Download ME2113-1-Deflection and Bending Stresses in Beams...
Description
ME2113-1 DEFLECTION AND BENDING STRESSES IN BEAMS (EA-02-21)
SEMESTER 3 2011/2012
NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MECHANICAL ENGINEERING
ME2113‐1 Deflection and Bending Stresses in Beams
2011
Contents Objective ................................................................................................................................................................ 2 Sample Calculations .............................................................................................................................................. 2 Calculation of Young's Modulus ........................................................................................................................ 2 Calculation of Poisson's Ratio ............................................................................................................................ 2 Slope of the Graph .............................................................................................................................................. 3 Bend Moment Magnitude at Strain gauge location ............................................................................................ 3 Theoretical Magnitude of Longitudinal Stresses ................................................................................................ 3 Experimental Magnitude of Longitudinal Stresses ............................................................................................. 3 Results.................................................................................................................................................................... 4 Table 1 ................................................................................................................................................................ 4 Table 2 ................................................................................................................................................................ 4 Graph 1 ............................................................................................................................................................... 5 Graph 2 ............................................................................................................................................................... 6 Graph 3 ............................................................................................................................................................... 7 Graph 4 ............................................................................................................................................................... 8 Handgrip Force ................................................................................................................................................... 9 Discussion .............................................................................................................................................................. 9 Conclusion ........................................................................................................................................................... 10
1|P a g e
ME2113‐1 Deflection and Bending Stresses in Beams
2011
Objective The objective of this experiment to correlate beam theory with an actual demonstration of loading a beam differently and examining the resulting stress and final deflection of the beam as a result of the loads. From the measurement of stresses and deflection values, students are supposed to calculate the resulting Young's Modulus and Poisson's ratio of the beam material. Both the magnitude and signs of the strains and stress in the beam are investigated about their correlation with one another with the use of beam theory.
Sample Calculations Calculation of Young's Modulus Linear Least Squares Fits of Load P against vertical deflection ν 5.856467896 0.028426
m
c
σm
0.03309476
0.053828
σc
2
0.999872282
0.057973
σy
r
P(g)
(‐)VL(mm)
P(N)
250
2.4525
L (where load P is applied) b h
L 0.37
U 0.45
A 0.41
250 mm 25.6 mm 6.06 mm 474.7627008 mm4
Izz
Young' s Modulus, E
P L3 VL 3I zz
250 3 2.4525 0.41 3474.7627
65621.67912 MPa 65.62167912 GPa
Calculation of Poisson's Ratio εzz1 ‐1.5E‐05
εxx1
εzz2
εxx2
4.45E‐05 0.000008 ‐2.3E‐05
Poisson' s Ratio, -
zz xx
- 1.5E - 05 0.000008 or 4.45E - 05 - 2.3E - 05
0.337079
or
0.347826
2|P a g e
ME2113‐1 Deflection and Bending Stresses in Beams
2011
Slope of the Graph P (N) 2.4525
εxx1 4.45E‐05
9.81
0.000183
Slope of the Graph
P1 P2 ( xx1 )1 ( xx1 ) 2
9.81 ( 4.452E.4525 05 ) 0.000183
53315.21739N
Bend Moment Magnitude at Strain gauge location P(N)
Mxz(Nm) at x = 50mm 0.4905 0.981 1.4715 1.962 2.4525 2.943
Mxz(Nm) at x = 150mm 0.24525 0.4905 0.73575 0.981 1.22625 1.4715
Theoretical σxx1 (Mpa) at x = 50mm 3.13043758 6.26087516 9.39131274 12.5217503 15.6521879 18.7826255
σxx2 (Mpa) at x = 150mm 1.56521879 3.13043758 4.69565637 6.26087516 7.82609395 9.39131274
Experimental σxx1 (Mpa) at x = 50mm 2.92016472 5.8075186 8.9573592 11.9759564 14.7976886 17.8490967
σxx2 (Mpa) at x = 150mm 1.50929862 3.08421892 4.46227418 5.9715728 7.41524974 8.793305
4|P a g e
ME2113‐1 Deflection and Bending Stresses in Beams
2011
Graph 1
Graph of Load P against vertical deflection ν 16 y = 5.8565x + 0.0284
14 12
Load P (N)
10 8
Series1 Linear (Series1)
6 4 2 0 0
0.5
1
1.5
2
2.5
3
Vertical Deflection, ν (mm)
m
Linear Least Squares Fits of Load P against vertical deflection ν 5.856467896 0.028426
c
σm
0.03309476
0.053828
σc
2
0.999872282
0.057973
σy
r
5|P a g e
ME2113‐1 Deflection and Bending Stresses in Beams
2011
Graph 2
Graph of εzz1 against εxx1 & εzz2 against εxx2 0.00006 0.00004 0.00002 y = ‐0.3119x + 9E‐07 0 ‐0.00015
‐0.0001
‐0.00005
εzz
‐0.0002
0
0.00005
0.0001
0.00015
0.0002
0.00025
0.0003
εzz1 against εxx1 εzz2 against εxx2
‐0.00002
Linear (εzz1 against εxx1 ) ‐0.00004
Linear (εzz2 against εxx2 )
‐0.00006 ‐0.00008 y = ‐0.3186x ‐ 8E‐07 ‐0.0001
εxx
Linear Least Squares Fits of εzz1 against εxx1 m ‐0.318573 ‐7.5254E‐07 c
Linear Least Squares Fits of εzz2 against εxx2 m ‐0.311861 9.25705E‐07 c
σm
0.003288
5.79899E‐07
σc
σm
0.003421
3.00697E‐07
σc
r2
0.999574
6.26763E‐07
σy
r2
0.999519
3.17307E‐07
σy
ν1 =
0.318573
ν2 =
0.311861 6|P a g e
ME2113‐1 Deflection and Bending Stresses in Beams
2011
Graph 3
Graph of P against εxx1 16 y = 53824x + 0.0661 14 12
Load P(N)
10 8
Series1 Linear (Series1)
6 4 2 0 0
0.00005
0.0001
0.00015
0.0002
0.00025
0.0003
εxx1
Linear Least Squares Fits of P against εxx1 m 53823.94 0.066111 c σm
358.434
0.063208
σc
r2
0.999823
0.068316
σy 7|P a g e
ME2113‐1 Deflection and Bending Stresses in Beams
2011
Graph 4
Graph of Maximum Longitudinal Stress xx against location along a beam x 25 Maximum Longitudinal Stress xx(MPa)
Theoretical 1 20
Theoretical 2
15
Theoretical 3
10
Theoretical 4 Theoretical 5
5
Theoretical 6
0 ‐5
0
50
100
150
200
300
350
Experimental 1 Experimental 2 Experimental 3
‐10
Experimental 4
‐15 ‐20
250
Experimental 5 Location along the beam (mm)
Experimental 6
8|P a g e
ME2113‐1 Deflection and Bending Stresses in Beams
2011
Handgrip Force εxx1hand= m= c=
1.18E‐03 53823.9 0.06611
P m xx1hand c ( 53823.9 1.18E - 03) 0.06611 6.35 E 1 N
Discussion 1.
Comment on the signs of the strains (xx1, zz1, xx2 and zz2) with respect to the location and orientation of the strain gauges and how the beam is loaded.
Sign Conventions +ve - Tensile Stress -ve - Compressive Stress +ve Stresses xx1 & zz2 - ve Stresses xx2 & zz1 xx1 & zz1 Top part of the beam xx2 & zz2 Bottom part of the beam
Hence, xx1 & zz2experiences tensile stress as a result of loading while xx2 & zz1 experiences compressive stress due to loading. As strains on the longitudinal axis can be visually observed experiencing the tensile stresses on the top and compressive stresses at the bottom, strains in zz directions could be characterized by formulas zz1= -vxx1 & zz2=- vxx2 as the resultant stresses due to loading. (This is due to relative small magnitude of experienced stresses (about 1/3 strain) as compared to strains in the xx direction.) 2.
With reference to Graph 4, comment on the slopes of the six theoretical lines and also on how stress varies with beam location. As applied force P/longitudinal stress xx1 ↑ gradient ↑ As x increases, σxx1 tends to 0 independent of Load P at x=250mm. On the other hand, as x increases σxx1 increases. This means the fixed end of the beam experience the highest longitudinal stress while the free end experience no stresses theoretically.
9|P a g e
ME2113‐1 Deflection and Bending Stresses in Beams
3.
2011
Comment on the accuracy of your handgrip force. The gripper force is assumed by calculations to be exactly perpendicular to the bottom surface of the beam May not be true Handgrip Force is postulated from data derive experimentally experimental errors However, as the error is not significant which can be shown by comparing the theoretical and experimental results, we can conclude that the handgrip force evaluated is accurate.
Conclusion In conclusion, the application of beam theory has been studied and examined in this experiment. Young’s Modulus and Poisson’s Ratio of the material used in this experiment are 65.6GPa and 0.34 respectively. Lastly, the magnitudes and signs of the strains and stresses at two locations along the cantilever beam has been investigated.
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.