MBA Top Schools in India
Short Description
On this website people get all information of schools...
Description
Top school in India
By: school.edhole.com
Laplace Transform
BIOE 4200
school.edhole.com
Why use Laplace Transforms? Find solution to differential equation using algebra Relationship to Fourier Transform allows easy way to characterize systems No need for convolution of input and differential equation solution Useful with multiple processes in system
school.edhole.com
How to use Laplace Find differential equations that describe system Obtain Laplace transform Perform algebra to solve for output or variable of interest Apply inverse transform to find solution
school.edhole.com
What are Laplace transforms?
F(s) L{f ( t )} f ( t )e st dt 0 j
1 1 st f ( t ) L {F(s)} F ( s ) e ds 2j j
t is real, s is complex! Inverse requires complex analysis to solve Note “transform”: f(t) F(s), where t is integrated and s is variable Conversely F(s) f(t), t is variable and s is integrated Assumes f(t) = 0 for all t < 0 school.edhole.com
Evaluating F(s) = L{f(t)} let
Hard Way – do the integral f (t) 1
1 1 F(s) e st dt (0 1) s s 0
let
f ( t ) e at
0
0
F(s) e at e st dt e (s a ) t dt
let
1 sa
f ( t ) sin t
F(s) e st sin( t )dt
0 school.edhole.com
Integrate by parts
Evaluating F(s)=L{f(t)}- Hard Way udv uv vdu
remember let
u e st , du se st dt dv sin( t )dt, v cos( t ) st st e sin( t )dt [e cos( t ) ] s e st cos( t )dt 0
0
0
e (1) s e st cos( t )dt st
se
0
[school.edhole.com e sin( t ) ] s e sin( t )dt e 0
0
0
st e sin( t )dt
0 st
st e sin( t )dt
0
e st cos( t )dt
sin( t )dt 1 s
(1 s 2 ) e st sin( t )dt 1
2
u e st , du se st dt dv cos( t )dt, v sin( t )
st
st
0
0
let
Substituting, we get:
st
(0) s e sin( t )dt 0
st
1 1 s2
It only gets worse…
Evaluating F(s) = L{f(t)} This is the easy way ... Recognize a few different transforms See table 2.3 on page 42 in textbook Or see handout .... Learn a few different properties Do a little math
school.edhole.com
Table of selected Laplace Transforms 1 f ( t ) u ( t ) F(s) s 1 f ( t ) e u ( t ) F(s) sa at
s f ( t ) cos( t )u ( t ) F(s) 2 s 1 1 f ( t ) sin( t )u ( t ) F(s) 2 s 1
school.edhole.com
More transforms n! f ( t ) t u ( t ) F(s) n 1 s n
0! 1 n 0, f ( t ) u ( t ) F(s) 1 s s 1! n 1, f ( t ) tu ( t ) F(s) 2 s 5! 120 n 5, f ( t ) t 5 u ( t ) F(s) 6 6 s s
f ( t ) ( t ) F(s) 1 school.edhole.com
Note on step functions in Laplace
Unit step function definition: u ( t ) 1, t 0 u ( t ) 0, t 0
Used in conjunction with f(t) f(t)u(t) because of Laplace integral limits:
L{f ( t )} f ( t )e dt 0
school.edhole.com
st
Properties of Laplace Transforms Linearity Scaling in time Time shift “frequency” or s-plane shift Multiplication by tn Integration Differentiation
school.edhole.com
Properties: Linearity
L{c1f1 (t ) c2f 2 (t )} c1F1 (s) c2 F2 (s) Example : L{sinh( t )}
Proof :
1 t 1 t y{ e e } 2 2 1 1 L{e t } L{e t } 2 2 1 1 1 ( ) 2 s 1 s 1 1 (s 1) (s 1) 1 ( ) 2 s2 1 s2 1
school.edhole.com
L{c1f1 ( t ) c 2 f 2 ( t )}
st [ c f ( t ) c f ( t )] e dt 2 2 11 0
0
0
c1 f1 ( t )e st dt c 2 f 2 ( t )e st dt c1F1 (s) c 2 F2 (s)
Properties: Scaling in Time 1 s L{f (at )} F( ) a a Example : L{sin( t )} 1 1 ( 1) 2 s ( ) 1 2 ( 2 ) 2 s s 2 2
school.edhole.com
Proof :
L{f (at )}
st f ( at ) e dt 0
let
u at , t a
u 1 , dt du a a s
( ) u 1 f (u )e a du a0
1 s F( ) a a
Properties: Time Shift
L{f ( t t 0 )u ( t t 0 )} e a ( t 10) u ( t 10)} Example : L{e e 10s sa
Proof :
st 0
F(s)
L{f ( t t 0 )u ( t t 0 )}
st f ( t t ) u ( t t ) e dt 0 0 0
st f ( t t ) e dt 0
t0
let
u t t0, t u t0 t0
s ( u t 0 ) f ( u ) e du 0
school.edhole.com
e
st 0
st 0 su f ( u ) e du e F(s) 0
Properties: S-plane (frequency) shift at
L{e f (t )} F(s a ) Example : L{e at sin( t )} (s a ) 2 2
Proof :
L{e at f ( t )}
at st e f ( t ) e dt 0
( s a ) t f ( t ) e dt 0
F(s a )
school.edhole.com
Properties: Multiplication by tn n n n d L{t f ( t )} (1) F ( s ) n ds Example :
Proof :
L{t n u ( t )} (1) n
L{t n f ( t )} t n f ( t )e st dt 0
n
d 1 ( ) n ds s
n! s n 1
n st f ( t ) t e dt 0
n (1) n f ( t ) n e st dt s 0
n n st n (1) f ( t )e dt (1) F(s) n n s 0 s n
school.edhole.com
The “D” Operator 1.
2.
Differentiation shorthand
Integration shorthand t
if
g( t ) f ( t )dt
then
Dg ( t ) f ( t )
school.edhole.com
df ( t ) Df ( t ) dt d2 2 D f (t) 2 f (t) dt
t
if g( t ) f ( t )dt a 1 then g( t ) D a f ( t )
Properties: Integrals
F(s) L{D f ( t )} s 1 0
Proof :
g ( t ) D 01f ( t )
L{sin( t )} g ( t )e st dt
Example : L{D 01 cos( t )}
0
let u g( t ), du f ( t )dt
1 s 1 ( )( 2 ) 2 s s 1 s 1 L{sin( t )}
1 dv e st dt , v e st s 1 1 F(s) st st [ g( t )e ]0 f ( t )e dt s s s t
g( t ) f ( t )dt If t=0, g(t)=0 0
school.edhole.com
0
for (t ) f (t )e st dt so 0 f (t )dt g (t ) slower than e st 0
Properties: Derivatives (this is the big one)
L{Df (t )} sF(s) f (0 ) Example : L{D cos( t )} s2 f ( 0 ) 2 s 1 s2 1 2 s 1 s 2 (s 2 1) s2 1 1 L{ sin( t )} 2 s 1
school.edhole.com
Proof :
let
d f ( t )e st dt dt 0
L{Df ( t )}
u e st , du se st d dv f ( t )dt , v f ( t ) dt
[e st f ( t )]0 s f ( t )e st dt 0
f (0 ) sF(s)
Difference in f (0 ), f (0 ) & f (0) The values are only different if f(t) is not continuous @ t=0 Example of discontinuous function: u(t)
f (0 ) lim u ( t ) 0 t 0
f (0 ) lim u ( t ) 1 t 0
f (0) u (0) 1
school.edhole.com
Properties: Nth order derivatives
L{D f ( t )} ? 2
let
g( t ) Df ( t ), g(0) Df (0) f ' (0) L{D 2 g( t )} sG (s) g(0) sL{Df ( t )} f ' (0) s(sF(s) f (0)) f ' (0) s 2 F(s) sF(0) f ' (0)
L{Dn f (t )} s n F(s) s( n 1) f (0) s( n 2) f ' (0) sf ( n 2)' (0) f ( n 1)' (0)
NOTE: to take L{D n f ( t )} you need the value @ t=0 for Dn 1f (t ), Dn 2f (t ),...Df (t ), f (t ) called initial conditions!
We will use this to solve differential equations! school.edhole.com
Properties: Nth order derivatives Start with L{Df (t )} sF(s) f (0) Now apply again L{D2f (t )} let g( t ) Df ( t ) and Dg ( t ) D 2f ( t ) then L{Dg ( t )} sG (s) g(0) remember g( t ) Df ( t ) g(0) f ' (0) G (s) L{g( t )} L{Df ( t )} sF(s) f (0)
L{Dg (t )} sG(s) g(0) s[sF(s) f (0)] f ' (0) s 2 F(s) sf (0) f ' (0)
Can repeat for D3f (t ), D4f (t ), etc. L{Dn f (t )} s n F(s) s( n 1) f (0) s( n 2) f ' (0) sf ( n 2)' (0) f ( n 1)' (0)
school.edhole.com
Relevant Book Sections Modeling - 2.2 Linear Systems - 2.3, page 38 only Laplace - 2.4 Transfer functions – 2.5 thru ex 2.4
school.edhole.com
View more...
Comments