maths 8 1

Share Embed Donate


Short Description

Download maths 8 1...

Description

HKCEE MATHEMATICS | 8.1 Inequality - Linear Inequality |

P.1

1. 1990/II/36 If a < b < 0, which of the following must be true? A.

−a < −b

a 5

a = 1, c = −2

D.

E. a = −1, c = 2

−5 < x −2 3 x > −4 D.

Find the values of x which satisfy both − x < 4 and

A.

−4< x 1

D.

x 2

8. 1997/II/32 Find the values of x which satisfy both –2x < 3 and (x + 3)(x – 2) < 0 . 3 3 A. x < –3 B. x > 2 C. –3 < x < – D. – –

E.

I and III only

3 2

HKCEE MATHEMATICS | 8.1 Inequality - Linear Inequality |

10. 1998/II/3 Solve x2 + 5x – 6 ≤ 0 . A. –6 ≤ x ≤ 1 B. 11. 1999/II/7 Solve x2 + 10x – 24 > 0 . A. x < –12 or x > 2 D. –12 < x < 2

–3 ≤ x ≤ –2

C.

–1 ≤ x ≤ 6

B.

x < –6 or x > –4

E.

–2 < x < 12

D.

C.

P.2

x ≤ –6

or x ≥ 1

E.

x ≤ –1

x < –2 or x > 12

12. 2000/II/6 Find the values of x which satisfy both x + 3 > 0 and − 2 x < 1 . 1 1 1 B. x > − C. x > D. − 3 < x < − A. x > −3 2 2 2

E.

−3< x <

1 2

13. 2001/II/38 If a > b , which of the following must be true? I. − a < −b A. I only

II. B.

a+b >b II only

III. a 2 > b 2 C. III only

D.

I and II only

E.

I, II and III

14. 2002/II/9 Solve (2 x − 1) 2 + 2(2 x − 1) − 3 > 0 . A.

0< x 2

C.

15. 2003/II/8 The solution of x > 1 and 13 < 3 x − 2 < 25 is A. x > 1 B. 1 < x < 5 C. 1 < x < 9

D.

16. 2004/II/9 The solution of − 2 x < 3 − x or 3 x + 3 > 0 is B. x > −1 C. − 3 < x < −1 A. x > −3

C.

x < 10

D.

D.

x > 10

18. 2007/II/6 The solution of 15 ≥ 4(x + 2) – 1 is A.

x ≤ –2

B.

x≤2

C.

x ≥ –2

D.

55

x≥2

x < −1 or x > 1

5< x −4 is A. x < 5 B. x > 5

D.

x < −3 or x > −1

or x ≥ 6

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF