  20   145 kN Ans. 1/1.483   0.02  4.439  ln 1/ 0.95    ______________________________________________________________________________

11-7

Both bearings need to be rated in terms of the same catalog rating system in order to compare them. Using a rating life of one million revolutions, both bearings can be rated in terms of a Basic Load Rating. 1/ a

Eq. (11-3):

L  C A  FA  A   LR   8.96 kN

1/ a

  n 60   FA  A A   LR 

  3000  500  60    2.0   106  

1/3

Bearing B already is rated at one million revolutions, so C B = 7.0 kN. Since C A > C B , bearing A can carry the larger load. Ans. ______________________________________________________________________________ 11-8

F D = 2 kN, L D = 109 rev, R = 0.90 1/ a

1/3

 LD   109  Eq. (11-3): C10  FD    2  6   20 kN Ans.  10   LR  ______________________________________________________________________________

Chapter 11, Page 3/28

11-9

F D = 800 lbf,  D = 12 000 hours, n D = 350 rev/min, R = 0.90

 12 000  350  60     n 60  Eq. (11-3): C10  FD  D D   800    5050 lbf Ans 106  LR    ______________________________________________________________________________ 1/ a

1/3

11-10 F D = 4 kN,  D = 8 000 hours, n D = 500 rev/min, R = 0.90  8 000  500  60     n 60  Eq. (11-3): C10  FD  D D   4    24.9 kN Ans 106  LR    ______________________________________________________________________________ 1/ a

1/3

11-11 F D = 650 lbf, n D = 400 rev/min, R = 0.95









 D = (5 years)(40 h/week)(52 week/year) = 10 400 hours

Assume an application factor of one. The multiple of rating life is xD 

LD 10 400  400  60    249.6 LR 106 1/3

  249.6   C10  1 650   Eq. (11-6): 1/1.483   0.02  4.439 ln 1/ 0.95     4800 lbf Ans. ______________________________________________________________________________

11-12 F D = 9 kN, L D = 108 rev, R = 0.99 Assume an application factor of one. The multiple of rating life is xD 

LD 108   100 LR 106 1/3

  100   C10  1 9   Eq. (11-6): 1/1.483   0.02  4.439 ln 1/ 0.99     69.2 kN Ans. ______________________________________________________________________________

11-13 F D = 11 kips,  D = 20 000 hours, n D = 200 rev/min, R = 0.99 Assume an application factor of one. Use the Weibull parameters for Manufacturer 2 on p. 608.

Chapter 11, Page 4/28

The multiple of rating life is xD 

LD  20 000  200  60    240 LR 106 1/3

  240   C10  111  Eq. (11-6): 1/1.483   0.02  4.439 ln 1/ 0.99     113 kips Ans. ______________________________________________________________________________

11-14 From the solution to Prob. 3-68, the ground reaction force carried by the bearing at C is R C = F D = 178 lbf. Use the Weibull parameters for Manufacturer 2 on p. 608. xD 

LD 15000 1200  60    1080 LR 106 1/ a

Eq. (11-7):

  xD C10  a f FD   1/ b  x0    x0 1  RD  

1/3

  1080 C10  1.2 178    1/1.483  0.02   4.459  0.02 1  0.95    2590 lbf Ans. ______________________________________________________________________________

11-15 From the solution to Prob. 3-69, the ground reaction force carried by the bearing at C is R C = F D = 1.794 kN. Use the Weibull parameters for Manufacturer 2 on p. 608. xD 

LD 15000 1200  60    1080 LR 106 1/ a

Eq. (11-7):

  xD C10  a f FD   1/ b  x0    x0 1  RD  

1/3

  1080 C10  1.2 1.794    1/1.483  0.02   4.459  0.02 1  0.95    26.1 kN Ans. ______________________________________________________________________________

11-16 From the solution to Prob. 3-70, R Cz = –327.99 lbf, R Cy = –127.27 lbf 1/ 2

2 2 RC  FD   327.99    127.27    351.8 lbf   Use the Weibull parameters for Manufacturer 2 on p. 608.

Chapter 11, Page 5/28

xD 

LD 15000 1200  60    1080 LR 106 1/ a

Eq. (11-7):

  xD C10  a f FD   1/ b  xo    xo 1  RD  

1/3

  1080 C10  1.2  351.8    1/1.483  0.02   4.459  0.02 1  0.95    5110 lbf Ans. ______________________________________________________________________________

11-17 From the solution to Prob. 3-71, R Cz = –150.7 N, R Cy = –86.10 N 1/2

2 2 RC  FD   150.7    86.10    173.6 N   Use the Weibull parameters for Manufacturer 2 on p. 608.

xD 

LD 15000 1200  60    1080 106 LR 1/ a

Eq. (11-7):

  xD C10  a f FD   1/ b  x0    x0 1  RD  

1/3

  1080 C10  1.2 173.6    1/1.483  0.02   4.459  0.02 1  0.95    2520 N Ans. ______________________________________________________________________________

11-18 From the solution to Prob. 3-77, R Az = 444 N, R Ay = 2384 N



RA  FD  4442  23842



1/2

 2425 N  2.425 kN

Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to the speed of shaft AD, d 125 nD  F ni  191  95.5 rev/min dC 250 xD 

LD 12 000  95.5  60    68.76 LR 106 1/ a

Eq. (11-7):

  xD C10  a f FD   1/ b  x0    x0 1  RD  

Chapter 11, Page 6/28

1/3

  68.76 C10  1 2.425    1/1.483  0.02   4.459  0.02 1  0.95    11.7 kN Ans. ______________________________________________________________________________

11-19 From the solution to Prob. 3-79, R Az = 54.0 lbf, R Ay = 140 lbf



RA  FD  54.02  1402



1/2

 150.1 lbf

Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to the speed of shaft AD, d 10 nD  F ni   280   560 rev/min dC 5 xD  Eq. (11-7):

LD 14 000  560  60    470.4 LR 106

  xD C10  a f FD   1/ b  x0    x0 1  RD  

1/ a

3/10

  470.4 C10  1150.1   1/1.483  0.02   4.459  0.02 1  0.98    1320 lbf Ans. ______________________________________________________________________________

11-20 (a) Fa  3 kN, Fr  7 kN, nD  500 rev/min, V  1.2 From Table 11-2, with a 65 mm bore, C 0 = 34.0 kN. F a / C 0 = 3 / 34 = 0.088 From Table 11-1, 0.28  e  3.0. Fa 3   0.357 VFr 1.2  7  Since this is greater than e, interpolating Table 11-1 with F a / C 0 = 0.088, we obtain X 2 = 0.56 and Y 2 = 1.53.

Eq. (11-9):

Fe  X iVFr  Yi Fa   0.56 1.2  7   1.53 3  9.29 kN F e > F r so use F e .

Ans.

(b) Use Eq. (11-7) to determine the necessary rated load the bearing should have to carry the equivalent radial load for the desired life and reliability. Use the Weibull parameters for Manufacturer 2 on p. 608.

Chapter 11, Page 7/28

xD 

LD 10 000  500  60    300 LR 106 1/ a

  xD Eq. (11-7): C10  a f FD   1/ b  x0    x0 1  RD  

  300 C10  1 9.29    1/1.483  0.02   4.459  0.02 1  0.95    73.4 kN

1/3

From Table 11-2, the 65 mm bearing is rated for 55.9 kN, which is less than the necessary rating to meet the specifications. This bearing should not be expected to meet the load, life, and reliability goals. Ans. ______________________________________________________________________________ 11-21 (a) Fa  2 kN, Fr  5 kN, nD  400 rev/min, V  1 From Table 11-2, 30 mm bore, C 10 = 19.5 kN, C 0 = 10.0 kN F a / C 0 = 2 / 10 = 0.2 From Table 11-1, 0.34  e  0.38. Fa 2   0.4 VFr 1 5 

Since this is greater than e, interpolating Table 11-1, with F a / C 0 = 0.2, we obtain X 2 = 0.56 and Y 2 = 1.27. Ans. Eq. (11-9): Fe  X iVFr  Yi Fa   0.56 1 5  1.27  2   5.34 kN F e > F r so use F e . (b) Solve Eq. (11-7) for x D .  C xD   10  a f FD 

a

 1/ b   x0    x0 1  RD    3

 19.5   0.02   4.459  0.02 1  0.99 1/1.483  xD    1 5.34       xD  10.66

xD 

LD D nD  60   LR 106

Chapter 11, Page 8/28

D 

   10.66 10   444 h

xD 106

6

Ans. nD  60   400  60  ______________________________________________________________________________

11-22 Fr  8 kN, R  0.9, LD  109 rev 1/ a

Eq. (11-3):

L  C10  FD  D   LR 

1/3

 109   8 6   10 

 80 kN

From Table 11-2, select the 85 mm bore. Ans. ______________________________________________________________________________ 11-23 Fr  8 kN, Fa  2 kN, V  1, R  0.99 Use the Weibull parameters for Manufacturer 2 on p. 608. xD 

LD 10 000  400  60    240 LR 106

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63 Eq. (11-9):

Fe  0.56 1 8   1.63  2   7.74 kN F e < F r , so just use F r as the design load.

Eq. (11-7):

  xD C10  a f FD   1/ b  xo    xo 1  RD  

1/ a

1/3

  240 C10  1 8     82.5 kN 1/1.483  0.02   4.459  0.02 1  0.99   From Table 11-2, try 85 mm bore with C 10 = 83.2 kN, C 0 = 53.0 kN Iterate the previous process:

F a / C 0 = 2 / 53 = 0.038 0.22  e  0.24 Fa 2   0.25  e VFr 1 8  Interpolate Table 11-1 with F a / C 0 = 0.038 to obtain X 2 = 0.56 and Y 2 = 1.89. Table 11-1:

Eq. (11-9):

Fe  0.56(1)8  1.89(2)  8.26 > Fr

Eq. (11-7):

  240 C10  1 8.26    1/1.483  0.02   4.459  0.02 1  0.99  

1/3

 85.2 kN

Chapter 11, Page 9/28

Table 11-2: Move up to the 90 mm bore with C 10 = 95.6 kN, C 0 = 62.0 kN. Iterate again: F a / C 0 = 2 / 62 = 0.032 Again, 0.22  e  0.24 Fa 2   0.25  e VFr 1 8  Interpolate Table 11-1 with F a / C 0 = 0.032 to obtain X 2 = 0.56 and Y 2 = 1.95. Table 11-1:

Eq. (11-9):

Fe  0.56(1)8  1.95(2)  8.38 > Fr 1/3

  240 Eq. (11-7): C10  1 8.38     86.4 kN 1/1.483  0.02   4.459  0.02 1  0.99   The 90 mm bore is acceptable. Ans. ______________________________________________________________________________

11-24 Fr  8 kN, Fa  3 kN, V  1.2, R  0.9, LD  108 rev First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63 Eq. (11-9):

Fe  0.56 1.2  8   1.63  3  10.3 kN Fe  Fr 1/ a

Eq. (11-3):

L  C10  Fe  D   LR 

1/3

 108   10.3  6   10 

 47.8 kN

From Table 11-2, try 60 mm with C 10 = 47.5 kN, C 0 = 28.0 kN Iterate the previous process: F a / C 0 = 3 / 28 = 0.107 0.28  e  0.30 Fa 3   0.313  e VFr 1.2  8  Interpolate Table 11-1 with F a / C 0 = 0.107 to obtain X 2 = 0.56 and Y 2 = 1.46 Table 11-1:

Eq. (11-9):

Fe  0.56 1.2  8   1.46  3  9.76 kN > Fr 1/3

 108  Eq. (11-3): C10  9.76  6   45.3 kN  10  From Table 11-2, we have converged on the 60 mm bearing. Ans. ______________________________________________________________________________

Chapter 11, Page 10/28

11-25 Fr  10 kN, Fa  5 kN, V  1, R  0.95 Use the Weibull parameters for Manufacturer 2 on p. 608. xD 

LD 12 000  300  60    216 LR 106

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63 Eq. (11-9):

Fe  0.56 110   1.63  5   13.75 kN F e > F r , so use F e as the design load.

Eq. (11-7):

  xD C10  a f FD   1/ b  x0    x0 1  RD  

1/ a

1/3

  216 C10  113.75    1/1.483  0.02   4.459  0.02 1  0.95  

 97.4 kN

From Table 11-2, try 95 mm bore with C 10 = 108 kN, C 0 = 69.5 kN Iterate the previous process: F a / C 0 = 5 / 69.5 = 0.072 Table 11-1:

0.27  e  0.28 Fa 5   0.5  e VFr 110 

Interpolate Table 11-1 with F a / C 0 = 0.072 to obtain X 2 = 0.56 and Y 2 = 1.62  1.63 Since this is where we started, we will converge back to the same bearing. The 95 mm bore meets the requirements. Ans. ______________________________________________________________________________ 11-26 Note to the Instructor. In the first printing of the 9th edition, the design life was incorrectly given to be 109 rev and will be corrected to 108 rev in subsequent printings. We apologize for the inconvenience. Fr  9 kN, Fa  3 kN, V  1.2, R  0.99 Use the Weibull parameters for Manufacturer 2 on p. 608. xD 

LD 108   100 LR 106

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63

Chapter 11, Page 11/28

Eq. (11-9):

Fe  0.56 1.2  9   1.63  3  10.9 kN F e > F r , so use F e as the design load.

Eq. (11-7):

  xD C10  a f FD   1/ b  x0    x0 1  RD  

1/ a

1/3

  100 C10  110.9    1/1.483  0.02   4.459  0.02 1  0.99  

 83.9 kN

From Table 11-2, try 90 mm bore with C 10 = 95.6 kN, C 0 = 62.0 kN. Try this bearing. Iterate the previous process: F a / C 0 = 3 / 62 = 0.048 0.24  e  0.26 Fa 3   0.278  e VFr 1.2  9  Interpolate Table 11-1 with F a / C 0 = 0.048 to obtain X 2 = 0.56 and Y 2 = 1.79 Table 11-1:

Eq. (11-9):

Fe  0.56 1.2  9   1.79  3  11.4 kN  Fr

11.4 83.9  87.7 kN 10.9 From Table 11-2, this converges back to the same bearing. The 90 mm bore meets the requirements. Ans. ______________________________________________________________________________ C10 

11-27 (a) nD  1200 rev/min, LD  15 kh, R  0.95, a f  1.2 From Prob. 3-72, R Cy = 183.1 lbf, R Cz = –861.5 lbf. 1/2

2 RC  FD  183.12   861.5    881 lbf   15000 1200  60  L xD  D   1080 LR 106

1/3

  1080 Eq. (11-7): C10  1.2  881   1/1.483  0.02  4.439 1  0.95    12800 lbf  12.8 kips Ans.

(b) Results will vary depending on the specific bearing manufacturer selected. A general engineering components search site such as www.globalspec.com might be useful as a starting point. ______________________________________________________________________________

Chapter 11, Page 12/28

11-28 (a) nD  1200 rev/min, LD  15 kh, R  0.95, a f  1.2 From Prob. 3-72, R Oy = –208.5 lbf, R Oz = 259.3 lbf. 1/ 2

2 RC  FD   259.32   208.5    333 lbf   15000 1200  60  L xD  D   1080 106 LR

1/3

  1080 Eq. (11-7): C10  1.2  333   1/1.483  0.02  4.439 1  0.95    4837 lbf  4.84 kips Ans. (b) Results will vary depending on the specific bearing manufacturer selected. A general engineering components search site such as www.globalspec.com might be useful as a starting point. ______________________________________________________________________________

11-29 (a) nD  900 rev/min, LD  12 kh, R  0.98, a f  1.2 From Prob. 3-73, R Cy = 8.319 kN, R Cz = –10.830 kN. 2 1/ 2

RC  FD  8.319 2   10.830    13.7 kN   12 000  900  60  L xD  D   648 LR 106 1/3

  648 Eq. (11-7): C10  1.2 13.7     204 kN Ans. 1/1.483  0.02  4.439 1  0.98   (b) Results will vary depending on the specific bearing manufacturer selected. A general engineering components search site such as www.globalspec.com might be useful as a starting point. ______________________________________________________________________________

11-30 (a) nD  900 rev/min, LD  12 kh, R  0.98, a f  1.2 From Prob. 3-73, R Oy = 5083 N, R Oz = 494 N.



RC  FD  50832  4942

xD 



1/2

 5106 N  5.1 kN

LD 12 000  900  60    648 LR 106 1/3

  648 Eq. (11-7): C10  1.2  5.1    76.1 kN Ans. 1/1.483  0.02  4.439 1  0.98   (b) Results will vary depending on the specific bearing manufacturer selected. A general engineering components search site such as www.globalspec.com might be useful as a starting point. ______________________________________________________________________________ Chapter 11, Page 13/28

11-31 Assume concentrated forces as shown.

Pz  8  28   224 lbf Py  8  35  280 lbf T  224  2   448 lbf  in T x  448  1.5 F cos 20  0 448 F  318 lbf 1.5  0.940 

M Oz  5.75Py  11.5RAy  14.25F sin 20  0 5.75  280   11.5RAy  14.25  318 0.342   0 RAy  5.24 lbf M Oy  5.75 Pz  11.5 RAz  14.25 F cos 20  0

5.75  224   11.5RAz  14.25  318 0.940   0 1/2

2 2 RA   482    5.24     z z z  F  RO  Pz  RA  F cos 20  0

RAz  482 lbf;

 482 lbf

ROz  224  482  318  0.940   0 ROz  40.9 lbf

F y  ROy  Py  RAy  F sin 20  0 ROy  280  5.24  318  0.342   0 ROy  166 lbf 1/2

2 2 RO   40.9    166    

 171 lbf

So the reaction at A governs. Reliability Goal: 0.92  0.96

FD  1.2  482   578 lbf xD  35 000  350  60  / 106  735 1/3

  735   C10  578  1/1.483   0.02   4.459  0.02  ln 1/ 0.96     6431 lbf  28.6 kN

From Table 11-2, a 40 mm bore angular contact bearing is sufficient with a rating of Chapter 11, Page 14/28

31.9 kN. Ans. ______________________________________________________________________________ 11-32 For a combined reliability goal of 0.95, use 0.95  0.975 for the individual bearings.

xD 

40 000  420  60  106

 1008

The resultant of the given forces are R O = [(–387)2 + 4672]1/2 = 607 lbf R B = [3162 + (–1615)2]1/2 = 1646 lbf At O: 1/3

  1008   C10  1.2  607   Eq. (11-6): 1/1.483   0.02   4.459  0.02  ln 1/ 0.975     9978 lbf  44.4 kN

From Table 11-2, select an 02-55 mm angular-contact ball bearing with a basic load rating of 46.2 kN. Ans. At B: 3/10

Eq. (11-6):

  1008   C10  1.2 1646   1/1.483   0.02   4.459  0.02  ln 1/ 0.975     20827 lbf  92.7 kN

From Table 11-3, select an 02-75 mm or 03-55 mm cylindrical roller. Ans. ______________________________________________________________________________ 11-33 The reliability of the individual bearings is R  0.98  0.9899

Chapter 11, Page 15/28

From statics, T = (270  50) = (P 1  P 2 )125 = (P 1  0.15 P 1 )125 P 1 = 310.6 N, P 2 = 0.15 (310.6) = 46.6 N P 1 + P 2 = 357.2 N FAy  357.2 sin 45  252.6 N  FAz

M F M F

 850REy  300(252.6)  0  REy  89.2 N

z O

y

 252.6  89.2  ROy  0  ROy  163.4 N  850REz  700(320)  300(252.6)  0  REz  174.4 N

y O

z

 174.4  320  252.6  ROz  0  ROz  107 N

RO 

 163.4 

2

RE 

 89.2 

  174.4   196 N

2

 107 2  195 N 2

The radial loads are nearly the same at O and E. We can use the same bearing at both locations. xD 

60 000 1500  60  106

 5400 1/3

Eq. (11-6):

  5400   C10  1 0.196   1/1.483   0.02  4.439 ln 1/ 0.9899   

 5.7 kN

From Table 11-2, select an 02-12 mm deep-groove ball bearing with a basic load rating of 6.89 kN. Ans. ______________________________________________________________________________ 11-34

R  0.96  0.980 T  12(240 cos 20 )  2706 lbf  in F

2706  498 lbf 6 cos 25

In xy-plane:

M Oz  16(82.1)  30(210)  42 RCy  0

Chapter 11, Page 16/28

RCy  181 lbf ROy  82.1  210  181  111.1 lbf

In xz-plane:

M Oy  16(226)  30(451)  42 RCz  0 RCz  236 lbf ROz  226  451  236  11 lbf

  181

RO  111.12  112 RC

xD 

2

 236 2

 

1/ 2

 112 lbf

Ans.

1/ 2

 297 lbf

Ans.

50000  300  60  106

 900 1/3

 C10 O

  900    1.2 112   1/1.483   0.02  4.439 ln 1/ 0.980     1860 lbf  8.28 kN

1/3

 C10 C

  900    1.2  297   1/1.483   0.02  4.439 ln 1/ 0.980     4932 lbf  21.9 kN

Bearing at O: Choose a deep-groove 02-17 mm. Ans. Bearing at C: Choose a deep-groove 02-35 mm. Ans. ______________________________________________________________________________ 11-35 Shafts subjected to thrust can be constrained by bearings, one of which supports the thrust. The shaft floats within the endplay of the second (roller) bearing. Since the thrust force here is larger than any radial load, the bearing absorbing the thrust (bearing A) is heavily loaded compared to bearing B. Bearing B is thus likely to be oversized and may not contribute measurably to the chance of failure. If this is the case, we may be able to obtain the desired combined reliability with bearing A having a reliability near 0.99 and bearing B having a reliability near 1. This would allow for bearing A to have a lower capacity than if it needed to achieve a reliability of 0.99 . To determine if this is the case, we will start with bearing B. Bearing B (straight roller bearing) 30000  500  60  xD   900 106



Fr  36 2  67 2



1/ 2

 76.1 lbf  0.339 kN

Try a reliability of 1 to see if it is readily obtainable with the available bearings.

Chapter 11, Page 17/28

3/10

Eq. (11-6):

  900   C10  1.2  0.339   1/1.483   0.02  4.439  ln 1/1.0   

 10.1 kN

The smallest capacity bearing from Table 11-3 has a rated capacity of 16.8 kN. Therefore, we select the 02-25 mm straight cylindrical roller bearing. Ans. Bearing at A (angular-contact ball) With a reliability of 1 for bearing B, we can achieve the combined reliability goal of 0.99 if bearing A has a reliability of 0.99.



Fr  36 2  2122



1/ 2

 215 lbf  0.957 kN

Fa  555 lbf  2.47 kN Trial #1: Tentatively select an 02-85 mm angular-contact with C 10 = 90.4 kN and C 0 = 63.0 kN. Fa 2.47   0.0392 C0 63.0 30000  500  60  xD   900 106

Table 11-1:

Interpolating, X 2 = 0.56, Y 2 = 1.88

Eq. (11-9):

Fe  0.56  0.957   1.88  2.47   5.18 kN 1/3

Eq. (11-6):

  900   C10  1.2  5.18   1/1.483   0.02  4.439  ln 1/ 0.99     99.54 kN  90.4 kN

Trial #2: Tentatively select a 02-90 mm angular-contact ball with C 10 = 106 kN and C 0 = 73.5 kN. Fa 2.47   0.0336 C0 73.5

Table 11-1:

Interpolating, X 2 = 0.56, Y 2 = 1.93

Fe  0.56  0.957   1.93  2.47   5.30 kN 1/3

  900   C10  1.2  5.30   1/1.483   0.02  4.439 ln 1/ 0.99   

 102 kN < 106 kN O.K.

Chapter 11, Page 18/28

Select an 02-90 mm angular-contact ball bearing. Ans. ______________________________________________________________________________ 11-36 We have some data. Let’s estimate parameters b and θ from it. In Fig. 11-5, we will use line AB. In this case, B is to the right of A.

 x 1 

For F = 18 kN,

115  2000  60  106

 13.8

This establishes point 1 on the R = 0.90 line.

The R = 0.20 locus is above and parallel to the R = 0.90 locus. For the two-parameter Weibull distribution, x 0 = 0 and points A and B are related by [see Eq. (20-25)]: x A   ln 1/ 0.90  

1/ b

(1)

xB   ln 1/ 0.20  

1/ b

and x B /x A is in the same ratio as 600/115. Eliminating θ, b

ln ln 1/ 0.20  / ln 1/ 0.90   ln  600 /115

 1.65

Ans.

Solving for θ in Eq. (1),



xA ln 1/ RA  

1/1.65



1 ln 1/ 0.90  

1/1.65

 3.91

Ans.

Chapter 11, Page 19/28

Therefore, for the data at hand,   x 1.65  R  exp        3.91   Check R at point B: x B = (600/115) = 5.217   5.217 1.65  R  exp       0.20   3.91   Note also, for point 2 on the R = 0.20 line,

log  5.217   log 1  log  xm 2  log 13.8 

 xm 2  72

______________________________________________________________________________ 11-37 This problem is rich in useful variations. Here is one. Decision: Make straight roller bearings identical on a given shaft. Use a reliability goal of (0.99)1/6 = 0.9983. Shaft a

   502

FAr  2392  1112 FBr

2



1/ 2

 264 lbf  1.175 kN



1/ 2

 10752

 1186 lbf  5.28 kN

Thus the bearing at B controls. xD 

10 000 1200  60  106

 720

0.02  4.439  ln 1/ 0.9983 

1/1.483

 720  C10  1.2  5.28     0.080 26 

 0.080 26

0.3

 97.2 kN

Select either an 02-80 mm with C 10 = 106 kN or an 03-55 mm with C 10 = 102 kN. Shaft b

   393

FCr  874 2  2274 2 FDr

2

 657 2





1/ 2

1/ 2

 2436 lbf

 766 lbf

or or

Ans.

10.84 kN 3.41 kN

The bearing at C controls.

Chapter 11, Page 20/28

xD 

10 000  240  60  106

 144

 144  C10  1.2 10.84     0.080 26 

0.3

 123 kN

Select either an 02-90 mm with C 10 = 142 kN or an 03-60 mm with C 10 = 123 kN. Shaft c

   417

FEr  11132  23852 FFr

 8952

2



1/ 2



1/ 2

 2632 lbf

 987 lbf

or

or

Ans.

11.71 kN

4.39 kN

The bearing at E controls. xD 

10 000  80  60  106

 48

 48  C10  1.2 11.71    0.080 26 

0.3

 95.7 kN

Select an 02-80 mm with C 10 = 106 kN or an 03-60 mm with C 10 = 123 kN. Ans. ______________________________________________________________________________ 11-38 Express Eq. (11-1) as F1a L1  C10a L10  K

For a ball bearing, a = 3 and for an 02-30 mm angular contact bearing, C 10 = 20.3 kN.

 

 

K   20.3 106  8.365 109 3

At a load of 18 kN, life L 1 is given by:

 

9 K 8.365 10 L1  a   1.434 106 rev 3 18 F1 For a load of 30 kN, life L 2 is:

L2 

 

   0.310 10 rev   30

8.365 109

6

3

In this case, Eq. (6-57) – the Palmgren-Miner cycle-ratio summation rule – can be expressed as

Chapter 11, Page 21/28

l1 l2  1 L1 L2

Substituting, l2 200 000  1 6 1.434 10 0.310 106 l2

     0.267 10  rev Ans. 6

______________________________________________________________________________ 11-39 Total life in revolutions Let: l = total turns f 1 = fraction of turns at F 1 f 2 = fraction of turns at F 2 From the solution of Prob. 11-38, L 1 = 1.434(106) rev and L 2 = 0.310(106) rev. Palmgren-Miner rule: l1 l2 fl f l   1  2 1 L1 L2 L1 L2

from which l

1 f1 / L1  f 2 / L2

l

0.40 / 1.434 10   0.60 / 0.310 10 

 451 585 rev

1

6

6

Ans.

Total life in loading cycles 4 min at 2000 rev/min = 8000 rev/cycle 6 min at 2000 rev/min = 12 000 rev/cycle Total rev/cycle = 8000 + 12 000 = 20 000 451 585 rev  22.58 cycles 20 000 rev/cycle

Ans.

Chapter 11, Page 22/28

Total life in hours  min   22.58 cycles  10    3.76 h Ans.  cycle   60 min/h  ______________________________________________________________________________ FrA  560 lbf FrB  1095 lbf Fae  200 lbf

11-40

xD 

LD 40 000  400  60    10.67 LR 90 106

 

R  0.90  0.949 Eq. (11-15): Eq. (11-15):

0.47 FrA 0.47  560    175.5 lbf KA 1.5 0.47 FrB 0.47 1095  FiB    343.1 lbf KB 1.5 FiA 

FiA  ?   FiB  Fae 

175.5 lbf   343.1  200   543.1 lbf, so Eq. (11-16) applies. We will size bearing B first since its induced load will affect bearing A, but is not itself affected by the induced load from bearing A [see Eq. (11-16)]. From Eq. (11-16b), F eB = F rB = 1095 lbf.

Eq. (11-7):

  10.67  FRB  1.4 1095    4.48 1  0.949 1/1.5   

3/10

 3607 lbf

Ans.

Select cone 32305, cup 32305, with 0.9843 in bore, and rated at 3910 lbf with K = 1.95. Ans. With bearing B selected, we re-evaluate the induced load from bearing B using the actual value for K. 0.47 FrB 0.47 1095 Eq. (11-15): FiB    263.9 lbf KB 1.95 Find the equivalent radial load for bearing A from Eq. (11-16), which still applies. Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae 

FeA  0.4  560   1.5  263.9  200   920 lbf

Chapter 11, Page 23/28

FeA  FrA Eq. (11-7):

  10.67  FRA  1.4  920    4.48 1  0.949 1/1.5   

3/10

 3030 lbf

Tentatively select cone M86643, cup M86610, with 1 in bore, and rated at 3250 lbf with K = 1.07. Iterating with the new value for K, we get F eA = 702 lbf and F rA = 2312 lbf. Ans. By using a bearing with a lower K, the rated load decreased significantly, providing a higher than requested reliability. Further examination with different combinations of bearing choices could yield additional acceptable solutions. ______________________________________________________________________________ 11-41 The thrust load on shaft CD is from the axial component of the force transmitted through the bevel gear, and is directed toward bearing C. By observation of Fig. 11-14, direct mounted bearings would allow bearing C to carry the thrust load. Ans. From the solution to Prob. 3-74, the axial thrust load is F ae = 362.8 lbf, and the bearing radial forces are F Cx = 287.2 lbf, F Cz = 500.9 lbf, F Dx = 194.4 lbf, and F Dz = 307.1 lbf. Thus, the radial forces are FrC  287.22  500.9 2  577 lbf FrD  194.4 2  307.12  363 lbf

The induced loads are 0.47 FrC 0.47  577    181 lbf Eq. (11-15): FiC  1.5 KC 0.47 FrD 0.47  363   114 lbf Eq. (11-15): FiD  KD 1.5 Check the condition on whether to apply Eq. (11-16) or Eq. (11-17), where bearings C and D are substituted, respectively, for labels A and B in the equations. FiC  ?  FiD  Fae 181 lbf  114  362.8  476.8 lbf, so Eq.(11-16) applies Eq. (11-16a): FeC  0.4 FrC  KC  FiD  Fae 

 0.4  577   1.5 114  362.8   946 lbf  FrC , so use FeC Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable.

Chapter 11, Page 24/28

xD 

LD 108   1.11 LR 90 106 

R  0.90  0.949   1.11  Eq. (11-7): FRC  1 946   1/1.5  4.48 1  0.949     Eq. (11-16b): FeD  FrD  363 lbf

3/10

 1130 lbf

Ans.

3/10

  1.11   433 lbf Ans. Eq. (11-7): FRD  1 363  1/1.5  4.48 1  0.949     ______________________________________________________________________________

11-42 The thrust load on shaft AB is from the axial component of the force transmitted through the bevel gear, and is directed to the right. By observation of Fig. 11-14, indirect mounted bearings would allow bearing A to carry the thrust load. Ans. From the solution to Prob. 3-76, the axial thrust load is F ae = 92.8 lbf, and the bearing radial forces are F Ay = 639.4 lbf, F Az = 1513.7 lbf, F By = 276.6 lbf, and F Bz = 705.7 lbf. Thus, the radial forces are FrA  639.4 2  1513.7 2  1643 lbf FrB  276.62  705.7 2  758 lbf

The induced loads are 0.47 FrA 0.47 1643 Eq. (11-15): FiA    515 lbf KA 1.5 0.47 FrB 0.47  758  Eq. (11-15): FiB    238 lbf 1.5 KB Check the condition on whether to apply Eq. (11-16) or Eq. (11-17). FiA  ?  FiB  Fae 515 lbf  238  92.8  330.8 lbf, so Eq.(11-17) applies Notice that the induced load from bearing A is sufficiently large to cause a net axial force to the left, which must be supported by bearing B. Eq. (11-17a): FeB  0.4 FrB  K B  FiA  Fae 

 0.4  758  1.5  515  92.8  937 lbf  FrB , so use FeB Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable. Chapter 11, Page 25/28

6 LD 500 10  xD    5.56 LR 90 106 

R  0.90  0.949   5.56  Eq. (11-7): FRB  1 937    4.48 1  0.949 1/1.5    Eq. (11-16b): FeA  FrA  1643 lbf

3/10

 1810 lbf

Ans.

3/10

  5.56   3180 lbf Ans. Eq. (11-7): FRA  11643   4.48 1  0.949 1/1.5    ______________________________________________________________________________

11-43 The lower bearing is compressed by the axial load, so it is designated as bearing A. FrA  25 kN FrB  12 kN Fae  5 kN

0.47 FrA 0.47  25    7.83 kN KA 1.5 0.47 FrB 0.47 12  Eq. (11-15): FiB    3.76 kN KB 1.5 Check the condition on whether to apply Eq. (11-16) or Eq. (11-17) Eq. (11-15):

FiA 

FiA  ?  FiB  Fae 7.83 kN  3.76  5  8.76 kN, so Eq.(11-16) applies Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae 

 0.4  25   1.5  3.76  5   23.1 kN  FrA, so use FrA  60 min   8 hr   5 day   52 weeks  LD   250 rev/min      5 yrs    yr  hr   day   week   

 

 156 106 rev Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable. Eq. (11-3):

L  FRA  a f FD  D   LR 

3/10

     

156 106  1.2  25    90 106

3/10

 35.4 kN

Ans.

Eq. (11-16b): FeB  FrB  12 kN

Chapter 11, Page 26/28

3/10

156  FRB  1.2 12    17.0 kN Ans.  90  ______________________________________________________________________________

Eq. (11-3):

11-44 The left bearing is compressed by the axial load, so it is properly designated as bearing A. FrA  875 lbf FrB  625 lbf Fae  250 lbf Assume K = 1.5 for each bearing for the first iteration. Obtain the induced loads. Eq. (11-15): Eq. (11-15):

0.47 FrA 0.47  875    274 lbf 1.5 KA 0.47 FrB 0.47  625  FiB    196 lbf KB 1.5 FiA 

Check the condition on whether to apply Eq. (11-16) or Eq. (11-17). FiA  ?  FiB  Fae 274 lbf  196  250 lbf, so Eq.(11-16) applies We will size bearing B first since its induced load will affect bearing A, but it is not affected by the induced load from bearing A [see Eq. (11-16)]. From Eq. (11-16b), F eB = F rB = 625 lbf.

Eq. (11-3):

L  FRB  a f FD  D   LR 

3/10

 90 000 150  60     1 625   90 106  

3/10

 

FRB  1208 lbf Select cone 07100, cup 07196, with 1 in bore, and rated at 1570 lbf with K = 1.45. Ans. With bearing B selected, we re-evaluate the induced load from bearing B using the actual value for K. 0.47 FrB 0.47  625  Eq. (11-15): FiB    203 lbf KB 1.45 Find the equivalent radial load for bearing A from Eq. (11-16), which still applies.

Chapter 11, Page 27/28

Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae 

 0.4  875  1.5  203  250   1030 lbf FeA  FrA Eq. (11-3):

L  FRA  a f FD  D   LR 

3/10

 90 000 150  60     11030   90 106  

3/10

 

FRA  1990 lbf Any of the bearings with 1-1/8 in bore are more than adequate. Select cone 15590, cup 15520, rated at 2480 lbf with K = 1.69. Iterating with the new value for K, we get F eA = 1120 lbf and F rA = 2160 lbf. The selected bearing is still adequate. Ans. ______________________________________________________________________________

Chapter 11, Page 28/28

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF