ME2142 Tut 2 Soln
February 6, 2017 | Author: Lakshmi Balasubramaniam | Category: N/A
Short Description
Download ME2142 Tut 2 Soln...
Description
ME2142/ME2142E Feedback Control Systems Solutions to Tutorial Problems Set 2 5th Sept 2012 1. G4
G3
R(s) +
G1
+
+
+
G2
C(s)
-
+
+
G5 G6
G4
R(s) +
G1
+
+
G2 1 G2G3
-
+
+
C(s)
G5 G6
G4
R(s) +
G1
+
+
G2 1 G2G3
-
+
+
G5 (1 G2G3 ) G2 G6
C(s)
R(s) +
G2 1 G2G3 G2G4
G1
G6
C(s)
G5 (1 G2G3 ) G2
G1G2 1 G2G3 G2G4 C ( s) R( s) G6G2 G5 (1 G2G3 ) G1G2 1 G2 1 G2G3 G2G4
2(a)
(i)
G1G2 (1 G2G3 G2G4 ) G1 (G6G2 G5 (1 G2G3 ))
With D(s)=0 and N(s)=0,
Gc ( s )G p ( s ) C ( s) R( s ) 1 Gc ( s )G p ( s ) H ( s ) (ii)
With R(s)=0 and N(s)=0, the block diagram can be re-drawn as
and the closed-loop transfer function is G p (s) C (s) D( s ) 1 G p ( s )Gc ( s ) H ( s ) (iii) With R(s)=0 and N(s)=0, the block diagram can be re-drawn as
and the closed-loop transfer function is H ( s )Gc ( s )G p ( s ) H ( s )Gc ( s )G p ( s ) C ( s) N ( s ) 1 G p ( s )(Gc ( s )) H ( s )) 1 G p ( s )Gc ( s ) H ( s )
[Note that for all three closed-loop transfer functions, the denominator remains the same.]
2(b)
Using the results obtained in 1(a) above, K Gc ( s )G p ( s ) K pK C ( s) s (s 1) 2 K pK R ( s ) 1 Gc ( s )G p ( s ) H ( s ) s s K p K 1 s (s 1) Kp
(i)
1 For a unit step, R ( s) , s and so C ( s )
KpK
1 (s s K p K ) s 2
and
KpK 1 c ss lim s 2 1 s 0 (s s K p K ) s
Since
r (t ) 1(t ) , the steady-state error is then e ss r () c() 1 c ss 1 1 0 K G p ( s) K C (s) s (s 1) 2 K pK D( s ) 1 Gc ( s )G p ( s ) H ( s ) s s K p K 1 s (s 1)
(ii)
For a unit step, D( s ) and so C ( s )
1 , s
K 1 (s s K p K ) s 2
and
K 1 1 c ss lim s 2 s 0 (s s K p K ) s K p
Since
r (t ) 0 , the steady-state error is then e ss r () c() 0 c ss
1 Kp
2(c)
Because the system is linear, the principle of superposition applies. Thus, C ( s)
C (s) C ( s) R( s) D( s ) R( s) D( s)
Using the results obtained in (b) above, c ss 1
2(d)
1 Kp
The characteristic equation is obtained by equating the denominator of any of the closed-loop transfer functions to zero. Thus
1 Gc ( s )G p ( s ) H ( s) 0 1 (5)
Or
1 0 s(0.1s 1)
0.1s 2 s 5 0 s 2 10s 50 s 2 2 n s n2 0 2 n 10
giving
n2 50 and
Therefore
n 5 2 rad/s and
1 2
0.707
3.
Let the output of the Controller be M(s). 10 G 10 0.1s 1 10 K M ( s ) 1 GH 0.1s 1 10 K v v 1 0.1s 1
( s)
and
10 K p
( s) G r ( s ) 1 GH
with
10 K p s (0.1s 1 10 K v ) 10 K p 0.1s 2 (1 10 K v ) s 10 K p 1 s (0.1s 1 10 K v ) 100 K p
s 2 (10 100 K v ) s 100 K p
n 100 K p 10 K p
and
n2 s 2 2 n s n2
10 100 K v 1 10 K v 20 K p 2 Kp
From the equations, it can be seen that increasing Kp will increase n and thus the speed of response. Increasing Kv will increase the damping ratio and thus the damping in the system.
4 a). Pole-Zero locations:
(i)
(ii) 5
-1 0
-5
5
-1 0
Sys1
-5
Sys2 -5
-5
5
(iii)
-1 0
The pole at s=-1 will dominate the response. The response will be close to that obtained for Sys1.
-5
Sys3 -5
(iv) 0 .2
The response will be dominated by the pair of complex conjugate poles
P o le a t -1 0
-0 .5
-1 .0
Sys4 -0 .2
Step Responses:
Octave Program: sys1=zp([],-1,1); sys2=zp([],-10,10); sys3=zp([],[-1 -10],10); step(sys1); hold on; step(sys2); hold on; step(sys3);
Octave Program:
Sys4=tf(1,[0.1 1.11 1.12 0.111 0.01]); Step(Sys4)
View more...
Comments