Mcconkey-chapter 9 Solution

April 22, 2018 | Author: Ghulam Murtaza | Category: Gas Turbine, Engines, Energy Technology, Gas Technologies, Gases
Share Embed Donate


Short Description

doc...

Description

Assignment of Power Plant-I

Designed by Sir Engr. Masood Khan

SOLVED PROBLEMS OF CHAPTER # 9

TITLE:

Gas Turbine Cycle

Designed by Sir Engr. Masood Khan

PROBLEM # 9.1: A gas turbine has an overall pressure ratio of 5 & a maximum cycle temperature of 550 C. The turbine drives the compressor and an electric generator, the mechanical efficiency of the drive being 97%. The ambient temperature is 20 C & the air enters the compressor at the rate of 15 kg/s; the isentropic efficiencies of the compressor & the turbine are 80 & 83%. Neglecting changes in Kinetic energy, the mass flow rate of fuel, & all pressure losses, calculates: (i) The power output; (ii) The cycle efficiency; (iii) The work ratio. GIVEN DATA: Pressure ratio, P2 / P1 = 5 Max temp, T 3 = 550 C = 823 K Mechanical efficiency of drive = 97 % Atmospheric temp, T 1 = 20 C = 293 K o ŋIS,C = 0.8 ŋIS,T = 0.83 m  = 15 kg/s, REQUIRED: Power output. Cycle efficiency.

GAS TURBI TURBI NE CYCLE 

Work ratio.

T2 = 293 + (464.05 –  293)*1/0.8 = 506.81 K Expansion process: γ-1/γ T4S/T3 = (P4 / P3) T4S = T3*(P4 / P3)γ-1/γ = 823*(1/5)  1.333-1/1.333  = 550 K From ŋIS,T: ŋIS,C = (T3 –  T4)/(T3 –  T4S) T4 = T3 – (T3 – T4S)*ŋis,c=823 – (823 – 550)0.83=596.41 K  Now work of expansion. C pg(T3 –  T4) = 1.15*(823  –  596.41) = 267.58 kJ/kg Work of compression required = Cpa(T 2 –  T1)/ŋMS = 1.005*(506.81  –   293)/0.97 = 221.52 kJ/kg Generator work = (Expansion work  –   Compression work)/drive efficiency = (267.58 –   221.52)/0.97 = 47.48 kJ/kg Power output = (generator work)(mass flow rate) = 47.48*15 = 712.2 kW Process in combustion chamber: Qs, heat supplied = Cpg(T 3 –  T2) = 1.15(823 –   506.81) = 363.6185 kJ/kg Cycle efficiency = net work output / heat supplied = 47.48 / 363.9185 = 0.1305 Work ratio = net work output / gross work output = 47.48 / 267.58 = 0.177

Gas Turbine Cycle

Designed by Sir Engr. Masood Khan

PROBLEM # 9.1: A gas turbine has an overall pressure ratio of 5 & a maximum cycle temperature of 550 C. The turbine drives the compressor and an electric generator, the mechanical efficiency of the drive being 97%. The ambient temperature is 20 C & the air enters the compressor at the rate of 15 kg/s; the isentropic efficiencies of the compressor & the turbine are 80 & 83%. Neglecting changes in Kinetic energy, the mass flow rate of fuel, & all pressure losses, calculates: (i) The power output; (ii) The cycle efficiency; (iii) The work ratio. GIVEN DATA: Pressure ratio, P2 / P1 = 5 Max temp, T 3 = 550 C = 823 K Mechanical efficiency of drive = 97 % Atmospheric temp, T 1 = 20 C = 293 K o ŋIS,C = 0.8 ŋIS,T = 0.83 m  = 15 kg/s, REQUIRED: Power output. Cycle efficiency.

Work ratio.

DIAGRAM: SOLUTION: Compression process: T2S / T1 = (P2 / P1)γ-1/γ γ-1/γ  1.4-1/1.4 T2S = T1*(P2 / P1)  = 293*(5)  = 464.05 K From Isentropic efficiency of compressor Ŋis,c = (T2S –  T1)/(T2 –  T1) => T2 = T1 + (T2S - T1)/ŋis,c

Gas Turbine Cycle

Kinetic energy changes, & the pressure loss in combustion, calculate: (i) The pressure b/w turbine stages; (ii) The cycle efficiency; (iii) The shaft power. GIVEN DATA: Over all pressure ratio = 4/1 Mass flow rate, mo= 60 kg/s Tmax = 650 C = 923 K Pa = P1 = 1.01 bar => P 2 = 4.04 bar Ta = T1 = 25 C = 298 K ŋis,c = 0.8 ŋis,hpt = 0.83 ŋiso,lpt = 0.85 Shaft mechanical efficiency = 0.98 REQUIRED: Pressure between turbine stages Cycle efficiency. Shaft power. DIAGRAM: SOLUTION: Compression process: T2S/T1 = (P2 / P1)γ-1/γ

T2 = 293 + (464.05 –  293)*1/0.8 = 506.81 K Expansion process: γ-1/γ T4S/T3 = (P4 / P3) T4S = T3*(P4 / P3)γ-1/γ = 823*(1/5)  1.333-1/1.333  = 550 K From ŋIS,T: ŋIS,C = (T3 –  T4)/(T3 –  T4S) T4 = T3 – (T3 – T4S)*ŋis,c=823 – (823 – 550)0.83=596.41 K  Now work of expansion. C pg(T3 –  T4) = 1.15*(823  –  596.41) = 267.58 kJ/kg Work of compression required = Cpa(T 2 –  T1)/ŋMS = 1.005*(506.81  –   293)/0.97 = 221.52 kJ/kg Generator work = (Expansion work  –   Compression work)/drive efficiency = (267.58 –   221.52)/0.97 = 47.48 kJ/kg Power output = (generator work)(mass flow rate) = 47.48*15 = 712.2 kW Process in combustion chamber: Qs, heat supplied = Cpg(T 3 –  T2) = 1.15(823 –   506.81) = 363.6185 kJ/kg Cycle efficiency = net work output / heat supplied = 47.48 / 363.9185 = 0.1305 Work ratio = net work output / gross work output = 47.48 / 267.58 = 0.177

PROBLEM # 9.2: In a marine gas turbine unit a HP stage turbine drives the compressor, and an LP stage turbine drives the propeller through suitable gearing . The overall pressure ratio is 4/1, the mass flow rate is 60kg/s, the maximum temperature is 650 C, & the air intake conditions are 1.01 bar & 25 C. The isentropic efficiencies of the compressor, HP turbine, & LP turbine, are 0.8, 0.83, & 0.85 respectively, & the mechanical efficiency of both shafts is 98%. Neglecting

Designed by Sir Engr. Masood Khan

C pg(T3 –  T4) = 181.93/0.98 = 923  –  T4 = 185.64/1.15 T4 = 923 –   185.64/1.15 = 761.57K

 Now from ŋis,hpt Ŋis,hpt = (T3 –  T4) / (T3 –  T4S) T4s= T3 – (T3 –  T4)/ŋis,hpt= 923 – (923 – 761.57)/0.83

T4s = 728.50 K γ-1/γ  1.333/0.333  Now, P3/P4 = (T3/T4S)  = (923/728.5) P3/P4 = 2.5786  Now since, P3 = P2 = 4.04 bar P4 = P3 /2.5786 = 4.04 / 2.5786 = 1.5667 bar Pressure between turbine stages = P 4 = 1.5667 bar  Now, P5 = P1 = 1.01 bar P4/P5 = 1.5667/1.05 = 1.55  Now, T4/T5s = (P4/P5)γ-1/γ  1.333-1/1.333 T5s = 761.57 / (1.55)  = 682.59 K From Isentropic efficiency of LPT: Ŋis,lpt = (T4 –  T5) / (T4 –  T5S) T5 = T4 –  (T4 –  T5S)*ŋis,lpt = 694.437 K Work of expansion in LPT C pg(T4 –  T5) = 1.15(761.57 –   694.437) = 77.20 kJ/kg cycle = W Net/Qs= 77.20/Cpg(T 3 –  T2) = 0.15 = 15 % o Shaft Power = m * WLPT / Shaft Efficiency Shaft Power = 60*77.20/ 0.98 = 4726.53 kW

Gas Turbine Cycle

Kinetic energy changes, & the pressure loss in combustion, calculate: (i) The pressure b/w turbine stages; (ii) The cycle efficiency; (iii) The shaft power. GIVEN DATA: Over all pressure ratio = 4/1 Mass flow rate, mo= 60 kg/s Tmax = 650 C = 923 K Pa = P1 = 1.01 bar => P 2 = 4.04 bar Ta = T1 = 25 C = 298 K ŋis,c = 0.8 ŋis,hpt = 0.83 ŋiso,lpt = 0.85 Shaft mechanical efficiency = 0.98 REQUIRED: Pressure between turbine stages Cycle efficiency. Shaft power. DIAGRAM: SOLUTION: Compression process: T2S/T1 = (P2 / P1)γ-1/γ γ-1/γ  1.4-1/1.4 => T2S = T1*(P2 / P1)  = 298*(4)  = 442.82 K From Isentropic efficiency of compressor: Ŋis,c = (T2S –  T1) / (T2 –  T1) T2 = T1+(T2S –  T1)/ŋis,c = 298+(442.82 – 298)/0.80 T2 = 479.025K Work of Compression C pa(T2 –  T1) = 1.005*(479.025  –  298) = 181.93 kJ/kg This Work + Some Frictional Work = HPT Work

Expansion Work of HPT = Compression Work/ŋ m,shaft

Gas Turbine Cycle

Designed by Sir Engr. Masood Khan

C pg(T3 –  T4) = 181.93/0.98 = 923  –  T4 = 185.64/1.15 T4 = 923 –   185.64/1.15 = 761.57K

 Now from ŋis,hpt Ŋis,hpt = (T3 –  T4) / (T3 –  T4S) T4s= T3 – (T3 –  T4)/ŋis,hpt= 923 – (923 – 761.57)/0.83

T4s = 728.50 K γ-1/γ  1.333/0.333  Now, P3/P4 = (T3/T4S)  = (923/728.5) P3/P4 = 2.5786  Now since, P3 = P2 = 4.04 bar P4 = P3 /2.5786 = 4.04 / 2.5786 = 1.5667 bar Pressure between turbine stages = P 4 = 1.5667 bar  Now, P5 = P1 = 1.01 bar P4/P5 = 1.5667/1.05 = 1.55  Now, T4/T5s = (P4/P5)γ-1/γ  1.333-1/1.333 T5s = 761.57 / (1.55)  = 682.59 K From Isentropic efficiency of LPT: Ŋis,lpt = (T4 –  T5) / (T4 –  T5S) T5 = T4 –  (T4 –  T5S)*ŋis,lpt = 694.437 K Work of expansion in LPT C pg(T4 –  T5) = 1.15(761.57 –   694.437) = 77.20 kJ/kg cycle = W Net/Qs= 77.20/Cpg(T 3 –  T2) = 0.15 = 15 % o Shaft Power = m * WLPT / Shaft Efficiency Shaft Power = 60*77.20/ 0.98 = 4726.53 kW

PROBLEM # 9.3: For the unit of problem 9.2, calculate the cycle efficiency obtainable when a heat exchanger is fitted. Assume a thermal ratio of 0.75. DATA: From previous problem Heat exchanger is fitted Thermal ratio = 0.75

Designed by Sir Engr. Masood Khan

REQUIRED: Cycle efficiency

Qs = 1.15(923  –  634) = 332.35 kJ/kg ηThermal = Wnet / Heat Supplied = 86.28/332.35= 0.259

SOLUTION: Compression process: γ-1/γ  1.4-1/1.4 T2S / T1 = (P2/P1)  = (4) T2S = T1*1.49 = 298*1.49 = 442.82 From Isentropic efficiency of compressor: Ŋis,c = (T2S –  T1) / (T2 –  T1) T2 = T1+(T2S –  T1)/ŋis,c = 298+(442.82 – 298)/0.98 T2 = 479K Work of Compression = C pa(T2 –  T1) = 181.905 KJ/kg Compression Work is supplied by the HPT Expansion Work from HPT=181.905/Shaft efficiency C pg(T4 –  T5) = 181.905 / 0.98 T5 = T4 –   181.905 / (0.98*Cpg) = 761.59K  Now, ŋis,hpt = (T4 –  T5) / (T4 –  T5S) T5s = T4 –  (T4 –  T5)/ŋis,hpt = 923 – (923 – 761.59)/0.83 T5s = 728.5K γ-1/γ  1.333/0.333  Now P4/P5=(T4/T5S) =(923/728.5)  = 2.5786 P5 = P4/2.5786 = 4.04/2.5786 = 1.5666 bar  Now P5/P6 = 1.5666/1.01 = 1.55 γ-1/γ  0.333/1.333 T5/T6S = (P5/P6)  = (1.55) 0.333/1.333 T6S = T5 / 1.55  = 682.61 K

PROBLEM # 9.4 In a gas turbine generating set two stages of compression are used with an intercooler between stages. The HP turbine drives the HP compressor, & the LP turbine drives the LP compressor & the generator. The exhaust from the LP turbine passes through the heat exchanger, which transfer heat to the air leaving the HP compressor. There is a reheat combustion chamber b/w turbine stages, which raises the gas temperature to 600 C, which is also the gas temperature at entry to the HP turbine. The overall pressure ratio is 10/1, each compressor having the same pressure ratio, & the air temperature at entry to the unit is 20 C. The heat exchanger thermal ratio may be taken as 0.7, & intercooling is complete between compressor stages. Assume isentropic efficiencies of 0.8 for both compressor stages, & 0.85 for both turbine stages & that 2% of the work of each turbine are used in overcoming friction.  Neglecting all losses in pressure, & assuming that velocity changes are negligibly small, calculates: (i) The power output in kilowatts for a mass of 115 kg/s;

Gas Turbine Cycle

Designed by Sir Engr. Masood Khan

REQUIRED: Cycle efficiency

Qs = 1.15(923  –  634) = 332.35 kJ/kg ηThermal = Wnet / Heat Supplied = 86.28/332.35= 0.259

SOLUTION: Compression process: γ-1/γ  1.4-1/1.4 T2S / T1 = (P2/P1)  = (4) T2S = T1*1.49 = 298*1.49 = 442.82 From Isentropic efficiency of compressor: Ŋis,c = (T2S –  T1) / (T2 –  T1) T2 = T1+(T2S –  T1)/ŋis,c = 298+(442.82 – 298)/0.98 T2 = 479K Work of Compression = C pa(T2 –  T1) = 181.905 KJ/kg Compression Work is supplied by the HPT Expansion Work from HPT=181.905/Shaft efficiency C pg(T4 –  T5) = 181.905 / 0.98 T5 = T4 –   181.905 / (0.98*Cpg) = 761.59K  Now, ŋis,hpt = (T4 –  T5) / (T4 –  T5S) T5s = T4 –  (T4 –  T5)/ŋis,hpt = 923 – (923 – 761.59)/0.83 T5s = 728.5K γ-1/γ  1.333/0.333  Now P4/P5=(T4/T5S) =(923/728.5)  = 2.5786 P5 = P4/2.5786 = 4.04/2.5786 = 1.5666 bar  Now P5/P6 = 1.5666/1.01 = 1.55 γ-1/γ  0.333/1.333 T5/T6S = (P5/P6)  = (1.55) 0.333/1.333 T6S = T5 / 1.55  = 682.61 K From ŋis,lpt = (T5 –  T6)/(T5 –  T6S) T6 = T5 –  (T5 –  T6S)*ŋis,lpt = 686.559 K Work of Expansion in LPT = C pg(T5 –  T6) = 1.15(461.59  –   686.559) = 86.28 kJ/kg  Now Heat Exchanger Thermal Ratio is given by Thermal Ratio =Temp Rise/max. Temp. diff. available 0.75 = (T3 –  T2) / (T6 –  T2) T3 = (T6 – T2)*0.75+T 2 = (686.559 – 479)*0.75 + 479) = 634 K Heat supplied in Combustion Chamber = C pg(T4 –  T3)

PROBLEM # 9.4

Gas Turbine Cycle

DATA: Tmax. = 600 C = 873 K T1 = 20 C = 293 K Over all Pressure Ratio = 10/1 Same pressure ratio through each compressor Ŋis,C = 0.8, for each Compressor & Intercooling is complete Ŋis,T = 0.85, for each Turbine

Designed by Sir Engr. Masood Khan

2 % loss for each turbine power Thermal Ratio of Heat Exchanger = 0.7 o m = 115 kg/s Reheat to Tmax. REQUIRED: Power Output,

In a gas turbine generating set two stages of compression are used with an intercooler between stages. The HP turbine drives the HP compressor, & the LP turbine drives the LP compressor & the generator. The exhaust from the LP turbine passes through the heat exchanger, which transfer heat to the air leaving the HP compressor. There is a reheat combustion chamber b/w turbine stages, which raises the gas temperature to 600 C, which is also the gas temperature at entry to the HP turbine. The overall pressure ratio is 10/1, each compressor having the same pressure ratio, & the air temperature at entry to the unit is 20 C. The heat exchanger thermal ratio may be taken as 0.7, & intercooling is complete between compressor stages. Assume isentropic efficiencies of 0.8 for both compressor stages, & 0.85 for both turbine stages & that 2% of the work of each turbine are used in overcoming friction.  Neglecting all losses in pressure, & assuming that velocity changes are negligibly small, calculates: (i) The power output in kilowatts for a mass of 115 kg/s; (ii) The overall cycle efficiency of the plant

Overall Efficiency,

DIAGRAM: SOLUTION: Compressor side: γ-1/γ T2S/T1 = (P2/P1) where P2/P1 = √10 = 3.16 γ-1/γ  0.4/1.4 T2S = T1*(P2/P1)  = 293*(3.16)  = 407 K Ŋis,C = (T2S –  T1)/(T2 –  T1) T2 = T1+(T2s – T1)/ŋis,C  = 293+(407 – 293)/0.8 = 435.5K Wc=C pa(T2 –  T1) = 1.005(435.5 – 293) = 143.21 kJ/kg Same amount of work is required by HPC, which is provided by HPT C pg(T6 –  T7) –   2/100*Cpg(T6 –  T7) = 143.21 T6 –  T7 –  2/100(T6 –  T7) = 143.21/Cpg T7 = T6 - 143.21/(Cpg*0.98) = 745.93 K Ŋis,T = (T6 –  T7)/(T6 –  T7S) T7S = T6 –  (T6 –  T7S)/ŋis,T T7S = 873  (873  745.93)/0.85 = 723.5 K

WLPT = C pg(T8 –  T9) =1.15(873 – 634.7) =274.045kJ/kg Generator Work = Expansion Work  – Compression Work  – losses = 274.045 – 143.21 – 2/100*(274.045) =125.3541 kJ/kg o Shaft Power=125.3541*m =125.3541*115=14146kW Thermal Ratio = (T5 –  T4)/(T9 –  T4) T5 = (T9 – T4)*0.7+T4=(634.7 – 435.5)*0.7+435.5 T5 = 574.94 K Qs = C pg(T6 –  T5)=1.15(873 – 574.94)=342.769kJ/kg Qs reheat =C pg(T8 – T7)=1.15(873 – 745.93) =146.13 kJ/kg Total Heat Supplied=342.769 + 146.13 = 488.89kJ/kg Cycle Efficiency = Net work / Total Heat Supplied ηCycle = 125.3541 / 488.89 = 0.256 = 25.6 %

PROBLEM # 9.5 A motor gas turbine unit has two centrifugal compressors in series giving an overall pressure ratio of 6/1. The air leaving the HP compressors passes through a heat exchanger before entering the combustion chamber. The expansion is in two turbine stages, the first stage driving the compressors & the second stage driving the car through gearing. The gases leaving the LP turbine pass through the heat exchanger before exhausting to atmosphere. The HP turbine inlet temperature is 800 C & the air inlet

Gas Turbine Cycle

Designed by Sir Engr. Masood Khan

2 % loss for each turbine power Thermal Ratio of Heat Exchanger = 0.7 o m = 115 kg/s Reheat to Tmax. REQUIRED: Power Output,

Overall Efficiency,

DIAGRAM: SOLUTION: Compressor side: γ-1/γ T2S/T1 = (P2/P1) where P2/P1 = √10 = 3.16 γ-1/γ  0.4/1.4 T2S = T1*(P2/P1)  = 293*(3.16)  = 407 K Ŋis,C = (T2S –  T1)/(T2 –  T1) T2 = T1+(T2s – T1)/ŋis,C  = 293+(407 – 293)/0.8 = 435.5K Wc=C pa(T2 –  T1) = 1.005(435.5 – 293) = 143.21 kJ/kg Same amount of work is required by HPC, which is provided by HPT C pg(T6 –  T7) –   2/100*Cpg(T6 –  T7) = 143.21 T6 –  T7 –  2/100(T6 –  T7) = 143.21/Cpg T7 = T6 - 143.21/(Cpg*0.98) = 745.93 K Ŋis,T = (T6 –  T7)/(T6 –  T7S) T7S = T6 –  (T6 –  T7S)/ŋis,T T7S = 873 –  (873 –   745.93)/0.85 = 723.5 K γ-1/γ  1.333/0.333  Now P6/P7 =(T6/T7S)  = (873/723.5) = 2.12  Now since P6 = P4 = 10.10 bar P7 = P6/2.12 = 10.10/2.12 = 4.76 bar P7 = P8 and P9 = P1= 1.01 bar T8/T9S = (P8/P9)γ-1/γ γ-1/γ  0.333/1.333 T9S = T8 / (P8/P9)  = 873 / (4.76/1.01)  = 592.68 K Ŋis,T = (T8 –  T9)/(T8 –  T9S) T9 = T8 –  (T8 –  T9S)*ŋis,T = 873 –  (873 – 592.68)*0.85 T9 = 634.7K

Gas Turbine Cycle

Calorific value of fuel = 42600 kJ/kg And Combustion Efficiency = 0.97 DATA: Over all Pressure Ratio = 6/1 Tmax. = 800 C = 1073 K T1 = 15 C = 288 K Ŋis,C = 0.8 for Compressors Ŋis,T = 0.85 for Turbines Ŋm,Shft = 0.98 Thermal Ratio = 0.65 REQUIRED: Overall Cycle Efficiency. Power developed Specific Fuel Consumption. Calorific value of fuel = 42600 kJ/kg And Combustion Efficiency = 0.97 DIAGRAM: SOLUTION: Compression process: γ-1/γ T3S/T1 = (P3/P1) γ-1/γ  0.4/1.4 T3S = T1*(P3/P1)  = 288*(6)  = 480.53 K Assuming same pressure ratio for each compressor P2/P1 = √6 = 2.45 T2S/T1 = (P2/P1) γ-1/γ

WLPT = C pg(T8 –  T9) =1.15(873 – 634.7) =274.045kJ/kg Generator Work = Expansion Work  – Compression Work  – losses = 274.045 – 143.21 – 2/100*(274.045) =125.3541 kJ/kg o Shaft Power=125.3541*m =125.3541*115=14146kW Thermal Ratio = (T5 –  T4)/(T9 –  T4) T5 = (T9 – T4)*0.7+T4=(634.7 – 435.5)*0.7+435.5 T5 = 574.94 K Qs = C pg(T6 –  T5)=1.15(873 – 574.94)=342.769kJ/kg Qs reheat =C pg(T8 – T7)=1.15(873 – 745.93) =146.13 kJ/kg Total Heat Supplied=342.769 + 146.13 = 488.89kJ/kg Cycle Efficiency = Net work / Total Heat Supplied ηCycle = 125.3541 / 488.89 = 0.256 = 25.6 %

PROBLEM # 9.5 A motor gas turbine unit has two centrifugal compressors in series giving an overall pressure ratio of 6/1. The air leaving the HP compressors passes through a heat exchanger before entering the combustion chamber. The expansion is in two turbine stages, the first stage driving the compressors & the second stage driving the car through gearing. The gases leaving the LP turbine pass through the heat exchanger before exhausting to atmosphere. The HP turbine inlet temperature is 800 C & the air inlet temperature to the unit is 15 C. The isentropic efficiency of the compression is 0.8, & that of each turbine is 0.85. The mechanical efficiency of each shaft is 98%. The heat exchanger thermal ratio may be assumed to be 0.65.  Neglecting pressure losses & changes in Kinetic energy, calculate: (i) The overall cycle efficiency; (ii) Power developed. (iii) Specific Fuel Consumption.

Designed by Sir Engr. Masood Khan

T6S = T5 –  (T5 –  T6)/ŋis,T = 1073 – (1073 – 885.73)/0.85 T6S = 852.68 K γ-1/γ  1.333/0.333 P6/P7 = (T6S/T5)  = (852.68/1073)  = 0.3985 P6 = 0.3985*P5 where P 5 = 6.06 bar => P 6 = 2.415 bar γ-1/γ T6/T7S = (P6/P7) γ-1/γ T7S = T6 / (P6 / P7)  0.333/1.333 T7s = 885.73 / (2.415/1.01) = 712.4K Ŋis,T = (T6 –  T7)/(T6 –  T7S) T7 =T6 – (T6 – T7S)*ŋis,T=885.73 – (885.73 – 712.4)*0.85 = 738.39 Thermal Ratio = (T4 –  T3)/(T7 –  T3) T4 = T3 + (T7 –  T3)* Thermal Ratio T4 = 502.66 + (738.39  –   502.66)*0.65 = 655.88 K Qs = C pg(T5 –  T4) = 1.15(1073 – 655.88) = 479.68 kJ/kg WLPT =C pg(T6 – T7)=1.15(885.88 – 738.39)=169.44kJ/kg Cycle Efficiency = 169.44/479.68 = 0.353 = 35.3 % Shaft Power = 169.44*0.98*0.7 = 116.2

Gas Turbine Cycle

Calorific value of fuel = 42600 kJ/kg And Combustion Efficiency = 0.97 DATA: Over all Pressure Ratio = 6/1 Tmax. = 800 C = 1073 K T1 = 15 C = 288 K Ŋis,C = 0.8 for Compressors Ŋis,T = 0.85 for Turbines Ŋm,Shft = 0.98 Thermal Ratio = 0.65 REQUIRED: Overall Cycle Efficiency. Power developed Specific Fuel Consumption. Calorific value of fuel = 42600 kJ/kg And Combustion Efficiency = 0.97 DIAGRAM:

Designed by Sir Engr. Masood Khan

T6S = T5 –  (T5 –  T6)/ŋis,T = 1073 – (1073 – 885.73)/0.85 T6S = 852.68 K γ-1/γ  1.333/0.333 P6/P7 = (T6S/T5)  = (852.68/1073)  = 0.3985 P6 = 0.3985*P5 where P 5 = 6.06 bar => P 6 = 2.415 bar γ-1/γ T6/T7S = (P6/P7) γ-1/γ T7S = T6 / (P6 / P7)  0.333/1.333 T7s = 885.73 / (2.415/1.01) = 712.4K Ŋis,T = (T6 –  T7)/(T6 –  T7S) T7 =T6 – (T6 – T7S)*ŋis,T=885.73 – (885.73 – 712.4)*0.85 = 738.39 Thermal Ratio = (T4 –  T3)/(T7 –  T3) T4 = T3 + (T7 –  T3)* Thermal Ratio T4 = 502.66 + (738.39  –   502.66)*0.65 = 655.88 K Qs = C pg(T5 –  T4) = 1.15(1073 – 655.88) = 479.68 kJ/kg WLPT =C pg(T6 – T7)=1.15(885.88 – 738.39)=169.44kJ/kg Cycle Efficiency = 169.44/479.68 = 0.353 = 35.3 % Shaft Power = 169.44*0.98*0.7 = 116.2

SOLUTION: Compression process: γ-1/γ T3S/T1 = (P3/P1) γ-1/γ  0.4/1.4 T3S = T1*(P3/P1)  = 288*(6)  = 480.53 K Assuming same pressure ratio for each compressor P2/P1 = √6 = 2.45 T2S/T1 = (P2/P1) γ-1/γ γ-1/γ  0.4/1.4 T2S = T1*(P2/P1)  = 288*(2.45)  = 372 K From, ŋis,C = (T2S –  T1)/(T2 –  T1) T3 = T2 + (T3S –  T2)/ŋis,C = 502.66 K Wc=C pg (T2 – T1)*2 = 1.005(393 – 288)*2 = 211.05kJ/kg Expansion work of HPT = 211.05/ ŋm, shaft C pg(T5 –  T6) = 211.05/0.98 T6 = T5 –   211.05/(0.98*1.15) = 1073 –   211.05/(0.98*1.15) = 885.73 K ŋis,T = (T5 –  T6)/(T5 –  T6S)

Gas Turbine Cycle

Designed by

Gas Turbine Cycle

Designed by

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF