MD Singh Power Electronics Solution Manual to Chapter 12
November 15, 2017 | Author: Anoop Mathew | Category: N/A
Short Description
Descripción: MD Singh Power Electronics Solution Manual...
Description
CHAPTER
12
Lr = 30 mH, Cr = 5.2 mf, 12.1 Given: Edc = 150 V, R=4W (i) For series resonant inverters, wr =
F0 = 5 kHz,
1 30 ¥ 10
-6
¥ 5.2 ¥ 10
-6
tq = 20 ms,
4¥4
-
4 ¥ 30 ¥ 30 ¥ 10 -12
= 44,384.68 rad /s. But
wr = 2 p fr
\ fr = 7.064 kHz
wo = 2p fo = 2p ¥ 5103 = 31415 ◊ 92 rad / s.
and
Toff > tq =
\
=
p p wo wr p p 31415 ◊ 92 44384 ◊ 68
= 28.94 ms. (ii)
Maximum possible frequency is given by 1 1 = Fmax = p 2 (tq + p / wr ) 2 Ê 20 ¥ 10-6 + ˆ ÁË ˜ 44,384.38 ¯ = 5.496 kHz (iii) Capacitor voltage from Eq. (12.33) is given by 4p È ˘ Í 2 ¥ 30 ¥ 10-6 ¥ 44384 ◊ 68 + 1 ˙ ˙ Ec = 150 Í e Í ˙ Í ˙ 4p -1 ˙ Íe 6 Î 2 ¥ 30 ¥ 16 ¥ 44384.68 ˚ = 152.671 V
(iv) From Eq. (12.36), rms load current is given by ILrms = 25.58 A (v)
Output power,
Po = I 2 Lrms ¥ R = (25.58)2 ¥ 4 = 2617.35 W
(vi)
Rms thyristor current, Irms (SCR) =
25.58 2
= 18.08 A
62
Power Electronics
from Eq.(12.34), average load current is given by IL(avg) = 18.92 A.
\
SCR average current = Iavg(SCR) =
1
2
IL(avg) = 9.46 A.
12.2 Given:- Edc = 150 V, Lr = 25 mH, R = 1W, tq = 25 ms, C1 = C2 = 6 mf. In half-bridge circuit, Ceq = C1 + C2 = 12 mf. (a) From Eq. (12.38), 1 R2 Lr .ceq . 4 Lr 2
wr =
1
=
25 ¥ 10
-6
¥ 12 ¥ 10
-6
-
1 4 ¥ 25 ¥ 25 ¥ 10-12
= 54129.47 rad/s. fr = 8.62 kHz
\ (b)
From Eq.(12.40), maximum resonant frequency fr (max) =
1 2 ¥ 25 ¥ 10-6
= 20 kHz
f0 = 0.3 ¥ 20 ¥ 103 = 6 kHz.
Now,
Period for resonant waveform, tr = Delay time
1 = 0.167 msec. fo
=
Output period T0
td =
1 20 ¥ 103
= 0.05 msec.
To - tr . 2
Ê 0.167 ¥ 10-3 ˆ - 0.05 ¥ 10-3 ˜¯ = 33.5 msec. = ÁË 2 Since, delay time is greater than zero, therefore, this inverter circuit would operate in non-overlapping mode. (c)
Now,
tp =
=
1 Ê 2 wr . Lr .ˆ tan -1 Ë wr . R ¯
Ê 2 ¥ 54129.47 ¥ 25 ¥ 10-6 ˆ 1 tan -1 ÁË ˜¯ 54129.47 1
= 1.847 ¥ 10-5 ¥
69.72 ¥ p = 22.48 usec. 180
Now, 150
Ec1 = e
1¥ 2 ¥p +1 2 ¥ 25 ¥ 10-6 ¥ 54129.47
=e
150 + 1 = 13.39 V 2.322
Solution Manual 63
\
150 + 13.39 Ip = sin ( 2p ¥ 8.62 ¥ 103 ¥ 22.48 ¥ 10-6 ) - e 54129.47 ¥ 25 ¥ 10-6
22.48 ¥ 10-6 2 ¥ 25 ¥ 10-6
= 72.39 A (d)
Average SCR current, - R Lr ˘ ( Edc + Ec1 ) fo ÈÍ 4. Lr + Iav CSCR = 1 e Î ˚˙ ÈÎwr 2 + ( R 2 Lr )2 ˘˚ Lr.
(e)
= 18.96 A. Rms current through the SCR is given by
È
Irms(SCR) =
(f)
Rms load current
( Edc + Ec1 ) Í 1 wr . Lr .
(
- R.tr
1- e Í Í 2.To ÎÍ
2 Lr
)
Ï ÔÔ Lr R 1 Ì - . Ô R Lr ( 2 w )2 + R r ÓÔ Lr
( )
= 24.64 A = 2. Irms (SCR) Io = 2 ¥ 24.64 = 49.28 A
(g)
Output power,
P0 = Io2.R = (49.28)2 ¥ 1
= 2428.52 W P 2428.52 Average supply current (Is) = o = 150 Edc = 16.19 A 12.3 Given: Cr = 6 mf, Lr = 30 mH, R = 3W, tq = 18 ms. Edc = 180 V, (a)
1 Ê 1012 9 ¥ 1012 ˆ Resonant frequency = 2p ÁË 30 ¥ 6 4 ¥ 30 ¥ 30 ˜¯
\
fr = 8.76 kHz wr = 2p fr = 55 kHz fo = 0.3 fr = 0.3 ¥ 8.76 ¥ 103 = 2.628 kHz
\
1
2
To =
1 = 0.38 msec. fo
td =
To 0.38 ¥ 10-3 1 - tr = = 76 ms. 2 2 8.76 ¥ 103
Thus the mode of operation is non overlapping. (b) Maximum operating frequency 1 1 = 27.78 kHz fr(max) where fr(max) = 2tq 2 fo(max) = 13.89 kHz.
fo(max) =
\ (c)
Instant at which the current reaches the peak, tp = Now, initial capacitor voltage is given by
(
)
1 2 wr . Lr = 0.015 msec tan -1 wr R
¸˘ ÔÔ˙ ˙ ˝ 2 Ô˙ ˛Ô˚˙
64
Power Electronics
Ec1
- 3p È - Rp ˘ 6 ¥ 55 ¥ 103 È 30 10 ¥ Í1 e Í1 - e Lr .wr ˙ Í = Edc Í = 180 - Rp ˙ - 3p Í ÍÎ1 + L .w ˙˚ Í 3 6 e r r ÍÎ1 + e 30 ¥ 10 ¥ 55 ¥ 10
˘ ˙ ˙ ˙ ˙ ˙˚
= 178.81 V - R tp
\
Peak current,
Ip =
Ip =
Edc + Ec1 2 Lr . sin ( wr .t p ) e wr.Lr 180 + 178.81 55 ¥ 103 ¥ 30
-3 ¥ 0.15 ¥ 10-3 -6 2 ¥ 30 ¥ 10-6
¥ 10 e
sin (55 ¥ 103 ¥ 0.015 ¥ 10-3 )
Ip = 75.18 A. (d)
Average SCR current: Iav (SCR) =
( Edc + Ec1 ) fo È 2 Ê R ˆ2 ˘ Íwr + ÁË ˙L . 2 Lr ˜¯ ˚ r Î
- R tr È ˘ ÍÎ1 + e 4 Lr ˙˚
= 5.98 A.
(e)
È Ï – R tr Í Ô Ê ˆ Ê E + Ec1 ˆ ÍË - 2 Lr ¯ Ê f o ˆ ÔÊ Lr ˆ - Ê R 1 e Irms (SCR) = Á dc Ë 2 ¯ ÌË R ¯ Á L Ë wr . Lr ¯˜ Í r Ô Á Í Ô Ë Î Ó
¸˘ Ô˙ 1 È ˆ Ô˙ 2 ˜ ˝˙ Í Í ( 2 w )2 + ÊÁ R ˆ˜ ˜ Ô˙ Ë Lr ¯ ¯ ˛Ô˚ ÍÎ r
= 25.34 A (f)
Rms load current
Io = 2 ¥ 25.34 = 50.68 A
(g)
Output power,
po = Io2 . R = 2568.46 W
\
Average supply current (Is) =
2568.46 = 14.26 A 180
12.4 Given: Lr = 0.1 mH, Cr = 10 mf, R = 1W, tq = 12 usec. Resonant frequency,
fr =
=
1 Ê 1 R2 ˆ 2 p ÁË Lr . Cr 4 Lr 2 ˜¯
Maximum possible frequency
2
1 Ê 1 1 ˆ Á 3 6 2p Ë 0.1 ¥ 10 ¥ 10 4 ¥ 0.1 ¥ 10-12 ¥ 0.1˜¯
= 4.97 kHz
\
1
1
2
1
2
Solution Manual 65
Fmax =
1 1 = p p 2 (tq + wr ) ˆ 2 ÊÁ12 ¥ 10-6 + Ë 2p ¥ 4.97 ¥ 103 ˜¯
= 4.44 kHz 12.5 Given: Edc = 12 V, R = 8W, Fs = 15 kHz (i) Source inductance from Eq.(12.62) is given by 4 4 Ldc = 0.4 ¥ = 0.4 ¥ = 33.95 mH. ws 2p ¥ 15 ¥ 103 (ii)
Resonant capacitor from (12.63), C1 =
2.165 2.165 = = 22.97 mF R.Ws 1 ¥ 2p ¥ 15 ¥ 103 Ws . Lr , Assume Q = 7 R
Now,
Q =
\
Lr =
Now,
Ws – Lr –
\
QR ˆ 1 Ws ÊÁ = 0.353 R ˜ Ë ws ¯ ws . cr
8¥7
7 ¥8 -
1 = 0.353 R Ws . Cr
1 = 0.353 ¥ 8 2p ¥ 15 ¥ 103 ¥ cr
Cr = 0.2 mF.
\ 12.6 Given:
Edc = 24 V,
E0 = 15 V,
(i)
p0 = E0.I0
\
I0 = From Eq. (12.75), Zr £
\ (ii) is
= 594.18 mH.
2p ¥ 15 ¥ 103
po = 14 W,
fr = 1.2 mHz
14 = 0.933 A. 15
Edc 24 = 24.17 W = 0.933 Io
Also, from (12.70),
Zr =
and from (12.71),
fr =
Lr = 24.17. Cr 1 2p Lr . Cr
=
\ 1.2 ¥ 106 =
1 2p Lr . Cr
Lr = 3.44 mH, Cr = 0.0052 mF From (12.73), peak switch current (p) = 0.933 + 24
0.0052 ¥ 10-6 3.44 ¥ 10-6
= 1.863 A
66
Power Electronics
(iii) From (12.74), peak voltage rating of capacitor is given by Vc (peak) = 2 Edc = 2 ¥ 24 = 48 V 12.7 Given: Edc = 200 V, E0 = 30 V, I0 = 4A fs = 100 kHz, Deff = 0.55 (i) Calculation duty ratio from (12.113), effective duty ratios is given by 0.5 =
2. n. 30 \ n = 1.67. 200
from (12.114),
Deff = D – 0.25 D
\
0.5 = 0.75 D
(ii)
\ D = 0.67.
Selection of resonant inductor Lr: Here
DD = 0.25 D Lr =
from (12.112), effective inductance
Lreff
0.25 ¥ 0.67 ¥ 100
= 17.48 mH 4 ( 41.67 ) ¥ 100 ¥ 103 = Lr + transformer leakage inductance
= 17.48 mH + 3.46 mH
@ 22 mH (say) from (12.110), minimum load current is given by I0(min) = where
1.67 ¥ 200 1.5 ¥ 500 ¥ 10-12 2 22 ¥ 10-6
c = 500 pF. I0(min) = 0.975 A.
\ Inductor current
\
ILr = I0 =
Io 4 = 2.4 A = n 1.67
VLr = I Lr X Lr = 2.4 ¥ 2 ¥ p ¥ 100 ¥ 103 ¥ 22 ¥ 10-6 = 33.18 V
(iii) Transformer selection. E0 = Deff. Es \ Es =
30 = 60 V 0.5
Ep = n . Es = 1.67 ¥ 60 = 100.2 V
\
VA = 100.2 ¥ 2.4 = 240 V
View more...
Comments