Maths in Focus - Margaret Grove - Ans

August 13, 2017 | Author: Sam Scheding | Category: N/A
Share Embed Donate


Short Description

Descripción: Mathematics Preliminary Course - 2nd Edition...

Description

540

Maths In Focus Mathematics Preliminary Course

Answers Chapter 1: Basic arithmetic

8.

o (b) 0.07 oo (c) 0.13 oo (d) 0.16 o (a) 0.83 o oo o (g) 0.142857 or 0. 142857 (h) 1.18

9.

(a)

8 9

(h)

13 60

Problem 5

Exercises 1.1 1.

2.

(a) Rational (b) Rational (e) Rational (f) Irrational (i) Rational (j) Irrational

(e) - 4.3

(a) 18 (b) 11 (c) 6 (d) 11 (h) 1

3.

(c) Rational (g) Irrational

19 20

(i) 2

(j) 3

8.

600

5. 950

7 15

o 10. (a) 0.5 11. (a)

(c) 8.80 (d) 22.71 (e) - 13.20

6. 3000

(j) 8.16

1.

7. 11 000

8.

17. 79 cents 18. 2.73 19. 1.1 20. 3.6 m 22. 1.8 g

23. $3.20

24. (a) 7.95 (b) 30.03 (c) 0.37 (d) 5.74 (e) 0.52 25. 0.2

(b) 2

1.

1

6.

- 1.2

10. - 2 15. 5

3. - 56

4. 10

(a)

7. - 7.51

8. - 35.52

9. 6.57

11. - 7

12. −23

13. 10

16. 3

16 25

(b)

17. 1

14. 1

18. 60 19. −20 20. 9

51 1000

(c) 5

1 20

(d) 11

4 5

7 20 3 (e) 5

3.

(a)

4.

(a) 0.27 (b) 1.09 (c) 0.003 (d) 0.0623

5.

1 (a) 35% (b) 33 % 3

6.

(a) 124% (b) 70% (c) 40.5% (d) 127.94%

7.

(a) 0.52;

13 25

(d) 1.09; 1

(e)

o (c) 0.73

oo (d) 0.68

8 11

7 18

(c)

67 99

(f)

6 11

(g)

7 45

(d) 2

oo (e) 1.72 4 45

(e)

14. 17.5%

15. 41.7%

1 20 7 4. $547.56 5. 714.3 g 6. 24

2. 3 28

17 20

3. (a)

(b)

7 10

(c) 1

7. $65

179 cm 9. (a) 11.9 (b) 5.3 (c) 19 (d) 3.2 (e) 3.5 (f) 0.24 (g) 0.000 18 (h) 5720 (i) 0.0874 (j) 0.376

14. 5.9%

15. 402.5 g 19. 573

12. 1152.125 g

16. 41.175 m

13. $10.71

17. $30.92

20. $2898

3 8

(c)

1 1000

9 100

(d) 1

7 100

(e) 0.434;

Exercises 1.5 (a) 500

(b) 145

(c)

2.

(a) 13.7

(b) 1.1

(c) 0.8

3.

(a) a 17

(c) 0.168; 217 500

(m) w 10

97 1000

4.

21 125

(f) 0.1225;

(b) y 0 = 1 (h) x 21

49 400

(d) w

(j) 81y - 8

(o) x -3

(e) 2 (e) - 2.6 (e) x 5 (k) a

(p) a - 2 b 3 or

(f) 0.5

(f) p 10 (l)

x 10

b3

y 45

a2

x5 (c) m4 (d) k10 (e) a -8

(f) x

(g) mn2

(i) 9x22 (j) x21

(a) p5q15 (b) (f) x4y10

(d) 2.7

2

(a) x14 (b) a -7 (h) p - 1

5.

y

(d) 3

(c) a - 4

(i) 4x 10

(n) p 5

(q) x - 5 y 2 or

(d) 0.1%

1 64

1.

oo (d) 0.63

2 (c) 226 % 3

(b) 0.07;

5 minutes after 1 o’clock. 11

(g) y 6

o (a) 0.4 (b) 1.875 (c) 0.416 (b)

7 9

37 495

11. 54.925 mL

5

2.

1 50

(j) 1

10. $52.50

5. - 4

Exercises 1.3 1.

(d) 3

Problem

2. - 11

4 15

1 8

5 9

13. 77.5%

18. 3.2 m

Exercises 1.2

217 990

(b) 7.4

3 20 (d)

12. 0.73 13. 33 14. 3.248 15. 4.21

21. $281.93

5 8

(c) 1

Exercises 1.4

9. $8 000 000 10. $34 600 000

11. 844 km 16. 1.7

(g) 2

(i)

12. 74%

(f) 0.17 (g) 0.36 (h) 1.20 (i) - 4.27 1300

(f) −1

1 3

(a) 16.36 (b) 21.87

4.

(d) Irrational (h) Rational

2 9

(b)

oo (f) 0.15

o (e) 0.6

a8 8

b 2k 23 (g) 27

(c)

64a 3 b 12

(h) 16y47

(d) 49a10b2 (e) 8m17 (i) a3 (j) 125x - 21 y 18

ANSWERS

6.

4

1 2

7. 324

8. 2

10 27

9. (a) a3b

3

1 25

(b)

-

1 2

5.

(a) x 2

6.

(a) x + x 2 + 2x 2

(b) x

2

5

5

(c) x 3

(d) x 3

(e) x 4

3

7 (b) 32

10. (a) pq r

2 2

14.

1 81

4 11. 9

1 108

15.

1 12. 18

1 12

16.

4 13. 27

5 22

17.

49 3888

18.

2 58

(d) x + x - 1 + 2 7.

Exercises 1.6 1.

2.

3.

(d)

1 1 1 1 1 (b) (c) (d) (e) (f) 1 4 27 343 10 000 256 1 1 1 1 1 1 (g) (h) (i) (j) (k) (l) (m) 1 7 64 9 32 81 81 1 1 1 1 (n) (o) (p) (q) (r) 1 36 125 100 000 128 1 1 (s) (t) 64 64

1.

(e) x

1

1 2

- 3x

^ y - 3 h2

3

(e)

3 4 ^ x + y h5

-

1

(b)

a - 2b

-

3 2

+x

(c)

-

5 2

4

7

] 6a + 1 g4

6

7 9 ] 3x + 8 g2

(a) m - 3

(b) x - 1

-4

(h) 3y

(c) p - 7 −2

2.

(d) d −9 (e) k −5 (f) x - 2 3t - 8 (j) 5

1 z- 6 (i) z - 6 or 2 2

2x - 1 (k) 7

2y - 7 5m (m) (n) ] 3x + 4 g- 2 (o) ] a + b g- 8 2 3 (p) ] x - 2 g- 1 (q) ^ 5p + 1 h- 3 (r) 2 ] 4t - 9 g- 5 ]x + 1g 4

(a) (h)

1 5

t 5 x7

(m)

(t) 1

(b)

(c)

6

x 1

(i)

5 ] a + 3b g 9 1 y

3

1 n

8

(e)

1 w

(k)

2 x

(f)

10

1

(g)

1 (l) 8y + z

] x + 1 g6

1

(n)

]k - 3g

(d)

1 (j) 4n

8x 3

1

(o) x5 (p) y10 (q)

^ 3x + 2y h x-y 3x + y 7 o (s) (t) e x+y 2w - z

2

(r) ] a + b g2

9

3 m

4

(a) 2.19 (b) 2.60 (c) 1.53 (d) 0.60 (e) 0.90 (f) 0.29

3.

(a) 3 y

(b) 3 y 2 or _ 3 y i

(c)

(f) 3 6q + r

(g)

2

1

1

3

(a) t 2

(b) y 5

(c) x 2

(f) ] 2t + 3 g

-

(i) ] x - 2 g

-

2 3

1 2

2a 2 2 y - 1k 3

x

-

3 2

(d) 1

5

] x + 7 g2 1

1

(j)

1

(d) ] 9 - x g 3

(g) ^ 5x - y h

1

(l)

(e) 8.67 # 10 9

(f) 4.16 # 10 5

(h) 1.376 # 10

2

(a) 5.7 # 10 - 2 -4

-6

4

(i) 2 # 10 7

(b) 5.5 # 10 - 5 (e) 2 #10

-6

(h) 2.3#10

(j) 8 #10 4

(c) 4 # 10 - 3

(f) 8#10 - 8 -1

(i) 8.5#10 - 3

(j) 7#10 - 11

3.

(a) 36 000 (b) 27 800 000 (c) 9 250 (d) 6 330 000 (e) 400 000 (f) 0.072 3 (g) 0.000 097 (h) 0.000 000 038 (i) 0.000 007 (j) 0.000 5

4.

(a) 240 000 (b) 9 200 000 (c) 11 000 (d) 0.36 (e) 1.3 (f) 9.0 (g) 16 (h) 320 (i) 2900 (j) 9.1

5.

(a) 6.61

6.

1.305 # 10 10

(b) 0.686

(c) 8.25

(d) 1.30

7. 6.51 # 10 - 10

Exercises 1.9 1.

(a) 7 (b) 5 (c) 6 (d) 0 (e) 2 (f) 11 (g) 6 (h) 24 (i) 25 (j) 125 2. (a) 5 (b) −1 (c) 2 (d) 14 (e) 4 (f) −67 (g) 7 (h) 12 (i) −6 (j) 10 3. (a) 3 (b) 3 (c) 1 (d) 3 (e) 1 4. (a) a (b) - a (c) 0 (d) 3a (e) −3a (f) 0 (g) a + 1 (h) -a - 1 (i) x - 2 (j) 2 - x

5.

(a) | a + b | = 6 (b) | a + b | = 3 (c) | a + b | = 1 (d) | a + b | = 1 (e) | a + b | = 10

6.

(a)

x2 = | x | = 5

(b)

x2 = | x | = 2

(d)

x2 = | x | = 4

(e)

x2 = | x | = 9

2

2.

1

(d) 1.2 #10 7

(g) 7.6#10

p

(a) 9 (b) 3 (c) 4 (d) 2 (e) 7 (f) 10 (g) 2 (h) 8 (i) 4 (j) 1 (k) 3 (l) 2 (m) 0 (n) 5 (o) 7 (p) 2 1 1 (q) 4 (r) 27 (s) (t) 2 16

3x - 1

(c) 6.19 # 10 4

(d) 6.2 #10

Exercises 1.7

(e)

(b) 1.23#10 6

-7

- 11

(s)

(a) 3.8 # 10 3 (g) 9 #10

(l)

4.

1

(c) p 2 + p - 1 + 2p 2

Exercises 1.8

1 11 1 (a) 1 (b) 16 (c) 1 (d) 1 (e) 1 (f) 125 (g) 1 2 25 3 3 13 19 1 (h) 49 (i) 3 (j) 32 (k) 2 (l) 1 (m) 1 (n) 1 8 3 36 81 5 16 7 (o) 1 (p) 16 (q) - 15 (r) (s) 1 (t) 8 23 25

-6

1.

1 3

2

(a)

(g) 2x

4.

(a)

2

(b) a 3 - b 3

2x + 5 or

|a | + | b |= 6 ` | a + b | # | a | + | b | |a | + | b |= 3 ` | a + b | # | a | + | b | |a | + | b |= 5 ` | a + b | # | a | + | b | |a | + | b |= 9 ` | a + b | # | a | + | b | | a | + | b | = 10 ` | a + b | # | a | + | b | (c)

x2 = | x | = 3

7.

(a) x + 5 for x 2 - 5 and - x - 5 for x 1 - 5 (b) b - 3 for b 2 3 and 3 - b for x 1 3 (c) a + 4 for a 2 - 4 and - a - 4 for a 1 - 4 (d) 2y - 6 for y 2 3 and 6 - 2y for y 1 3 (e) 3x + 9 for x 2 - 3 and - 3x - 9 for x 1 - 3 (f) 4 - x for x 1 4 and x - 4 for x 2 4 1 1 (g) 2k + 1 for k 2 - and - 2k - 1 for k 1 2 2 2 2 (h) 5x - 2 for x 2 and - 5x + 2 for x 1 5 5 (i) a + b for a 2 - b and - a - b for a 1 - b (j) p - q for p 2 q and q - p for p 1 q

8.

x = !3

1 ^ 5 x + 7 h2 1

(e) ] 4s + 1 g 2 5

(h) ] 3x + 1 g 2 1

1 ^ y + 7 h 2 (k) 5 ] x + 4 g 3 2 3 3 4 (m) _ x 2 + 2 i 5

9. !1

10. !1, x ! 2

541

542

Maths In Focus Mathematics Preliminary Course

Test yourself 1 1.

(a)

9 20

(b) 0.14 (c) 0.625 2. (a)

(f) 73.3% 3.

Chapter 2: Algebra and surds

1 49

(b)

157 200 1 (c) 3

(d)

1 5

Exercises 2.1

(e) 1.2%

(a) 8.83 (b) 1.55 (c) 1.12 (d) 342 (e) 0.303 4. (a) 1 (e) - 10 (f) - 1 (g) 4 5. (a) x 9 8x 18 29 (b) 25y 6 (c) a 11 b 6 (d) (e) 1 6. (a) 27 40 1 1 1 (b) 3 (c) 12 (d) 2 (e) 12 7. (a) 4 (b) 6 (c) 19 7 2 2 1 1 (d) (e) 4 (f) 3 (g) (h) 2 (i) 1 (j) 4 7 64 (b) 1 (c) 39 (d) 2

8.

5

30 18

(a) a

(b) x y

(c) p

(g)

1 -3 x 2

36

11

(d) 16b

(d) ] x + 1 g

(b) x - 5 (c) ^ x + y h- 1 (f) 2x - 1

9

4

(e) 8x y

1 4

9. (a) n

9

-

3 4

1 ] 4t - 7 g4 1 1 (f) 5 a + b (g) (h) 4 b 3 (i) 3 ] 2x + 3 g4 (j) 3 x x3 11. | a + b | = 2 | a | +| b | = 8 ` | a + b | # | a | + | b | 10. (a)

1

a5

(b) 4 n

1 13. 192

12. 1

x+1

(d)

1

(c) ] x + 3 g 6

(b) y - 1

(d) ] 2x - 3 g- 11

20. (a) 1.3 # 10 - 5

(b) 1.23 # 10 11

1

b 5 (c) c m a

x

3

(e)

7 14. 689 mL 15. (a) 6 h (b) 12

1

22. (a)

1 (c) 8

(b)

1 2a + 5

21. (a)

7 9

7

(e) y 3 (b)

41 330

23. 14 500

24. LHS = | -2 + - 5 | = 7, RHS = | -2 | + | -5 | = 7. So | a + b | # | a | +| b | since 7 # 7.

1.

4

4.

1 1 53 % 5. 3 16

9.

18 h

11.

2. 1

11 18

3. 0.502, 51%,

6. 3.04 # 10

14

51 o , 0. 5 99

3271 7. 83% 8. 1 9990

10. 1.98

LHS = 2 ^ 2 k - 1 h + 2 k + 1 = 2k+1 - 2 + 2k+1 = 2:2 k + 1 - 2 = 2 ^ 2k+1 - 1 h = RHS ` 2 ^ 2k - 1 h + 2k+1 = 2 ^ 2k+1 - 1 h

.

o , 0, 12. −24 35 13. - 0.34, 2, 1. 5

3 7

2 14. 6 % 3

1 1 15. when x 2 - 1, when x 1 - 1 16. 0.73 x-1 1-x 17. 0.6%

7.

-y

3. z

8. −5x

13. - m

9. 0

14. - x

19. 6x - 6y

4. 6a

10. 3k

15. 0

20. a - 3b

23. m 2 - 6m + 12 26. - 2ab + 10b

5. 3b

6. −3r

11. 9t

16. 5b

12. 10w

17. 11b

21. 4xy + 2y

24. p 2 - 2p - 6 27. 2bc - ac

29. x 3 - 2xy 2 + 3x 2 y + 2y 3

18. - 10x

22. - 6ab 2

25. 8x + 3y

28. 2a 5 - 9x 3 + 1

30. 3x 3 + x 2 - 7x - 6

1.

10b

2. 8xy

3. 10p 2

5.

15ab 6. 14xyz 7. 48abc 8. 12d 2

9.

12a3

10. - 27y3

12. 6a 2 b 3

19. - 14m

11. 32x10

13. - 10a 3 b 2

15. 5a 3 b 3

4. - 6wz

14. 21p 3 q 4

16. - 8h 10 17. k 3 p 3 20. 24x y

11

6

18. 81t 12

3

Exercises 2.3 1.

2. 2

6x

3. 4a 2

4. 8a

5. 4a

y

6.

2

7. 3p

ab 4 1 -2 9. 10. - 3x 3 11. 3a 12. 13. qs 3y 2 3ab 2 4 7 6 2 a b 2 z b 14. 15. 16. 6p 4 q 17. 18. 4c 2a 3c 2 d 2x 2

8.

19. -

x3 z3 3y

a 13

20.

2b 6

Exercises 2.4

Challenge exercise 1 278 303

2. 3a

16. $38 640 17. 70% 18. 6.3 # 10 23

(d) 33.3% 19. (a) x 2

(c)

1 x-y

(j) m

7x

Exercises 2.2

1

(e) ] a + b g 7

(i) ] 5x + 3 g 7

(h) x 3

1 2

1.

18 4.54 19. 4.14 # 10 - 20

20. | a + b | = | a | + | b | when a 2 0, b 2 0 or a 1 0, b 1 0; | a + b | 1 | a | + | b | when a 2 0, b 1 0 or a 1 0, b 2 0; ` | a + b | # | a + b | for all a, b

1.

2x - 8

5.

x 2 - 2x 6. 6a 2 - 16ab 7. 2a 2 b + ab 2 8. 5n 2 - 20n

2. 6h + 9

3. - 5a + 10

9.

3x3 y2 + 6x2 y3

10. 4k + 7

11. 2t - 17

12. 4y + 11y

13. - 5b - 6

15. - 3m + 1

16. 8h - 19 17. d - 6

2

19. 3x - 9x - 5 2

22. - 7y + 4

14. 8 - 2x

20. 2ab - 2a b + b 2

23. 2 b

4. 2xy + 3x

24. 5t - 6

18. a 2 - 2a + 4 21. 4x - 1

25. 2a + 26

Exercises 2.5 1.

a 2 + 7a + 10

2. x 2 + 2x - 3

4.

m 2 - 6m + 8

5. x 2 + 7x + 12

7.

2x 2 + x - 6

8. h 2 - 10h + 21

3. 2y 2 + 7y - 15 6. y 2 - 3y - 10 9. x 2 - 25

10. 15a 2 - 17a + 4 11. 8y 2 + 6y - 9 12. xy + 7x - 4y - 28 13. x 3 - 2x 2 + 3x - 6 16. 16 - 49y 2 20. y 2 - 36

14. n 2 - 4

17. a 2 - 4b 2

21. 9a 2 - 1

15. 4x 2 - 9

18. 9x 2 - 16y 2

22. 4z 2 - 49

19. x 2 - 9

ANSWERS

23. x 2 - 2xy + 11x - 18y + 18 24. 2ab + 2b 2 - 7b - 6a + 3

Exercises 2.8

25. x + 8

1.

]x + 4g]2 + bg

4.

]m - 2g]m + 3g

5. ] d - c g ] a + b g 6. ] x + 1 g ^ x 2 + 3 h

7.

] 5a - 3 g ] b + 2 g

8. ^ 2y - x h ^ x + y h

3

26. a - 27

27. a + 18a + 81

3

28. k - 8k + 16

29. x + 4x + 4

2

33. 9a + 24ab + 16b 35. 4a + 4ab + b 2

2

32. 4t 2 - 4t + 1

2

38. a - 2ab + b

30. y - 14y + 49

2

31. 4x 2 + 12x + 9

2

2

34. x - 10xy + 25y

2

2

36. a - b

2

2

39. a + b

2

3

3

10. ] x + 5 g ] x - 1 g

2

37. a + 2ab + b

2

2

40. a - b 3

1.

t + 8t + 16

4.

y 2 + 16y + 64

7.

n 2 + 2n + 1

5. q 2 + 6q + 9

6. k 2 - 14k + 49

25. ^ y + 7 h ] x - 4 g

8. 4b 2 + 20b + 25

9. 9 - 6x + x 2

10. 9y - 6y + 1

11. x + 2xy + y 2

13. 16d + 40de + 25e 2

21. 16a 2 - 1

24. x + 10x + 25 4

27. a 2 -

2

2

2

28. x 2 - ^ y - 2 h2 = x 2 - y 2 + 4y - 4

1 a2

28. 3 (a + 2b) (a + 3)

29. 5 (y - 3) (1 + 2x)

30. ] r + 2 g ] rr - 3 g

23. x 4 - 4 4 26. x + 4 + 2 x

2

26. (x - 4) (x 3 - 5)

19. 4a 2 - 9

22. 49 - 9x 2

25. 9a b - 16c

2

2

15. x 2 - 9

18. x 2 - 100

24. ] a - 3b g ] 4 + c g

27. (2x - 3) (2x + 4) = 2 (2x - 3) (x 2 + 2)

12. 9a - 6ab + b

2

17. ] x - 3 g ^ 7 - y h

20. ] a + 3 g ] 2 - b g

2

2

14. t - 16

2

17. r 2 - 36

20. x 2 - 25y 2

2

2

14. ^ a + b h ] ab - 4 g

22. ^ q - 3 h ^ p + q h

23. ] x - 2 g ^ 3x 2 - 5 h

2

12. (m - 2) (1 - 2y)

2

18. ] d + 3 g ] 4 - e g 19. ] x - 4 g ^ 3 + y h

3. x - 2x + 1

2. z - 12z + 36 2

9. ^ y + 1 h ] a + 1 g

15. ] 5 - x g ] x + 3 g 16. (x + 7) (x 3 - 4)

3

21. (x - 3) (x 2 + 6)

2

3. ] x + 5 g ] x + 2 g

11. (y + 3) (1 + a)

13. ^ x + 5y h ^ 2x - 3y h

2

Exercises 2.6

16. p 2 - 1

2. ^ y - 3 h ] a + b g

29. ] a + b g2 + 2 ] a + b g c + c 2 = a 2 + 2ab + b 2 + 2ac + 2bc + c 2

Exercises 2.9 1.

]x + 3g]x + 1g

4.

] t + 4 g2

7.

]v - 3g]v - 5g

2. ^ y + 4 h ^ y + 3 h

5. ] z + 3 g ] z - 2 g 8. ] t - 3 g

2

3. ] m + 1 g2

6. ] x + 1 g ] x - 6 g 9. ] x + 10 g ] x - 1 g

30. ] x + 1 g2 - 2 ] x + 1 g y + y 2 = x 2 + 2x + 1 - 2xy - 2y + y 2

10. ^ y - 7 h ^ y - 3 h

11. ] m - 6 g ] m - 3 g

12. ^ y + 12 h ^ y - 3 h

13. ] x - 8 g ] x + 3 g

31. 12a

14. ] a - 2 g

32. 32 - z

2

34. x 2 + 3xy + y 2 - 2x

33. 9x + 8x - 3 2

35. 14n 2 - 4

36. x - 12x + 48x - 64 3

2

37. x

2

38. x - 2x y + y 4

2

2

4

2

15. ] x - 2 g ] x + 16 g

16. ^ y + 4 h ^ y - 9 h

17. ] n - 6 g ] n - 4 g 18. ] x - 5 g 2

19. ^ p + 9 h ^ p - 1 h

20. ] k - 2 g ] k - 5 g 21. ] x + 4 g ] x - 3 g

39. 8a + 60a + 150a + 125

22. ] m - 7 g ] m + 1 g 23. ^ q + 10 h ^ q + 2 h

40. 4x + 16x + 15x - 4x - 4

24. ] d - 5 g ] d + 1 g 25. ] l - 9 g ] l - 2 g

Problem

Exercises 2.10

a = 2, b = 7, c = 9, d = 4, e = 3, f = 8, g = 0, h = 6, i = 1

1.

(2a + 1) (a + 5) 2. ^ 5y + 2 h ^ y + 1 h

3.

(3x + 7) (x + 1) 4. (3x + 2) (x + 2) 5. (2b - 3) (b - 1)

6.

(7x - 2) (x - 1) 7. ^ 3y - 1 h ^ y + 2 h

9.

^ 5p - 2 h ^ p + 3 h 10. ] 3x + 5 g ] 2x + 1 g

3

2

4

3

2

Exercises 2.7 2. 5 ] x - 2 g 3. 3 ] m - 3 g 4. 2 ] 4x + 1 g

1.

2^ y + 3h

5.

6 ^ 4 - 3y h

9.

3a ] 5 - a g 10. ab ] b + 1 g 11. 2xy ] 2x - 1 g

6. x ] x + 2 g 7. m ] m - 3 g 8. 2y ^ y + 2 h

12. 3mn ^ n 2 + 3 h

13. 2xy ] 4x - z g 14. a ] 6b + 3 - 2a g

15. x ^ 5x - 2 + y h

17. 5b 2 ] b + 3 g

16. q 2 _ 3q 3 - 2 i

18. 3a b ] 2b - a g 19. (m + 5) (x + 7) 2

20. ^ y - 1 h ^ 2 - y h

2

21. (7 + y) (4 - 3x)

22. ] a - 2 g ] 6x + 5 g

23. ] 2t + 1 g ^ x - y h

24. ] 3x - 2 g ] a + 2b - 3c g

25. 3x ] 2x + 3 g 2

28. 4x 2 ] x - 6 g

26. 3q _ pq 2 - 2 i 3

29. 5m 2 n ^ 7mn 3 - 5 h

31. 2rr ] r + h g 32. ] x - 3 g ] x + 2 g 34. - ] a + 1 g

27. 3ab ^ 5a 3 b 2 + 1 h

35. (a 2 + 1) (4ab - 3)

30. 4ab 2 ^ 6ab 3 + 4 h

33. (x + 4) (y 2 + 2)

8. ] 2x + 3 g ] x + 4 g

11. (2y + 1) (y - 6)

12. ] 5x - 1 g ] 2x + 1 g

13. (4t - 1) (2t - 3)

14. (3x + 4) (2x - 3)

15. ^ 6y - 1 h ^ y + 8 h

16. ] 4n - 3 g ] n - 2 g

17. ] 4t - 1 g ] 2t + 5 g 18. ^ 3q + 2 h ^ 4q + 5 h 19. ] 4r - 1 g ] 2r + 6 g = 2 ] 4r - 1 g ] r + 3 g 20. ] 2x - 5 g ] 2x + 3 g

21. ^ 6y - 1 h ^ y - 2 h

22. ^ 2p - 3 h ^ 3p + 2 h

23. (8x + 7) (x + 3)

24. ] 3b - 4 g ] 4b - 9 g

25. (6x + 1) (x - 9)

26. ] 3x + 5 g2

27. ^ 4y + 3 h2

29. ] 6a - 1 g2

30. ] 7m + 6 g2

28. ] 5k - 2 g2

543

544

Maths In Focus Mathematics Preliminary Course

Exercises 2.11 1.

^y - 1h

5.

(x - 6)

9.

] 5x - 4 g2

3. (m + 5)

2

6. ] 2x + 3 g

2

18. d 3y +

2

12. ] 4k - 3 g2

11. ^ 3y - 5 h2

14. ] 9a - 2 g2

15. ] 7m + 6 g2 1 2 19. c x + m x

1 2 n 5

2

8. ] 3a + 2 g

2

10. ^ 7y + 1 h2

2 2 n 3

4. (t - 2)

2

7. ] 4b - 1 g

2

13. ] 5x + 1 g2 17. d x -

Exercises 2.14

2. (x + 3)

2

16. d t + 20. d 5k -

2

1 n 2

2 2 n k

Exercises 2.12 1.

(a + 2) (a - 2)

2. (x + 3) (x - 3)

3. (y + 1) (y - 1)

4.

]x + 5g]x - 5g

5. (2x + 7) (2x - 7)

7.

(1 + 2z) (1 - 2z) 8. ] 5t + 1 g ] 5t - 1 g 9. ] 3t + 2 g ] 3t - 2 g

6. (4y + 3) (4y - 3)

10. ] 3 + 4x g ] 3 - 4x g

11. (x + 2y) (x - 2y)

12. ^ 6x + y h ^ 6x - y h

13. ] 2a + 3b g ] 2a - 3b g 17. (a + b - 3) (a - b + 1)

18. ] z + w + 1 g ] z - w - 1 g

1 1 19. d x + n d x - n 2 2

y 3

+ 1oe

y 3

22. (x 2 + 1) (x 2 - 1) = (x 2 + 1) (x + 1) (x - 1) 23. _ 3x 3 + 2y i _ 3x 3 - 2y i 24. _ x 2 + 4y 2 i ^ x + 2y h ^ x - 2y h 25. (a 4 + 1) (a 2 + 1) (a + 1) (a - 1)

Exercises 2.13 2. ] x + 3 g ^ x 2 - 3x + 9 h

1.

(b - 2) (b 2 + 2b + 4)

3.

]t + 1g^t - t + 1h

5.

(1 - x) (1 + x + x )

7.

(y + 2z) (y - 2yz + 4z 2)

9.

^ 2x + 3y h _ 4x 2 - 6xy + 9y 2 i 10. ] ab - 1 g ^ a 2 b 2 + ab + 1 h

4. (a - 4) (a + 4a + 16) 2

2

2

6. ^ 2 + 3y h _ 4 - 6y + 9y i 2

8. (x - 5y) (x 2 + 5xy + 25y 2)

11. (10 + 2t) (100 - 20t + 4t 2)

12. d

x x 2 3x - 3ne + + 9o 4 2 2

10 1 100 10 1 13. d + ne 2 + o a b ab b 2 a

17. d 1 -

5.

5 ] a - 1 g2 6. - ] 2x - 3 g ] x - 4 g 7. 3z ] z + 5 g ] z + 4 g

8.

ab ] 3 + 2ab g ] 3 - 2ab g 9. x ] x + 1 g ] x - 1 g

10. 2 ] 3x - 2 g ] x + 2 g 11. ] m - 5 g ] 3 + n g

12. - 7 ] 2x + 1 g

14. ] x - 1 g ] x + 2 g ^ x 2 - 2x + 4 h

13. ^ y + 5 h ^ y + 4 h ^ y - 4 h

15. ] x + 1 g ^ x 2 - x + 1 h ] x - 1 g ^ x 2 + x + 1 h 16. x ] x + 2 g ] x - 5 g 17. ] x + 3 g (x - 3) 2 19. 3 ] 2 - b g ^ 4 + 2b + b 2 h

18. y (2xy + 1) (2xy - 1)

20. 3 ] 3x - 2 g ] 2x + 5 g 21. 3 ] x - 1 g2 23. z ] z + 3 g2

22. (x + 2) (x + 5) (x - 5)

26. 4a (a + 3) (a - 3)

27. 5x ] 2 - x g ^ 4 + 2x + x 2 h

28. (a + 2) (a - 2) (a + 3) (a - 3)

29. 4k (k + 5) 2

Exercises 2.15 1.

x 2 + 4x + 4 = ] x + 2 g2

3.

x 2 - 10x + 25 = ] x - 5 g2

16. - 9 ^ a 2 - a + 1 h

2. b 2 - 6b + 9 = ] b - 3 g2

5.

m - 14m + 49 = ] m - 7 g

7.

x 2 + 2x + 1 = ] x + 1 g2

9.

x 2 - 20x + 100 = ] x - 10 g2

4. y 2 + 8y + 16 = ^ y + 4 h2

2

6. q 2 + 18x + 81 = ^ q + 9 h2

2

8. t 2 - 16t + 64 = ] t - 8 g2

10. w 2 + 44w + 484 = ] w + 22 g2 11. x 2 - 32x + 256 = ] x - 16 g2

12. y 2 + 3y +

13. x 2 - 7x +

49 7 2 = dx - n 4 2

14. a 2 + a +

15. x 2 + 9x +

81 9 2 = dx + n 4 2

16. y 2 -

17. k 2 -

14. ^ x + 1 - y h _ x 2 + 2x + 1 + xy + y + y 2 i 15. ^ 5xy + 6z h _ 25x 2 y 2 - 30xyz + 36z 2 i

5 ^ y - 1 h _ y 2 + y + 1 i 4. 2ab ^ a + 2b) (2a - 1 h

30. 3 (x + 1) (x - 1) (x + 3)

- 1 o 21. ^ x + 2y + 3 h ^ x - 2y + 1 h

2

3.

25. 2 ] x + 2 g ] x - 2 g ^ x + y h _ x 2 - xy + y 2 i

16. ^ x + 2 + y h ^ x + 2 - y h

20. e

2 ] x + 3 g ] x - 3 g 2. 3 ^ p + 3 h ^ p - 4 h

24. ] x + 1 g ] x - 1 g ] 2x + 3 g ] 2x - 3 g

15. ] 2a + 9b g ] 2a - 9b g

14. ^ x + 10y h ^ x - 10y h

1.

11k 121 11 n + = dk 4 2 16

5y 2

3 2 9 = dy + n 4 2

1 1 2 = da + n 4 2

+

25 5 2 = dy - n 4 16

2

18. x 2 + 6xy + 9y 2 = ^ x + 3y h2 19. a 2 - 4ab + 4b 2 = ] a - 2b g2 20. p 2 - 8pq + 16q 2 = ^ p - 4q h2

2

x x x ne1 + + o 9 3 3

18. ^ x + y + 3 h _ y - 3y - xy + 9 + 6x + x i 2

Exercises 2.16

2

19. ^ x + y - 1 h _ x 2 + 4x - xy + y 2 - 5y + 7 i 20. (2a + 6 - b) (4a 2 + 24a + 2ab + 6b + b 2 + 36)

1.

a+2

2. 2t - 1

6.

1 y-4

7.

10. 14.

p+5 3

2 ] b - 2a g a-3

11.

a+1 a+3

p-2 4p - 2p + 1 2

3.

15.

4y + 1 3

s-1 s+3

8.

12.

4.

4 2d - 1 9.

3+y x + 2x + 4

a+b 2a - b

2

5.

x 5x - 2

b2 + b + 1 b+1 13. x - 3

ANSWERS

Exercises 2.17 1.

2.

(a)

(a)

(d) 3.

5x 4

(b)

Exercises 2.20

13y + 3

b 2a - 1

(b)

a+8 12

(d)

^ p - 2 h _ q2 - q + 1 i

ab

a+b+3 (c) a+b

-x + 2 (b) x ]x - 1g

(a)

x - 13 6

b 2 ^ x + 2y h

10 ] 2b - 1 g

2 _ 3y 2 + 14y + 13 i

^y + 2h^y + 3h^y - 1h x2 ] x + 2 g

(b)

8 _ y 2 - 3y + 9 i

1. 3 5

(e)

3p 2 + 5pq - 2q 2

pq ^ p + q h ^ p - q h

9. - 4 2

10. 4 5

13. - 3

14.

15. 5 7

16.

- ] 5x + 22 g (j) ]x + 4g]x - 4g]x + 3g

1.

5.5 7. 377

12. 22.4 17.

15y

2. 47

14.

3 4

8. 14

14. - 84

16. 28

18. - 2 105

17.

30

25. 2 3

26.

3

31.

2 2

(e) 0.6

4. 375

3 10 3

32.

2

(a)

10 + 6

(m) 10 6 - 120

5. - 196 3 4

2.

2.

(i) 4 2 (n) 9 3

(p) 6 3

(q) 3 11

(r) 5 5

(a) 6 3

(b) 20 5

(c) 28 2

(f) 8 14 3.

4.

(a)

18

(f)

160

(g) 72 5 (b) (g)

20 117

(d) 4 7

(h) 30 2

(c)

176

(h)

98

2 5

33.

5

34.

2 2

2 3

35.

5 7

(c) 12 + 8 15

21. 4

(e) 16 5 (j) 24 5

(d)

128

(e)

75

(i)

363

(j)

1008

(a) x = 45 (b) x = 12 (c) x = 63 (d) x = 50 (e) x = 44 (f) x = 147 (g) x = 304 (h) x = 828 (i) x = 775 (j) x = 960

(h) 5 - 5 15

(l) 210 - 14 15

(n) - 10 - 2 2

(o) 4 3 - 12

(c) 2 10 - 6 + 10 15 - 15 6 (d) 12 20 + 18 60 - 8 10 - 12 30 = 24 5 + 36 15 - 8 10 - 12 30 (f) 15 - 15 + 18 10 - 6 6

(h) - 1

(i) - 12

(n) 7 + 2 10

(j) 43

(k) 3

(o) 11 - 4 6

(l) - 241 (p) 25 + 6 14

(r) 27 - 4 35

(s) 77 - 12 40 = 77 - 24 10

(t) 53 + 12 10

3.

(a) 18

(d) 19 + 6 2

4.

(a) a = 21, b = 80

5.

(a) a - 1

6.

k = 25

9.

a = 107, b = - 42

(o) 7 5

(i) 14 10

3 5

6

1 2

(a) 10 + 3 6 + 3 5 + 9 3 (b) 10 - 35 - 2 + 14

(j) 3 6

(h) 5 3

9

29.

(g) - 6 - 12 6

(q) 57 + 12 15

(m) 8 2

2 5

1

(j) 2 54 + 6 = 6 6 + 6

(e) 6 2

(g) 4 3

28.

8

24.

(f) 5 33 + 3 21

1.

(l) 10 3

1

23. 1

(e) - 6 + 4 18 = - 6 + 12 2

(m) - 6

(k) 4 7

22. 4 3

(b) 2 6 - 15

(g) 4

(f) 10 2

19. 18

(d) 5 14 - 2 21

Exercises 2.19 (d) 5 2

27.

6. 30

15. 2

21. 2 6

1

5. - 6 6

12 = 2 3

12. 15 28 = 30 7

15. 15 16. 10

(c) 2 6

10.

11. 2 48 = 8 3

1.

18. 23.987 19. 352.47 20. 93

(b) 3 7

4. 10 14

9. 60

(e) 52 - 13 10

(a) 2 3

7-5 2

Exercises 2.22

10. 51.935 11. - 1

8. 284 9. - 40

3. 3 6

15

(k) - 8 + 12 12 = - 8 + 24 3

(d) - 37.7

3. - 7

21.

24. - 2 - 2 3

13. 2 20 = 4 5

30.

a 2 - 2ab - b 2 + 1 ]a + bg]a - bg

(c) 48.1

13. 1838.8

12 = 2 3

2.

(i) 6 + 30

(f) 2.3 (g) - 5.3 6.

21

7. - 12 55

^x + yh^x - yh

(b) - 6.9

12. 5 3

2

17. 13 6

2

20. 5 2 - 2 3

23. 7 6 + 3 5

20. 30 50 = 150 2

y ^x + y + 1h

(a) - 7.1

2

19. 47 3

11.

6. 3 6

Exercise 2.21

2]x - 1g (f) ]x + 1g]x - 3g

Exercises 2.18 1.

5. - 3 5

25. - 17 5 + 10 2 2x (d) x+2

^y + 2h^y + 1h

(d)

4. 3 3

8. 8 5

22. - 2 3 - 4 5

x 2 + 10x - 24 3b 2 - 5b - 10 (d) (e) x 2 ]x - 3g]x - 4g 2b ] b + 1 g 3x - 13 3 - 5x (a) (b) ]x - 5g]x - 2g]x + 3g ]x + 2g]x - 2g (c)

3. 6 3

2

7. - 7 2

(c)

5.

2.

18. - 9 10

a+2 (h) ] a + 1 g2

- 3x + 8 (g) ]x + 2g]x - 2g

4.

(e)

6

]x - 3g]x - 1g (e) ]x - 5g]x - 2g

^ p + qh^ p - qh + 1 p2 - q2 + 1 = (e) p+q p+q

(i)

4p + 3

(c)

q+1

x 2 - xy + y 2

5 (a) x

(c)

15

(b) 108 2

(c) 432 2

(e) 9

(b) a = 19, b = - 7

(b) 2p - 1 - 2 p ^ p - 1 h 7. 2x - 3y - 5 xy

8. a = 17, b = 240

10. 9 + 5 units 2

545

546

Maths In Focus Mathematics Preliminary Course

Exercises 2.23 1.

(a) (e) (h)

2.

7 7

8. 6 4

(b)

3+ 6 3

(f)

3 14 - 4 7 14

(c)

2 15 5

(d)

12 - 5 2 2 (i)

6 14 3 14 = 5 10

(g)

(a) 4 3 - 4 2 = 4 ^ 3 - 2 h

(b)

(j)

4 15 - 2 10 35

6 15 - 9 6 + 2 10 - 6 2

3.

So rational 9.

1.

2.

(j) (l) 4.

(i)

2-1

=

28 - 2 6 - 7 3 13

(b) a = 1, b = 8

8 5 (d) a = - 1 , b = 9 9

=

(k)

2 15 + 2 10 - 2 6 - 3 - 5 2

(a) a = 45, b = 10

5.

4 6+9 3 21

15 30 - 30 5 - 4 3 30

+ 2+1 2-1

2 2-1

2+1 2-1 ^ 2 - 1h^ 2 - 1h

+ +

4 2

(a) 4 (b) 14

7.

3 5 - 2 - 15 - 3 3

#

4 2 2

^ 2 h2 - 1 2 2- 2- 2+1 = +2 2 2-1 3-2 2 = +2 2 1 =3-2 2+2 2 =3 So rational 6.

1 1 (c) a = - , b = 2 2

(e) a = 5, b = 32

4

#

x = -^ 3 + 2h

10.

2 2

(a) - 2y

(b) a + 4

b+4 b+4 b-4

(f) 6 2

(g) 4 5

(c) - 6k 5

(d)

5x + 3y

(e) 3a - 8b

15

(b) ] a + 3 g ] a - 1 g (c) 4ab ] b - 2 g

(a) ] x + 6 g ] x - 6 g

(e) 2 ^ 2n - p + 3 h

(d) (y - 3) (5 + x)

(f) (2 - x) (4 + 2x + x 2) 3.

20 12 + 19 6 + 25 3 - 6 19 6 + 65 3 - 6 (g) = 15 15 6+9 2+2 3 6

2

Test yourself 2

(a) 2 2 (b) - ^ 2 + 6 - 3 2 + 3 3 h = - 2 - 6 + 3 2 - 3 3 22 5 + 14 2 (c) 39 ^ (d) - 6 6 - 16 - 3 84 + 8 14 h 10 - 3 6 + 8 + 3 21 - 4 14 = 5 (e) - 4 (f) 4 2

(h)

2

6-4 2 +4 2 9-4#2 6-4 2 = +4 2 1 =6-4 2+4 2 =6

(c)

(f)

2 3-2 2 8 = # + # 3+2 2 3-2 2 2 2^3 - 2 2 h 8 2 + = 2 2 32 - ^ 2 2 h =

-^ 6 + 7 3 h 47

- ^ 2 15 - 4 18 h - 2 ^ 15 - 6 2 h = 19 19 - ^ 19 - 8 3 h 8 3 - 19 = (d) (e) 6 + 2 + 5 3 + 5 2 13 13

8

+

2

5 + 2 10 5

8 5 + 3 10 20

2 3+2 2

(b) 2x 2 + 5x - 3

(a) 4b - 6

(d) 16x - 24x + 9 (g) 2 6 - 5 3 (a)

5.

V = 157.464

(f) - 1 - 7a

(h) 3 3 - 6 + 21 - 2 7

8

4.

(c) 4m + 17

(e) p 2 - 25

2

(b)

b 2 ^ a 2 + 3a + 9 h

6. (a) 17

15 ] m - 2 g2 (b)

6 15 - 9 17

4x + 5 8. (a) 36 (b) - 2 ]x + 3g]x - 2g 1 9. (a) (b) 8 10. d = 11.25 5 2 3 2+ 6 11. (a) (b) 15 2 7.

12. (a) 3 6 - 6 - 4 3 + 4 2

(c) 2

(d) 216

(b) 11 + 4 7

(b) 6 ] x - 3 g ] x + 1 g

13. (a) 3 (x - 3) (x + 3)

(c) 5 ^ y + 2 h _ y 2 - 2y + 4 i

14. (a)

x3

(b)

3y 4

15. (a) 99

1 3x - 1

(b) 24 3

16. (a) a 2 - b 2

(b) a 2 + 2ab + b 2

17. (a) ] a - b g2

(b) ] a - b g ^ a 2 + ab + b 2 h

18.

3 3+1 2

20.

21 5 - 46 - 2 7

(c) 16

19. (a)

4b + 3a ab

(c) a 2 - 2ab + b 2

(b)

3x - 11 10

(e) 2

ANSWERS

21. (a) 6 2 (f)

(b) - 8 6

m

24. (a)

(d)

3 7 7

6 15

5+1 2

(c)

(e)

x + 10 10

17a - 15 21

1 k-1

(b)

(e)

71 121

20 + 3 15 + 4 10 + 3 6 53 (c)

3 - 2x (x + 1) (x - 1)

15 - 6 - 15 3 - 15 2 3

(b) n = 175

(d) n = 5547

27. (b), (c)

(c) n = 392

28. (d)

33. (a)

29. (a), (d)

34. (d)

30. (c)

35. (b)

(b) y 4 - 4

2. 4.

x2 +

2 3. or 4 2 2

b b2 b 2 n x + 2 = dx + a a 2 4a

4x 2 + 12x + 9 = ] 2x + 3 g2 ]a + 1g

a2 - a + 1

10. d

11. w = 13

7.

(d) ] b - 2 g ] a + 2 g ] a - 2 g y+1

2]x - 1g

8. 2 5

13. x = 14

16. p = 3

5. k = 5

5 8

14. x = - 1

17. t = 8.2

18. x = - 9.5

20. x = - 3 24. y = 1

1.

t = 8.5

6.

r = 6.68

21. b = 0.8 2 25. t = - 1 3

22. a = - 0.375

2x 1 1 2 + = dx + n 9 3 3

20. r =

21. s = 2 + 6 3

4. a = 41

3 4 r

=

71 121 3 r 4r

(b) a =

8. n = 15

11. (a) BMI = 25.39 12. r = 0.072

19. x = 5.5

20. r = 3.3

5. y = 4

9. y 1 = 3

2 3

(b) w = 69.66 13. x 1 = - 9

17. r = 10.46

14. t = 2.14

18. x = 1.19

Exercises 3.4 1.

2.

16. x = 2

(a) 3

7. x = 6.44

16. r = 2.12

(a) x 2 3

-4

- 66 6 + 4 2 - 15 + 4 5 - 65 3 13

18.

3. b = 8

-3

-2

-1

0

1

2

3

-2

-1

0

1

2

3

4

(b) y # 4

3x + 4 (b) ] 2x - 1 g2

2

400 - 59 5 10

2. l = 122

15. x = ! 2

-4

13. x 3 - 7x 2 + 15x - 9

1 2

12. t = 30

15. x = - 0.4

2 a 2 a + nd - n x b x b

12. (a) 8x - 12x + 6x - 1

19. i = 1

9 35

x = 36 7. t = 0.6 8. x = - 3 9. y = - 1.2 10. x = 69

]x - 3g]x + 3g]x - 2g 3

17.

4. x = 1

6.

3x 3 - 6x 2 + 3x + 4xy - 6y

15. x 2 +

2. x = 35 3. y = 4

4 9

b =3

(c) h = 1.94

(a) ] x + 4 g ] x + 9 g

2

14.

1 3

1.

10. h = 3.7

(c) ] 5x + 7 g ^ 25x 2 - 35x + 49 h

11.

30. x Z 4.41

1

(b) _ x 2 - 3y i _ x 2 + 2y i = (x + 3 y) (x - 3 y) _ x 2 + 2y i

9.

29. p = 5

2

17 3 + 2 5 + 20 17

6.

16. x = 20 17. m = 20 18. x = 4 19. a = - 7 20. y = 3 2 21. b = - 4 22. x = 3 23. a = - 1 24. t = - 4 3 1 25. x = 1.2 26. a = 1.6 27. b = 28. t = 39 8

Exercises 3.3

(c) 8x - 60x + 150x - 125

5.

2. z = - 5.6 3. y = 1 4. w = 6.7 5. x = 12 1 8. b = 35 9. n = - 16 10. r = 4 6. x = 4 7. y = 15 11. y = 9 12. k = 6 13. d = 2 14. x = 5 15. y = 15

23. x = 3

(a) 2a 2 b - 8ab 2 + 6a 3 3

t = -5

19. q = 22

Challenge exercise 2 1.

1.

Exercises 3.2

(e) n = 1445

32. (b)

Chapter 3: Equations

Exercises 3.1

12 - 2 6 15

31. (c)

(e) 30a 2 b

3

(b) 10 14 - 5 21 - 6 10 + 3 15

(b)

25. (a) n = 48

26. 3

4

(d) 43 (e) 65 - 6 14

(c) 7

(d)

(d)

(g) 2x - 3y

3n 4

22. (a) 2 6 + 4

23. (a)

(c) 2 3

17 14 , b=23 23

-3

4

(a) t 2 7 (b) x $ 3 (c) p 2 - 1 (d) x $ - 2 (e) y 2 - 9 1 2

(f) a $ - 1

(g) y $ - 2

(j) y 1 12

(k) b 1 - 18

(l) x 2 30

(n) m 2 14

2 3

1 4

(r) w 1 2

4 5

(v) x 2 - 1

(o) b $ 16 (s) x $ 35

2 3

(h) x 1 - 2

(w) b # - 11

(m) x # 3

(p) r # - 9

(t) t $ - 9 1 4

(i) a # - 6 3 4

(q) z 2 8

(u) q 2 - 6

2 5

547

548

Maths In Focus Mathematics Preliminary Course

3.

(a) 1 1 x 1 7 1

0

3.

2

3

4

5

6

7

8

0

1

2

3

4

5

(b) - 2 # p 1 5 -3

-2

-1

4.

(c) 1 1 x 1 4 -3

-2

0

-1

1

2

3

4

-2 -1 1 2 (e) 1 y 1 1 6 3 -1

-2

0

1

2

3

4

0

1

2

3

5

5.

5

4

1.

2.

(a) x = ! 5

(b) y = ! 8

(e) x 2 6, x 1 - 6

(f) - 10 # p # 10

(g) x = 0

(i) - 12 1 y 1 12

(j) b $ 20, b # - 20

(a) x = 5, - 9

8.

5 (f) x = 5, -4 7

(h) x $ 9, x # - 6

(i) x = ! 12

(j) 2 # a # 10 3.

(a) x = 1

1 4

(b) a = 3, -

1 3

(c) b = 2

(d) No solutions (e) y = - 2 3 1 (h) d = 2 , -1 4 2 4.

(a) x = 2, -

1 2

(a) t = 3, -1

-3

-2

(b) y = 3, 2

1 3

(e) d = 4, -5

2 5

(b) - 1

-1

9.

(f) x = 7 (g) m = 5, 1

4 , -2 5

(i) y =

1 3

(d) x = 4, -7 5.

2 7

1 3 2 3

2.

(a) x = 3

2 3

(f) a = 2 (g) x = ! 2 (h) b = 9 2 3

0

1

2

3

4

5

(b) y = ! 8

(e) p = 10

(f) x = ! 5

(i) n = ! 4

(j) q = - 2

(c) n = ! 2 (g) y = ! 3

(d) x = ! 2 5

1 512 1 (e) x = ! 8

(e) y = 1.89 (f) d = ! 2.55 (g) k = ! 4.47 (h) x = 2.22 (j) y = 3.01

(b) x = 6

1 7

1 2

1 4

(f) x = 4

(j) m = 1

(d) x = !

(c) a =

1 81

1 625 19 (h) n = 7 32 (d) k =

(g) y = ! 8

127 216

(a) n = 4

(b) y = 5

(c) m = 9

(f) x = 3

(g) x = 2

(h) x = 2

(a) x = 2

(b) x = 1 (c) x = - 2 (d) n = 2 (e) x = 0 1 (g) y = (h) x = 2 (i) x = 2 (j) a = 0 3

1 2

(a) m =

(b) x =

1 3 3 4

(e) k = -

2 3

(f) n =

(i) k = -

1 6

(j) x = 1

(a) x = - 1

(c) x =

(d) x = 5 (i) x = 1

1 3

(g) x = 1

(d) k = -

1 2

(h) n =

2 3

1 2

2 3

(b) x = - 1

1 3

(c) k = - 4

(f) x = -

2 3

(g) x = - 4

1 2

(j) x = 18

10. (a) m =

1 4

(b) k = - 2

(e) n =

1 18

(f) n = 1 7

(e) m = 0 (j) k = 2

3 4

1 2

(c) x = 2 (g) x =

4 5

3 8

(d) n = 3 1 2

(h) x = - 1

(d) k = 1

1 2

(h) b = - 3

1 6

7 11

(j) m = 5

Puzzle 1.

All months have 28 days. Some months have more days as well. 2. 10 3. Bottle $1.05; cork 5 cents

4.

16 each time

5. Friday

(h) w = 2

(a) p = ! 6.71 (b) x = 4.64 (c) n = 2.99 (d) x = ! 5.92 (i) y = ! 3.81

(j) b = ! 1

(a) x =

(i) x = - 1

Exercises 3.6 1.

(e) n =

(c) y =

4 5

2 1t 13 5

1 2

(h) y = 27

(b) a =

(i) x = 1

3 5

(g) b = 216

1 5

(e) x = - 2

(j) No solutions

(c) a = - 10, 1

1 2

(d) t = 8

(a) x =

(f) x = 6

(c) a 2 2, a 1 - 2

(e) x = 3, -6

1 1y 12 2

7.

(h) a 2 14, a 1 - 14

(b) n = 4, -2

(d) 4 # x # 6

6.

(c) - 4 1 a 1 4

(d) k $ 1, k # - 1

(g) - 3

(f) m = 625 (j) t = 81

(i) b = 8

Exercises 3.5

(c) x = 32

(i) a = 128

(i) x = !

-3

(b) t = 16

(e) p = 243

5

(d) - 3 # y # 5

-3

(a) n = 27

Exercises 3.7 1.

y = 0, -1

5.

x = -2, -7

2. b = 2, -1 6. q = !3

3. p = 3, -5 7. x = !1

4. t = 0, 5

8. a = 0, -3

ANSWERS

9.

x = 0, - 4

12. y = 1, -1 16. x = 1, 2 20. x = 3, 4

10. x = ! 1 2

1 2

1 2

11. x = -1, -1

3 1 , 4 2

13. b =

17. x = 0, 5

14. x = 5, -2 15. x = 0, 18. y = - 1, 2

21. m = - 6, 1

23. y = 1, -5, -2

1 3

1 12. y 1 - 1 , y 2 2 2 2 3

19. n = 3, 5

24. x = 5, -7

25. m = 8, -1

15. - 1

(a) x = ! 5 - 2

(b) a = ! 7 + 3

(c) y = ! 23 + 4

(e) p = ! 44 - 7 = ! 2 11 - 7

18. - 1 # a # 1

19. - 2 1 x 1 3

20. x # - 1, x $ 3

21. 0 1 x 1 2

22. 1 # a # 1

1 2

23. y # - 2, y $

(f) x = ! 28 + 5 = ! 2 7 + 5

1. 4.

x = 6, y = 17

(h) x = ! 2 + 1

7.

x = - 3, y = 2

! 5+3 (j) y = 2

a = 1, b = 3

10. m = 2, n = 3

(a) x = 3.45, -1.45

(b) x = - 4.59, -7.41

(c) q = 0.0554, -18.1

(d) x = 4.45, - 0.449

(e) b = - 4.26, -11.7

(f) x = 17.7, 6.34

(g) r = 22.3, - 0.314

(h) x = - 0.683, -7.32

(i) a = 0.162, - 6.16

(j) y = 40.1, - 0.0749

4 5

25. 1 # x # 1

1 3

Exercises 3.11

(g) y = ! 88 - 10 = ! 2 22 - 10 = 2 ^ ! 22 - 5 h (i) n = ! 137 - 12

1 1 #x #2 3

17. x 1 - 4, x 2 4

2 1 24. m 1 - 1 , m 2 1 3 2

(d) x = ! 13 - 1

2.

2 5

2 ,x $1 3

16. - 4 # y # 3

22. x = 0, -1, -2

Exercises 3.8 1.

14. b 1 - 3, b 2

13. x #

2. x = 2, y = 1

3. p = 2, q = - 1

5. x = - 10, y = 2

6. t = 3, v = 1

8. x = - 64, y = - 39 11. w 1 = - 1, w 2 = 5

13. p = - 4, q = 1

9. x = 3, y = - 4 12. a = 0, b = 4

14. x 1 = 1, x 2 = - 1

15. x = - 1, y = - 4 16. s = 2, t = - 1 17. a = - 2, b = 0

18. k = - 4, h = 1

19. v 1 = - 2, v 2 = 4

20. x = 2, y Z 1.41

Problem Exercises 3.9 1.

23 adults and 16 children.

(a) y = - 0.354, - 5.65 (c) b = 3.54, - 2.54

(d) x = 1, - 0.5

(e) x = - 0.553, 0.678 (g) m = - 2, - 5

(b) x = 1, 1.5 (f) n = 0.243, -8.24

(h) x = 0, 7

(i) x = 1, - 6

(j) y = 2.62, 0.382 2.

(a) x =

- 1 ! 17 2

(c) q =

4 ! 28 = 2! 7 2

(b) x =

5 ! 13 6

- 12 ! 128 -3 ! 2 2 (d) h = = 8 2

- 5 ! 73 (g) d = 12

2 ! 32 (h) x = =1!2 2 2 (j) x =

1.

x = 0, y = 0 and x = 1, y = 1

2.

x = 0, y = 0 and x = - 2, y = 4

3.

x = 0, y = 3 and x = 3, y = 0

4.

x = 4, y = - 3 and x = 3, y = - 4

6.

x = 3, y = 9

8.

m = - 4, n = 0 and m = 0, n = - 4

9.

x = 1, y = 2 and x = - 1, y = - 2

5. x = - 1, y = - 3

7. t = - 2, x = 4 and t = 1, x = 1

10. x = 0, y = 0 and x = 1, y = 1

8 ! 40 4 ! 10 = (e) s = 6 3 - 11 ! 133 (f) x = 2

Exercises 3.12

1! 5 (i) t = 2

7 ! 41 4

11. x = 2, y = 1 and x = - 1, y = - 2

12. x = 0, y = 1

13. x = 1, y = 5 and x = 4, y = 11 1 14. x = , y = 4 and x = - 1, y = - 1 4

1 1 15. t = - , h = 4 2

16. x = 2, y = 0 17. x = 0, y = 0 and x = - 2, y = - 8 and x = 3, y = 27 18. x = 0, y = 0 and x = 1, y = 1 and x = - 1, y = 1 19. x =

Exercises 3.10

3 1 ,y =2 4 2

20. x = -

5 12 ,y =13 13

Exercises 3.13

1.

-3 1 x 1 0

2. 0 1 y 1 4

4.

x # - 2, x $ 2

7.

c 1 - 1, c 2 2

10. b # - 2, b $ -

3. n # 0, n $ 1

5. n 1 - 1, n 2 1 8. - 4 # x # - 2 1 2

6. - 5 # n # 3 9. 4 1 x 1 5

11. a 1 - 1, a 2

1 3

1.

x = - 2, y = - 8, z = - 1

2. a = - 2, b = - 1, c = 2

3.

a = - 4, b = 2, c = 7

4. a = 1, b = 2, c = - 3

5.

x = 5, y = 0, z = - 2

6. x = 0, y = - 5, z = 4

7.

p = - 3, q = 7, r = 4

8. x = 1, y = - 1, z = 2

9.

h = - 3, j = 2, k = - 4

10. a = 3, b = - 1, c = - 2

549

550

Maths In Focus Mathematics Preliminary Course

Test yourself 3 1.

(a) b = 10

(b) a = - 116

2.

(a) A = 1262.48

3.

(a) x 2 - 8x + 16 = ] x - 4 g2

4.

(a) x = - 2, y = 5

5.

(a) x = 2

6.

(a) b = 2, -1

7.

(a) A = 36

9.

-1 1 y # 3

(d) p # 4

(b) P = 8558.59

(b) y = 1 3

(c) x = - 7

(i) y = 40c (j) x = 80c 2. (a) 121c (b) 72c 29l (c) 134c 48l 3. (a) 42c (b) 55c 37l (c) 73c 3l 4.

(a) (i) 47c (ii) 137c (b) (i) 9c (ii) 99c (c) (i) 63c (ii) 153c (d) (i) 35c (ii) 125c (e) (i) 52c (ii)142c (f) (i) 15c7l (ii) 105c7l (g) (i) 47c36l (ii) 137c36l (h) (i) 72c21l (ii)162c21l (i) (i) 26c11l (ii) 116c11l (j) (i) 38c51l (ii) 128c51l 5. (a) x = 49c (b) 41c (c) 131c 6. (a) y = 15c, x = z = 165c (b) x = 142c, y = 48c, z = 28c (c) a = 43c, b = 137c, c = 101c (d) a = 97c, b = d = 41c, c = 42c (e) a = 68c, b = 152c, c = 28c (f) a = 10c, b = 150c

7.

8x - 10 + 2x - 10 + x + 10 + 7x + 10 = 360

(b) k 2 + 4k + 4 = ] k + 2 g2

1 (b) x = 4, y = 1 and x = - , y = - 8 2 1 4

(b) g = 2,

(b) b = 12

1 4

(c) x $ 4, x # 3

8. x =

1 ,1 2

(angle of revolution)

10. (a) x = - 0.298, -6.70

18x = 360 x = 20 +ABE = 8x - 10 = 8 (20) - 10 = 150c +EBC = 2x - 10 = 2 (20) - 10 = 30c +ABE + +EBC = 150c + 30c = 180c ` +ABC is a straight angle +DBC = 7x + 10 = 7 (20) + 10 = 150c +DBC + +EBC = 150c + 30c = 180c ` +DBE is a straight angle ` AC and DE are straight lines

(b) y = 4.16, -2.16

(c) n = 0.869, -1.54 11. (a) V = 764.5

(b) r = 2.9

13. x 1 2, x 2 9

14. x = 2.4, y = 3.2

(b) r = 3.9

16. (a) ii

12. x 2 71

(b) i

(c) ii

1 4

15. (a) V = 2100 (d) iii

(e) iii

17. a = 3, b = 2, c = - 4 18. n 2 0, n 1 - 3 19. x = - 4

1 3

20. x = - 2

(c) x = 2

(d) x = 2

(g) - 4 # x # 2

21. (a) y 2 3 (e) x = 3, -1

(h) x = - 3

(j) x # - 1, x $ 1

2 5

(b) - 3 # n # 0 (f) t $ 1, t # - 2

(i) y 2 2, y 1 - 2

5 (k) x = 6

8.

1 3 (m) No solutions (n) t = 2 , 3 5

=x ` +AFC = x

(vertically opposite angles)

(o) - 1 1 x 1 3

+CFE = 180c - (x + 180c - 2x) (+AFB is a straight angle)

(p) m # - 3, m $ 2

=x ` +AFC = +CFE ` CD bisects +AFE

Challenge exercise 3 1.

y =1

3.

a = 3, b = !2

+DFB = 180c - (180 - x) c (+AFB is a straight angle)

1 (l) - # b # 2 2

2. x 1 - a, x 2 a

9.

4. x = 2.56, -1.56

+ABD + +DBC

] x + 3 g ] x - 3 g ] x - 2 g ^ x 2 + 2x + 4 h; x = ! 3, 2

= 110 - 3x + 3x + 70 = 180c

6.

x = 1, y = 2 and x = - 1, y = 0

7.

b = 4; x = ! 17 + 4 Z 8.12, - 0.123

So +ABC is a straight angle. AC is a straight line.

9.

-1 1 t 1 1

5.

12. r = 2.31

10. - 3 # x # 8

13. No solutions

15. P = 2247.36

16. x =

8. x = ! 1 1 11. x = 4

10. +AEB + +BEC + +CED = 50 - 8y + 5y - 20 + 3y + 60 = 90c

14. x = ! b + a 2 + a

2 ^ 4 ! 10 h 3

17. y 1 -1, y 2

So +AED is a right angle.

3 5

Exercises 4.2 Chapter 4: Geometry 1

Exercises 4.1 1.

(a) y = 47c (b) x = 39c (c) m = 145c (d) y = 60c (e) b = 101c (f) x = 36c (g) a = 60c (h) x = 45c

1.

(a) a = b = e = f = 148c , c = d = g = 32c (b) x = z = 70c , y = 110c (c) x = 55c , y = 36c , z = 89c

(d) y = 125c , x = z = 55c

(e) n = e = g = a = c = z = x = 98c, o = m = h = f = b = d = y = w = 82c

ANSWERS

(f) a = 95c , b = 85c , c = 32c

5.

(g) a = 27c , b = 72c , c = 81c (h) x = 56c , y = 124c , z = a = 116c , b = 64c (i) x = 61c 2.

(a)

(j) y = 37c

+CGF = 180c - 121c

(FGH is a straight angle)

= 59c ` +BFG = +CGF = 59c These are equal alternate angles. ` AB < CD (b) +BAC = 360c - 292c = 68c

+ACB = 180c - 124c = 56c +CBA + 68c = 124c +CBA = 124c - 68c = 56c ` +CBA = +ACB = 56c ` D ABC is isosceles

6.

y = 38c

7.

(a) x = 64c

(DCB is a straight angle) (exterior angle of D)

(b) x = 64c , y = 57c

(c) x = 63c

(d) a = 29c , b = 70c

(angle of revolution)

` +BAC + +DCA = 68c + 112c = 180c These are supplementary cointerior angles.

8.

` AB < CD (+BCE is a straight angle) (c) +BCD = 180 - 76 = 104c +ABC = +BCD = 104c These are equal alternate angles.

+KJL = 180c - 60c = 120c +JLK = 180c - (30c + 120c) = 30c

(d) +CEF = 180 - 128 (+CED is a straight angle) = 52c +CEF = +ABE = 52c These are equal corresponding angles. 9.

1.

(a) x = 60c

(b) y = 36c

(c) m = 71c

(e) x = 30c

(f) x = 20c

(g) x = 67c

(d) x = 37c

2.

3. 4.

These are equal alternate angles. ` MN ; QP

Exercises 4.4 1.

(a) Yes AB = EF = 5cm

(given)

BC = DF = 6 cm

(given)

AC = DE = 8 cm

(given)

So all angles in an equilateral triangle are 60c.

` D ABC / DDEF

(SSS)

] 90 - x g c

(b)Yes

` AB < DE

(angle sum of D JKL)

BC = BD

All angles are equal. Let them be x. Then x + x + x = 180 (angle sum of D) 3x = 180 x = 60

(vertically opposite angles) +ACB = 50c +ABC = 180c - (50c + 45c) (angle sum of D) = 85c ` +DEC = +ABC = 85c These are equal alternate angles.

(KJI is a straight angle)

10. +OQP = 180 - ] 75 + 73 g (angle sum of triangle) = 32c ` +MNO = +OQP = 32c

(i) a = 75c , b = 27c , c = 46c (k) x = 67c , y = z = 59c , w = 121c

(angle sum of D JIL)

` AB ; ED

(h) a = 73c

(j) a = 36c , b = 126c , c = 23c

(angle sum of D IKL)

`+BDC = 46c (base angles of isosceles triangle) +CBD = 180 - 2 # 46 = 88c `+CBD = +BDE = 88c These are equal alternate angles.

= 42c

Exercises 4.3

(HJL is a straight angle)

` +JLK = +JKL = 30° ` D JKL is isosceles

(e) +CFH = 180 - ] 23 + 115 g (+EFG is a straight angle) `+BFD = 42c (vertically opposite angles) +ABF + +BFD = 138c + 42c = 180c These are supplementary cointerior angles. ` AB ; CD

(angle sum of D HJI)

Since +IJL = +JIL = +ILJ = 60c, D IJL is equilateral

` AB ; CD

`AB ; CD

+HJI = 180c - (35c + 25c) = 120c +IJL = 180c - 120c = 60c +JIL = 180c - (90c + 30c) = 60c +ILJ = 180 - (60c + 60c) = 60c

XY = BC = 4.7 m

(given)

+XYZ = +BCA = 110c (given) YZ = AC = 2.3 m

(given)

` D XYZ / DABC

(SAS)

(c) No

551

552

Maths In Focus Mathematics Preliminary Course

(b) +ABC = +ADC

(d) Yes +PQR = +SUT = 49c

(given)

+PRQ = +STU = 52c

(given)

triangles)

7.

(given)

`DPQR / DSTU

(AAS)

+AOB = +COB = 90c (given)

(a) AB = KL = 4 (given) (given) +B = +L = 38c (given) BC = JL = 5 ` by SAS, D ABC / D JKL

(given) (c) MN = QR = 8 (given) NO = PR = 8 (given) MO = PQ = 5 ` by SSS, D MNO / D PQR

(given) (e) BC = DE = 4 (given) +C = +E = 90c (given) AC = EF = 7 ` by SAS, D ABC / D DEF

(a)

(alternate angles, AD < BC) +ADB = +DBC BD is common ` by AAS, D ABD / D CDB ` AD = BC

(b) +OCB = +OBC

(base angles of OBC, an isosceles

Similarly +OBA = 45c ` +OBA + +OBC = 45c + 45c = 90c So +ABC is right angled 8.

(a) +AEF = +BDC = 90c

(given)

AF = BC

(given)

FE = CD

(given)

`DAFE / DBCD

(RHS)

(b) +AFE = +BCD

(corresponding angles in congruent triangles)

9.

(a) OA = OC

(equal radii)

OB is common AB = BC

(given)

`DOAB / DOBC

(SSS)

(b) +OBA = +OBC

(corresponding angles in congruent triangles)

But +OBA + +OBC = 180c

(a)

OB is perpendicular to AC.

10. (a) AD = BC +ADC = +BCD = 90c DC is common `DADC / DBCD (b) AC = BD

(equal radii)

Exercises 4.5

OB = OD

(similarly)

(given) (SAS) (corresponding sides in congruent

1.

(a) x = 15.1

(b) x = 4.4

(c) m = 6.6

(vertically opposite angles)

(d) a = 76c , i = 23c , b = 81c

(e) b = 4.5

`DAOB / DCOD

(SAS)

(f) a = 115c , x = 19c , y = 3.2

(g) p = 9.7

(b) AB = CD

(corresponding sides in congruent

2.

a = 1.81, b = 5.83

3.

+BAC = +EDC +ABC = +DEC +ACB = +ECD

triangles)

6.

(given)

triangles)

OA = OC

+AOB = +COD

(ABC is a straight angle)

So +OBA = +OBC = 90c

(corresponding sides in congruent Ds)

5.

(angle sum of triangle)

So +OCB = +OBC = 45c

(b) ` BD = DC (corresponding sides in congruent Ds) ` AD bisects BC (alternate angles, AB < CD)

(SAS)

But +OCB + +OBC = 90c

+B = +C (base angles of isosceles D) +BDA = +CDA = 90c (given) AD is common ` by AAS, D ABD / D ACD

+ABD = +BDC

`DOAB / DOBC

right angled triangle)

(given) (d) +Y = +T = 90c (given) +Z = +S = 35c (given) XY = TR = 1.3 ` by AAS, D XYZ / D STR

4.

(equal radii)

QR = TU = 8 cm

(given) (b) +Z = +B = 90c (given) XY = AC = 7 (given) YZ = BC = 2 ` by RHS, D XYZ / D ABC

3.

(a) OA = OC OB is common

(e) No 2.

(corresponding angles in congruent

(a) AB = AD

(given)

BC = DC

(given)

` since 3 pairs of angles are equal, DABC ||| DCDE

AC is common `DABC / DADC

(alternate angles, AB < ED) (similarly) (vertically opposite angles)

(SSS)

ANSWERS

4.

(given) +GFE = +EFD GF 1.5 o = = 0.5 EF 2.7 2.7 EF o = = 0.5 DF 4.86 GF EF ` = EF DF Since two pairs of sides are in proportion and their included angles are equal, then DDEF ||| DFGE

1.3 AB = = 0.714 5. DE 1.82 4.2 AC = = 0.714 DF 5.88 4.9 BC = = 0.714 EF 6.86 AC BC AB = = ` DE DF EF Since three pairs of sides are in proportion, D ABC ||| D DEF y = 41c 6.

(a) OA = OB OC = OD OA OB ` = OD OC +AOB = +COD

(equal radii) (similarly)

D ABC ||| D ACD, x = 109c, y = 47c 11. (a) x = 7.8

(b) AB = 5.21 cm

12. (a)

(c)

+ABF = +BEC +CBE = +BFA ` +C = +A

AB 10. CD BC AC AC AD AB ` CD

= = = =

2 = 0.769 2.6 3 = 0.769 3.9 3.9 = 0.769 5.07 BC AC = AD AC

Also `

BD AD = AE CE AD DF Also = AE EG BD DF ` = CE EG 14. y = 0.98

2.

(a) p =

3.

s = 6.2 m

5.

AB 2 = 81, CB 2 = 144, CA 2 = 225 AB 2 + CB 2 = 81 + 144 = 225 = CA 2 ` D ABC is right angled

6.

XY = YZ = 1 ` D XYZ is isosceles

15. x = 3.19, y = 1.64

61

(b) y = 6.6

(c) b = 5.7

(b) t =

(c) x =

58

4. CE = 15.3 cm

YZ 2 = XY 2 = 1, XZ 2 = 2 YZ 2 + XY 2 = 1 + 1 =2 = XZ 2 ` D XYZ is right angled

(alternate angles, AB z CD) (similarly, BC z AD) (angle sum of Ds)

+A is common 1.2 AD = = 0.4 AB 3 0.8 AE = = 0.4 2 AC AD AE ` = AB AC Since two pairs of sides are in proportion and their included angles are equal, D AED ||| D ABC, m = 4.25

AB AD = AE AC AD AF = AE AG AB AF = AC AG

(b)

(a) x = 6.4

` since 3 pairs of angles are equal, D ABF ||| DCEB 9.

(e) x = 1.4, y = 9.2

1.

(b) x = 2.17, y = 2.25 8.

(c) x = 6.5

Exercises 4.6

(corresponding angles, BC < DE) (similarly)

` since 3 pairs of angles are equal, D ABC ||| D ADE

AB AD = DE BC AD AF Also = DE FG AB AF ` = BC FG

13. a = 4.8, b = 6.9

(a) +A is common +ABC = +ADE +ACB = +AED

(b) m = 4.0, p = 7.2

(d) x = 6.2, y = 4.4

(vertically opposite angles)

Since two pairs of sides are in proportion and their included angles are equal, 3 OAB ||| 3 OCD

7.

Since three pairs of sides are in proportion,

7.

AC 2 = AB 2 + BC 2 2 2 2 = ^ 3 h + BC 2 4 1 `1 AC

8.

= 3 + BC 2 = BC 2 = BC =2 =2#1 = 2BC

(a) AC = 5 (b) AC 2 = 25, CD 2 = 144, AD 2 = 169 AC 2 + CD 2 = 25 + 144 = 169 = AD 2 ` D ACD has a right angle at +ACD ` AC is perpendicular to DC

(d) m = 6.6 65

(d) y =

33

553

554

Maths In Focus Mathematics Preliminary Course

9.

AB =

3b

11. d 2 = ] 20 - 3t g 2 + ] 15 - 2t g 2 = 400 - 120t + 9t 2 + 225 - 60t + 4t 2 = 13t 2 - 180t + 625 12. 1471 mm

(d) a = 121c, b = 52c, i = 77c (e) x = 60c (f) x = 3, y = 7

x2 + y2 x

10.

6.

+ADB = +CDB +CDB = +ABD +ADB = +DBC ` +ABD = +DBC ` BD bisects +ABC

7.

(a) AD = BC = 3.8 cm AB = DC = 5.3 cm

13. 683 m 14. 12.6 m 15. 134.6 cm

16. 4.3 m 17. 42.7 cm 18. 1.3 2 + 1.1 2 = 2.9 and 1.5 2 = 2.25 1.3 2 + 1.1 2 ! 1.5 2 so the triangle is not right angled ` the property is not a rectangle

20. (a) BC 2 = 6 2 - 4 2 = 20 BC = 20 AO = 6 cm (equal radii) So AC 2 = 6 2 - 4 2 = 20 AC = 20 Since BC = AC, OC bisects AB

Since one pair of opposite sides is both equal and parallel, ABCD is a parallelogram. (c) +X + +M = 54c + 126c = 180c These are supplementary cointerior angles. ` XY < MN Also, XM < YN

(b) +OCA = +OCB = 90c (given) OA = OB (equal radii) OC is common ` DOAC / DOBC (RHS) So AC = BC (corresponding sides in congruent triangles) ` OC bisects AB

1.

(a) x = 94c (b) y = 104c (c) x = 111c (d) x = 60c (e) y = 72c (f) x = 102°, y = 51° (g) x = 43°, y = 47°

2.

D ABE is isosceles. ` +B = +E = 76c (base +s equal) +CBE = +DEB = 180c - 76c = 104c (straight +s) +D + 62c + 104c + 104c = 360c (angle sum of quadrilateral) +D + 270c = 360c +D = 90c ` CD is perpendicular to AD`

3.

(a)

+D = 180c - x (+A and +D cointerior angles, AB < DC)

+C = 180c - (180c - x)

(+C and +D cointerior angles, AD < BC)

= 180c - 180c + x =x `+A = +C = x +B = 180c - x (+B and +C cointerior angles, AB < DC) `+B = +D = 180c - x (b) Angle sum = x + x + 180c - x + 180c - x = 360c 4.

a = 150c , b = 74c

5.

(a) a = 5 m, b = 3 m, x = z = 108c, y = 72c (b) x = 53c, y = 56c, z = 71c (c) x = y = 5 cm, a = b = 68c

(given) (given)

Since two pairs of opposite sides are equal, ABCD is a parallelogram. (b) AB = DC = 7cm (given) AB < DC (given)

19. No. The diagonal of the boot is the longest available space and it is only 1.4 m.

Exercises 4.7

(BD bisects +ADC) (alternate angles, AB < DC) (alternate angles, AD < BC)

(given)

` XMNY is a parallelogram (d) AE = EC = 5 cm DE = EB = 6 cm

(given) (given)

Since the diagonals bisect each other, ABCD is a parallelogram. 8.

(a) x = 5 cm, i = 66c (b) a = 90c, b = 25c, c = 65c (c) x = 3 cm, y = 5 cm (d) x = 58c, y = 39c (e) x = 12 cm

9.

6.4 cm

11. 4 2 cm

10. +ECB = 59c, +EDC = 31c, +ADE = 59c 12. x = y = 57c

Exercises 4.8 1.

(a) 540c (b) 720c (c) 1080c (d) 1440c (e) 1800c (f) 2880c 2. (a) 108c (b) 135c (c) 150c (d) 162c (e) 156c 3. (a) 60c (b) 36c (c) 45c (d) 24c

4.

128c34l 5. (a) 13

8.

2340c

(b) 152c18l 6. 16

7. 3240c

9. 168c23l

10. Sum = 145n = (n - 2) # 180c 145n = 180n - 360 = 35n 10.3 = n But n must be a positive integer. ` no polygon has interior angles of 145c. 11. (a) 9

(b) 12

(c) 8

(d) 10

(e) 30

12. (a) ABCDEF is a regular hexagon. (equal sides) AF = BC FE = CD (equal sides) +AFE = +BCD (equal interior angles) ` D AFE / D BCD (SAS)

ANSWERS

S = ] n - 2 g # 180c = (6 - 2) # 180c = 720c 720c +AFE = 6 = 120c Since AF = FE, triangle AFE is isosceles. So +FEA = +FAE (base angles in isosceles triangle) 180 - 120c ` +FEA = (angle sum of triangle) 2 = 30c +AED = 120 - 30c = 90c Similarly, +BDE = 90c

(b)

So +AED + +BDE = 180c These are supplementary cointerior angles `AE < BD 13. A regular octagon has equal sides and angles. (equal sides) AH = AB GH = BC (equal sides) +AHG = +ABC (equal interior angles) ` D AHG / D ABC (SAS) So AG = AC (corresponding sides in congruent triangles)

S = ] n - 2 g # 180c = (8 - 2) # 180c = 1080c 1080c ` +AHG = 8 = 135c +HGA = +HAG

360 p (b) Each interior angle: 360 180 p 180p 360 = p p 180p - 360 = p 180 ^ p - 2 h = p

15. (a)

Exercises 4.9 1.

(a) 26.35 m 2 (b) 21.855 cm 2 (c) 18.75 mm 2 (d) 45 m 2 (e) 57 cm 2 (f) 81 m 2 (g) 28.27 cm 2 2. 4.83 m 2

3.

(a) 42.88 cm 2 (b) 29.5 m 2 (c) 32.5 cm 2 (d) 14.32 m 2 (e) 100.53 cm 2 4. (a) 25 m 2 (b) 101.85 cm 2 (c) 29.4 m 2 (d) 10.39 cm 2 (e) 45 cm 2

5.

7 51 + 98 = 7 ^ 51 + 14 h cm 2

7.

$621.08

9.

(a) 48 cm

8. (a) 161.665 m 2 (b) 27 cm

6. 22.97 cm 2

(b) 89 m 2

(c) 10.5 m

10. 12w units 2

Test yourself 4

(base angles in isosceles triangle)

180 - 135c `+HAG = (angle sum of triangle) 2 = 22c30l +GAC = 135 - 2 # 22c30l = 90c We can similarly prove all interior angles are 90c and adjacent sides equal. So ACEG is a square.

1.

(a) x = 43c, y = 137c, z = 147c (b) x = 36c (c) a = 79c, b = 101c, c = 48c (d) x = 120c (e) r = 7.2 cm (f) x = 5.6 cm, y = 8.5 cm (g) i = 45c

2.

+AGF = i

So +AGF = +CFE = i These are equal corresponding +s. ` AB < CD 3.

118.28 cm2

4.

(common) (a) +DAE = +BAC (corresponding angles, DE < BC) +ADE = +ABC (similarly) +AED = +ACB ` D ABC and D ADE are similar (AAA)

] 5 - 2 g # 180c 5 = 108c

14. +EDC =

ED = CD (equal sides in regular pentagon) So EDC is an isosceles triangle. (base angles in isosceles triangle) `+DEC = +ECD 180 - 108c +DEC = (angle sum of triangle) 2 = 36c +AEC = 108 - 36c = 72c Similarly, using triangle ABC, we can prove that +EAC = 72c So EAC is an isosceles triangle. (Alternatively you could prove EDC and ABC congruent triangles and then AC = EC are corresponding sides in congruent triangles.)

(vertically opposite +HGB)

(b) x = 3.1 cm, y = 5.2 cm 5.

162c

6. 1020.7 cm3

8.

(a) AB = AD BC = DC

7. 36 m (adjacent sides in kite) (similarly)

AC is common ` Δ ABC and Δ ADC are congruent (SSS) (b)

AO = CO BO = DO +AOB = +COD

(equal radii) (similarly) (vertically opposite angles)

` Δ AOB and Δ COD are congruent (SAS) 9.

73.5 cm2

2 10. 6 2 + ^ 2 7 h = 36 + 28 = 64 = 8 2 ` ΔABC is right angled (Pythagoras)

555

556

Maths In Focus Mathematics Preliminary Course

11.

AF AD = AE AG AD AB = AE AC AF AB ` = AG AC

12. (a) AB = AC +B = +C BD = DC

(equal ratios on intercepts)

Challenge exercise 4 1.

94c

4.

+BAD = +DBC +ABD = +BDC ` +ADB = +DCB

3. 1620c, 32c 44l

(b) +ADB = +ADC (corresponding +s in congruent Ds) (straight +) But + ADB + +ADC = 180c

5.

So +ADB = +ADC = 90c

(base +s of isosceles D) (exterior + of D)

6.

^ base +s equal h

So Δ ACD is isosceles

AB = DC (given) +A + +D = 131c + 49c = 180c +A and +D are supplementary cointerior angles ` AB < DC Since one pair of opposite sides are both parallel and equal, ABCD is a parallelogram.

So AD and BC are perpendicular. +ACB = 68c +CAD = 68c - 34c = 34c ` ˚+CAD = +ADC = 34c

(given) (alternate angles, AB < DC) (angle sum of D)

` since 3 pairs of angles are equal, D ABD
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF