MD Singh Power Electronics Solution Manual to Chapter 14
November 15, 2017 | Author: Anoop Mathew | Category: N/A
Short Description
Descripción: MD Singh Power Electronics Solution Manual...
Description
CHAPTER
14
14.1 Back emf at 800 rpm, Eb1 = E – Ia . Ra = 230 – (7 ¥ 0.2) = 228.6 V Rated speed Now,
W1 =
800 ¥ 2p = 83.78 rad/s. 60
ka.f1 ¥ 83.78 = Eb1 = 228.6 Kaf1 = 2.73
\
(i)
(i) Back emf at 500 rpm is Eb2 500 . = 800 Eb1 Eb2 =
\
500 ¥ 228.6 = 142.9 V 800
Motor terminal voltage = Eb2 + Ia Ra = 142.9 + (7 ¥ 0.2) = 144.3 V (ii)
(ii)
Let us take the new flux f2 = Kf1 Since
Eb = Ka . f . w : Eb3 = Ka . f2 ¥
1100 ¥ 2p 60
= Ka . Kf1 ¥ 115.19 Substituting from Eq. (i), gives Eb3 = K · ¥ 2.73 ¥ 11.19 = 314.47 K.
(iii)
T = Ka . f . Ia, We have
(iii) Since Ka . f1. Ia1 = Ka . f2 . Ia2 or
Ia2 = =
f1 Ia . Ia1 or Ia2 = 1 f2 K 7 K
E = Eb3 + Ia2 . Ra
\ or
230 = Eb3 + 0.2 Ia2
Substituting (iii), and (iv) in five gives
(v)
70
Power Electronics
230 = 314.47 K +
7 . ¥ 0.2 k
314.47 k2 – 230 k + 1.4 = 0 feasible value of k is 0.71. Hence, the flux must be reduced to 0.71 of its rated value. 14.2 From example 14.1,
Eb1 = 228. 6 V,
Rated motor torque = T1=
\
W1 = 83.78 rad/s
Eb1 ¥ Ia1 228.6 ¥ 7 = w1 83.78
= 19.10 Nm. Now,
T = Ka . f . Ia.
19.10 = Ka . f ¥ 7 and and 800 = Ka . f Ia2 Where IA2 is the current under regenerative breaking. From equations (i) and (ii), 800 ¥ 7 Ia2 = = 293.19 A 19.10
\
Back emf,
Eb2 = E + Ia2 . Ra = 230 + 293.19 ¥ 0.2 = 288.64 V
New speed,
W2 =
Eb2 288.64 ¥ W1 = ¥ 83.78 Eb1 228.6
= 105.78 rad/s = 1010 rpm. 14.3 (i) For single phase semiconverter controlled d.c. drive, we can write for field circuit ds, Ef = Efmax = Now,
Ifmax =
Em (1 + cosa) p 2 Em 2 2 ¥ 210 = = 189 V. p p E f max Rf
=
189 = 1.26 A 150
(ii) Now, we have the relation Ia = Also,
T 80 = 60.18 A = Ia. If 1.055 ¥ 1.26
2p ˆ Ê ¥ 1.26 Eb = Ka . W . If = 1.055 ¥ Ë960 ¥ 60 ¯ = 133.64 V.
Now,
Ea = Eb + Ia . Ra = 133.64 + 60.18 ¥ 0.25 = 148.69 V
(i) (ii)
Solution Manual 71
Armature Voltage is given by Ea = 148.69 =
Em . (1+ cosa) p 2 ¥ 210 (1 + cos a) \ a = 55°. p
(iii) Output power, P0 = Eq. By neglecting losses, we can write
Ia = 148.69 ¥ 60.18 = 8948.16 W.
Pa = P0 = 8948.16 Rms input current
Irms
p -aˆ = Ia Ê Ë p ¯ = 60.18 Ê Ë
1
2
p - 55 ˆ p ¯
1
2
= 50.15 Now, input voltage-ampere rating is E.I. = E. Irms = 210 ¥ 50.15 = 1053.5 Input power-factor assuming negligible harmonics is given by PF = 14.4 (a) (1) kaf = 0.45 V/rpm Now, (2)
Ermature voltage,
=
Pa 8948.16 = = 0.85 EI 10531.5 0.45 ¥ 60 = 4.3 V-s/rad. 2p
T = kaf . Ia = 4.3 ¥ 35 = 150.4 N-m. Ea = =
2 Em cos a. p 2 2 ¥ 480 cos 60 = 216.08 V. p
Eb = Ea – Ia Ra = 216.08 = (35 ¥ 0.15) = 210.83 V.
\
Speed
(3)
\
N =
Eb 210.75 = 468.6 rpm = ka f 0.45
I = 35 A. Supply volt ampere,
EI = 480 ¥ 35 = 16800 VA Ps = Ea. Ia = 216.08 ¥ 35 = 7562.8 W.
\
PF =
7562.8 = 0.45 16800
\
Supply power factor
(b)
(1) Back emf at the time of polarity reversely Eb = 210.83 V Now,
Ea = Eb + Ia . Ra = – 210.83 + (35 ¥ 0.15)
72
Power Electronics
= – 205.58 V Also, (2)
Ea =
2 2 ¥ 480 . cos a \ a = 118.40 p
Power from d.c. machine is Pg = 210.83. ¥ 35 = 7379.05
Power loss in the armature resistance is PR = Ia2 Ra = (35)2 ¥ 0.15 = 183.75 W. Power fed back to ac supply is Ps = 7379.05 – 183.75 = 7195.3 W Ps = Ea Ia = 205.58 ¥ 35 = 7196 W.
Also,
Em = 230 ¥ 2 = 325.27 V
14.5 Now,
Eb = Ea – Ia Ra = 220 – 12 ¥ 2.5 = 190 V 1500 ¥ 2p = 157.07 rad/s. 60 Eb 190 = = 1.21 Kaf = w 157.07 Ea = Eb + Ia Ra. W =
Now, or (a)
2 Em cos a = Ia Ra + Eb p At rated torque, Ia = 12 A. Back emf at 1000 rpm =Eb1 =
1000 ¥ 190 1500
= 126.67 V. Now, from Eq. (i), 2 ¥ 325.27 cosa = (12 ¥ 2.5) + 126.67 p
a = 40.44°.
\ (b)
For the speed of 1500 rpm, Eb = – 190 V
\
From (i),
2 ¥ 325.27 cosa = (12 ¥ 2.5) – 190 p
a = 140.56°.
\ (c)
From (i), For
a = 150° & Ia = 12 A.
2 ¥ 325.27 cos 150 = 12 ¥ 2.5 + Eb p
\ Since
Eb = – 209.33 V kaf = –1.21
(i)
Solution Manual 73
Now,
W =
Eb - 209.33 = 173 rad/s. = ka f - 1.21
= 1652.03 rpm. 14.6 (a) Semiconductor controlled d.c. drive. (1)
N = 1200 rpm =
1200 ¥ 2p = 125.66 rad/sec 60
From Eq. (14.41),
È ( 2 ¥ 230 / p ) (1 + cos30) - (0.08 ¥ 125.66) ˘ T = 0.02 Í ˙ 0.3 + (0.02 ¥ 125.66) Î ˚ = 84.96 N-M. (2)
From Eq. (14.40), 1
Ê84.96 ˆ 2 = 65.18 A Ia = Ë 0.02 ¯ (3)
Motor terminal voltage is given by Ea =
2 ¥ 230 (1 + cos.30) = 193.20 V. p
Input power is given by Ps = Ea . Ia = 193.20 ¥ 65.18 = 12592.79 W. Input volt-ampere = 230 ¥ 65.18 ¥ ( 5 6 )
1
2
= 13685.213 VA. Supply power factor (b) (i)
PF =
12592.78 = 0.92 13685.213
full-converter controlled d.c. series motor.
From Eq. (14.41),
È ( 2 2 ¥ 230 / p ) . cos 30 - 0.08 ¥ 125.66 ˘ T = 0.02 Í ˙ 0.3 + (0.02 ¥ 125.66) Î ˚ = 72.58 N-m. (2)
From Eq. (14.40), 1
Ê72.58 ˆ 2 = 60.24 A Ia = Ë 0.02 ¯ (3)
Now,
Ea =
2 2 ¥ 230 cos 30 = 179.33 V. p
Ps = 179.33 ¥ 60.24 = 10802.84 W
\ Input volt-ampere
= 230 ¥ 60.24 = 13855.2 VA
2
74
Power Electronics
PF =
10802.84 = 0.78. 13855.2
14.7 Given: Eb1 = 405 V, N1 = 960 rpm, N2 = 750 rpm. Eb2 Eb1
Now,
=
N2 750 = 316.41 V \ Eb2 = 405 ¥ 960 N1
Eb1 = E – Ia Ra. \ 405 = 440 – Ia Ra\ Ia Ra = 35 V But,
Ia =
100 ¥ 1000 = 227.27 A 440
Ra = 0.154 W.
\
Now, terminal voltage of dc motor at 960 rpm and 75% rated torque, = Eb2 + Ia . Ra = 316.41 + (0.5 ¥ 227.27 ¥ 0.154) = 335.25 V Neglecting voltage drop in converter circuit, Ea = 335.25 =
3 3 Em . cosa. p 3 3 2 . Eac . cosa ¥ p 3
where Eac is rms value of a.c. voltage 335.25 =
3 2 ¥ 415 cos a p
a = 53.26
\ 14.8 (a)
Ef = = If = Now,
2 Em cos a Take a = 0 p 2 ¥ 2 ¥ 410 cos 0 = 369.13 V p Ef 369.13 = 2.46 A. = Rf 150
T = Ia . ka . If = 30 ¥ 1.2 ¥ 2.46 = 88.56 N-m.
(b)
For
a = 45°,
Ea =
2 ¥ 2 ¥ 410 cos 45 p
= 261 V. Now,
Eb = 261 – 30 ¥ 0.3 = 252 V
Solution Manual 75
W =
\
Eb 252 = = ka.If 1.2 ¥ 2.46
= 85.36 rad/s = 815.22 rpm (c)
Ps = Ea . Ia = 30 ¥ 261 = 7830 W EA = 410 ¥ 30 = 12300 Pf =
14.9 (a) Phase voltage
Ep =
7830 = 0.63 12300 210 3
2 ¥ 121.24 = 171.46 V
Em =
\ Field controlled voltage For maximum field current,
\
Ef =
= 121.24 V
3 3 Em cos a p
a = 0. Ef =
3 3 ¥ 171.46 = 283.5 gv. p
If =
Ef 283.59 = 1.134 A. = Rf 250
Ia =
HP ¥ 746 25 ¥ 746 = 49 A. = Volts 380
T = Ia . ka . If = 49 ¥ 1.2 ¥ 1.134 = 66.68 N-M Eb = ka . If . W = 1.2 ¥ 1.134 ¥ 1800 ¥ = 256.50 V. Ea = Eb + Ia . Ra = 256.50 + 49 ¥ 0.15 = 263.85 V 3 3 ¥ 171.46 cos a p
Eq = 263.85 =
\
a = 21.50° 3 3 Em cos a p
(b)
Ea =
for
a = 21.50°, Ea = 263.86 V Eb = Ea – Ia . Ra. = 263.86 –
10 ¥ 65.18 ¥ 0.15 100
= 262.88 V.
2p 60
76
Power Electronics
Now,
N =
Ea - Ia Ra Kf
\
f =
263.86 ¥ 49 ¥ 0.15 = 0.118. 1.2 ¥ 1800
No-load speed is given by NNL = (c)
Speed regulation
14.10 Now, back-emf,
Eb 262.88 = 1856.5 rpm. = ka f 1.2 ¥ 0.118
1856.5 - 1800 ¥ 100 1800 = 3.13%. Ton 10 ¥ 10-3 ¥ 220 = 100 V. . Edc. = Ea = T 22 ¥ 10-3 =
Eb = K. N. = 0.495 ¥ 146.60 = 72.57 V.
Now,
Ea = Eb – Ia . Ra. 100 = 72.57 – 3Ia Ia = 9.2 A.
\ 14.11 (a)
Ep =
Ea = =
EL 3
=
220 3
= 127 V.
3 6 Ep cos a. p 3 6 ¥ 127 cos (22.5) p
= 274.45 V. ia =
70 T = = 33.33 A. kt 2.1
Average speed is given by N = =
Ea - ia . Ra . ka f 274.45 - 33.33 ¥ 0.78 0.209
= 1188 rpm.
a = 180° – 22.5° = 157.5°. (b)
Ea =
3 6 ◊ ¥ 127 ¥ cos (157.5∞) p
Solution Manual 77
= – 274.45 V. Eb = – Ea + Ia . Ra = 274.45 + 33.33 ¥ 0.78 = 300.45V. Speed
(c)
N =
Ea =
Eb 300.45 = 1437 rpm. = ka f 0.209 3 6 ¥ 127 ¥ cos (67.5) p
= 113.68 V. Speed,
N = 720 =
Ea - ia Ra ka f 113.68 - ia ¥ 0.78 0.209
\
ia = – 47.18 A.
\
T = – 2.1 ¥ 47.18 = – 99 Nm (d)
\ \ \
a = 180 – 67.5 = 112.5°. Ea = – 113.68 V 720 =
113.68 + ia. 0.78 0.209
ia = 47.17 A T = 2.1 ¥ 471 = 99 N-m.
View more...
Comments