Maths T STPM 2014 Sem 1 P1 Trial Pahang Answer
August 6, 2017 | Author: Kenneth Chan | Category: N/A
Short Description
Maths T STPM 2014 Sem 1 P1 Trial Pahang Anwer...
Description
g
A1
A1
M1
A1
M1
2014-1-PAHANG MARKING SCHEME
−1
f ( x) ∈ [−4 , 4] − 4 ≤ f ( x) ≤ 4 −4≤ x+4≤ 4 −8 ≤ x ≤ 0 But a ≤ x ≤ b ∴ minimum a = –8 , maximum b = 0
f ( x) ∈ D g x ∈ D f
g (1) = −3 , g (3) = −3 g (1) = g (3) = −3 g is not one-to-one ∴ function g −1 ( x) not defined For function g o f (x) defined R ⊂D f
CONFIDENTIAL*
1.(a)
1.(b)
2(a)
(b)
4 x −1 = 21 − (1 + 3 x ) 2 (2 − x) 1 + 3x 2 x (−1)(−2) x 2 (−1)(−2)(−3) x 3 = 2 1 + (−1)(− ) + (− ) + .... (− ) + 3! 2 2! 2 2 (− 1 )(− 3 ) (− 1 )(− 3 )(− 5 ) 1 2 2 2 2 (3 x) 2 + 2 (3 x) 3 + ... 1 + (− )(3 x) + 2 2 ! 3 ! 1 1 27 2 135 3 1 3 = 2 1 + x + x 2 + x 3 + ... 1 − x + x − x + ... 4 8 8 16 2 2 23 2 x − 7 x 3 + ...) = 2(1 − x + 8 23 2 = 2 − 2x + x − 14 x 3 + ... 4 The expansion is valid when x − < 1 and 3x < 1 2 1 x < 2 and x < 3 1 1 1 or − < x < 3 3 3 ∴ x<
Either one series correct
−
Either one expanded correctly
k (1 − 2x ) −1 (1 + 3 x )
See
Get g (1) and g (3) and conclude
M1 A1 A1 M1
M1
A1
A1 M1
A1
1 2
=
=
[
(i) –20 (ii) 10
3
−1 1 3 0 −4 0
3 0 −1 1
0
1 0
1 −3
4 0 5
−4 0
−2
2
= 1
0 4
3 0 − 10 1
0 0 1 5
− 10 0
M
0 4
]
5
= I A −1
1 3 2 1 0 0
[A I ]
CONFIDENTIAL* 3(a)
3.(b)
3.(c)
0 1 0
0 0 , 1
0 0 1
R1 ↔ R 2
2
− 3 R1 + R2 → R2 − 2 R1 + R 3 → R 3
M1
M1
A1
A1
B1
M1
A1
A1
B1 B1
[ ]
]
Idea from A I to
[
get I A −1
See two ERO carried out correctly
,
θ= 6
π
p – 2q = 3 and 5p = 7 7 5
4 5
,
x2 y 2 + = 36 9 4
4x2 + 9y2 = 36
− 16 3 + 16i
π π 3 + i = 2 cos + i sin 6 6 5π 5π 32 cos + i sin 6 6
r=2
q=−
p=
CONFIDENTIAL* 4.(a)
4.(b)
5
or or
3
4x2 – y2 = 4
x2 y 2 − =1 1 4
c2 = 9 - 4 c2 = 1 + 4 =5 =5 Centre is (0, 0) Foci is ( 5 , 0) and ( − 5 , 0)
●
y
●
) (-1, 0)
(0, 2)
●
(1, 0)
(
) ●
y = - 2x
5,0
●
(3, 0)
Centre is (0, 0) Foci is ( 5 , 0) and ( − 5 , 0)
5,0
●
The asymptotes are y = 2x and
●
(-3, 0)
(− ●(0, - 2)
x
M1 A1 A1 M1 M1
A1 M1 A1
M1 M1 A1
A1
Either one correct Both correct
See k (cos 56π + isin 56π )
Shape of ellipse Vertices and foci shown
either one correct both correct
D1 D1
Shape of hyperbola Vertices and asymptotes shown
B1 B1
D1 D1
c − a = −2i + 3 j − 6k
a • b = 13 b − a = 2i + j + 2k ,
CONFIDENTIAL* 6.(a) 6.(b)
i
j
k
(b − a) × (c − a ) = 2 1 2 −2 3 −6 = − 12i + 8 j + 8k
7.(a) x³ + mx² + 5x – n = (x² + 5)(x + 2) = x³ + 2x² + 5x + 10 By comparison, m = 2 , n = –10
1 2
4
00 (1) (2)
α = 0.4636
∴ cos x + 2 sin x ≡ 5 sin(x + 0.4636) Since the maximum value of sin(x + 0.4636) = 1 ∴ The maximum value of cos x + 2 sin x = 5 and it occurs when x + 0.4636 = π2 x = 1.1072 ≈ 1.11
7.(c) cosθ sin θ cot θ – tan θ = − sin θ cosθ cos 2 θ − sin 2 θ = sin θ cos θ cos 2θ = 1 sin 2θ 2 = 2 cot 2θ cot θ – tan θ = 12 2 cot 2θ = 12 2 cot 2θ = 2 3 ∴
cot 2θ = 3 tan 2θ = 13
B1 B1 B1
M1
A1
M1
M1
R or α correct
Find R or α
Determinant shown or any two components in answer correct
A1
CAO
M1 A1
A1
B1
Using cot θ and tan θ
B1
M1
Using sin2θ
See equation in one variable term
M1
A1
M1
A1
+λ and
r•
θ = 15o , 105o , 195o , 285o
For 0o ≤ θ ≤ 360o , 0o ≤ 2θ ≤ 720o 2θ = 30o , 210o , 390o , 570o
∴
r =
= =0
+ λ1
= =
-2
= -5 – 2λ + 2λ
, λ1 ∈ ℝ
=0
5
= -5
A1 A1
M1
A1
Get r and try checking if r satisfies equation of plane
Use idea of perpendicular
A1
M1
Scalar product
Find normal vector
M1 A1
A1
M1
×
=
A1
n=
10 + 4 λ1 + λ1 = 0 λ1 = -2
•
•
= -5 r satisfies vector equation of plane, R is a point on the plane ∴ line l lies on the plane.
•
For any point R on l with position vector r
r=
CONFIDENTIAL*
8(a)
(b)
(c)
=
+ λ2
Since P is on line l,
or
, λ2 ∈ ℝ
=
=0
•
– 5x + 10y + 5z = 0
r•
∴ equation of plane is r •
CONFIDENTIAL*
(d)
=
1 Given that r . 2 = 11. 2
-1
1 . 2 = 11. 2 5 + 2 λ2 + 2 λ2 + 10 = 11 λ2 = - 1 = =
6
M1
A1
M1
M1 A1
A1
Accept r •
=0
Get position vector of point and substitute to equation of plane Scalar product to get λ2
View more...
Comments