Mathematical Methods CAS 3/4 Answers

January 1, 2018 | Author: iloveoj | Category: N/A
Share Embed Donate


Short Description

Mathematical Methods CAS 3/4 Answers...

Description

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

Answers Chapter 1

c –2 –1 0 1 2 3 4 5 6

Exercise 1A

d

1 a {7, 9} b {7, 9} c {2, 3, 5, 7, 9, 11, 15, 19, 23} d {2, 3, 5, 11) e {2} f {2, 7, 9} g {2, 3, 5, 7} h {7} i {7, 9, 15, 19, 23} j (3, ∞) 2 a {a, e} b {a, b, c, d, e, i, o, u} c {b, c, d} d {i, o, u} 3 a {6} b {2, 4, 8, 10} c {1, 3, 5, 7, 9} d {1, 2, 3, 4, 5, 7, 8, 9, 10} e {1, 2, 3, 4, 5, 7, 8, 9, 10} f {5, 7} g {5, 7} h {6} √ 4a [−3, 1) b(−4, 5] c (− 2, 0) 1 √ e (−∞, −3) d −√ , 3 2 f (0, ∞) g (−∞, 0) h [−2, ∞) 5 a (−2, 3) b [−4, 1) c [−1, 5] d (−3, 2] 6a –3 –2 –1 0 1

–8

–6

–4

–2

Exercise 1B 1 a Domain = R b Domain = (−∞, 2] c Domain = (−2, 3) d Domain = (−3, 1) e Domain = [−4, 0] f Domain = R

Range = [−2, ∞) Range = R Range = [0, 9) Range = (−6, 2) Range = [0, 4] Range = (−∞, 2)

3 1 0

x

Domain = R Range = [1, ∞)

0 1

2 3

y

c

0

–3

3

x

–3

Domain = [−3, 3] Range = [−3, 3]

b 2 3

y

b

y

2a

2

–4 –3 –2 –1 0 1

0

y

d

c (4, 4)

2

d

–4 –3 –2 –1 0

e

f 0

1 2 3

y

x

0

8

Domain = [0, ∞) Range = [0, ∞)

Domain = R + ∪ {0} Range = (−∞, 2]

e

–2 –1

(1, 2)

x

0

–4 –3 –2 –1 0 1

f

y (4, 18)

4 5

5

7a –3 –2 –1 0 1 2 3 4 5 6

0

b

x 5

Domain = [0, 5] Range = [0, 5]

–3 –2 –1 0 1 2 3 4 5 6

682

2 0

x 4

Domain = [0, 4] Range = [2, 18]

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

683

Answers

4 0 –1 (–1, –5)



x –2 2

–2

2 0

–5

(6, 7) (2, 3)

x

Range = [3, ∞)

0

0

x (2, –1)

Range = (−∞, −1]

–2 3

x

(–4, –7)

y

(3, 11) 2 0

y

f

(6, 17)

(3, 4) –1 1 0

x

Range = (−∞, 11)

Range = [−7, ∞) e

y

d

1

1 2

x

Domain = R Domain = [−1, 2] Range = (−∞, 4] Range = [−5, 4] 3 a Not a function Domain = {−1, 1, 2, 3} Range = {1, 2, 3, 4} b A function Domain = {−2, −1, 0, 1, 2} Range = {−4, −1, 0, 3, 5} c Not a function Domain = {−2, −1, 2, 4} Range = {−2, 1, 2, 4, 6} d A function Domain = {−1, 0, 1, 2, 3} Range = {4} f Not a function e A function Domain = {2} Domain = R Range = Z Range = {4} g A function h Not a function Domain = R Domain = R Range = R Range = R i Not a function Domain = [−4, 4] Range = [−4, 4] 4 a g(−2) = 10, g(4) = 46 b [−2, ∞) 5 a f (−1) = −2, f (2) = 16, f (−3) = 6 b g(−1) = −10, g(2) = 14, g(3) = 54 c i f (−2x) = 8x 2 − 8x ii f (x − 2) = 2x 2 − 4x iii g(−2x) = −16x 3 − 4x − 6 iv g(x + 2) = 2x 3 + 12x 2 + 26x + 14 v g(x 2 ) = 2x 6 + 2x 2 − 6 3 c− 6a3 b7 2 2 7 a x = −3 b x > −3 cx= 3 8 a f : R → R, f (x) = 2x + 3 4 b f : R → R, f (x) = − x + 4 3 c f : [0, ∞) → R, f (x) = 2x − 3 d f : R → R, f (x) = x 2 − 9 e f : [0, 2] → R, f (x) = 5x − 3 y y b 9a

0

y

c

y

h

(2, 4)

1 3

x

x

–1 0 (–2, –7)

Range = [−7, 17]

Range = (−∞, 4] y

g

h

(–5, 14)

y (4, 19)

(–1, 2) 0

x

Range = [2, 14]

0 –1 0.2 (–2, –11)

x

Range = (−11, 19)

10 a f (2) = −3, f (−3) = 37, f (−2) = 21 b g(−2) = 7, g(1) = 1, g(−3) = 9 c i f (a) = 2a 2 − 6a + 1 ii f (a + 2) = 2a 2 + 2a − 3 iii g(−a) = 3 + 2a iv g(2a) = 3 − 2(2a) = 3 − 4a v f (5 − a) = 21 − 14a + 2a 2 vi f (2a) = 8a 2 − 12a + 1 vii g(a) + f (a) = 2a 2 − 8a + 4 viii g(a) − f (a)= 2 + 4a −2a 2     2 2 2 , −1 b − , 11 a 3 3 3     1 2 c 0, − d (−∞, −1) ∪ ,∞ 3

3   2 2 e −∞, − ∪ ,∞ 3 3 1 f − ,0 3 12 a f (−2) = 2 b f (2) = 6 c f (−a) = a 2 − a d f (a) + f (−a) = 2a 2 e f (a) − f (−a) = 2a f a 4 + a2  a+2 13 a {2} b {x : x > 2} c 3     8 13 d − e {1} f 3 18 4 7 bk =6 ck =− 14 a k = 3 3 2 1 fk =− dk =9 ek = 9 3 6 1 1 b d1 e −1, 2 c± 15 a 5 5 3

Answers

y

g

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

Answers

684

CUAT018-EVANS

November 3, 2005

16:7

Essential Mathematical Methods 3 & 4 CAS y

13 a

Exercise 1C

(–3, 8)

1 One-to-one functions are b, d and f. 2 a Functions are i, iii, iv, vi, vii and viii. b One-to-one functions are iii and vii. √ 3y= √ x + 2, x ≥ −2; range = R + ∪ {0} y = − x + 2, x ≥ −2; range = R − ∪ {0} y 4a

2 x

0

b g1 (x) = x 2 + 2, x ≥ 0 g2 (x) = x 2 + 2, x < 0 5 a Domain = R Range = R b Domain = [0, ∞) Range = [0, ∞) c Domain = R Range = [−2, ∞) d Domain = [−4, 4] Range = [0, 4] e Domain = R\{0} Range = R\{0} f Domain = R Range = (−∞, 4] g Domain = [3, ∞) Range = [0, ∞) 6 a Domain = R Range = R b Domain = R Range = [−2, ∞) c Domain = [−3, 3] Range = [0, 3] d Domain = R\{1} Range = √ √ R\{0} 7 a R\(3) b (−∞, − 3] ∪ [ 3, ∞) cR d [4, 11] e R\{−1} f (−∞, −1] ∪ [2, ∞) g R\{−1, 2} 1 i 0, h (−∞, −2) ∪ [1, ∞) 3 j [−5, 5] k [3, 12] 8 a Even b Odd c Neither d Even e Odd f Neither y 9a

–1

x

0

1

2

8 5 x

0

–3

b Range = [5, ∞) 14 a f (−4) = −8 b f (0) = 0 1 c f (4) = 4 ⎧ ⎨ 1 , a>0 d f (a + 3) = a + 3 ⎩ 2(a + 3), a ≤ 0 ⎧ 3 1 ⎪ ⎨ , a> 2 e f (2a) = 2a ⎪ ⎩4a, a ≤ 3 2 ⎧ ⎨ 1 , a>6 f f (a − 3) = a − 3 ⎩ 2(a − 3), a ≤ 6 √ 15 a f (0) = 4√ b f (3) = 2 c f (8) = 7 √ a, a ≥ 0 d f (a + 1) = 4, a 2  4 if 0 ≤ x ≤ 2 = 2x if x > 2

1 f (x) = x

0

y

f

−1

687

1 (x) = , dom = R + , ran = R + x

8

y

g

4 y = 12 x 1 √x

y=

2

4

2 V (x) = 4x(10 − x)(18 − x) Domain = (0, 10) 3 a A(x) = −x 2 + 92x − 720 b 12 < x < 60 c A

x

0

1 f −1 (x) = √ , dom = R + , ran = R + x h

x

0

y

(46, 1396)

y = 2x + 4 4

(60, 1200)

1 y = (x – 4) 2

0

–2

(12, 240)

x

4 –2

−1

7a

h (x) = 2x + 4, dom = R, ran = R y y b (1, 2) (3, 3)

(0, 1) x

0 (0, 0)

(3, 4) (4, 3) (2, 1) x

0 (1, 0) y

d

y

c

x

0

d Maximum area = 1396 m2 occurs when x = 46 and y = 34 4 a i S = 2x 2 + 6xh 3V ii S = 2x 2 + x b Maximal domain = (0, ∞) c Maximum value of S = 1508 m2 1 1 3 ,b = , c = 45, d = − , e = 75 5aa= 30 15 2 b S 7 75, 2

1

3 2

0

–4

0

2

e

x

3

y

1

x 3 45, 2

–4

f

0

y

3 3 –3

0

(1, 1) x (0, 0)

x

–3

(–1, –1)

h

y

g

y





t

7 2 6 a C = 1.20 for 0 < m ≤ 20 = 2.00 for 20 < m ≤ 50 = 3.00 for 50 < m ≤ 150 b C ($) c Range = 0,

3 0

x

0

x

2

y = –2

1

8aC bB cD dA 9 a A = (−∞, 3] √ b b = 0, g −1 (x) = 1 − x, x ∈ [−3, 1]

Domain = (0, 150] Range = {1.20, 2.00, 3.00}

m(g)

Answers

y

f

60 80 10 0 12 0 14 0 15 0

0521665175ans-1.xml

20 40

P1: FXS/ABE

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

Answers

688

CUAT018-EVANS

November 3, 2005

16:7

Essential Mathematical Methods 3 & 4 CAS

Multiple-choice questions 1E 6C

2B 7D

3E 8B

4C 9B

(5, 4)

5E 10 B

3 2

Short-answer questions (technology-free) y

1a

f(x) = x2 + 1 (0, 1) 0

x

Domain = R

Range = [1, ∞)

y

b

f(x) = 2x – 6

x

0

y

2a

y = g(x) x

0

–3

3 ,4 b Range of g = 2 3 −1 ,4 → R cg : 2 g −1 (x) = 2x − 3 Range = [0, 5] 3 Domain = ,4 2   7 d {5} e 2   1 3a b {11} 5 y

4

3

–6

(2, 3)

Domain = R

Range = R

y

c

0 5

x2 + y2 = 25

0

–5

x

5

–5

Domain = [−5, 5]

Range = [−5, 5]

y

d

y> – 2x + 1 1 x

0

–1 2

x 1 2 (0, –1)

√ √ 5 a R\{3} b R\[− 5, 5] d [−5, 5] e [5, 15]

Range = R

y y 100 km 2 a S = 6x 2 √ 2 3s 3a A= 4 √ 4 a d(x) = 9 − x 2 ,

2

b S = 6V 3 √ 2 3h bA= 3 b dom = [0, 3] ran = [0, 3]

d 3 x

3

0

160x x + 80 → R, 6 a V1 : (0, 12)  5 S(x) =

 h2 h 4 √ b V2 : (0, 6) → R, V2 (r ) = 2r 2 36 − r 2 7a domain range f R R g R R V1 (h) =  36 −

ran f = dom g, ∴ g ◦ f exists g ◦ f (x) = 2 + (1 + x)3 b g ◦ f is one-to-one and therefore a function. ∴ (g ◦ f )−1 is defined, (g ◦ f )−1 (10) = 1 8a y

0

–2

2

→ R, f −1 (x) =

13 a i f (2) = 3 f ( f (2)) = 2 f ( f ( f (2))) = 3 ii f ( f (x)) = x −x − 3 b f ( f (x)) = , f ( f ( f (x))) = x, x −1 i.e. f ( f (x)) = f −1 (x)

Chapter 2 Exercise 2A

(3, 3)

2

a 

b − xd c xc − a 2−x b i f −1 : R\{1} → R, f −1 (x) = 3x − 3   3 ii f −1 : R\ → R, 2 3x + 2 f −1 (x) = 2x − 3 1−x iii f −1 : R\{−1} → R, f −1 (x) = x +1 1 −x iv f −1 : R\{−1} → R, f −1 (x) = x +1 c If a, b, c, d ∈ R\{0}, f = f −1 when a = −d. 11 a i YB = r ii ZB = r iii AZ = x − r iv CY = 3 − r √ x + 3 − x2 + 9 br = 2 ci r =1 ii 1.25 q 12 b f (x) = x 3x + 8 c i f −1 (x) = = f (x) √x − 3 ii x = 3 ± 17 10 a f : R\

–4

b i −3 ii 3 c S = (−∞, 0]  2 4x − 4 if x d f ◦ h(x) = 2x if x  2 2x − 8 if x h ◦ f (x) = 2x if x ⎧ 2 3t ⎪ ⎨ ,0 ≤ t ≤ 1 2 9 A(t) = ⎪ ⎩ 3t − 3 , t > 1 2 Domain = [0, ∞] Range = [0, ∞]

1 2 7 7 17 g j f h 21 i2 5 2 9 2 a x = 12, y = 8 b x = 5, y = −8 c x = 3, y = 1 d x = 2, y = 1 e x = 17, y = −19 f x = 10, y = 6 3 80 km 4 96 km 5 Width = 6 cm, length = 10 cm 6 John scored 4, David 8 7 a w = 20n + 800 b $1400 c 41 units 8 a V = 15t + 250 b 1150 litres c 5 hours, 16 minutes and 40 seconds 9 a V = 10 000 − 10t b 9400 litres c 16 hours and 40 minutes 10 a C = 25t + 100 b i $150 ii $162.50 c i 11 hours ii 12 hours 1 a 10

x

0

dA bm =3 b k = −5

0 (0, –7)

y

f

Exercise 4C

(2, 0)

4 2 x b y = −x 2 25 2 c y = x + 2x d y = 2x − x 2 2 e y = x − 5x + 4 f y = x 2 − 4x − 5 2 g y = x − 2x − 1 h y = x 2 − 4x + 6 1 2 1 2 y = − x + x + 1, y = x 2 + x − 5 8 8 3 b = 2, B = 4, A = 1 1a y =4−

(0, –4)

(1, –2)

y

g

(0, 4) (1, 2)

y

0

(1, 2) 0

x

0

Exercise 4D 1a

(2, 0)

y

y

0

x

(2, –4) 2+

(–1, 2) 0

x

x

h b

x

x

(0, –28)

1 4 3, 0 3

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

707

Answers y

c

(0.435, 0)

(0, 10)

(1, 2)

Answers

y

i

x

0

0

(3.565, 0)

x

(2, –6) y

j

y

d 1 –2 3 + 1, 0

x

0

(2.159, 0) (0, 161)

(0, –2) (1, –4)

x

0 (3, –1)

y

k

(3.841, 0) y

e x

0

–1

1

(–4, 1)

–31

(–1, –32)

l

x

0

(–5, 0)

(–3, 0)

y

(0, –255) 0

x

2

y

f

(1, –2) –4

x

0 (2, –3)

2 a = −3, h = 0, k = 4 (0, –51)

3 a = 16, h = −1, k = 7 4 a y = 3x

b y = (x + 1) + 1

3

3

c y = −(x − 2) − 3 3

d y = 2(x + 1)3 − 2 5a

ey=

y

x3 27

Exercise 4E 1a

(0.096, 0)

+

1

3

6

–6

–3

1

x

– (0, 1) 0

(1.904, 0)

x

b

(1, –2)

x



y

b

+

c (–2, 0)

d (0, –32)

3

–1

5

x



x

0

+

+ –

1 2

4

5

x

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

Answers

708

CUAT018-EVANS

November 3, 2005

16:7

Essential Mathematical Methods 3 & 4 CAS y

2a

y

y = f(x)

y = f (2x) 8.00

1

y = f (x) 6.00

x

–0.62 0

1

1.62

y=f

4.00

4 , –0.19 3

2.00 (2.73, 0.75)

(–0.73, 0.75)

y

b

0

–2.00 –1.00

y = f(x + 2) y = f(x) y = f(x – 2)

–3

–2

y

(2, 1)

1

– 9 + 1, 81

x

0

–1

1.00 2.00 3.00 4.00

Turning points for y = f (2x) are at (−0.18, 0.75) and (0.68, 0.75). 2a

(–2, 1)

2

3

2

9 + 1, 81 2 4

4

3.62 8

10 , –0.19 3

–2 , –0.19 3

For clarity the graph of y = 3 f (x) is shown on separate axes.

x 0 1

–2

4

y

b

y

9 81 , 2 2

– y = 3f(x)

9 81 , 2 2

3 y = f(x) 1

0

–3

x

3

x

0

y

c 4 , –0.56 3

– 9 – 1, 81 2

Exercise 4F

9 – 1, 81 2 2

2

16

y

1a

x

–1 0

–4

2

y = f(x) y

d

(–0.37, 0.75)

1

(1.37, 0.75)

– 9, 0

9, 0 2

2

x

0 y = f(x)

0, – 81

y = f(x – 2)

4

e

y – 9 , 85

9 , 85 2 4

2 4

0

x

0

y

b

x 2

x (1.63, 0.75)

(3.37, 0.75)

Graphs of dilations shown on separate axes for clarity.

(0, 1) 0

x

x

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

Answers

709



11 (x + 5)(x + 2)(x − 6) 60 5 = (x + 1)(x − 3)2 9 y = x3 + x + 1 y = x3 − x + 1 y = 2x 3 − x 2 + x − 2 y = (2x + 1)(x − 1)(x − 2) 1 y = x(x 2 + 2) 4 y = x 2 (x + 1)

1y= 2y 3a b c 4a b c

d y = x 3 + 2x 2 − x − 2 e y = (x + 2)(x − 3)2 5 a y = −2x 3 − 25x 2 + 48x + 135 b y = 2x 3 − 30x 2 + 40x + 13 6 a y = −2x 4 + 22x 3 − 10x 2 − 37x + 40 b y = x 4 − x 3 + x 2 + 2x + 8 31 4 5 3 157 2 5 11 cy= x + x − x − x+ 36 4 36 4 2

Exercise 4H √ −1 1 1 − 4k 2 , k∈ , \{0} 2k 2 2 1 b x = 4a or 3a or 0 c x = 0 or x = a 3 √ k ± k 2 − 4k dx= , k > 4 or k < 0 2 √ f x = ±a e x = 0 or x = ± a g x = a or x = b √ 1 h x = a or x = a 3 or x = ± a if a > 0  1 b+c 3 7 2ax = b x = (a) 3 a  c  13 dx= −b c x = (a − c)n a  3 b 1 ex= f x = (c + d) 3 a   1 1 b , , (0, 0) 3 a (0, 0), (1, 1)

2 2 √

√ √ 3 − 13 3 + 13 √ , 13 + 4 ; , 4 − 13 c 2 2 1ax =

−1 ±

4 a (13, 3), (3, 13) b (10, 5), (5, 10) c (11, 8), (−8, −11) d (9, 4), (4, 9) e (9, 5), (−5, −9) 5 a (17, 11), (11, 17) b (37, 14), (14, 37) c (14, 9), (−9, −14) 6 (2, 4), (0, 0) √

√ 5+5 5+5 7 , , 2 2

√ √ 5− 5 5− 5 , 2 2

√ √

−130 − 80 2 60 − 64 2 8 , , 41 41 √

√ 80 2 − 130 64 2 + 60 , 41 41 √

√ 1 + 21 −1 + 21 , , 9 2 2 √ √

1 − 21 −1 + 21 , 2 2 √ √

  4 −6 5 3 5 10 ,2 11 , 9 5 5   1 12 −2, 13 (3, 2), (0, −1) 2     −8 −15 27 10 , b , , (5, 9) 14 a (3, 2), 4  2 3  5 −12 , −10 c (6, 4), 5 2 15 c − ac + b = 0 √ √ 16 (−1 √ − 161, √ 1 − 161), ( 161 − 1, 161 + 1) √ √ 4m + 25 + 5 4m + 25 + 5 17 a x = ,y= 2m 2√ √ 5 − 4m + 25 5 − 4m + 25 ,y= or x = 2 2m  −25 2 5 bm = , − , 4 5 2 −25 cm < and m = 0 4

Multiple-choice questions 1E 6A

2D 7C

3E 8E

4C 9C

5E 10 C

Short-answer questions (technology-free) y

1a

h(x) = 3(x – 1)2 + 2 (0, 5) (1, 2)

x

0 y

b

y = (x – 1)2 – 9

(–2, 0)

0

(0, –8)

x (4, 0) (1, –9)

Answers

Exercise 4G

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

Answers

710

CUAT018-EVANS

November 3, 2005

16:7

Essential Mathematical Methods 3 & 4 CAS y

c

y

c y = x2 – x + 6

(0, 6)

1 3 ,5 2 4

0

x

0

(–3, 0) (–2, –1) x

(0, –9)

d

y

y

d y = x2 – x – 6

(0, 26) (–2, 0) 0

x

(3, 0)

(–2, 0) x

0 (–3, –1)

(0, –6) 1 25 ,– 2 4

y

e

e y=

2x2

y

–x+5 1, 1 2

(0, 2)

(0, 5) 1 , 39 4 8

0

x

0

x (1, 0)

y

f

5a y=

2x2

+ x

–x–1

0



–2 –1 –1 2

x

0

1

b

+ x 0

1, – 9 4 8

(0, –1)

2

–1

4 1 4 1 2 y = x2 − ; a = , b = − 3 3 3 3 √ 1 3 (1 ± 31) 3 y 4a

– 1

3

c

+ x 0 –4



–2 –1

d

+

0

x –

–3

–1

(3, 0) x

0 (0, –18)

b

(1, –16)

y

2 3

6a8 b0 c0 7 y = (x − 7)(x + 3)(x + 2) y 8a y = f(x – 1)

(–1, 8)

(0, 7) 0 (1, 0)

x

0

3 2 –83 2 , 4 3 3

x

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

Answers

y = f(x + 1)

x

0

–2

1

–8 2 –83 , 3 34 y

c

y = f(2x)

(6, 144π)

1 – ,0 2

0 –2

d

x

1

4,

224π 3

(3, 45π)

5 –83 , 6 34

64π 2, 3

y

0

y = f(x) + 2

(–1, 2)

6

d x = 5. The depth is 5 cm. h2 5 a r = 25 − 4 b V

x

0

x

3

(5.77, 302.3)

3

2 –8 1 , 4 +2 3

3

9 y = −x 3 + 7x 2 − 11x + 6

0

Extended-response questions 4 1ak = 3375 c i Rnew

b 11.852 mL/min

10

h

c V = 96cm √ d h = 2, r =√2 6, i.e. height = 2 cm and radius = 2 6 cm, or h = 8.85 and r = 2.33 6 a V = (84 − 2x)(40 − 2x)x b (0, 20) c y 3

(15, 40)

(8.54, 13 098.71) y = V(x)

0

20

t

ii 23.704 mL/min d i Rout 40 0

t

20 (35, –20)

ii 11.852 mL/minute out 2 a i 2916 m3 ii 0 m3 b V (m3) (0, 2916)

0

c 3.96 hours

9 t (hours)

0

20

x

d i x = 2, V = 5760 ii x = 6, V = 12 096 iii x = 8, V = 13 056 iv x = 10, V = 12 800 e x = 13.50 or x = 4.18 f 13 098.71 cm3 7 a i A = 2x(16 − x 2 ) ii (0, 4) b i 42 ii x = 0.82 or x = 3.53 c i V = 2x 2 (16 − x 2 ) ii x = 2.06 or x = 3.43  8 a A = x 2 + yx 2 b i y = 100 − x    100 ii A = 100x − x 2 iii 0, 2  c x = 12.43     2 x  100 d i V = 100 − x , x ∈ 0, 50 2  ii 248.5 m3 iii x = 18.84

Answers

3 a V = x(96 − 4x)(48 − 2x) = 8x(24 − x)2 b i 0 < x < 24 ii x ≈ 8, maximum volume ≈ 16 500 cm3 c When x = 10, V = 15 680 cm3 . d Max. volume = 14 440 cm3 e Min. volume = 9720 cm3 1 4 V = x 2 (18 − x) 3 a i 64 cm3 ii 45cm3 iii 224 cm3 3 3 b 144cm3 c V

y

b

711

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

Answers

712

CUAT018-EVANS

November 3, 2005

16:7

Essential Mathematical Methods 3 & 4 CAS 1 2 17 1 x3 − x + x 12 000 200 120 b x = 20 29 2 1 1 3 x + x − x dy=− 6000 3000 20 y e i

9ay=

y

2a

y = 2 x +1 – 2

2 –1

0

–1

x 1

–2 (40, 3)

Range = (−2, ∞) b

0

40

y

x

80

ii Second section of graph is formed by a reflection of the graph of y = f (x), x ∈ [0, 40], in the line x = 40.

(0, 4)

Chapter 5

Range = R +

Exercise 5A 1a

y=0 x

0

y

c

y y = 3x y = 2x y=0 (0, 1) x

0

x

0 –1

Range = (−1, ∞) y

d

y

b y = 3–x

5 (0, 1)

y = 2–x

y=0 x

0

2 1 0

y

c

x 1

2

Range = (1, ∞) e y = 5x

(0, 1) 0

0, 2

y=0 x

1 4

2

y = –5x

(0, –1)

y

x

0 y

d

Range = (2, ∞) y

f

(0, 1)

y=0 x

0 (0, –1)

(0, 6)

y = (1.5)x

y = –(1.5)x

2 0

Range = (2, ∞)

x

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

Answers y

h

y

y = f(x – 2) (0, 1)

(2, 1)

y=0 x

0

0, 1 0

Range = R + b

y

y

c

1

1 0

x

y = 10 x –1

x

0

Range = (1, ∞)

Range = (−∞, 1)

y

y = –1

3 y=0 x

0

Range = (−1, ∞)

2 0

Range = R +

x

0

y

e 1

y

5a

(0, 2)

d

y=0 x

4

x

b

y x

y = 10 10 + 1

Range = (2, ∞)

(10, 11)

y

f

(0, 2)

x

0 –1

y

Range = (1, ∞)

(0, 2)

y=1 x

0 y

c

y=2 0

0

y

d

y = f(–x) + 2

(0, 3)

y = 2(10 x) – 20

y = f(x) + 1

(0, 2) y = 0 x

0

y

c

y

b y = f(x + 1)

(–1, 1)

x

0

Range = (−1, ∞) 4a

y=1

(0, –18)

0

x

x

y = –20

Range = (−20, ∞)

x y = –1

(0, –2)

(1, 0)

y

d

y = –f(x) – 1

e

y

y = f(3x) 0

f

y

y=1

x

y=f 2

(1, 8) (0, 1) y = 0 x

(0, 1) 0

0

(2, 2) y=0 x

y = 1 – 10 –x

Range = (−∞, 1)

y

g

e

y y = 10 x + 1 + 3

y = 2 f(x – 1) + 1

(0, 13) y=3

(–1, 4)

(0, 2)

y=1 0

x

x

0

Range = (3, ∞)

x

Answers

3a

713

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

Answers

714

CUAT018-EVANS

November 3, 2005

16:7

Essential Mathematical Methods 3 & 4 CAS y

f

Exercise 5B

x

y = 2 10 10 + 4 (10, 24)

y

1a

y=4

(0, 2)

y=1

x

0

Range = (4, ∞)

y = 1 – ex

Range = (−∞, 1)

y

c

d

(100, 408.024)

(0, 1)

x

0

0

b i $408.02 c 239 days 7 36 days 8a i

y

y y = e x–1 – 2

ii $1274.70 d ii 302 days

(0, e –1 – 2) 0

y = 5 x y = 3x y = 2x

x y = –2

Range = (−2, ∞) f

y

(0,1)

y = 2ex x

0

ii x < 0 b i

iii x > 0 1 3

y=

x

0

x

y y=

x

1 2

(0, 2)

iv x = 0

1 5

x

Range = (0, ∞) y

g (0,1)

y = 2(1 + ex) x

0

ii x > 0 c i a>1

iii x < 0

(0, 4)

iv x = 0

y=2

ii a = 1

y

(0, 1) 0

x

0 y

y = ax

Range = (2, ∞)

y=1 x

1 0

x

h

y

iii 0 < a < 1 y=2

y 0 (0, 1) 0

y = ax x

y = 2(1 – e –x)

Range = (−∞, 2)

x

Range = (0, ∞)

Range = (−∞, 1) e

y y = e –2x

y=1

y = 1 – e –x

x

x

0

Range = (1, ∞)

0

y=1

x

0

6 a C1

y=

y

b y = ex + 1

(0, 6)

x

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

715

Answers

1 d 4 5 g 2 3a1

y = 2e –x + 1

(0, 3)

y=1

x

0

e −2

Range = (1, ∞) j

y

i6 4 a 1, 2 e 1, 2 i −1, 2

(1, 2)

(0, 2e –1)

h6 b1 f4 3 j 5 b1 f 0, 1 j −1, 0

c4 f3

3 2 10 g− 3 1 k± 2 c2 g 2, 4 c−

i4 d3 h−

3 2

d1 h 0, 1

Exercise 5D

Range = (0, ∞) y

y

l

y=2 (0, 3e – 2) x

0

x

(0, –1) 0

y = –2

Range = (−2, ∞) Range = (−∞, 2) 2 a x = 1.146 or x = −1.841 b x = −0.443 c x = −0.703 d x = 1.857 or x = 4.536 y 3 a, b i y = f(x) 1

y = f (x – 2) e –2 x

0 y

ii, iii y = f (–x)

y = f (x) y=f x

3

1

x

0

Exercise 5C 1 a 6x 6 y 9

b

x

0

k

1 2 3 e 5

2a4

b 3x 6

d 18x 8 y 4

e 16

g 24x 5 y 10

h 2x y 2

6y 2 x2 5x 28 f 6 y

c

i x 2 y2

1a3 b −4 c −3 d6 e6 f −7 2 a loge 6 b loge 4 c loge 106 (= 6 loge 10) d loge 7 1 e loge (= − loge 60) 60 f loge u 3v 6 (= 3 loge uv 2 ) g 7 loge x = loge x 7

h loge 1 = 0

3 a x = 100 b x = 16 cx =6 d x = 64 e x = e3 − 5 ≈ 15.086 1 g x = −1 fx= 2 1 −3 i x = 36 h x = 10 = 1000 4 a x = 15 bx =5 cx =4 1 d x = 1(x = − is not an allowable solution) 2 3 ex= 2 5 a log10 27 b log2 4 (= 2) a 1 a 1 2 c log10 = log10 2 b b

10a d log10 1 b3   1 e log10 (= −3 log10 2) 8 1 6a1 b1 c2 d3 e0 2 c0 7 a −x b 2 log2 x 3e 8ax =4 ≈ 0.7814 bx= 5 + 2e √ −1 + 1 + 12e 9ax = , i.e. x ≈ 0.7997 6 b x = loge 2 ≈ 0.6931

Answers

y

i

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

Answers

716

CUAT018-EVANS

November 3, 2005

16:7

Essential Mathematical Methods 3 & 4 CAS 10

1 ,2 4

y

f

x=2

 3 2 8 11 N = = 3 27

(3, 0) 0

y

12 a

x

2

x=3

Domain = (2, ∞), range = R y

g 0

3

x

4

x = –1

Domain = (3, ∞), range = R

(0, 1)

y

b

x

0

–1

x = –3

(1.72, 0)

Domain = (−1, ∞), range = R

(4.39, 0)

y

h

x=2

0

x

–0.9

–3

(0, 0.69)

0

Domain = (−3, ∞), range = R

x

1

y

c

Domain = (−∞, 2), range = R

x = –1

y

i

x= 4 3

–1 0

(0.65, 0) (0, –1)

x (0, 0.39)

d

(0.43, 0)



y x= 2

Domain =

3

y = log2 2x

x

(0.79, 0)

 4 , range = R −∞, 3

y

13 a

0 2

x

0

Domain = (−1, ∞), range = R

3

 Domain =

0

 2 , ∞ , range = R 3

y

e

y

b 0 (0, –1.4)

x

Domain = R +

x = –2

–2 –1

1, 0 2

x=5

x

y = log10 (x – 5) 0

(6, 0)

Domain = (−2, ∞), range = R Domain = (5, ∞)

x

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

Answers y

i y = –log10 x

Answers

y

c

717

– 1, 0 3

(1, 0)

x

0

x

0 y = 4 log2 (–3x)

Domain = R −

Domain = R +

y

j

y

d

x=2

y = 2 log2 (2 – x) – 6

y = log10 (–x)

Domain = (−∞, 2) 14 a x = 1.557 b x = 1.189 y 15 b i, ii

Domain = R − y

e

x

(–6, 0) 0 (0, –4)

x

0

(–1, 0)

x=5 y = f (–x)

y = log10 (5 – x)

y = f (x)

(0, log10 5) x

0

(–1, 0)

(4, 0)

x

(1, 0)

y = –f(x)

Domain = (−∞, 5) f

0

y

iii, iv

y

y = f(3x) y = f (x)

1 3

1 ,0 4

0

x

0

(1, 0) 3 y=f

x

x 3

y = 2 log2 2x + 2

Domain = R +

Exercise 5E

y

g

y = –2 log2 (3x) 1,0 3

x

0

3 a = 200, b = 500

4 a = 250, b =

5 a = 3, b = 5

6 a = 2, b =

7 a = 2, b = 4

Domain = R + h

1 a = 2, b = 4 14 14 2a= ,b= (a ≈ 8.148, e−1 1−e b ≈ −8.148)

y

9 b = 1, a =

x = –5

10 a = 1 –5100, 0

0

y = log10 (–x – 5) + 2

Domain = (−∞, −5)

1 loge 5 3

1 loge 5 3 8 a = 2, b = 3

2 , c = 8 (a ≈ 2.885) loge 2

2 ,b = 4 loge 2

x

Exercise 5F 1 a 2.58 e −2.32 i 2.89 m −6.21

b −0.32 f −0.68 j −1.70 n 2.38

c 2.18 g −2.15 k −4.42 o 2.80

d 1.16 h −1.38 l 5.76

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

Answers

718

CUAT018-EVANS

November 3, 2005

16:7

Essential Mathematical Methods 3 & 4 CAS 2 a x < 2.81 b x > 1.63 c x < −0.68 d x ≤ 3.89 e x ≥ 0.57 loge 5 3ax = ≈ 2.3219 loge 2 loge 7 bx= ≈ 1.7712 loge 3 loge 8 c x = 0 or x = ≈ 1.8928 loge 3 4 a 10 b3 c8 5 a 2.9656 b 5.8329 c 2.0850 d 2.8551 e −4.6674 f −0.8273 6 0.544 b 549.3 2 1 9 a 9u c bu+ u 2 2 10 625 11 p

g f −1 (x) = 10x − 1; domain = R, range = (−1, ∞) 1 h f −1 (x) = loge x + 1; 2 domain = (0, ∞), range = R y 4 a, c f –1

y=x

y=1

f x

0 x=1

b

f −1 (x) = − loge (1 − x), domain = (−∞, 1)

5 a, c

y

Exercise 5G

y=x

f

x = –3 (0, 2)

0 (2, 0) f –1

1

y y=x

y = –3

(0, 4) y=3

(4, 0) x=3

b

x

0

y = f –1(x)

−x

f (x) = e + 3 f −1 (x) = − loge (x − 3)

  1 x +3 loge , 2 5 domain = (−3, ∞) f −1 (x) =

y

6 a, c

f –1

y

2

x

1 0, 2 loge 0.6

y = f (x)

f x=1 y = f –1(x) y=x

(0, 2)

0, e



1 2

0

y = f(x) y=x

y=1 0

(2, 0)

x

f (x) = loge (x − 1) f −1 (x) = e x + 1 1 3 a f −1 (x) = e x ; domain = R, 2 range = R + 1 x−1 b f −1 (x) = e 3 ; 2 domain = R, range = R + c f −1 (x) = loge (x − 2); domain = (2, ∞), range = R d f −1 (x) = loge (x) − 2; domain = R + , range = R 1 e f −1 (x) = (e x − 1); domain R, 2  1 range = − , ∞ 2  1 x f f −1 (x) = e 4 − 2 ; domain R,  3 2 range = − , ∞ 3

b

f −1 (x) = e

7ax =e cn=



1 2,

x 0

x−1 2 , range

y−5 2

loge

e

y

a loge x

= R+   1 P b x = − loge 6 A d x = log10

y

1 5−y ex= e 3 2⎛  y ⎞ log e 1⎜ 6 ⎟ fn= ⎝ ⎠ 2 loge x 1 y (e + 1) 2   5 h x = loge 5 −y  x +4 −1 8 a f (x) = loge 2 b (0.895, 0.895), (−3.962, −3.962) gx=

x−4

9 a f −1 (x) = e 2 − 3 b (8.964, 8.964), (−2.969, −2.969)

5

P1: FXS/ABE

P2: FXS

0521665175ans-1.xml

CUAT018-EVANS

November 3, 2005

16:7

Answers y = ex

y

y

b

y=x

y = loge x

1 0

f (x) = 10 –x + 1 (0, 2)

x

1

y=1

ii

y y=

x–3 e2

x

0

y=x

c

y

y = 2 loge (x) + 3

h(x) =

1 x (e – 1) 2

–3 e2

x 0

x

0

y=–

–3 e2

iii

y

y

d

y = 10 x

1 2

y=x y=2 (0, 1) x

0

1

y = log10 x

0

(–loge 2, 0)

x

1

y

e

f(x) = loge (2x + 1)

b f (x) and g(x) are inverse functions

x

0

Exercise 5H

1

1 m = 0.094, d0 = 41.9237 2 k = 0.349, N0 = 50.25 3 a i N0 = 20 000 ii −0.223 b 6.2 years 4 a M0 = 10, k = 4.95 × 10−3 b 7.07 grams c 325 days

x=–2

f

y x=1

x

0 (1 + e –1, 0)

Multiple-choice questions 1C 6C

2D 7B

3B 8A

4E 9C

h(x) = loge (x – 1) + 1

g

y

5A 10 D

g(x) = –loge (x – 1) (2, 0)

Short-answer questions (technology-free) y

1a

x

0

x=1 y

h

f (x) = –loge (1 – x)

f (x) = e x – 2 (loge 2, 0) x

0

0

x

(0, –1) y = –2 x=1

Answers

10 a i

719

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

720

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS 1 loge (x + 1) 2 x b f −1 : R → R, f −1 (x) = e 3 + 2 c f −1 : R → R, f −1 (x) = 10x − 1 d f −1 : (2, ∞) → R, f −1 (x) = log2 (x − 1) 3 a y = e2 x b y = 10x c y = 16x 3 e3 x5 ey= dy= f y = e2x−3 x 10 loge 11 loge (0.8) 4ax = bx= loge 3 loge 2 loge 3 cx= loge ( 23 ) 2 1 bx= cx= 5ax =1 3 20 d x = log10 3 or x = log10 4 2 a f −1 : (−1, ∞) → R, f −1 (x) =

2

6 a = 2, b = 2−3 − 1 1 287 8 loge 9 2a 3 4 11 a = loge 5, b = 5, k = 2

6

7 10 5 − 1

8 k = −0.5, A0 = 100 9a x

x=8

b i 0 grams ii 2.64 grams iii 6.92 grams c 10.4 minutes 10 a k = 0.235 b 22.7◦ c 7.17 minutes 11 a N(t) 20e10

10 R

10e10

Extended-response questions 1 a 73.5366◦ C 2 a 770 3 a k = 22 497,  = 0.22 4 a A = 65 000, p = 0.064 5a y

y=

00 10 0

b 59.5946 b 1840 b $11 627 b $47 200

00 t + 10

15

b i (12.210, 22 209.62) ii t = 12.21 iii 22 210 c ii (12.21, 12.21) d c = 0.52 1 6 a iii a = or a = 1 2 iv If a = 1, e−2B = 1 and B = 0, 1 1 A ∈ R + . If a = , B = loge 2. 2 2 v A = 20 000 n b

20 000

t

2 loge 10 loge (0.1) 1 = ≈ 6.644 1 loge 2 loge 2 2 After 6.65 hours the population is 18 000. 7 a 75 b 2.37 c 0.646 c

(0, 20) 0

t

50 70

b i N (10) = 147.78 ii N (40) = 59 619.16 iii N (60) = 20e10 = 440 529.32 iv N (80) = 220 274.66 c i 25 days ii 35 days

Exercise 6A t

0

y = 10e10

Chapter 6

y = 8000 + 3 × 2t 0

t

0

5 18 17 d 9 2 a 60◦ d 140◦ 3 a 45.84◦ d 226.89◦ 4 a 0.65 d 2.13 1a

34 45 7 e 3 b 150◦ e 630◦ b 93.97◦ e 239.50◦ b 1.29 e 5.93 b

25 18 49 f 18 c 240◦ f 252◦ c 143.24◦ f 340.91◦ c 2.01 f 2.31 c

Exercise 6B 1 a 0, 1 b −1, 0 d 1, 0 e 0, −1 2a0 b Not defined d0 e Not defined 3 a −1 b0 d0 e1 4 a 0.99 b 0.52 d 0.92 e −0.67 g −0.99 h 0.44 j −2.57 k 0.95

c −1, 0 f 0, 1 c Not defined c −1 f1 c −0.87 f −0.23 i −34.23 l 0.75

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers d

1 a 0.52 b −0.68 e −0.52 f 0.68 2 a 0.64, 2.5 c 3.61, 5.816 3 a 17.46, 162.54 c 233.13, 306.87

c 0.52 d 0.4 g −0.4 h −0.68 b 0.64, 5.64 d 1.77, 4.51 b 66.42, 293.58 d 120, 240

e f g h

Exercise 6D 1 0.6 3 61 7

i

2 0.6

3 −0.7

4 0.3

7 −0.3

8 0.6

9 −0.6 10 −0.3

5 −0.3

Exercise 6E √

1 1 3 ,− ,−√ 2 2 3 1 1 c √ , √ ,1 2 2 1 1 e √ , √ ,1 2 2

1a

1 1 b −√ ,−√ ,1 2 2 √ 1 √ 3 ,− , 3 d− 2 2 √ 3 1 1 ,−√ f− , 2 2 3 √ 1 3 d c− 2 2 1 1 h g −√ 2 2 √ 1 3 k l 2 2 1 1 o√ p− 2 2

1 1 b− 2a √ 2 2 1 1 f −√ e− 2 √ 2 1 3 i j 2 2 1 1 m√ n− 2 2 b 60◦ , 120◦ 3 a 60◦ , 300◦ d 120◦ , 240◦ e 60◦ , 120◦  5   b − or 4 a − or − 6 6 6 6 5 5 b 5a 6 6   d +b e +b 2 2 4 7 b 6a 3 6 3 d −b eb+ 2 3 5  3 7a , b , 4 4 4 4  7 7 11 e , , d 4 4 6 6 5 7 13 15 , , , 8a 8 8 8 8 5 7 17 19 29 b , , , , , 18 18 18 18 18  5 13 17 c , , , 12 12 12 12

 7 3 5 17 23 , , , , , 12 12 4 4 12 12  5 13 17 25 29 , , , , , 18 18 18 18 18 18  3 9 11 , , , 8 8 8 8 5 7 17 19 29 31 , , , , , 18 18 18 18 18 18 5 7 13 5 7 23 , , , , , 12 12 12 4 4 12  2 4 5 , , , 3 3 3 3

c 210◦ , 330◦ f 150◦ , 210◦ −5 5 c or 6 6 2 c 3

Exercise 6F 1 a i 2 2 bi 3 ci 

ii 3 1 ii 2 ii 3

g i 4 y 2a 2

π 3

0

θ

2π 3

–2

Amplitude = 2 2 Period = 3 y

b 2

7 c 6

π

π

4

2

3π 4

π

θ

–2

Amplitude = 2 Period =  y

c 3 0

31 18

ii 2 1 ii 2 ii 2

d i 6  ei 2 f i 2

0

fb+ 5 7 c , 6 6 2 4 f , 3 3

ii 3

–3

3π 3π 2

9π 2

Amplitude = 3 Period = 6



θ

Answers

Exercise 6C

721

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

722

November 3, 2005

9:27

Answers

Essential Mathematical Methods 3 & 4 CAS y

d

Exercise 6G

1 3

y

1a

0 –1 3

π

π

4

2

θ

π

3π 4

2

Amplitude =

Period = 

1 3

y

e

π 8

–3

π 4

θ

π 2

3π 8

θ

7π 3

y

b 1

Amplitude = 3  Period = 2

π 2

0

y

3

4π 3

–2 Period = 2 Amplitude = 2 Range = [−2, 2]

3

0

π 3

0

θ

π

5 –5π 6

–π 2

–π

–2π 3

π 2

0 –π 3

π 6

–π 6

π 3

–1

5π 6 2π 3

π

x

Period =  Amplitude = 1 Range = [−1, 1]

–5

y

c

y

4 1 2

–π

–π 2

3

0 –

π 2

π

3π 2



x

1 2

0

π 3

–2

x 6 y = 2 sin 3 x 1 7 y = cos 2 3 1 x 8 y = sin 2 2

θ

–3

2 5π 3 2π π 4π 2π 3 3

3π 4

Period =  Amplitude = 3 Range = [−3, 3]

y

5

π 4

0

–π 4

x

y

d √3 0

π 2

5π 6

–√3

2 3 √ Amplitude = 3√ Range = [− 3, 3] Period =

7π 6

θ

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers

5 4 3 2 1

3 2 1 0 –1

π 6

π 3

2 3 Amplitude = 2 Range = [−1, 3]

x

π 2

2π 3

y

2a

2 1

b

0 –1 –2 –3 –4

x

π

π 2

c 3a

b

Period =  Amplitude = 3 Range = [−4, 2] y

g 4

c

3 2 1 0 –1

π 6

7π 6

θ

Period =  √ Amplitude =√ 2 √ Range = [− 2 + 2, 2 + 2]

d

y

h

π 2

3π 2

0 –1

Period =

f

y

i

7

θ

π

Period =  Amplitude = 3 Range = [−1, 5]    1 1  y = cos x− 2 3 4   y = 2 cos x −  4  1 y = − cos x − 3 3 Dilation of factor 3 from the x-axis 1 Dilation of factor from the y-axis 2 Reflection in the x-axis Dilation of factor 3 from the x-axis 1 Dilation of factor from the y-axis 2 Reflection in the x-axis  Translation of units in the positive 3 direction of the x-axis Dilation of factor 3 from the x-axis 1 Dilation of factor from the y-axis 2  Translation of units in the positive 3 direction of the x-axis Translation of 2 units in the positive direction of the y-axis Dilation of factor 2 from the x-axis 1 Dilation of factor from the y-axis 2 Reflection in the x-axis  Translation of units in the positive 3 direction of the x-axis Translation of 5 units in the positive direction of the y-axis

3

Exercise 6H 0 –1

π

π

x

1a

y

2

Period =  Amplitude = 4 Range = [−1, 7]

3 2 1 0 –1

2π π 3



Intercepts:

4π 3

x 2π

   4 2 , 0 , , 0 3 3

Answers

y

e

723

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

724

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS y

b

y

d (0, 2 – √3 )

1 0 –1 –2 –3

π 2

π

3π 2



(0, –2 – √3)

(0, √2 – 1) 0

(0, –√2 – 1)

Intercepts:

π 4

π

y 1 + √2 (0, 2)

(2π, 2)

x

3π 2

  7  , 0 , , 0 4 4

0



π 2

1 – √2

π



Intercepts: (, 0),

y

2a –11π –2π 6

–7π 6

–π 2

π 6

–π 6

π 2

5π 6

3π 2



x

0 (2π, –2)

–2 (–2π, –2) –4 y

b –23π 12 –2π

3 –15π 12

π 12

–7π 12 –π

9π 12

17π 12

0



1 – √2

–1

(–2π, 1 – √2)

x

(2π, 1 – √2) y

c –2π

–π

π

0



x

–1 (2π, –3)

–3

(–2π, –3)

–5 y

d 3 (–2π, 1) –2π –11π 6

x

Intercepts: (0, 0), (2, 0) e

y 7π 4 2π



–4

  11  , 0 , , 0 , Intercepts:   12   12 13 23 , 0 , , 0 12 12 

c

π

0

x

1 –π –7π 6

0 –1

(2π, 1) π 6

π 5π 6



x

x 2π

 3 ,0 2

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers e

725

–23π 12

–19π –15π 12 12

–11π 12

–7π 12

–π 4

π 12

2

5π 12

9π 12

13π 12

17π 12

21π 12

0 π

–π

–2π

–√2 –2

(–2π, –√2)

Answers

y

2π (2π, –√2)

x

y

f (–2π, √2)

2

(2π, √2)

√2

0

–21π 12

–17π –13π 12 12

x

π

–π

–2π

–9π 12

–5π 12

–2

–π 12

3π 12

7π 12



11π 12

15π 12

19π 12

23π 12

y

g 2

0

–π

–2π

x

π



y

h –π

–2π (–2π, –1)

–π 2

x

π

0

2π (2π, –1)

3π 2

–1 –2

y

3

Exercise 6I y

1

1

y = sin θ + 2cos θ 2 –4

–2 –1

0

–2

2

1

–4 –3

4

2

3

0

x

x –1

1 y = cos2θ – sin θ 2

–2

y

4

y

2

4

y = 2cos2θ + 3sin2θ 2 –2

y = 3 cos θ + sin 2θ

2

–1

1 0 –2 –4

2

0 x

–4 –3 –2 –1 –2

x 1

2

3

4

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

726

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS 5

c

y

y

4 (0, 2)

2 0

x

0 1

–4 –3 –2 –1

2

3

(2π, 2)

3π 4 π 4

x

5π 7π 4 4

4

–2

y

d

–4 y = 2sin θ – 4 cos θ

(2π, 1)

(0, 1) 0

π 2

x

3π 2

Exercise 6J y

e

− 3  4 A = −4, n = 6

 4 3 A = 3, b = 5, n = 3

2 A = 0.5, ε =

1 A = 3, n =

 − ,ε = 4 2 (Note: ε can take infinitely many values.)  − 6 A = 2, n = , ε = 3 6 (Note: ε can take infinitely many values.) −  and d = 2 7 A = 4, n = , ε = 4 2 (Note: ε can take infinitely many values.)  − 8 A = 2, n = , ε = and d = 2 3 6 (Note: ε can take infinitely many values.) 5 A = 4, n =

π

0



x

f y

π

π 2

0

3π 2

x



Exercise 6K 1a

 3

2a

b 2

c

2 3

d1

y

3

e2

y

2π 0 π 4

π 2

3π π 4

5π 3π 7π 4 2 4

–3 2

x

–2

2

y

b

0

π 6

π 3

π 2

2π 3

5π 6

–1 – 1

π

7π 6

4π 3

3π 2

5π 3

11π 6



x

0

1 2

1

3 2

2

x

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers b

√ √

 3 3 7 , , ,− 6 2 6 2

7 19 31 43 , , , 24 24 24 24 5 11 17 23 , , , b 12 12 12 12 11 23 35 47 59 71 , , , , , c 36 36 36 36 36 36  9 n = 3, A = 5 10 n = , A = 6 2 8a



π 2



π 4

0

π 4

x

π 2

5 a  , 7 6 6  5 9 13 17 21 25 29 , , , , , , , 16 16 16 16 16 16 16 16 b  7 13 19 c , , , 12 12 12 12 5 11 17 23 , , , d 12 12 12 12  7 11 5 19 23 , , , , e , 4 12 12 4 12 12 f 0.4636, 3.6052 g 1.1071, 4.2487 3 7 11 15 h , , , 8 8 8 8  7 13 19 25 31 , , , , , i 18 18 18 18 18 18  4 7 10 13 16 , , , , j , 9 9 9 9 9 9 y 6 a, c y = cos 2x – sin 2x 1

–π

–3π –π 4 2

–π 0 4

y = cos 2x

π 4

π 2

3π π 4

y = –sin 2x x

–1



b

7 a, c

   −5 −1 − 1 ,√ , ,√ , 8 8 2 2     3 −1 7 1 ,√ , ,√ 8 8 2 2 y

y = cos x + √3 sin x

√3

Exercise 6L 1 a i 2 ii 4 iii −4 −14 −10 14 10 4 8 , iii , ii bi , 3 3 3 3 3 3  2 a 2n ± , n ∈ Z 3  2n 2 2n + or + ,n ∈ Z b 3 9 3 9  c 3n + , n ∈ Z 3  5  11  5 c , , b 3a , 3 6 12 12 6 6 −11 −7  5 4a , , , 6 6 6 6 −  5 , , 5 3 3 3   6 a x = n − or x = n − , n ∈ Z 6 2 n  bx= − ,n ∈ Z 2 12  5 or x = 2n − , n ∈ Z c x = 2n + 6 2 (4n − 1) or x = n, n ∈ Z , 7x= 4 −5  3 7 , −, , 0, , , 4 4 4 4 n − −2 8x= ;x = or or − or 0 3 3 3 3n + 2 6n − 1 or x = ; 9x= 12 6 −2 −7 −1 −1 1 5 5 11 , , , , , , , , x= 3 12 6 12 3 12 6 12

y = cos x

1

Exercise 6M 0

π 2

π

3π 2



–1 –√3

y = √3sin x

x

4 4 1 − ,− 5 3 √ √ 2 6 , −2 6 3− 5

2−

12 5 ,− 13 12

Answers

y

4a

727

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

728

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS b 5.89 metres d 6 times f 4.21 metres

Exercise 6N 1 a i Amplitude = 1

1 2

ii Period = 12   iii d(t) = 3.5 − 1.5 cos t 6 iv 1.5 m b [0, 3) ∪ (9, 15) ∪ (21, 24] y 2a

Multiple-choice questions 1C 6C

1 a c

2 t 2

8

14

20

24

d

b 2:00

c 8:00, 20:00   3 a A = 3, n = , ε = , b = 5 6 2 b i 2:21 a.m., 9:39 a.m., 2:21 p.m., 9:39 p.m. c y

e g h

y = h(t)

8 5

2E 7B

2a

y=5

2

5A 10 B

f (x) = sin 3x

t

0

6

12

18

24

4a5 b1 c t = 0.524 s, 2.618 s, 4.712 s d t = 0 s, 1.047 s, 2.094 s e Particle oscillates about the point x = 3 from x = 1 to x = 5.   t ◦ 5 a 19.5 C b D = −1 + 2 cos 12 c D

0

6

12

18

24

π 3

0

2π 3

x

–1 y

b

f(x) = 2 sin 2x – 1 1

1

0 π 5π –1 12 12

t

π

x

–3

–3

d {t : 4 < t < 20}.

c

y

6a

h (metres) 31.5

f(x) = 2 sin 2x + 1 (120, 30.99)

16.5 1.5

4A 9E

 5 −2 2 4 , b , , 6 6 3 3 3 −  11 , , 6 6 6 −3 − 5 7 , , , 4 4 4 4 − 3 7 − −5 7 11 f , , , , , 4 4 4 6 6 6 6 −3 −5 3 5 11 13 , , , , , 8 8 8 8 8 8 −7 −11  5 13 17 , , , , , , 18 18 18 18 18 18 25 29 , 18 18 y 1

–1 –2

3D 8C

Short-answer questions (technology-free)

10 (0, 8) 6

0

c 27.51 seconds e 20 times g 13.9 metres

3

1 0

(0, 5.89) 13.5 31.5 49.5 67.5 85.5 103.5 120 t (minutes)

–1

7π 12

11π 12

x

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

729

Answers c

y

y

f(x) = 2 sin x – π 4

2

0 π

5π 4

4

√3 + 2 y = √3

x

9π 4

0 √3 – 2

–2

e

y

d

19π 23π 9π 12 12 4

y = –3sin x

3

3

2

x

π 4

y

f(x) = 2 sin π x

0

x

π

0

3

x

6



–3 y

e

–2 y

f

Answers

d

4

h(x) = 2 cos πx 4

2

2

x

0

4

2

y=3

x

0 π

6 8

7π 6

6

f

–2

13π 6

y

3 a 30, 150 b 45, 135, 225, 315 c 240, 300 d 90, 120, 270, 300 e 120, 240 y 4a

3 y=1 2π

0 π 3

–1

5

π

x

5π 3

y

y = 2 sin x + 3 + 2

4

y = cos x

1

(0, √3 + 2) y=2

x

0 –1 x

0

–π

2π 3

3

b

7π 6

5π 3

π

π 2



3π 2

y = sin 2x

a 4 solutions c 2 solutions

b 4 solutions

y

y

6a 3 π 2

3

–π 6

y=1

–π 3

–1

0

x 2π 3

(0, 1 – √3 )

5π 3

0 –3

x 180

360

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

730

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS b

y

2 , 4 a a = 20 000, b = 100 000, n = 365 ε ≈ 5.77,   2t i.e. y = 20 000 sin + 5.77 + 100 000 365 y b

1 90 0

270 180

x 360

120000

–1

80 000

y

c

0

1

360,

√3 2

c i t = 242.7, t = 364.3 ii t = 60.2, t = 181.8 d ≈ 117 219 m3 /day 5 a i 1.83 × 10−3 hours ii 11.79 hours b April 25 (t = 3.856), August 14 (t = 7.477) 6a D

√3 2

x

0 30

210

360

–1

13 10 7

− 3 −2  b or or 4 4 3 3 − 3 7 −5 or or or c 8 8 8 8 −  5 −2 or or or d 3 6 3 3

7a

0

Extended-response questions 1a

y y = cos π t + 4 6

5 4 3

3 6

5

t 3

6

9

12

15

18

21

24

y = –3 cos (2πt)

0.5

6

1 second 3 d t = 0.196 second

t

12

c A ship √ can enter 2 hours after low tide. 8 a i 25 3 ii 30 b 2.27, 0.53 d b = 8√ e  = 0.927 or 1.837 fa=4 3 9c A (3, 5.196) π x

0

d i 2.055   ii 0.858 iii 0.0738 e nr tan  n  cos f i n sin n n ii A

1 A=π

–3

ci t =

t

24

3

t 0

18

7

b 9:00, 15:00 c 8:00, 16:00 2 a Maximum = 210 cm, minimum = 150 cm, mean = 180  cm  t  b y = 30 sin − + 180; 6 2  − A = 30, n = , b = 180, ε = 6 2 c i 165 cm √ ii 180 − 15 3 ≈ 154 cm d ≈ 4:24, ≈ 7.36 3 a a = −3, n = 2 b y 3

12

b {t: D(t) ≥ 8.5} = {t: 0 ≤ t ≤ 7} ∪ {t: 11 ≤ t ≤ 19} ∪ {t: 23 ≤ t ≤ 24} c 12.898 m 7 a p = 5, q = 2 b D

0 0

t 121 303.5 486

ii t =

1 second 6

(3, 1.3) 0

x

iv 0.0041

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers

Exercise 7A 1 a i f ◦ g(x) = 3 sin (2|x|) g ◦ f (x) = 3 |sin 2x| ii Range of f ◦ g = [−3, 3], domain of f ◦ g = R, range of g ◦ f = [0, 3], domain of g ◦ f = R b i f ◦ g(x) = −2 cos (2|x|) g ◦ f (x) = 2 | cos 2x| ii Range of f ◦ g = [−2, 2], domain of f ◦ g = R, range of g ◦ f = [0, 2], domain of g ◦ f = R c i f ◦ g(x) = e|x| g ◦ f (x) = e x ii Range of f ◦ g = [1, ∞), domain of f ◦ g = R, range of g ◦ f = (0, ∞), domain of g ◦ f = R d i f ◦ g(x) = e2|x| − 1, g ◦ f (x) = |e2x − 1| ii Range of f ◦ g = [0, ∞), domain of f ◦ g = R, range of g ◦ f = [0, ∞), domain of g ◦ f = R e i f ◦ g(x) = −2e|x| − 1, g ◦ f (x) = 2e x +1 ii Range of f ◦ g = (−∞, −3], domain of f ◦ g = R, range of g ◦ f = (1, ∞), domain of g ◦ f = R f i f ◦ g(x) = loge (2|x|), g ◦ f (x) = | loge 2x| ii Range of f ◦ g = R, domain of f ◦ g = R\{0}, range of g ◦ f = [0, ∞), domain of g ◦ f = R + g i f ◦ g(x) = loge (|x| − 1), g ◦ f (x) = | loge (x − 1)| ii Range of f ◦ g = R, domain of f ◦ g = R\[−1, 1], range of g ◦ f = [0, ∞), domain of g ◦ f = (1, ∞) h i f ◦ g(x) = − loge (|x|), g ◦ f (x) = | loge x| ii Range of f ◦ g = R, domain of f ◦ g = R\{0}, range of g ◦ f = [0, ∞), domain of g ◦ f = R + 2 a h(x) = f ◦ g(x) where f (x) = e x and g(x) = x 3 b h(x) = f ◦ g(x) where f (x) = cos x and g(x) = |2x| c h(x) = f ◦ g(x) where f (x) = x n and g(x) = x 2 − 2x

d h(x) = f ◦ g(x) where f (x) = cos x and g(x) = x 2 e h(x) = f ◦ g(x) where f (x) = x 2 and g(x) = cos x f h(x) = f ◦ g(x) where f (x) = x 4 and g(x) = x 2 − 1 g h(x) = f ◦ g(x) where f (x) = loge x and g(x) = x 2 h h(x) = f ◦ g(x) where f (x) = |x| and g(x) = cos 2x i h(x) = f ◦ g(x) where f (x) = x 3 − 2x and g(x) = x 2 − 2x x  1 2 c ex b loge 3 a 2e2x 2 2 1 1 4 a f −1 (x) = − loge x, g −1 (x) = (x − 1) 3 2 3 b f ◦ g(x) = e−2(x +1) , ran f ◦ g = R + , g ◦ f (x) = e−6x + 1, ran g ◦ f = (1, ∞) √ 1 5−1 −1 bx= 5 a f (x) = − 1 x 2 6 a f −1 (x) = √ e x − 1, dom f −1 = R, g −1 (x) = x + 1 − 1, dom g −1 = (−1, ∞) b loge (x 2 + 2x + 1)   1 f (x) + f ◦ g(x) = 0 7 f ◦ g(x) = loge x 8x 9 a f (g(x)) = (x 2 − 8)(x 2 − 10), g( f (x)) = (x − 4)2 (x − 6)2 − 4 bx =1 √ √ 10 x = ± 6 or x = ± 2 12 a = 6 b = 0 g(x) = e6x

Exercise 7B 1aa=1 c, e y

b [2, ∞) y = f(x)

(1, 2)

y = f –1(x)

(2, 1) 0

x

√ d f −1 : [2, ∞) → R, f −1 (x) = x − 2 + 1, domain of f −1 = [2, ∞), range = [1, ∞)

x 2a± = y, domain = R + ∪ {0}

2 x +1 b± = y, domain = [−1, ∞) 2√ c y = ±√x − 1, domain = R + ∪ {0} d y = ± x + 1 − 1, domain = [−1, ∞) x −1 + 1, domain = [1, ∞) ey=± √ 2 f y = ± 1 − x + 1, domain = (−∞, 1]

Answers

Chapter 7

731

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

732

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS 1 3 a g −1 : R + → R, g −1 (x) = 2 ± √ x b g −1 : (1, ∞) → R, g −1 (x) = 1 ± √

6a 1

+

y = x2 + 3 y = x2

(–√3, 6)

x −1

(√3, 6)

2 c g : R → R, g (x) = −1 ± √ x 1 + x, y ≥ 1 , domain = [0, ∞) dy= 1 − x, y < 1 x − 1, y ≥ 2 , domain = [3, ∞) ey= 5 − x, y < 2 1 + x, y ≥ −1 , fy= −3 − x, y < −1 domain = [−2, ∞) 5  x −6 3 , domain = R 4 a f −1 (x) = 2 5  x −6 2 by=± , domain = [6, ∞) 2 −1

y

−1

y=3

(–√3, 3)

(√3, 3) y

b

y = x2 + 2x + √x y = x2 + 2x y = √x x

0

c

y y = √x

(1, 1)

Exercise 7C

(1, 0)

−2x

1ai e − 2x ii b i e +1  ii x 2 a i sin − 2x 2  x  ii −2x sin 2 b i −1  ii x  ii 3 a i cos + ex 2 bi 2 ii y = x2 + 3x + 2 y 4

−2xe e

x

0

x

0 (1, –1)

−2x

y = –x2 + √x y = –x2 y

7 −2  x  e x cos 2 1

(0, 1) 0

y = e –2x x y = e –2x – 2x

y = ( f + g)(x)

y = –2x

2

y = 3x + 2

5 a y = ( f + g)(x) y

0

y = x2 x –

8

y

y = 2e2x + x + 2 y = 2e2x

2 3

4

y=x+2

2

(2, 6) –2

(2, 3)

x

0

9 a i |x| + x

y

y = f (x) x (0, 0) y = g(x)

b

y

y = f(x)

ii x|x|

y

(1, 1)

(–1, 1) (–1, 0)

x

0

(1, 0) (–1, –1) (1, –1)

y = ( f + g)(x)

y = g(x)

x 0

x

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers y

2 x

0

ii −x|x|

3

y

4 x

0

5 c i x − |x|

y

1 e y =− x −4 m c ax= bc≤2 2 c−x , domain = R d f −1 (x) = 2 c c 1 f y = x +c e , 2 3 3   b −b b , a 0 and b 2 4 c i (0, 0) and (b − 1, 1 − b) ii b = 1 iii b ∈ R √\{1} √ a −1 ± 2 2 b ±2 2 c a = −8, b = 16 a (−∞, 2a]

√ √ −1 + 1 + 8a −1 + 1 + 8a b , 2 2

c2 + c ea= 2 a2 6 a (0, 0) and (a, 0) b (0, 0) c 4 d a = 3 or a = −5 c b 1 b ec −a 7 a loge b a a+1 loge (c) − b c d c a 8 ax =a b (a + 1, 0) 1 1 c (a + e c , 1) d c = loge (2 − a) ca=1

x

0

ii −x|x|

y

0

x

Exercise 7D 1 f (x − y) = f (x) − f (y) 2 f (x + y) = f (x) + f (y) − 3; a = −3 3 g(x) = 0 or g(x) = 1 4 f (x + y) = |x + y|. Let x = 2, y = −4. f (x + y) = 2 = |2| + | − 4| = f (x) + f (y)  5 5 f (x + y) = sin(x + y). Let x = 2 ,y = 2 .  5 f (x + y) = sin(3) = 0 = sin + sin 2 2 =2 2 7 a h(x + y) = (x + y) . Let x = 1, y = −1. h(x + y) = 0 = h(1) + h(−1) = 2 10 f (x y) = ax y. Let x = 2 and y = 3. f (x y) = 6a and f (x) = 2a and f (y) = 3a f (x) f (y) = 6a 2 6a 2 = 6a implies a = 0 or 1

Exercise 7E 4 b m ≥ 4 or m < 0 m x +4 , domain = R c f −1 (x) = m   4 4 d , , m ∈ R\{1} m−1 m−1

1 a

da=3

9 a y = −b

b (loge (b) + 1, 0) 1 1 ii 0 < b < c i b= e e 10 a = 5 − c, b = −1 where the rule 2 is y = ax + bx + c 3d + 4 11 a = , b = 2 − d and 6 (3d + 28) c=− where 6 3 2 y = ax + bx√+ cx + d √ 12 a c = 28 − 8 6 or c = 28 + 8 6 √ √ b (−∞, 8) ∪ (28 + 8 6, ∞) ∪ (8, 28 − 8 6) 5d − 9 41 − 10d ,b = , 30 30 −25d − 2 where y = ax 3 + bx 2 + cx + d c= ⎡ 30 ⎤ x −3 4k −3 ⎢ −4 ⎥ +2 a 14 ⎣ y − 2 ⎦ b y = c 3−x 2 k ⎤ ⎡ a − x ⎢ 4 ⎥ 15 a ⎣ y +2 ⎦ 2 x−a b y =2×2 4 −2 ca =0 13 a =

Multiple-choice questions 1B 6E

2E 7D

3E 8E

4D 9E

5B 10 B

Answers

b i |x| − x

733

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

734

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS

Short-answer questions (technology-free) 1 a i f ◦ g(x) = 3 cos (2|x|) g ◦ f (x) = |3 cos (2x)| ii maximal domain = R; range = [−3, 3] maximal domain = R; range = [0, 3] b i f ◦ g(x) = loge (3|x|) g ◦ f (x) = | loge (3x)| ii maximal domain = R\{0}; range = R maximal domain = R + ; range = [0, ∞) c i f ◦ g(x) = loge (2 − |x|) g ◦ f (x) = | loge (2 − x)| ii maximal domain = (−2, 2); range = (−∞, loge 2) maximal domain = (−∞, 2); range = [0, ∞) d i f ◦ g(x) = − loge (2|x|) g ◦ f (x) = | loge (2x)| ii maximal domain = R\{0}; range = R maximal domain = (0, ∞); range = [0, ∞) 2 a h(x) = f ◦ g(x) where g(x) = |2x| and f (x) = cos x (Note: answer is not unique.) b h(x) = f ◦ g(x) where g(x) = x 2 − x and f (x) = x n (Note: answer is not unique.) c h(x) = f ◦ g(x) where g(x) = sin x and f (x) = loge x (Note: answer is not unique.) d h(x) = f ◦ g(x) where g(x) = sin 2x and f (x) = −2|x| (Note: answer is not unique.) e h(x) = f ◦ g(x) where g(x) = x 2 − 3x and f (x) = x 4 − 2x 2 (Note: answer is not unique.)  x  + e−x 3 a i ( f + g)(x) = 2 cos 2  x  ii ( f g)(x) = 2e−x cos 2 b i ( f + g)(0) = 3 ii ( f g)(0) = 2 2 4a b (−∞, 3] 3 c



  2 3−x , range = ,∞ , 3 3 domain = (−∞, 3]

d f −1 (x) =

2+

e

y

2 3, 3

2 + √3 3

x

0

5ay=



2 + √3 3



x −4 3

by=±

3−x 2

Extended-response questions 1 a D = 0.05t 2 − 0.25t + 1.8 b $3 000 000 −7 23 2a= ,b = , c = 7.5 48 24 35 At 12:00 noon, rate of rainfall = mm/h 6 23 Rainfall was greatest hours after 7 4:00 a.m., i.e. at ≈ 7:17 a.m. 3 a (0, 1), (−∞, 0) 1 b f −1 (x) = − loge x, g −1 (x) = + 1 x 1 ex = c i g ◦ f (x) = −x e −1 1 − ex y ii

0

x y = –1

 d i (g ◦ f )−1 (x) = loge y

x x +1



x

0 x = –1

4a i

y

(5, √2 )

y 0

2 ,3 3

0

3, 2 3

x

2 + √3 3

x

√ ii [ 2, ∞) iii f −1 (x) = x 2 + 3, √ domain of f −1 = [ 2, ∞)

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers

Extended-response questions 1 a a = −0.09, b = 9 √b DE = 2.79 m c Length of bar = 2 × 30 ≈ 10.95 m 1 2 a a = −3 b x = −1, x = − , x = 2 2 3 7 c ii b = , c = 2 2 y 3a

y=x (1, 4) (4, 1)

x

0

5 a (0, 1]

b (0, 1]

  1 c range of g ⊆ domain of f , f ◦ g(x) = sin x d Not defined as range of f is not contained in the domain of g 1 e g −1 (x) = , domain of g −1 = (0, 1], range x of g −1 = [1, ∞) f range of f = domain of g −1 1 g −1 ◦ f (x) = sin x domain = (0, ), range = [1, ∞) 6 a i n = 5790 ii 1158 n iii

x = – 4 sin π t

4

x

0

1

2

–4

bi x =0 ii x = −4 iii x = 0 7 ct = 6 2 = 2 seconds d Period =  4ai 0 ii 2.5 iii 0 b 1 second y c

5790

1158 0

t



0



179 −100 loge iv t = 3 1600 b i a = 2.518, b = 0.049, c = 5097.661 n ii n = 5097.661

1 t (s)

0.5

d t = 0.35 seconds 5 a k = 0.0292 b 150 × 106 c 6.4494 × 108 d 23.417 years 6 a 62.5 metres b x (m) 40

1449.08 0

t

0

45°

α

90°

c 24◦ 18

Chapter 8 Multiple-choice questions 1D 7C 13 A 19 B 25 D 31 E 37 C 43 C 49 C 55 B 61 A 67 E

2A 8A 14 E 20 D 26 E 32 D 38 D 44 D 50 D 56 A 62 A 68 C

3B 9B 15 D 21 C 27 A 33 E 39 C 45 B 51 B 57 B 63 D 69 C

4E 10 B 16 C 22 A 28 D 34 A 40 B 46 B 52 C 58 D 64 B 70 A

5A 11 C 17 E 23 C 29 D 35 A 41 E 47 E 53 C 59 D 65 D

6A 12 C 18 C 24 D 30 A 36 E 42 B 48 A 54 A 60 D 66 B

7 a A = 80, k = 0.3466 b 17.5◦ C c 6 hours 18 minutes and 14 seconds after 2:00 p.m., i.e. 8:18:14 d T (°C) 95°C 15°C 0

t (hours) n

8 a Carriage A (0.83) I, carriage B 0.66(0.89)n I b 6 stations x 9 a Area = 0.02(0.92) 10 b 0.0199 mm2 c Load = 0.02(0.92)10−2.9x d x < 2.59 m

Answers

ii h −1 (x) = x 2 + 3

b i p=3 y iii

735

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

736

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS

n=4

y

vi

1 2 1 n + n+1 2 2 b i f (4) = 8 + 2 + 1 = 11 25 5 ii f (5) = + + 1 = 16 2 2 c

10 a f (n) =

a=1

1 2

a=3 (2.5, 1)

8

x

0

7 9

(5, –1)

3

6 2

10

5

11

4

n=5

  −4 3 c i a, a +a 27 4 4a iii A = √ 81 v 3 4 375

1

13

12

11 10

3 1

iv a = 3

Chapter 9

15 4 16

5

Exercise 9A

9

7

1ah+9 b 9.1 c9 2ax +1 b 2x 3 + 1 c 40 e5 f1 g 2x + 1 i 3x 3 + x j 6x 3 a 2 + 3h + h 2 b2 4 2x + h, 2x 5 h + 6, 6

8

 11 a y = h − k cos

t 6



i 12 units ii OQ = h − k, OR = h + k b

4 3 2a a , 27 3

14

2 6

ii

T (°C)

d0 h 3x

Exercise 9B

16.5 12 7.5 0 1 2 3 4 5 6 7 8 9 10 11 12 t (months)

c h = 12, k = 4.5    1 1 12 a i 3 + √ , 0 3 − √ ,0 a a 1 ii √ a y bi a=1

a=2 a=3

0

x

(0, –1)

√ 3 3 ii a = 2 iv a = 3

√ 3 3 iii a > 2 1 v a=1 2

1 a 10x b3 c0 d 6x + 4 e 15x 2 f 10x − 6 2 a 5x 4 b 28x 6 c6 d 10x − 4 2 e 12x + 12x + 2 f 20x 3 + 9x 2 g −4x + 4 h 18x 2 − 4x + 4 3 a −2 b0 c 15x 2 − 6x + 2 6x 2 − 8 e 4x − 5 f 12x − 12 d 5 g 50x 4 h 27x 2 + 3 4 a 8x − 4 b 2x + 2 c 6x 2 − 12x + 18 d x 2 − 2x + 1 5 a (3, 16), gradient = 8 b (0, −1), gradient = −1 c (−1, 6), gradient = −8 d (4, 594), gradient = 393 e (1,  −28),  gradient = −92 1 f 2 , 0 , gradient = 0 2 6a1 b1 c (1, ∞) 2 d (−∞, 1) e2 f 4 or − 2 3 7 a {x: x < −1} ∪ {x: x > 1} b {x: −1 < x < 1} c {1, −1} 8 a (−1, 0.5) ∪ (2, ∞) b (−∞, −1) ∪ (0.5, 2) c {−1, 0.5, 2}

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers

Exercise 9C 1 a −6x −3 − 5x −2 15 8 c 4 − 3 x x 2 e− 2 x 4 2 a z2

15 x4 −4 d −18x − 6x −3 b 12x −

−18 − 2z z4 −2z 3 + z 2 − 4 −4 d c 3z z2 6 6 − 12z f −6x − 2 e x z4 1 1 3± 5 4 a = −1, b = 4 2 2 3 6 a = −9, b = 1 7 k = 0 or 2 1 3 c −1 d5 b 8 a 11 32 4 9a

b

f(x)

3√ 1 x−√ 2 x3 x 6a √ x2 + 2 2x + 2 c  5 5 (x 2 + 2x)4 e

5 3 x2 2 3 1 20 2 x3 d x− 2 − 2 3 1 1 5 f − x − 4 + 2x − 2 4 5 2 d c 2 9 −3 b √ 2 4 − 3x −1 d 3 (4 − 3x)2   √ 5x + 6 f3 x 2 3x 2 − 5 b  3 3 (x 3 − 5x)2 b

Exercise 9F 1

1 20x 4 + 36x 2 + 4x

2 9x 2 +

3 3(2x − 1)2 (8x − 1) 4 8x(2x 2 + 1)(6x 2 + 1)

3 −1 x 2 2

5x 2 − 8x + 1 √ 2x − 4 7 x 2 (3x 2 + 4x + 3)(3x 2 + 2x + 1)−2 1

5 5(3x + 1) 2 (3x + 4)

6

1

0

−2(2 + h) (1 + h)2

x

Exercise 9G c −4

Exercise 9D 1 a 8x(x 2 + 1)3 c 24(6x + 1)3

4

x− 5 5 5 3 3 1 c x2 − x2 2 2 6 − 13 e− x 7 7 1 1 b 2a 12 27 1 3a √ 2x + 1 x c√ 2 x +2 1a

8 2x 3 (5x 2 − 2)(2x 2 − 1)− 2 √ 2x 2 (x + 1) 9 2x 3 x 2 + 2x +  3 3 (x 2 + 2x)2

f(x) = 22 x

b PQ =

Exercise 9E

b 20x(2x 2 − 3)4 d an(ax + b)n−1 6x e 2anx(ax 2 + b)n−1 f (1 − x 2 )4     1 −4 2 2 g −3 x − 2 2x + 3 x x −2 h (1 − x) 2 a 6(x + 1)5 b 4x 3 (3x + 1)(x + 1)7  3   2 2 d −4(x + 1)−5 18x 2 − 2 c 4 6x 3 + x x − f (x) 3 a n[ f (x)]n−1 f (x) b [ f (x)]2

4 b (x + 4)2  1  1 − 1 x 2 −x2 d c 2 (1 + x)2 2 + 2x − x 2 e f (x 2 + 2)2 x 2 + 4x + 1 g 2 h (x + x + 1)2 2 a 81, gradient = 378 1a

4x (x 2 + 1)2 (x + 2)2 (x − 3)(x − 1) (x 2 + 1)2 −4x (x 2 − 1)2 −2(4x 3 + 3x 2 + 1) (2x 3 + 2x)2 b 0, gradient = 0 1 d , gradient = 0 2

c 0, gradient = 0 1 3 e , gradient = − 2 2 5 (7x 3 + 3x + 4) 2x 2 + x + 1 c bx √ 3a √ 2 3 (x + 3)2 2 x +1 x +1

Answers

    1 1 9 a − , 2 ∪ (2, ∞) b −∞, − 4 4 1 c − ,2 4   7 1 , −8 c 10 a (1, −9) b (2, −8) 4 16   1 1 11 a − , 3 b (2, 32) or (−2, −32) 2 2 c (2, 6) d (0, 0) or (2, −4)

737

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

738

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS g

Exercise 9H

y dy

y = dx

y

1a

(0, 2)

x

0

dy =2 dx

2

x

0

h

y dy

y = dx

y

b

0 dy = –3 dx

(0, –3)

c

0

x

x 3

1

i

y

y

1 dy y = dx

dy y = dx

x

0

1

x

0

2

–1 y

j d

–3, 2 3

y

2 3

dy y = dx

–1

x

0

x

0

3, – 5 3

–5 3 y

k

y

e

x 0

x

0 dy

y = dx

f

y

l

y

(1, 2) dy y = dx

–1 0

x 2 –1

0

x 1

2

(–3, –0.25) (1, –2.5) (2, –2.5)

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers 2 a, b

y

y y = f '(x)

x

0

–1.5

0

1.5

ci 0 di 1

y

n

0

iv 96

y

y = f (x)

x 1

x

2

ii 0 iii 0 ii 0.423

3

o

1

y = f(x)

2

0

y

x

1

  4 Gradient is 0 at 1, . 3 Gradient is positive for R\{1}. –2

y

4

x

0

1

y = f '(x) y = f (x)

y

p

x

0

x

0

Gradient is positive always; minimum gradient where x = 0. y 5a y = f '(x)

q

y

y = f(x)

2 1 0

x

x

0

b i x = −1.495 or x = 0.798 ii x = 0.630 r

6

y

y

y = f '(x) 4 0

x

0

x

Answers

m

739

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

740

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS a Minimum value of f (x) is 4. b x = −0.471 or x = 0.471 y 7a i

Exercise 9J 1a

y

(0, 12)

y = f'(x)

0

x

–1 x

0

–0.5

1

0.5

b

y

y

ii

0 (0, 16)

2

x

0

0.5

y = f'(x) x

0

y

iii

4

y

c –0.5

x

–3

y

d (0, 32)

y = f '(x) 0

–0.5

x 0.5

x

0

b Graphs and tables illustrate that as x → 0 from the left and from the right the value of g(x) approaches the gradient of y = f (x) when x = 2.

e

y

x

0

–1

1

y

f

Exercise 9I 1 a 17

b3

c −4

e3

f4

i −2

j 12

g2 11 k 9

1 8√ h2 3 1 l 4

d

2 a 3, 4 b7 3 a 0 as f (0) = 0, lim f (x) = 0, but lim f (x) = 2

x→0+

2 f (x) =

x

0

–1

1

−2x + 3 3 y

if x ≥ 0 if x < 0

x→0−

b 1 as f (1) = 3, lim f (x) = 3, but x→1+

lim f (x) = −1

x→1−

c 0 as f (0) = 1, lim f (x) = 1, but lim f (x) = 0

x→0−

4 R\{1}

x→0+

0

x

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

741

Answers 2x + 2 −2

if x > 1 if x < 1

y

1B 6C

x

0

1

–2

4 Defined for R\{−1} −2x − 2 if x > −1 f (x) = −2 if x < −1 y

–1

x

0 –2

b c d 6a b

b (y + 1)2 26 3

Multiple-choice questions

4

5a

1 (1 − x)2 5 25 −3x(x 2 + 1)− 2 24 a

2 1 R\{1}; f (x) = (x − 1)− 3 3 4 1 R\{0}; f (x) = (x)− 5 5 2 1 R\{0}; f (x) = x 3 3 3 2 R\{−2}; f (x) = (x + 2)− 5 5 2x − 4 if x > 4 or x < 0 f (x) = 4 − 2x if 0 < x < 4 2x − 4 if x > 0 f (x) = 2x + 4 if x < 0

Exercise 9K 1a8 b −8 2aD bF cB dC eA fE −2x 5 + 4x 3 − 2x b {0} 3a (x 4 − 1)2 4 a −7 b −14 1 1 b 5a5 2 8 √ 6 2x 3x 2 + 1 7 a 4x − 3 b −3 c {1} 3 2 8 − 12 10 24 11 (0.28, 0.14) 25 3 8x 15 24x − 12 14 − 2 (x − 2)2 1 2 17 16 −63(5 − 7x)8 18 9 3 19 −70 20 0 21 −1 2 b −2 22 a − (2x + 1)2 23 a x = 0 or x = −2 b x > 0 or x < −2 c −2 < x < 0

2C 7D

3A 8E

4A 9A

5B 10 B

Short-answer questions (technology-free) 2 x 1a1− √ 1 − x2 3 c √ 2 1 + 3x

b d

3x − 15 e √ 2 x −3 4x g 2 (x + 1)2

f h

2 10x (2 + 5x 2 )− 3 3 1 k 4x(3x 2 + 2)− 3 2 a −6 b1 y 3a

j

i

−4x − 2x + 12 (x 2 + 3)2 −2 1 − 3 x2 2x 2 1 + 2x 2 √ 1 + x2 −x 2 + 1 (x 2 + 1)2 −2x 2 − 2x + 4 (x 2 + 2)2

c5

x

0

dy = –3 dx y

b

y=

0

c

dy dx x

1

y

y= 0

dy dx x

1.5

   3 9 9 , x =± 42 4− 2 4x + x x 2

d

1 6

Answers

3 Defined for R\{1} f (x) =

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

742

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS    3 3 , ∞ ∩ (−1, 4) = ,4 2 2 a x f (x) + f (x) 6 b f (x) if x ∈ [0, 4] and − f (x) if x ∈ (−∞, 0) ∪ (4, ∞) 2x f (x) − 2x 2 f (x) c [ f (x)]3 

5 b

Extended-response questions 1 a i −4 iv −18

ii −6 v 6

iii −18 1 vi − 6

5 7 b a = , b = 1, c = − , d = 6 2 2 2 a i −1 and 3 ii x > 3 and x < −1 b i 3 and 7 ii (3, 6) and (7, 1)    1 5 5 1 c i and ii ,6 ,1 2 2 2 2 d i 2 and 10 ii (2, 6) and (10, 1) e i 2 and 10 ii (2, 18) and (10, 3) 3 a x =  or x =  b (x − )m−1 (x − )n−1 ((m + n)x − m − n) m + n c x =  or x =  or x = m+n m + n , x =  d i x> m+n m + n ii x <  or x > m+n nx n−1 d0 ex >0 4b n (x + 1)2

Chapter 10 Exercise 10A 1 1 1 y = 4x − 5, y = − x + 3 4 2 1 2 y =− x −1 3 3 y = x − 2 and y = −x + 3 1 4 y = 18x + 1, y = − x + 1 18   3 11 29 5 ,− ,c=− 2 4 4 1 1 6 a i y = 2x − 3 ii y = − x − 2 2 1 b i y = −3x − 1 ii y = x − 1 3 c i y = −x − 2 ii y = x 49 1 d i y = 8x + 2 ii y = − x − 8 8 2 3 ii y = − x + 1 e i y = x +1 3 2 1 1 ii y = −2x + 3 f i y= x+ 2 2

3 2 4 ii y = − x + x+ 2 3 3 h i y = 4x − 16 1 15 ii y = − x − 4 2 i i y = −2 ii x = 2 1 ii y = − x + j i y = 4x − 4 4 3 1 7 a y = −1 by= x+ 2 2 c y = −2x − 1 d y = −4x + 5 8ax =4 b x = −5 1 cx =− d x = −5 2 g i y=

7 2

1 4

Exercise 10B 1 11.31◦ or 11◦ 19 2 30.96◦ or 30◦ 58 3 161◦ 5 4 a tan−1 (0.5) = 26◦ 34 b tan−1 (0.33) = 18◦ 26 c tan−1 (2.83) = 70◦ 39 5 a (1, 1), (0, 0) b 8◦ 8 and 0◦ 6 71◦ 34 7 a (0, 0) = 45◦ , (1, 1) and (−1, −1) = 26◦ 34 b (0, 0) = 18◦ 26 , (1, 2) and (−1, −2) = 12◦ 32 c (1, 1) and (−1, 1) = 63◦ 26 d 14◦ 2

Exercise 10C dy = 12x 2 − 16x b 16 c 0.32 dx 1 1 3 2 a − x− 2 b− 2000 2 3 c− d 0.0985 2000 h −3 e i y ≈ − a 2 2 1 1 h ≈ √ − ii √ 3 a a+h 2a 2 3 −28q 23 p 230 p 4a % b 10 11 8 dy = 5 − 2 ; y = 3p 5 dx x p 6 a 3p b √ 2 a −6 p d 8(2a + 1)3 p c (3a + 1)2 (−2a 2 − 10a + 2) p f e 36a(6a 2 − 1)2 p (a 2 + 1)2 5 2a h p g p 2 (a + 1)2 3(a 2 + 10) 3 31 1 9 −0.48 8 cm 7 30 20 2 10 10 p cm 1a

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers

b

c x = −1, x =

+

ii 1

2(1 + 8 ; 2.5% 17 a 5

ii f (0) =

1 x) 2

1 2

–1

13 4%

1

15 a i f (x) =

√  10 √ seconds 40 g

1 2

16 ; 3.75% b 5

0



max.

1 2 0

+

min.

d x = −3, x = 4 –3 –

0

4 +

0



Exercise 10D 1 a (2, −16), (−2, 16) b (1, −2) c (0, 0), (1, 1) d (4, 48)     2 16 −2 16 e (0, 0), √ , , √ , 3 3 3 3     1 14 1 2 g (3, 2), − , 20 ,4 f 3 27 3 3 h (0, −10), (2, 6) 2aa=6 bb=3 3 a = 2, b = −4, c = −1 1 1 2 4 a = , b = −2 , c = −3, d = 7 3 2 2 5 a a = 2 and b = 9 b (−1, −5) 1 1 − 4n 6 x = or x =   2 2n + 2  1  1 or −1, − 7 x = ±1 or x = 0 8 1, 2 2 √ √ √ √

2 3 16 3 2 3 16 3 9 a (2, 4) b , , − , 3 9 3 9   √ √ 8 256 c (0, 0), , d (0, 0), ( 2, 4), (− 2, 4) 3 27

min.

max.

e x = −3, x = 4 –3 +

0

4 –

max.

f x = 0, x =

+

min.

27 5 27 5

0 +

0

0



max.

0

+

min.

g x = 1, x = 3 1 +

0

3 –

max.

0

+

min.

h x = 1, x = 3

Exercise 10E

1

1ax =0 –

0

3 +

0



0 +

0

+

min.

inflexion

b x = 2, x = −5 –5 +

0 max.

2 –

0 min.

+

max.

2 a x = −2(max.), x = 2(min.) b x = 0(min.), x = 2(max.) 1 c x = (max.), x = 3(min.) 3 d x = 0(inflexion) e x = −2(inflexion), x = 0(min.) 1 1 f x = − √ (max.), x = √ (min.) 3 3

Answers

 dT = √ dl lg 12 4% 1 14 a i (1 − x)2 11 a

743

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

Answers

744

CUAT018-EVANS

November 3, 2005

9:27

Essential Mathematical Methods 3 & 4 CAS  3 a i (0, 0) and y

 4 ,0 3

e i (−1, 0), (0, −1), (1, 0) y

(1, 1)

(0, 0) 0

0

(–1, 0)

x

x

(1, 0)

4, 0 3

(0, –1)

ii x = 0 (inflexion), x = 1(max.)

ii (−1, 0)(inflexion), (0, −1)(min.), (1, 0)(inflexion) f i (−1, 0), (0, 1), (1, 0)

b i (0, 0) and (6, 0)

y

y

(0, 1)

(0, 0) 0

(6, 0)

x

0

(–1, 0)

x

(1, 0)

ii (−1, 0)(min.), (0, 1)(max.), (1, 0)(min.) 4 a (−2, 27)(max.), (1, 0)(min.)  7 b (1, 0) is a turning point. c − , 0 , (0, 7) 2 y d

(4, –32)

ii x = 0(max.), x = 4(min.) c i (0, 0) and (3, 0) y

(–2, 27)

(2, 4) (0, 7)

(3, 0) 0 (0, 0)

x

x

0 (1, 0)

– 7, 0 2

5 b a = 3, b = 2, (0, 2)(min.), (−2, 6)(max.)   1 6 a (0, −256), , 0 , (2, 0) 2     1 4 b , 0 (inflexion), , 40.6 (max.), 2 3 (2, 0)(min.)

ii x = 0(min.), x = 2(max.) d i (−4, 0), (−1, 0), (0, 4) y

y

(–3, 4)

(0, 4)

(–4, 0) (–1, 0) 0

4 , 40.6 3

x

0

(2, 0)

1, 0 2

ii x = −3(max.), x = −1(min.) (0, –256)

x

P1: FXS/ABE

P2: FXS

0521665175ans-2.xml

CUAT018-EVANS

November 3, 2005

9:27

Answers

f (x) g(x)

1

0

–1 2

x

1 2

–1



 1 1 1 x: x > √ ∪ ∪ x: − < x < 2 2 2 1 x: x < − √ 2  √  66 ii x: x > ∪ 12   √ − 66 1 x: 0 for r ∈ 0, dr 6 dV iii is increasing for r ∈ (0, 5.21) dr 100 − 3r 2 28 a i h = 2r r (300 − 5r 2 ) ii V = 6 √ iii defined for 0 < r < 2 15 dV  iv = (300 − 15r 2 ) dr 6 v V (cm3)

(4.47, 468.32)

2 a e x (x 2 + 2x + 1) b e2x (2x 3 + 3x 2 + 6x + 5) c 2e4x+1 (x + 1)(2x + 3) −8x − 7 d √ 2e4x x + 1 x −2e x 3e − 2e4x b 3 a 3x (e x − 1)2 (e + 3)2 2x −8e c 2x (e − 2)2 2x 3 (2 − x) b 2e2x+3 4a e2x 1 3 e x (x − 1) c (2e2x + 1)(e2x + x) 2 d 2 x2 1 2 x 2 e xe 2 f −x e−x x e ( f (x) − f  (x)) 5 a e x ( f  (x) + f (x)) b [ f (x)]2 c f  (x)e f (x) d 2e x f  (x) f (x) + [ f (x)]2 e x

Exercise 11B 1a d g j 2a c

2 x 3x − 1 x2 2 2x + 3 3 15 − x 2x x2 + 1 1 − loge x 2 x

e e x loge x +

0

2√15 r (cm)

4 2 dy 2 by= x = 225 dt 27 50 ds dx 5 c i = ii = dt 9 dt 54 100 3000 30 a i y = 2 ii s = + 60x 2 x x 3000 ds b i = − 2 + 120x ii 1538.978cm 2 dx x c 585 cm2 /s

29 a

c −12e−4x + e x − 2x 2

e (2x + 3)e x +3x+1 g 2e2x − 2e−2x

b −21e−3x e3x − e x d e2x 2 f (6x − 1)e3x −x

3 x

1 x +1 6 i 2x − 3

f

1 x



d 2x(2 loge x + 1)

f loge (−x) + 1 x 2 + 1 − 2x 2 loge x g1 h x(x 2 + 1)2 1 b (e, e), m = 2 3 a (e, 1), m = e 2e c (e, log (e2 + 1)), m = 2 e +1 1 e (1, 1), m = 2 d (−e, 1), m = − e f (1, 0), m = −1 g (0, 0), m = −2 h (0, 0), m = 0 1 3 1 + 2x 4 6 72 82 5 2 2 5 1+x +x

y

1

Exercise 11A

c 2x +

b loge x + 1

Exercise 11C

Chapter 11 1 a 5e5x

2 x 3+x e x −2 h −2x + 3 3 k4− x −6 b

1

0

x

Answers

√ √ 27 a i y = 100 − r 2 and h = 2 100 − r 2 √ ii V = 2r 2 100 − r 2 b i V

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

Answers

752

CUAT018-EVANS

November 3, 2005

20:32

Essential Mathematical Methods 3 & 4 CAS 2 {x: −2 < x < 0}

100 3 x < 1, max. value = 4 ≈ 1.83 e 4 a Min. f (x) = f (0) = 0 5ay=2 by=x e c y = 4e2 x − 3e2 d y = (x + 1) 2 e y = 3xe − 2e f y = 4e−2 6 a (0, 1)(min) by=x y c

y = loge 5x y = loge x (0.2, 0) 0

24 0

x

0

y

x

(1, 0)

23 a p

y=x

f (x) = x + e–x

21 a y = 2x − 1 b y = kx − 1 c y = kx − 1 22 Tangents are parallel for any given value of x.

b 25

p 2

p a 26 0.01

dy 1 dy t 2 + 1 dy dx 2t = , = = 1, = 2 , dt t dx 2t 2 dx dt t +1 dV = ([loge (h + 1)]2 + h 28 a dh + 2 loge (h + 1) + h + 1). When h = 2, dV = ([loge (3)]2 + 2 loge (3) + 5) and dh dh dh =5× dt dv b When h = 10, dV = ([loge (11)]2 + 2 loge (11) + 21) and dh dh dh =5× dt dv 27

7 t = 0, v = 0.4 m/s; t = 1, v = 0.4e ≈ 1.087 m/s; t = 2, v = 0.4e2 ≈ 2.956 m/s y 8a

b 2.02

y = 600

t

0

9 Maximum population is 44 (44.107) at t = 5 10 a −2y b ky 11 a 0.18 kg b 3.47 hours c i 6.93 hours ii 10.4 hours d 0.2 m 12 2q 13 a f  (x) = aeax b f (h) ≈ ha + 1 c f (b + h) ≈ eba (ha + 1)

29 a 2x loge x + x y d

cx =e

bx =1

−1 2

a

b y ≈ −2ea p 14 a y ≈ pe 2 c y ≈ ea (1 + a) p d y ≈ e−a (1 − a) p dx dy = 2e2t = et 15 a b2 dt dt 16 p = 1, q = −6, r = 9 5 5 b 5 17 a 4 e e 2e2 18 4 e −1 2 19 a (8x − 8)e4x −8x b (1, e−4 ) y c

1

x

0 (1, e – 4)

1 5 dy=− x+ 8 4 20 a Tangent y = x − 1, normal y = 1 − x b Tangent y = −x − 1, normal y = x + 1

0

x –1

e 2, –1 e –1 2

Exercise 11D 1 a 5 cos 5x b −5 sin 5x c 5 sec2 5x d 2 sin x cos x = sin 2x e 3 sec2 (3x + 1) f −2x sin (x 2 + 1)     g 2 sin x − cos x − 4  4  = sin 2x − = cos 2x 2   h − sin x ◦ cos x ◦ i 90 60  sec2 (3x)◦ j 60 1 √ b 1; 0 c 2; 0 2a √ ; 2 2 d 0; 0 e 1; 0 f 1; 4

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

CUAT018-EVANS

November 3, 2005

20:32

753

Answers

Exercise 11E 1 a y = 2x

b y = −x +

 2

 +1 d y = 2x 2  f y = −x − 1 + e y = 3x 2 2 3 − 2 sin x, gradient always positive  3 Distance = − 1 5 18◦ 26 4 45◦ 2 6 a 4.197 b −0.4 p 7a i ii 2 p cos2   b +1 90 1 1 8 a √ ; −√ 2 2 1 ii 0.6967 b i √ (1 − h) 2 a  1 b cos p 9 a −2 sin (2a) p 2 2 1 2p a  p d− c cos2 (2a) 2 cos2 2   a  1 −a p e sin f − cos p 4 2 2  5 , 10 a Max. at x = and 3 3 min. at x = 0,  and 2  5 b Max. at x = , min. at x = , 6 6 3 point of inflexion at 2  3 c Max. at x = and , 2 2 7 11 min. at x = and 6 6 c y = 2x −

d Max. at x = min. at 11 a

 , point of inflexion at x = , 3

5 3

12 m/s 5

b−

1 rad/s 5

Exercise 11F 1 a 0.69 b1 c −1.82 d 1.54 2 a Local max. (2.07, 1.61); local min. (4.49, 0.53) b Local max. (1.57, 0) c Local max. (0.56, 0.55), (3.22, 2.85); local min. (1.39, 0.087) (4.66, 1.24) d Local min. (0, 0) e Local max. (4.27, −3.56); local min. (5.15, 3.56)    f Local max. (0.32, 0.20), , 1 , (2.82, 0.20), 2 (3.93, 0), (5.5, 0); local min. (0.79, 0), (2.36, 0), (3.46, −0.202), (4.71, 1), (5.96, −0.202) 5 a, c

y y = ex – 2

x = –2

0

x y = –2

b (−1.841, −1.841), (1.146, 1.146) c y = loge (x + 2) d R\[−1.841, 1.146] e i a = −1 ii y = x iii (0, 0) iv y = loge (x + 1) y v x = –1

y = ex – 1

y=x

y = loge (x + 1) 0

x y = –1

6b

dy = 2 for y = 2e x − 2 dx   dy 1 x +2 = for y = loge dx 2 2

c y = 2x and y =

1 x 2

Answers

3 a −5 sin x − 6 cos 3x b −sin x + cos x c cos x + sec2 x d 2 tan x sec2 x 4 a 3x 2 cos x − x 3 sin x −(1 + x) sin x − cos x b (1 + x)2 c e−x (cos x − sin x) d 3 − 2 sin x e 3 cos 3x cos 4x − 4 sin 4x sin 3x f 2 cos 2x tan 2x + 2 sec2 2x sin 2x g 12 sin x + 12x cos x h esin x (x 2 cos x + 2x) i 2x cos2 x − 2x 2 cos x sin x j e x (sec2 x + tan x) 5 a −2 b −6 c −e 1 d −e e− f0  6 a tan x b tan x 2 2 = 7a sin 2x − 1 2 sin x cos x − 1 7 7 5 b sec2 xetan x c x 2 sin 3x + 3x 2 cos 3x 2

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

Answers

754

CUAT018-EVANS

November 3, 2005

20:32

Essential Mathematical Methods 3 & 4 CAS d i f −1 : (−a, ∞) →  R,  x +a f −1 (x) = loge a 1 ii y = ax and y = x a iv Pairs of graphs of this form intersect at the origin.

Exercise 11G 1 a  = 0.1373, P0 = 30 b 9.625 hours c i 4.120 units/hour ii 1.373√units/hour 200 3 1 ◦ km/h b rad/s = 1.9099 /s 2a 3 30 3 a 8 cos  b Area =16 (1 + cos )√sin ; maximum area = 12 3 square units 75 seconds 4a cos  b 220 − 60 tan  seconds dT 75 sin  − 60 d = d cos2  −1 4 e  = sin ≈ 53◦ 8 5 f T = 265 seconds; P is 400 metres from B for minimum time

Multiple-choice questions 1C 6C

2B 7A

3D 8E

4E 9B

Short-answer questions (technology-free) 2x b 3 cos (3x + 2) +2   1 x 2 d (2x − 2)e x −2x c − sin 2 2 1 e f 2 cos (2x) x −3 g 6 sin (3x + 1) cos (3x + 1) = 3 sin (6x + 2) 1 2 − 2 loge 2x h  i 2x loge x x2

1a

5D 10 C

b aeax+b c −bea−bx 4 a aeax d abeax − baebx e (a − b)e(a−b)x 5 0.25 m/s; 0.25e m/s; 0.25e2 m/s; 0.25e4 m/s 6 a 25e100t ◦ C/second b 25e5 ◦ C/second 7 y = ex 8 b 20 cm/year 10 2 11 a = 2 or a = 1 √ x  1 by= √ − √ + 2 12 a y = x e 2 2 2   −1 3 dy= x cy=x− e 2

Extended-response questions 1a b

 x  dy −9 = sin dx 40 80 dy dx 0

x

80

–9π 40

c Magnitude of gradient is a maximum at the point (40, 12) 3 000 000e−0.3x 2 a f  (x) = (1 + 100e−0.3x )2 b i 294 kangaroos/year ii 933 kangaroos/year 3 a a = 30 b (0, 8 loge 6)(25, 0) c f  (20) = −0.8  x eR d f −1 (x) = 5 6 − e 8 y f (0, 8 loge 6)

x2

j 2x sin (2x) + 2x 2 sin (2x) a 2 e x sin 2x + 2e x cos 2x 1 − 3 loge x b 4x loge x + 2x c x4 d 2 cos 2x cos 3x − 3 sin 2x sin 3x 2 = 2 sec2 2x e cos2 2x f −9 cos2 (3x + 2) sin (3x + 2) g 2x sin2 3x + 6x 2 cos 3x sin 3x b0 3 a 2e2 ≈ 14.78 c 15e3 + 2 ≈ 303.28 d1

0

x (25, 0) x = 30



  3 1  1 ,e , , c ,e 2 2 e e d 2 as g(x + 2) = g(x) 6 a i 30 g ii 12.28 g −300et dx = b dt (5et − 3)2 c ii

4b



dx dt

0

–6.837

x

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

CUAT018-EVANS

November 3, 2005

20:32

755

Answers 2 tan 

d OP + OQ =

c NQ = 8 tan  2 + 8 tan  + 10 tan 

dx = −2 cosec2  + 8 sec2  d f x = 18,  = 26◦ 34 8 a f  (x) = e x + e−x b {0} y d e

x

0

9 a x = 1 or x = e2 b Gradient of y = 2 loge x is 2, when x = 1; gradient of y = (loge x)2 = 0, when x = 1 y c

d When x = 6 bAebt dy = 13 b dt (1 + Aebt )2 e After 7 hours (to the nearest hour) 144 degrees per second = 1.833 degrees per 14 25 second 15 0.1 km/s 16 a y = ex b y = 2ex c y = kex 1 e i A unique real root k = or k ≤ 0 e 1 ii k > e x xe − e x 17 a f  (x) = x2 bx =1 c (1, e); minimum x −1 f  (x) d i = f (x) x f  (x) ii lim = 1, i.e. f (x) → f  (x) x→∞ f (x) as x → ∞ y e

y = (loge x)2 y = 2 loge x (e2, 4) 0

x

0

x (1, 0)

e2

1 ≈ 45.27 years, minimum occurred k in 1945 1 18 a A = 1000, k = loge 10 ≈ 0.46 5 dN b = k Aekt , where A = 1000 and dt 1 k = loge 10 5 dN c = kN dt dN d i ≈ 2905.7 dt dN ii ≈ 4.61 × 1012 dt 19 a t ≈ 34.66 years b t ≈ 9.12 years 20 a D(t) ft =

d {x: 2 loge x > (loge x)2 } = [x: 1 < x < e2 } 10 x = e 11 a h = a(1 + cos ) b r = a sin  dV 1 3 3 d = a [−sin  d 3 + 2sin  cos (1 + cos )] 1 −1 ≈ 70◦ 32  = cos 3 32 3 eV = a cm3 81 12 a f  (x) = loge x + 1 b x ≈ 0.37, i.e. during the fourth month of its life y c

13 10

1

7

1 e , 0.632 0

(1, e)

x 6

0

6

12

24

t

Answers

7 b MP =

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

Answers

756

CUAT018-EVANS

November 3, 2005

20:32

Essential Mathematical Methods 3 & 4 CAS b {t: D(t) ≥ 8.5} = {t: 0 ≤ t ≤ 7} ∪ {t: 11 ≤ t ≤ 19} ∪ {t: 23 ≤ t ≤ 24} c i 0 metres/hour  ii − metres/hour 2  iii metres/hour 2 d i t = 0, 12, 24 ii t = 6, 18 1 21 a The height is reached th of a second after 6 t = 0. 2 b 3 1 c When t = , speed = 0.6 m/s 3 (moving downwards). 2 When t = , speed = 0.6 m/s (moving 3 upwards). 1 When t = , speed = 0 m/s. 6 1 22 a p = 12, q = 8, r = 6 4 b T  (3) = − ; hours of night decreasing by 3 4 4 hours/month T  (9) = , hours of night 3 3 4 hours/month increasing by 3 8 c − hours/month 3 d t = 9 (after 9 months) 23 a A = 2x cos (3x) dA = 2 cos (3x) − 6x sin (3x) b i dx dA = 2. ii When x = 0; dx  dA − . When x = , 6 dx c i A

0

π 6

x

ii x = 0.105 or x = 0.449 iii Maximum area = 0.374 when x = 0.287 1 t 24 a i N  (t) = −1 + e 20 10 ii Minimum population is 974 and occurs when t = 20 loge 10. iii N (0) = 1002 iv N (100) = 900 + 2e5

v

(100, 900 + 2e5)

N 1002

y = N(t) (20 loge 10, 974) t

0

b i N2 (0) = 1002

1

ii N2 (100) = 990 + 2e 2 iv Minimum population is 974 and occurs when t = (20 loge 10)2 . c ii Minimum population is 297 and occurs when t = 100.24. 3 1 1 t d i N3 (t) = − t 2 + e 20 2 10  2 sec  25 c 180 26 a i BX = h tan  h ii R = (1 + tan2 ) 2 h sin   b i R = ×  180 cos3  ii −0.1209   10 1 log a 27 e 3 3 5 b i x = 0 and x = 2√ −4 + 5a ± 25a 2 + 16 ii x = 4a

Chapter 12 Exercise 12A 1 a 3.81 square units b 1.34 square units 35 c square units 2 2 a 13.2 square units b 10.2 square units 3 a 10 square units b 10.64 square units 4 a 0.72 square units b 2.88 square units, decrease strip width 5 a 36.8 square units b 36.7 square units 6 a ≈ 48 square units b Distance travelled 7 11.9 square units 9 8 a square units b 9 square units 2 c 4 square units

Exercise 12B x4 +c 8 x4 − x3 + c c 5

1a

5 4 x − x2 + c 4 5 d 2z + z 2 − z 3 + c 2

b

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

CUAT018-EVANS

November 3, 2005

20:32

Answers

Exercise 12C −1 1 b (t − 2)4 + c (2x − 1)3 + c 4 6 3 2 1 d (3x + 6) 2 + c (5x − 2)4 + c c 9 20 9 1 1 2 f (2x − 4) 2 + c e (3x + 6) 2 + c 9 3 3 7 2 1 h − (2 − 3x) 2 + c g (3x + 11) 3 + c 9 7 1 1 j (3 − 4x)−4 + c i − (5 − 2x)5 + c 16 10 1 1 2 a loge |x| + c b loge |3x + 2| + c 2 3 −3 c loge |1 − 4x| + c d x − loge |x + 1| + c 4 −1 f +c e x + loge |x| + c x +1 2 x g + 2x + loge |x + 1| + c 2 h 2x − loge |x + 1| + c 3 i− +c 2(x − 1)2 b 3 loge |x − 4| + c 3 a 5 loge |x| + c c 5 loge |2x + 1| + c −3 e d −3 loge |2x − 5| + c 2x − 1 1 f − loge |3x − 4| + c 3 1 4 a y = loge |x| + 1 b y = 10 − loge |5 − 2x| 2 5 y = 10 loge |x − 5|   |x − 2| 6 y = 3 loge + 10 2   5 5 7 y = loge + 10 4 |2x − 1| 1a

Exercise 12D x 1 2x e − 2e 2 + c b e x − e−x + c 2 x x 2 d 15e 3 − 15e 5 + c c e3x + e−x + c 3 1 2 a y = (e2x − x 2 + 9) 2 3 b y = − x − ex + 8 e 3 y = 9 − 2e−2 1 1 4ak =2 b y = e2x + e2 2 2

1a

Exercise 12E 7 3 1 e 2

1a

1 4 1 g 15 3 c−

b 20

d9

11 20 10 1 13 e 2 a 10 b1 d c 441 3 3  1 2 3 1 h 2 − 22 f 34 g 22 − 1 i 3 15 1 1 b y = (3 − e−2 ) 3 a y = (e2 − 1) 2 2 f

140 3

1

h 343

d y = e2 − e−2

c y = 6e 3 − 4

4 a 10  b17 c −5 1 1 b loge (3) 5 a loge 2 3

d9 3 c loge 2

e−3  19 7

Exercise 12F 1a3 b 44 c i 8 ii 10 1 1 1 4 d c 121 b 2a 6 2 6 3 y 3a

√ e4 3

y = 2x + 1

1 –1 0 2

x 1

4

y

b

3

0

y=3–x

x 3

f 108

Answers

−3 +c 2 a −3x −1 + c = x 2 b − 3 + 3x 2 + c 3x 3 5 √ √ 2x 2 4 x3 2 x5 4x 2 + +c = + +c c 3 5 3 5 2 3z 2 20 9 9 4 − +c e x4 +c d x3 − 2 z 4 9 14 3 12 7 x4 − x2 +c f 7 3 x4 by= +6 3 a y = x 2 − 3x + 3 4 3 2 1 22 c y = x 2 + x2 − 3 2 3 1 1 3 8 4 f (x) = x 3 + − 8 5 s = t2 + − 8 x 2 2 t 6 a k = −32 b 201

757

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

Answers

758

CUAT018-EVANS

November 3, 2005

20:32

Essential Mathematical Methods 3 & 4 CAS y

c

y

10

y = x2

(4, 16)

x

0

x

0

1

4

d

2

y

4

–√2

11

1 2

√2

1

y

e

y

x

0

–1

Area = 0.5 square units

y = 4 – 2x2

–3 –2

x

2 3

0

y = √x

1 11 log e 3 8

12

y

x

0

2

4

y

f

y=2

y = (1 – x)(1 + x)2 1

log e 2 + 4

x

0

–1

x

–4 –2 0

–9 2

1

Exercise 12G

321 square units 4 10 y 5

1a

1 sin 3x 3

c sin 3x 1



0

x

0

–1

3 sq. units 4 1 5 b 8 sq. units 6 a sq. units 6 6 7 a A (0, 3), B (1, 0) b 2 sq. units 8 b Derivative = (loge a)e x loge a , e x loge a antiderivative = loge a y 9 −1

1 + x 3d x =

  1 e − cos 2x − 2 3 1 1 g sin 4x + cos 4x 4 4  1  i − sin 2x + 4 3 1 1 b 2a1− √ 2 2 2 e1 f √ 3 1− 3 j −2 i √ 4 3 − 2 + 2 square units y 4a 1

7 y=3 0

3 0

x 1

Area = 2e2 + 1 ≈ 15.78 square units



 4 0

π 4

π 2

x

1 cos x d x = √ 2

1 b −2 cos x 2 1 d −4 cos x 2 1 1 f sin 3x − cos 2x 3 2 1 1 h cos 2x + sin 3x 4 3 1 j − cos x  1 d2 c1+ √ 2 1 h4 g− 2

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

CUAT018-EVANS

November 3, 2005

20:32

Answers y

f

Answers

y

b

759

1

π π 4 3

0



 3

x

π 2

sin 2x d x =

0



3 4

− 4

√ 2 5a 2 6 y

y

c

 4

π 4

0

–π 4

x

 −1 2 √ 3 c− 3

1 − cos 2d = b−

1 3

1 d√ 2

1 3 2

π π 6 4

–π –π 0 4 6



1

x

− 6





 2

x

π 2

cos  + sin d = 2

0

y

e 2

1

0

0

 2

2 + sin 3x d x =

x

2 2 + 3 3

Exercise 12H

√2

0

 3

2π 3

0

y

d

π 3

0

√ 3 cos 2x d x = 2

 6

π 2

x

sin 2 + 1 d = 1 +

√ 5 3 2 2 d −2 c 12 b2 1a4 4 3 3 2 2 e e4 g4 f + 4 loge 2 − e 3 2 2 1 51 5 2 j i 8 loge 2 + h +1 12 4 8 2 0.5 sq. units 3 a 139.68 b 18.50 c −0.66 d −23.76 e 2.06 f 0.43 4 b 5 loge 3 + 4 5 b 5 + 6 loge 2   1 7 dy 6a = −4 1 − x Hence dx 2     1 7 1 8 1 1 − x dx = − 1− x +c 2 4 2 dy b = − tan x. dx  3 Hence tan x d x = loge 2 0

 2

1 7 f (x) = 1 − 2 cos x 2 1 8 a f (x) = sin 2x + 1 2 b f (x) = 3 loge x + 6 x

c f (x) = 2e 2 − 1

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

Answers

760

CUAT018-EVANS

November 3, 2005

20:32

Essential Mathematical Methods 3 & 4 CAS 9 sin3x + 3x cos 3x. Hence 6  1 x cos 3x d x = − 18 9 0 10 a = 1, b = −2; area = 3 square units 11 a 1.450 square units b 1.716 square units 12 0.1345 1 13 f (x) = (x 2 − cos 2x + 3) 2 14 a b



(–1, 4)

f (x) − 4 d x = (x 2 + 1)3 − 4x + c



3h(x) d x = 3 sin x 2 + c

1 , tan x cos2 x 6x 19 1 b 2 , loge 3x + 7 6 7 √ x , loge (1 + 2) c1+ √ 1 + x2

15 a

y=

2 +4 x–1

0 (0, 2)

b 20

y

y = sin x

π 3

0

π

π 2

x

y = sin 2x

1 square units 2 8 P(loge 3, 3); area ≈ 2.197 square units

x 2 3 x=1

 2 + 4 d x = (2 loge 2) + 4 x −1

y

Exercise 12J 2 2 2 c b d0   3 2 10(e5 − 1)e−5 ◦ C ≈ 9.93◦ C 3a v 1a

(5, 100)

(2, 1)

50 0

5 square units 6

7

y=4

17

1

1 c 4 square units d 4 square units 2 1 e 4 square units 2 4 a 2 square units b e + e−1 − 2 ≈ 1.086 square units 5 3.699 square units 1 6 square units 4

y

16

2

x

0

3 a 36 square units

− f (x) d x = −(x + 1)3 + c

3 

(2, 1)

1

( f (x) + h(x)) d x = (x 2 + 1)3 + sin x 2 + c

f

f(x)

Area = 9 square units 2 36 square units

2



g(x)

5

h(x) d x = sin (x 2 ) + c



e

y

1

f (x) d x = (x 2 + 1)3 + c

c d

Exercise 12I

x 2

3

3

3 √ 1 2x − 4 + 1 d x = × 2 2 + 1 3 2 5 √ 1 22 4 2 2 c loge 4 b − 18 a 3 3 3 3 √ 2 1 e −2 d loge 3 + 3 f2 2−2 3 2

t

(0, 0)

b

v

24 48 π

0

t 4

e

1 2 (e − e−2 ) 2

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

CUAT018-EVANS

November 3, 2005

20:32

761

Answers

b 18 m2 a  c i y − 3 + 3 cos 3 −1  a  (x − a) = sin 3 ii 5.409 √ 3( 2 + 2) 18 a i 9 iii 12 ii 2 b Maximum value is 12, minimum value is 0.834 48( + 1) litres c  17 a 6 metres

v (5, 1 – e –5) (4e5 + 1)e –5 t

0

a2 147 m/s 5 6 10 2 6 a 3000(2 − 20.9 ) N/m 0.1 b 1000(4 − 1) N/m2 c0 7 a x = t 2 − 3t b x = 0 3 9 e m/s d metres 2 2 2t 3 8 a Displacement = − 4t 2 + 6t + 4 3 Acceleration = 4t − 8 20 b When t = 1, displacement = m 3 When t = 3, displacement = 4 m c When t = 1, acceleration = −4 m/s2 When t = 3, acceleration = 4 m/s2 9 Initial displacement −3 m 10 Velocity = 73 m/s 646 Position = m 3 11 a Velocity = −10t + 25 b Height = −5t 2 + 25t 5 c s 2 125 d m 4 e 5s y 1 1 12 a f −1 (x) = e x y = ex 2 2 4

c 4 loge (2) −

3 2

dt 7/4 1 200 60

120

3B 8C

4B 9C

5A 10 D

3

−5a 2 65 55 b0 c 1a d− 3 4 3 1 f1 g0 h0 e 2 23 33 44 5 820 2 2 5 5 85 8 7 6 3 3 4 c 9 d f (x) − g(x)d x + g(x) − f (x)d x + c b b f (x) − g(x)d x a

13 a H dH

1/4 0

2C 7E

Short-answer questions (technology-free)

x

0 1 2

3 2

1E 6D

y = loge 2x

1 2

b

Multiple-choice questions

180 240

b t ∈ [10, 50] ∪ [130, 170] c t = 30 or t = 150 d i 120 kilojoules ii 221.48 kilojoules 2 14 71 466 m3 3 15 a 46 5 m2 b 46 500 m3 16 1.26 m

10 a P(3, 9), Q(7.5, 0) b 29.25 square units 20 bp= 11 a 5 7 12 3.45 square units 1 b 15 square units 13 a A(0, 6), B(5, 5) 6 125 c square units 6 14 a 2 square units b e + e−1 − 2 ≈ 1.086 square units y 15 a

t

y = ex + 1

(0, 2)

0 b e2 + 1 ≈ 8.39

x

Answers

c

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

Answers

762

CUAT018-EVANS

November 3, 2005

20:32

Essential Mathematical Methods 3 & 4 CAS y

16 a

c

y = e –x

y = ex

(0, 1)

–2

x

0

2

b 2 − 2e−2 17 a e − 1 ≈ 1.72 b 2(e − 1) ≈ 3.44 square units 18 2 + e2 ≈ 9.39 square units 1 19 3 square units 12 y

–1 0

20 a e2 + 1 2 +1 c 8

x

  3 2 b loge − 3 2     1 1 1 5 d loge − 8 + 10 2 6 e e

1 a When t = 0, 1000 million litres/hour. When t = 2, 896 million litres/hour. b i t = 0 and t = 15 ii 1000 million litres/hour c dV dt 1000

10 15

t

d i 5000 ii 5000 million litres flowed out in the first 10 hours. 2 a When t = 5, ≈ 17.9 penguins per year; when t = 10, ≈ 23.97 penguins per year; when t = 100, ≈ 46.15 penguins per year. b R

R(t) = 10 loge (t + 1)

0

d i 3661 ii The growth in the size of the penguin population over 100 years (assuming zero death rate). 3 a 4y − 5x = −3   3 9 c (1, 0) b ,0 e 9 : 49 d 5 40 1 5 a square units 3 n−1 2 d1− = square units n+1 n+1 9 99 999 e , , 11 101 1001 f area between curves approaches 1 6 a 968.3◦ b θ (°C)

2

Extended-response questions

0

R

t = e 10 − 1; R ≥ 0   t R −1 (t) = e 10 − 1

t

(0, 30)

0

t (min)

c 2.7 min d 64.5◦ C/min 2 4 7 a 5 × 10 m/s b Magnitude of velocity becomes very small c 5 × 104 (1 − e−20 ) m d v(1 − e−t ) e x (m) v

0

t (s)

d 8 a (e−3x sin 2x) = −3e−3x sin 2x dx + 2e−3x cos 2x c e−3x sin 2x d x −1 −3x (3e sin 2x + 2e−3x cos 2x) 13 4 3 4 9 a i tan a = ii sin a = cos a = 3 5 5 b 2 square units e dy 10 a = loge x + 1, (loge x) d x = 1 dx 1 dy = (loge x)n + n(loge x)n−1 b dx e d (loge x)3 d x = 6 − 2e 1 √ 3 11 s = ba 2 √ 3 r = b2 a =

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

CUAT018-EVANS

November 3, 2005

20:32

763

Answers

13 a i R(0) = 0

ii R(3) = 0   t 10 b R  (t) = cos 3 3   t − sin 3 c i 1.41, 4.41, 7.41, 10.41 ii (1.41, 8.65) (7.41, 4.75) local maxima (4.41, −6.41) (10.41, −3.52) local minima d t = 0 or 3 or 6 or 9 or 12 e y 

t e− 10

3

6

9

12

f i 16.47 litres iii 8.27 litres g 12.99 litres 14 a

1E 7D 13 B 19 E 25 B 31 A 37 D 43 B 49 C 55 C 61 B

2D 8A 14 E 20 D 26 A 32 C 38 A 44 B 50 A 56 D 62 B

3E 9D 15 D 21 B 27 D 33 D 39 A 45 C 51 C 57 C 63 D

4D 10 D 16 E 22 E 28 D 34 B 40 A 46 D 52 B 58 B 64 E

5B 11 A 17 B 23 B 29 A 35 A 41 B 47 B 53 E 59 D 65 B

6C 12 B 18 C 24 D 30 C 36 E 42 D 48 D 54 C 60 C 66 D

Extended-response questions 1 a 54.06 g b s 80

(10, 54.06)

50

y = R(t)

0

Chapter 13 Multiple-choice questions

t

0

t

1 ds c = −6e− 5 t dt e 0.8 g/litre 2 a 60◦ C b T

ii 12.20 litres

1 ds = − (s − 50) d dt 5 f 17 seconds

y area required in d π ,1 2

1 0 – π , –3 2 b 0

 6

20

t 0

–1

f (x) d x = 2 −

60

area required in b √  3− 6

c f −1: [−3, 1] → R, (x + 1) f −1 (x) = sin−1 2 1  2  −1 d f (x) d x = −  f (x) d x 2 0 6 5 √ = − 3 6  15 b 1 − 4

t

dT c = −14.4e−0.36t dt dT d = −0.36(T − 20) dt 3 a 1.386 minutes b 2200, 5.38% c 66.4 spores/minute d 0.9116 minutes e 1200 1000 f g 0

0.91

t (minute)

Answers

dy x x = − e 10 and dx 10 1 dy = −x(100 − x 2 )− 2 dx dy b When x = 0, = 0 for both functions dx c −e d 6.71 square units e 8.55% f (25 − 50) square units g i 10(10e − 20) ii (25 − 100e + 200) square units

12 a

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

Answers

764

CUAT018-EVANS

November 3, 2005

20:32

Essential Mathematical Methods 3 & 4 CAS 4a

60 60 b √ ≈ 9.61 km 13 a √ ≈ 9.61 km 39 39   12 m ≈ 2.7 m 14 4 − 7

V 100

15 a {x: x > 1}

0

t

b i 20e

−0.2t

V m/s2 ii 20 − 5

2

m/s

c 8.05 s 5 b 0.028 c 0.846◦ C/minute 6 a i 0.1155 ii 0.2 b 13.86 days 7 100 8 $600 9 a = ±3, b = ±2 y

b {x: 0 < x < 2}  3 c {x: x > 1}, x: 0 < x < 2

 n+1 d {x: x > 1}, x: 0 < x < n  √ 1 6 b ± 2, 2− 3 16 a (1, 1), (−1, −1)  n  √ − c ± 2n+2 n, n 2n+2

108 17 a A = 48 + 16x + x b A (m2)

y = 48 + 16x (2.6, 92.14)

–2 3

x

0

0

x = –2 3

10 a 5 × 104 m3 c −3500 m3/day e V

b −12 500 m3/day d After 222.61 days

(m3) (0, 5 × 104)

0

11 a

y

t (days)

C ($'000)

B

0

N 2 3

($)

(20, 12 000) V (km/h)

d V = 20, C = 12 000

2a 2 4 3 d2:3 c a 3 3 1 c a = 1 or a = −2 20 a −5 3 21 a i 50e−1 litres/minute ii t = 5 iii 2 minutes 18 seconds iv 3 minutes 48 seconds b 14.74 litres c 53 seconds h 2 sin  22 a S = cos2  100(1 + sin2 ) b i cos3  100(2 − cos2 ) ii S =  cos3  2 − cos2  100 v 29.1◦ × iii cos  sin  1 b

4(N 3 + 16) 4 c Rate of change of cost in $1000s with respect to the increase in the number of bottle tops produced 160 000 bC = + 10V 2 12 a $17 000 V c C

0

x

(0, – a2)

2

3N

A (a, 0)

0

(– a, 0)

(10, 5.65)

b

x (m)

6

√ √ 4 3 3 3 m, width = m c Height = 2 3 2 d 172 m 18 p = 4, number of items = 50 19 a (a, 0), (−a, 0)

e 12 560

P1: FXS/ABE

P2: FXS

052161547Xans-3.xml

CUAT018-EVANS

November 3, 2005

20:32

Answers

Exercise 14A 2 b 3

9 250 b 0.35 b 0.047

c

b

6

5 5% 7 a 0.5

Second die

1 8 0.39 9 7 24 11 0.0479 10 59 12 a 0.486 b 0.012 2 5 2 14 a 5 5 15 a 14 13 a

16 a 0.735 3 17 44

d

1 15 7 b 40

d 0.4

c 0.138 c

d

7 15

3 5 24 b 53 b

Exercise 14B 1 a Discrete b Not discrete c Discrete d Discrete 2 a Not discrete b Discrete c Not discrete d Discrete 3 a {HHH, THH, HTH, HHT, HTT, THT, TTH, TTT } b Experimental outcome Value of x HHH THH HTH HHT HTT THT TTH TTT

2 3 4 5 6 7

First die 3 4

3 4 5 6 7 8

4 5 6 7 8 9

3 2 2 2 1 1 1 0

1 c 2 4 a {(1, 1), (1, 2), (1, 3), . . . , (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

5

1 6 = 36 6 1 d Pr(Y = 3|Y < 5) = 3 1 2 3 4 5 6 5a 1 1 1 1 1 1 1 2 1 2 2 2 2 2 3 1 2 3 3 3 3 4 1 2 3 4 4 4 5 1 2 3 4 5 5 6 1 2 3 4 5 6 b 1, 2, 3, 4, 5, 6 c 0.19 6 a 0.288 b 0.064 c 0.352 d 0.182 7 a See 4a. 1 1 5 b Pr(A) = , Pr(B) = , Pr(C) = , 6 6 12 1 Pr(D) = 6 1 1 c Pr(A|B) = , Pr(A|C) = , 6 5 1 Pr(A|D) = 6 d A and B are independent. A and D are independent.

Exercise 14C 1ac 2a

b

x

1

2

3

p(x)

1 5

1 5

1 5

3 5 x

3

0

p(x) 4a

b

1

6

5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12

c Pr(Y < 5) =

200 = 0.519 385

8 15 7 c 16

b

1 2 3 4 5 6

41 500

6 7 c

b 0.385

41 125

1 2

4

5

1 5 1 c 3 2

1 5

0.36 0.48 0.16

x

0

1

2

3

p(x)

27 125

54 125

36 125

8 125

x

0

1

2

3

p(x)

5 30

15 30

9 30

1 30

Answers

b Y = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Chapter 14 1 1a 2 17 2a 500 3 a 0.65 4 a 0.067

765

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

Answers

766

CUAT018-EVANS

November 8, 2005

10:32

Essential Mathematical Methods 3 & 4 CAS 5 a See 4a of Exercise 14B. b

x

2 3

p(x)

4

5

6

Exercise 14D 7

8

9

10 11 12

1 2 3 4 5 6 5 4 3 2 1 36 36 36 36 36 36 36 36 36 36 36

c p(x)

1 a No unique mode, median = 5, E(X ) = 4.6 1 b No unique mode, median = , 2 E(X ) = 0.5 c Mode = 2, median = 2, E(X ) = 2.38 d Mode = 0.6, median = 0.6, E(X ) = 0.569

6/36 5/36 4/36 3/36 2/36 1/36

e Mode = 7, median = 7, E(X ) = 7 f No unique mode, median = 0, E(X ) = 0 2 a c = 0.35 bX =1 c2 d E(X ) = 2.3 e Var(X ) = 1.61; sd(X ) = 1.27 f 0.95

0

2 3 4 5 6 7 8 9 10 11 12 x

5 7 d e 18 10 6 a {(1, 1), (1, 2), (1, 3), . . . , (6, 4), (6, 5), (6, 6)} 0 1 2 y b 5 2 11 p(y) 18 18 18 c p(y)

1 b5 15 d E(X ) = 3.667 f 0.9333

3ak =

c4 e Var(X ) = 1.556

4 Expected profit = $3000 5 A loss of 17c 6 1.54 7 a E(X ) = 7 b Var(X ) = 5.83 8 a E(X ) = 4.11 c E(5X − 4) = 16.55

11/18

c 0.944

b E(X ) = 78.57   1 dE = 0.255 X 3

9 a Var(2X ) = 64 c Var(1 − X ) = 16

b Var(X + 2) = 16 d sd(3X ) = 12

10 a 3

5/18 2/18 0 7a

b 8a

b

1

y

2

x

0

1

2

Pr(X = x)

1 3

8 15

2 15

b 1.5 c 0.9688 1 b E(X ) = 2 c Var(X ) = 3.5 11 a p = 16 20 91 1 c b 12 a k = 9 21 21 13 a x 1 2 3 4 6 8 9 12 16 Pr(X = x)

7 15

b i x

10

20

100

14 a

Pr(X = x)

3 4

6 25

1 100

15

y

20 30 40 110 120 200 9 9 36 3 3 1 Pr(Y = y) 16 25 625 200 625 10000

1 4 b {EENE, ENEE, ENNN, NEEE, NENN, 3 NNEN}, 8 3 c 8

1 4

1 1 1 3 1 1 1 1 1 16 8 8 16 8 8 16 8 16 ii

21 4

b

25 4

7 12

x 1 2 3 4 5 67

Pr(X = x) E(X ) =

275 16 497 c 48 iii

8

9

10 11 12

1 1 1 1 1 1 1 1 1 1 1 0 6 6 6 6 6 36 36 36 36 36 36 49 12

9a

Multiple-choice questions 1A 6E

2D 7C

3B 8C

4A 9B

5D 10 D

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

CUAT018-EVANS

November 8, 2005

10:32

Answers

A

40 81 4 0.4 5 a 0.1 3a

b b1

5 9

c1 d 1.3 53 b 256 √ 29 3 d 2 p x − 2 −2

6 a 21.5 c 630.75 7a

4 x −2 5

e 2.01

1 5

4 5

Pr(P = p) b

Pr (A′ ∩ B′) = Pr (A ∪ B)′

B

c x > $2.50

47 8 a 0.47 b 70 9 21.5% 1 17 10 a b 24 24

c

5 6

d

11 18

Extended-response questions 1 a 0.1 2a

b 0.2 0.6 J

0.3

c4 J

A

0.7

0.4

J

0.6

A

0.6

A

b i 0.396 c i

J

0.4

0.4

0.6

A J

0.4

A

ii 0.604 x 2 Pr(X = x)

3

0.6 0.4

ii 2.4 d 0.46 25 3 a 0.5 b 0.05 c 0.033 d 33 4 a i 1.21 ii Var(P) = 1.6659, sd(P) = 1.2907 iii 0.94 b i t 1 0.40 0 p(t)

0.39 0.27 0.34

ii E(T ) = 0.498 ≈ 0.50

iii 1

p(b)

0.677 0.270 0.053

ii E(B) = $37.60 7 a mean = 13.5%, sd = 16.2% b 0.95 c E(G) = 6.9%, sd(G) = 9.726% 8 Yes 9 $1.00 10 a i 0.65 ii 0.2275 iii 0.079625 iv 0.042875 b Expected cost = 8.439 375 million dollars c Expected profit is 10.703 125 million dollars. 1 2 c 27 11 a (304 − 2x) bx =2 3 9 1 49 12 b x = , 2 288 8 1 4 ii iii 13 a i 81 81 81 4 56 iv v 27 81 b 4.4197 cents. (As the lowest value coin is 5c/, he can settle for that.)

Chapter 15 Exercise 15A 1 a and b 2 a 0.0595 b 0.0512 c 0.0081 3 a 0.05358 b 0.0087 c 0.0623 55 54 4 a 5 ≈ 0.0804 b 5 ≈ 0.4019 6 6 5 a 0.1156 b 0.7986 c 0.3170 6 0.6791 7 a 0.1123 b 0.5561 c 0.000 01 d 0.000 01 8 0.6836 9 0.544 10 0.624 11 0.1356 12 a 0.0138 b 0.2765 c 0.8208 d 0.3368  6 1 13 a = 0.000 24 b 0.1694 4 14 0.9744 15 0.5432 b 0.001 23 16 a (0.8)8 ≈ 0.168 c 0.002 1 17 a (0.15)10 ≈ 0.000 000 006 b 1 − (0.85)10 ≈ 0.803 1 c 0.567 4 18 0.962 19 a 0.002 455 b 0.003 37 20 a 0.011 529 b 0.002 59 c 0.0392

Answers

5 $14 6 a E(Y ) = 2.002 b Var(X ) = 2.014; sd(X ) = 1.419 b 0 100 200 c i

Short-answer questions (technology-free) 1 Yes, as Pr(A ∩ B) = 0 2

767

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

Answers

768

CUAT018-EVANS

November 8, 2005

10:32

Essential Mathematical Methods 3 & 4 CAS

Exercise 15B 1a4 2

Exercise 15C

b 10

1 a Mean = 5, variance = 4 b Mean = 6, variance = 2.4 500 1000 c Mean = , variance = 3 9 d Mean = 8, variance = 6.4 2a1 b 0.2632 3 37.5 1 4 n = 48, p = , Pr(X = 7) = 0.0339 4 3 , Pr(X = 20) = 0.0076 5 n = 100, p = 10 √ 6 Mean = 10, sd = 5 The probability of obtaining between 6 and 14 heads is 0.95. √ 7 Mean = 120, sd = 4 3 The probability that between 107 and 133 students attend a state school is 0.95.

c 16

.40 .30 .20 .10 x 1

2

3

4

5

6

7

8

9 10

Legend: ◦ p = 0.3, skewed positively × p = 0.6, ‘slightly’ skewed positively • p = 0.9, skewed negatively 3 .40

Exercise 15D

.30

1 a i (0.8)5 ≈ 0.3277 ii 0.6723 b 14 2 a i 0.1937 ii 1 − (0.9)10 ≈ 0.6513 b 12 37 47 5 10 6 42 7 86

.20 .10 x 1

2

3

4

5

6

7

8

9 10

Multiple-choice questions Legend: ◦ p = 0.5; n = 6 × p = 0.5; n = 10 Both plots are symmetrical: ( p = 0.5; n = 6) is symmetrical about x = 3 ( p = 0.5; n = 10) is symmetrical about x = 5 4

5

1D 6B

16 81 54 2 125

7 a, b, c

c The distribution in part b is a reflection of the distribution in part a in the line X = 5. d When p = 0.5 the distribution is symmetric, when p = 0.2 it is positively skewed and when p = 0.8 negatively skewed.

3E 8C

4B 9E

5A 10 B

Short-answer questions (technology-free) 1a

6 a, b

2A 7C

b

32 81

3 0.40951

c

16 27

√ 3 5 b 5 b 4 p(1 − p)3 5 a (1 − p)4 c 1 − (1 − p)4 d p 4 e 1 − (1 − p)4 − 4 p(1 − p)3 4a2

6 120 5 p(1 − p)4 7 1 − (1 − p)5 5 8 16 32 9 625

d

65 81

P2: FXS

052161547Xans-4.xml

CUAT018-EVANS

November 8, 2005

10:32

Answers

1 a 0.0173 2

b 0.2131

p

Probability that a batch is accepted

0 0.01 0.02 0.05 0.1 0.2 0.5 1

1 0.9044 0.8171 0.5987 0.3487 0.1074 0.00098 0

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.1 0.2

p

1

0.5

3 a 0.0582 b Mean = 0.4, sd = 0.6197,  ± 2 = 0.4 ± 1.2394 c Yes 4 0.0327 5 a i 0.0819 ii 0.9011 b i 15 p 2 (1 − p)4 dP = 30 p(1 − p)3 (1 − 3 p) dp 1 b n = 6, p = 6a2 3 c No. in group wearing glasses 0 1 2 3 4 ii

5

6

Theoretical 17.56 52.68 65.84 43.90 16.46 3.29 0.27 frequencies 7 a 0.9139 8 a 0.0735 1 9 ≤q≤1 3

     Pr(L i ) 0.35 0.1 Pr(L i+1 ) × = b 0.8 0.65 0.9 Pr(Ti+1 ) Pr(Ti ) 5 a 0.214 b 0.096 i      0.57 0.47 Pr(A1 ) Pr(Ai+1 ) = × c 0.43 0.53 Pr(E i+1 ) Pr(E 1 ) i 0.536 ii 0.5236 6 a 0.007    b 0.398 i   Pr(Ri+1 ) 0.43 0.16 Pr(R1 ) c = × 0.57 0.84 Pr(Fi+1 ) Pr(F1 ) i 0.781 ii 0.219 

4a

Exercise 16B

y

b 0.04145 b 0.5015

c 10.702 c 27

Exercise 16A 1 a 0.36 b 0.26   0.65 0.44 2a b 0.5492 0.35 0.56       Pr(Wi ) Pr(Wi+1 ) 0.7 0.4 × = 3a 0.3 0.6 Pr(L i+1 ) Pr(L i ) b 0.517

769

    67.7 59 1a i ii 32.3 41   0.7150 0.7126 b 0.2850 0.2875     70.31 67.7 c i ii 29.69 32.3     194.8 204.568 2a i ii 185.2 175.432   0.6223 0.5396 b 0.3777 0.4604     211.015 204.568 c i ii 168.985 175.432     0.2 714 0.23 3a i ii 0.7 286 0.77     0.3038 0.41 b i ii 0.6962 0.59 ⎡ 17 ⎤ ⎡2⎤

 iii

70.31 29.69



 71.4195 28.5805   211.015 iii 168.985 

iii

  218.078 161.922   0.280 435 iii 0.715 965   0.280 624 iii 0.719 376 iii

⎢ ⎥ ⎢ ⎥ ii ⎣ 36 ⎦ iii 4 a i ⎣3 1⎦ 19 36 ⎤ ⎡ 107 ⎡ 33 ⎤ ⎥ ⎢ ⎢ ⎥ b i ⎣8⎦ ii ⎣ 192 ⎦ iii 85 5 ⎡ 192 ⎤ ⎡8 ⎤ 0.636 0.28 5 a i ⎣0.04⎦ ii ⎣0.1596⎦ iii 0.2044 0.68 ⎤ ⎤ ⎡ ⎡ 0.4024 0.34 b i ⎣0.48⎦ ii ⎣0.2782⎦ iii 0.3194 0.18 ⎤ ⎤ ⎡ ⎡ 0.2966 0.80 c i ⎣0.19⎦ ii ⎣0.1251⎦ iii 0.5783 0.01   0.85 0.2 6a 0.15 0.8 b 186 179 at Surfside   at Bayside, 0.6 0.3 b 57 200 7a 0.4 0.7   0.92 0.88 b 91.7% 8a 0.08 0.12

  0.5162 0.4838   0.5160 0.4840 ⎤ 0.4718 ⎣0.1664⎦ 0.3618 ⎤ ⎡ 0.4761 ⎣0.1673⎦ 0.3566 ⎤ ⎡ 0.4808 ⎣0.1679⎦ 0.3513 ⎡

Answers

Extended-response questions

Probability that a batch is accepted

P1: FXS/ABE

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

Answers

770

CUAT018-EVANS

November 8, 2005

10:32

Essential Mathematical Methods 3 & 4 CAS  0.91 0.13 0.09 0.87 b 53.6% at school A, 46.4% at school B   0.5 0.28 10 a 0.5 0.72 b i 0.359 ii 0.359 0.2 0.7 11 a 0.8 0.3 b i 0.6 ii 0.475 12 a 2000 young, 18 000 middle-aged b 6500 young, 3420 middle-aged, 10 080 old ⎤ ⎡ ⎤ ⎡ 60 0.80 0.40 0.35 13 a ⎣ 0.15 0.30 0.30 ⎦ b ⎣25⎦ 15 0.05 0.30 0.35 ⎡ ⎤ ⎤ ⎡ 63.3 65.4 c ⎣21.0⎦ d ⎣20.2⎦ 14.4 15.8 14 a 0.279 b 0.285 

9a

Exercise 16C 1a

 0.6 0.4



0.5 0.5

b Game (n) Pr(X n = 1|X 0 = 0) Pr(X n = 1|X 0 = 1) 1 0.4 0.5 2 0.44 0.45 3 0.444 0.445 4 0.4444 0.4445 5 0.4444 0.4445 6 0.4444 0.4444 4 5 d , c 0.4444, 0.5556 9 9   0.85 0.95 2a 0.15 0.05 b Day (n) Pr (X n = 0|X 0 = 0) Pr(X n = 0|X 0 = 1) 1 0.85 0.95 2 0.865 0.855 3 0.8635 0.8645 4 0.8637 0.8636 5 0.8636 0.8636 6 0.8636 0.8636 c 0.8636, 0.1364

d

19 3 , 22 22

3 64.3%, 35.7%   0.74 0.14 4a 0.26 0.86 b 338 at store A, 451 at store B c 276 at store A, 513 at store ⎡ 200B ⎤   18.1818 ⎢ ⎥ 5a b ⎣ 11 ⎦ 31.8182 350 11

   0.4167 5 b 0.5833 12 ⎤ ⎤ ⎡ ⎡ 0.2743 0.2743 b ⎣ 0.3521 ⎦ 7 a ⎣ 0.3521 ⎦ 0.3735 0.3735 ⎤ ⎡ 0.2743 c ⎣ 0.3521 ⎦ d All the same 0.3735   0.70 0.25 8a 0.30 0.75 b 105 in Melbourne, 125 in Ballarat 9 80% sad, 20% happy 10 5405 young, 4865 middle-aged, 9730 old 11 28.4% cool, 22.3% mild, 21.6% warm, 27.6% hot 

6a

Exercise 16D 1 a 0.0034 3 a 0.0864 4 a 0.1029 c 0.0189 5 a 0.0625 6 a 0.0655 7 a 0.0696 8 a 0.0226

2 0.0154 b 0.0384 b 0.0353 d 0.0005 b 0.0366 b 0.0439 b 0.0700 b 0.0656

Multiple-choice questions 1C 6C

2A 7E

3C 8B

4B 9D

5B 10 D

Short-answer questions (technology-free)     0.2 0.8

1a

b

0.34 0.66

    0.64 0.1 b 2a 0.36 0.3 ⎡4 2⎤ ⎢ ⎥ 3⎣7 5⎦ 4 0.34 5 0.36 3 3 7 5 6 59.3% club A, 40.7% club B 7 0.1029

Extended-response questions 1a

20 81

c i

1 9 7 ii 18

b 5 12

d

3 5

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

CUAT018-EVANS

November 8, 2005

10:32

Answers

0.1

−10

x

0

−5

Exercise 17A

10

5

b 0.190 11 a k = 1000 2 12 a 3 13 a 0.202 14 a 0.45 y 15 a

Chapter 17 11 2− 6 3 a, c

y

10 a

Answers

 0.84 0.23 b 356 bus, 317 train 0.16 0.77 c 397 bus, 276 train d 0.0218   0.56 0.26 3a 0.44 0.74 b i 36.95% in Camberwell, 63.05% in Hawthorn ii 37.14% in Camberwell, 62.86% in Hawthorn 

2a

771

b 0.5 17 b 30 b 0.449 b 0.711

1 y

x

0

2.5 2

1

1

iii e− 2

b i 1 − e− 2 ii e−1 f (x) 16 a

1.5 1

2a

0.5 x 0.5

1

–2

5 b Pr(X < 0.5) = 16 4a1 b 0.865 y 5a

ba=

–1

x

0

1

2

1 4

0.4

Exercise 17B

0.2

1 1 a F(x) = x if 0 < x ≤ 5 and 0 if x ≤ 0 and 5 x >5 3 b 5 2 2 a F(x) = 1 − e−x if x ≥ 0 and 0 if x < 0

x 1 2 3 4 5 6 7 8 9 10 11

b 0.259 6 b i 0.024 7 a 0.005 y 8a

ii 0.155 b 0.007

y

k

x

0

bk=1 9a y

b e−4

x

0

–1

1

c

3ak =

3 4

b 0.406

3 2

0

x 0.2 0.4 0.6 0.8

1

c 0.0182 1 48

b

Exercise 17C 1 1 2 c d Does not exist b 2 3 3 2a1 b 2.097 c 1.132 d 0.4444 3 a 0.567 b 0.458

1a

1

1 36

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

Answers

772

CUAT018-EVANS

November 8, 2005

10:32

Essential Mathematical Methods 3 & 4 CAS 2 ,B=3 9 6a2 b 1.858 7a1 b 0.5 8 a 0.632 b 0.233 c 0.693 9 0.1294 10 2.773 minutes 2 11 a f (x) = 12x 2 (1 − x), 0 ≤ x ≤ 1 b 3  12 2 13 a 1 b1 c1 14 a 0.714 b 0.736 15 a 12 b 12 √ 19 − 1 b 16 a 0.4 c1 6 (−kx + 1) 17 a ke−kx , e−kx k y c i,ii,iii 5A=

40

2

bk =

1 9

d 4.5

Exercise 17E 1 1300 2 a 0.708, 0.048 b $98.94, $0.33 3 a 0, 5.4 b 3, 0.6 x2 c g(x) = if −3 ≤ x ≤ 3 and 0 otherwise 18 4 a 7.5, 8.5 b (1.669, 13.331) 5 35, 10

Multiple-choice questions 1B 6B

2D 7C

3D 8E

4A 9A

5E 10 A

Short-answer questions (technology-free)

1.5 1 0.5 x

0

1

2

3

d The graph of e−x is dilated by a factor of from the x-axis and  from the y-axis.

1 

1a2 b 0.21 1 2 a = ,b = 2 3  3 mean = median = mode = 2 1 1 b 4a 2 2 y 5a

c

1 2

2 , 16 3 9

Exercise 17D 1 a 0.630

c 0.44

b 0.909

c 0.279 √ 2 1 , sd(X ) = b Var(X ) = 18 6

2 a 0.366

y

3a

b 1.386

x

0

1 loge 9 5 a 0.366 6 0.641 7 a 0.732

b E(X ) = 3.641 Var(X ) = 4.948 b E(X ) = 0.333 Var(X ) = 0.056 4 2 b E(X ) = Var(X ) = 3 9 16 b c 2.21 3√ b2 5

8 a 0.0004 3 9a 3 4a y 10 a

1 2

1

x

5 16   2 2 16 6 a k = 12 b x = c Pr X < = 3 3 27   1 2 3 d Pr X < |X < = 3 3 16 2 − 1 e b 7 a 1 − e−2 e23 1 1 b e4 − e4 8 a e2 1 c f (x) = , 1 < x < e x 9 (320, 340) 10 (246, 254) b Pr(X < 0.5) =

0.5

4a

0

Extended-response questions

3k

−2 81 1 2a 4 1a

x 1

2

3

4

5

6

x 2 − 200x + 10 000 b 700 hours c 810 000 √ 5− 5 1 8 b c , 5 3 15

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

CUAT018-EVANS

November 8, 2005

10:32

Answers

5 c 32 2 2 d b 3 3 2 b E(X ) = 2, Var(X ) = √ 3 4 5 d 5

7 a 25 1 8ak = 4 3 c 4

f (x)

–6 –5 –4 –3 –2 –1 0

x

7 a  = 0,  = 3 f (x) b

–9 –8 –7 – 6 –5 – 4 –3 –2 –1 0

1 2 3 4 5 6 7 8 9

x

Chapter 18 Exercise 18A 1c 2

μ1

3a1

μ2





1 − 1 b i E(X ) = x √ e 2 −∞ 3 2 ii 2

c i E(X 2 ) =





x−2 3

1 − 1 x2 √ e 2 3 2 −∞ iii 3



ii 13 4a1  2 ∞ 1 x+4 − 1 2 5 b i x √ e dx −∞ 5 2 ii −4  2 ∞ 1 x+4 − 1 2 2 5 c i x √ e dx 5 2 −∞ ii 41 iii 5 5 a  = 3,  = 10 b

f (x)

–30 –20 –10 0

x 10 20 30 40

6 a  = −3,  = 1

2

x−2 3

dx

2

dx

8 a Translation of 3 units in the positive direction of the x-axis; dilation of factor 2 from the y-axis; dilation of factor 12 from the x-axis b Translation of 3 units in the positive direction of the x-axis; dilation of factor 12 from the y-axis; dilation of factor 2 from the x-axis c Translation of 3 units in the negative direction of the x-axis; dilation of factor 2 from the y-axis; dilation of factor 12 from the x-axis 9 a Translation of 3 units in the negative direction of the x-axis; dilation of factor 13 from the y-axis; dilation of factor 3 from the x-axis b Translation of 3 units in the negative direction of the x-axis; dilation of factor 2 from the y-axis; dilation of factor 12 from the x-axis c Translation of 3 units in the positive direction of the x-axis; dilation of factor 12 from the y-axis; dilation of factor 2 from the x-axis

Exercise 18B 1 Mean = 135, sd = 5 4 2 Mean = 10, sd = 3 3 16% 4 a 68% b 16% c 0.15% 5 21.1 and 33.5 6 68% of the values lie within one standard deviation of the mean; 95% of the values lie within two standard deviations of the mean; 99.7% of the values lie within three standard deviations of the mean. 7 2.5% 8 a 16% b 16% 9 a 68% b 16% c 2.5% 10 a 95% b 16% c 50% d 99.7%

Answers

b

10 3 b E(X ) = 6, Var(X ) = 4.736 7 b $22.13 4a 25 8 5c= ,4 3 6 b E(X ) = 2, Var(X ) = 0.2 3 a Median = 6, IQR =

773

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

Answers

774

CUAT018-EVANS

November 8, 2005

10:32

Essential Mathematical Methods 3 & 4 CAS 5 b− c 1.5 4 12 a −1.4 b 1.1 c 3.5 13 Michael 1.4, Cheryl 1.5; Cheryl 14 Biology 1.73, History 0.90; Biology 15 a Mary: French 1, English 0.875, Mathematics 0 Steve: French −0.5, English −1, Mathematics 1.25 Sue: French 0, English 0.7, Mathematics −0.2 b i Mary ii Mary iii Steve c Mary

11 a 0

Exercise 18C 1 a 0.9772 b 0.9938 c 0.9938 d 0.9943 e 0.0228 f 0.0668 g 0.3669 h 0.1562 2 a 0.9772 b 0.6915 c 0.9938 d 0.9003 e 0.0228 f 0.0099 g 0.0359 h 0.1711 3 a 0.6827 b 0.9545 c 0.9973 4 a 0.0214 b 0.9270 c 0.0441 d 0.1311 5 c = 1.2816 6 c = 0.6745 7 c = 1.96 8 −1.6449 9 −0.8416 10 −1.2816 11 −1.9600 12 a 0.9522 b 0.7977 c 0.0478 d 0.1547 13 a 0.9452 b 0.2119 c 0.9452 d 0.1571 14 a 9.2897 b 8.5631 15 a c = 10 b k = 15.88 16 a 0.7161 b 0.0966 c 0.5204 d c = 33.5143 e k = 13.02913 f c1 = 8.28; c2 = 35.72 17 a 0.9772 b 0.9772 c 10.822 d 9.5792 e c2 = 10.98; c1 = 9.02

Exercise 18D 1 a i 0.2525 ii 0.0478 iii 0.0901 b 124.7 2 a i 0.7340 ii 0.8944 iii 0.5530 b 170.25 cm c 153.267 3 a i 0.0766 ii 0.9998 iii 0.153 b 57.3 4 a 10.56% b 78.51% 5 mean = 1.55 kg; sd = 0.194 kg 6 a 36.9% b 69 7 a 0.0228 b 0.0005 c 0.0206 8 1004 ml 9 a small 0.1587 medium 0.7745 large 0.0668 b $348.92

10 a i 0.1169 ii 17.7 b 0.0284 34 b 11 a 0.0228, 0.1587 3

Multiple-choice questions 1A 6E

2C 7D

3B 8C

4B 9A

5E 10 D

Short-answer questions (technology-free) 1 a 1 − p b 1 − p c 2p − 1 2 a a = −1 b b = −1 c 0.5   x −8 3 (x, y) → , 3y 3 q 1− p 4a b1−q c p 1−q





 5 a Pr Z < 12 b Pr Z < − 12 c Pr Z > 12  

e Pr − 12 < Z < 1 d Pr − 12 < Z < 12 d 0.68 c 0.16 b 0.5 6 a 0.84 d 0.02 c 0.32 b 0.34 7 a 0.16 d 0.68 c 0.15 b 0.19 8 a 0.69 9 Best C, worst B

Extended-response questions → high 1 > 63 [56, 62] → moderate [45, 55] → average [37, 44] → little < 37 → low 2 3.92 3 a i 0.1587 ii 0.9747 iii b 53 592 c 3.7 × 10−11 4 a 3.17 × 10−5 b False c c1 = 13.53, c2 = 16.47 5 0.0802 6 0.92% 7 a 0.9044 b 5.88 d 0.2651 e $17.61 8 a  = 0,  = 2.658 9 a  = 60.058;  = 0.2 10 a 0.1056 b 0.0803

0.0164

c 9.044 b 0.882 b 10% c 0.5944

Chapter 19 Multiple-choice questions 1E 6D 11 B 16 E 21 A 26 C 31 D 36 E 41 B

2D 7D 12 D 17 A 22 D 27 E 32 C 37 C

3A 8C 13 C 18 A 23 C 28 B 33 E 38 A

4B 9E 14 B 19 D 24 A 29 B 34 A 39 B

5E 10 C 15 E 20 B 25 D 30 C 35 B 40 B

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

CUAT018-EVANS

November 8, 2005

10:32

Answers

9 16 3 a 0.27 c i 0.6 d 0.4995 

2 $0.76

1b

4a P =

b 0.3025 ii 0.27 0.75x − 0.5s, 0.5s − 0.25x,

b $5.95 c E(P) =

s 

x ≤s x >s

(0.75x − 0.5s) p(x)

x = 24

+

30 

(0.5s − 0.25x) p(x)

x=s+1

d 27

1 1 ii 36 6 41 4 ii b i 100 25 121 c 600 ⎡3 1⎤ 11 ⎥ ⎢ i 7 a ⎣4 2⎦ 1 1 16 4 2 1 b 3   0.85 0.06 8a 0.15 0.94

iii

6a i

1 6

20 120 b E(X ) = 49 49 6180 c Var(X ) = 2401 3 18 a i 0.2 ii 0.7 iii 0.125 iv 160 128 ii b i 0.360 15 625 c 0.163 08 19 a i 0.0105 ii 0.0455 1149 b 0.4396 c 1909 20 a i  = 4.25 ii  = 0.9421 iii 0.94 iv 0.9 b i Binomial ii 18 iii 1.342 iv 0.3917 17 a C =

Chapter 20 

1a i



1 , 8 2

ii Minimum

x (60 − 5x) 12 iii Maximum area is 15 cm2 . 2 a p = 1, q = 3, k = 2 b i m = −2 ii y = −2x 3 + 10x 2 − 14x + 6 y iii b ii A =

ii

85 128

6 4 2

b i 51% Dr Laslett, 49% Dr Kildare

7 , 64 3 27 x

0

c Yes, Dr Laslett during the 9th year 9 a 0.6915 b 0.1365 10 a 0.0436 b 0.2667 c 183 d 59 271 11 a i 0.1587 ii 511.63 b 0.1809 12 a −1 b 28.847 c 0.5276 1 13 a i ii X : 0.6915, Y : 0.5625 8 iii E(X ) = 10, E(Y ) = 10.67, machine 1 3 b 4 16 1 ii iii 0.8281 iv 0.7677 14 a i 3 2500 b 0.9971 15 a i Pr(X > 80) = 0.98 –

Pr(X > – 104) = 0.04 80

104

ii  = 92.956,  = 6.3084 b i 16.73% of sensors ii 81◦ C 16 a 0.1056 b Machine should be set at 1027.92.

3a

1 2 3 (1, 0) Local minimum at (1, 0) 7 64 Local maximum at , 3 27

y a , a2 2 4

0

a

x

a3 square units 6 a3 2a 2 2a 2 c i y= iii square units ,y = 162 9 9 3 1 4ay=− x+ 2 2 dy b i = cos  − 2 sin  d   1 ii  = tan−1 = 26.57◦ 2 iii (26.57, 2.2361), exact values     √ 1 , 5 tan−1 2 b

Answers

Extended-response questions

775

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

Answers

776

CUAT018-EVANS

November 8, 2005

10:32

Essential Mathematical Methods 3 & 4 CAS iv r = v



5,  = 63.435◦ y

iii

y

1 2

√5, Tan–1

y = f (–x) y = f (x)

y = sin θ + 2 cos θ

2 y = 2cos θ

0 –2

(90, 1)

1

2

–1 A reflection in the y-axis

θ

90

0

x 1

–1

iv

y = sin θ

y

c i Q (2 sin , 2 cos ) iii  = 74.4346◦

y = f (x)

1

t

5 a i f (t) = −100e− 10 (t 2 − 30t + 144)

x

0

t 10e− 10 (t 2

− 50t + 444) ii f

(t) = b i t ∈ (6, 24)√ √ ii t ∈ (25 − 181, 25 + 181) ≈ (11.546, 35) iii t ∈ (11.546, 24) 6 a i A = x 2 − 5x + 50 ii (0, 10) A iii

1

2 y = –f (x)

–1

A reflection in the x-axis y

v

y = f (x+ 2) y = f (x) 0

x

–2

(10, 100)

1

(0, 50)

2

A translation of 2 to the left

b f does not have an inverse function as it is not one-to-one. y c

(2.5, 43.75) x

0

y=x

iv Minimum area = 43.75 cm2 1 b i f (x) = (10 − x)x 2 ii y

y = g–1(x) 2 y = g(x) 0

x

2

5 , 25 2 f (x) =

0

1 (10 – x)x 2

x

10

c AYX : OXYZ : ABY : CBYZ = 1 : 2 : 2 : 3 y 7a i y = f(x) 0

x 1

2

d i Gradient = 15 1 ii Gradient = 15 8 a i 0.995 ii x = 0.2 1 b i h(x) = (x − )2 − 1 2 ≈ −0.989 98 9 a S = (60x − 6x 2 ) cx =5 d

–1

ii

S

y = 2f(x)

–2

b 0 < x < 10

(5, 150)

A dilation of factor 2 from the x-axis y

0

y = f(2x)

y = f(x) x 0 –1

1

2

A dilation of factor 1 2 from the y-axis

5

10

1 sin  1 − cos  ii BQ = sin 

10 a i OP =

x

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

CUAT018-EVANS

November 8, 2005

10:32

Answers

6

19 b i h = c i

3 y = 2πa r

y = 400 cosθ

c

 6

, 200

 6

ii Coordinates of local minimum 2   √  √ 2 5 3 3 0.6 a, a 2 √ 0.6 + 3 0.6 3

√  + 3

T

20 a 0.0023 b

π, a π + √3 6 6 2a

r

0 θ

π 2

Maximum at

Q s − 1 −1

π, πa 2 2

3 4

Pr(Q = q) θ

0

a . Minimum value for T is 2 12 a iii x = 1 or x = k − 2 b i b = 3 − 2a; c = a − 2 ii h = a − 2 iii a = 0, b = 3, c = −2 iv a = −1, b = 5, c = −3 1 13 a Z = (7t − 2t 2 ) 2 7 , 49 b Z 4 16

7 2

c Maximum value of Z = 4 3 ii 15 8 8 27 ii b i 125 125 b 15 a k = 2 a b b x+ b i y= 2a 2 d S1 : S2 = 27 : 37

(37.3333, 289.0798)

40, 284 4 9

1, 11 18

x

ii The maximum value of P is 289.0798 tonnes. x (56 − x) cA= 90 A i

t

28, 8 32 45

7 49 , when t = 16 4

14 a i

16 a i 0.9332

1 4 √

3 3 s c E(Q) = s − 1 sd(Q) = 4 4 21 a 0.091 21 b 0.2611 c 0.275 dP 1 22 a = (112x − 3x 2 ) dx 90 P b i

0

Z = 1 (7t – 2t2) 2

0



3 2 y = π 2a + 5r r 3

π, 100π 2

y = 200θ

5r 2 2a 3 + r 3

2 y = 5πr 3

y = 200(θ + 2 cos θ)

0

ii S = 

y

6

400



3a 3 − 2r 3 3r 2

1, 11 18

38 iii 125  ii

−a b , 2 4

40, 7 1 9 x

0



32 ii Amax . = 8 tonnes/man, x = 28 45 y 23 a i

ii 0.0668 iii 0.1151 iv 0.1151

b i 33.3% ii 866.4 iii 199.4 √ 17 90 − 8 3 metres from A towards E 18 a i y =−e−n x+ e−n n + e−n 1 1 b i n 1− e e

(0, 2)

y = 2(x – 1)2

ii x = n + 1 ii e : e − 2

0

x (1, 0)

Answers

√ 3 d Minimum value of S = 2 √ 2 3−3 AP = units 3 11 b y π, 200 π + √3

777

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

Answers

778

CUAT018-EVANS

November 8, 2005

10:32

Essential Mathematical Methods 3 & 4 CAS ii

7 d 2 e

y

2

y

y = –16x + 2

3 +2 (x + 1)2

y= (0, 5)

y=2

0

x

1 8

iii

y

–1

(0, 2) x (–7 + 5√2, 0)

(–7 – 5√2, 0)



 2 − 3k −(2 − 3k)2 + 2(k + 2) , k+2 k+2     2 2 i k: −2 < k < ii 3 3   14 ∪ {k: k < −2} iii k: 0 < k < 9   14 iv {k: −2 < k < 0} ∪ k: k > 9 c k < −2 14 14 ii 0 < k < d i k = 0 or k = 9 9 24 a x = 2 − loge 2 dy b i = −2e2−2x + 2e−x dx   1 iii 2, − 2 ii x = 2 e y iv b

(0, e2 – 2)

c i 1250 square units 14 375 ii square units 18 36 875 square units iii 18  27 c  = 6 d A π , 12√3 6

16

0

y=



θ

T = 21 + 79e–0.02t

2e–x x

0

T = 21

2, – 1 e2

  1 c − 2,0 e 25 a

d Average rate of change = −1.6◦ C/minute. e i 2.0479◦ C/minute ii −0.8826◦ C/minute 3 bb=4 30 a 16A c

(0, ba2 + c) (0, ba2)

y = b(x + a)2

(0, 1)

y = x2

(–a, c) y = (x + a)2 –a

t

0

y

y = b(x + a)2 + c

c

π 2

√ The maximum value of A is 12 3. 28 a  = 5.0290,  = 0.0909 b $409.28 1 79 loge ≈ 0.02, A = 79 29 a k = 10 63 b Approx 2 : 44 p.m. T c (0, 100)

e2–2x

1

26 a i y = 50 ii y = x − 25 25 1 c=− ba=− 15 3

(–7, 100) y = –2x2 – 28x + 2

0

0

y= 1 x2 x

0

x

A dilation of factor 3 from the x-axis A translation of 1 unit in the negative direction of the x-axis A translation of 2 units in the positive direction of the y-axis

0

1

p

d i 0.076 ii 0.657 e i A ( p) = −20 p(1 − p)3

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

CUAT018-EVANS

November 8, 2005

10:32

Answers ii

A'

0

1

y

P

Answers

ii

(50, 11.5)

11.5

(37.5, 4) x

0

1 , – 135 4 64

1 4 iv Most rapid rate of change of probabilities 1 is occurring when p = . 4 31 a 91.125 cm b [0, 15] c V = 0.64 (4.5 − 0.3t)3 d h is a one-to-one function. 1 10t 3 h −1 (t) = 15 − 3 dom of h −1 = [0, 91.125] y e iii p =

b (2.704, 10), (22.296, 10) y c (62.5, 30)

(0, 15)

(125, 15)

0

(250, 15)

x

(187.5, 0)

   (x − 10) d i h(x) = 15 + 15 sin 125 ii y

(0, 91.125) (72.5, 30) y = h(t)

(0, 15)

(260, 15) y = h–1(t)

0

(15, 0)

(10, 15) t

(91.125, 0)

32 a 0.065 36 b i 0.6595 c i 23.3% 33 a i 0.32 b 0.64 c i 0.043 95 34 a, b y

0

ii 0.198 14 ii c = 0.1075 ii 0.18 iii 0.5 ii 0.999

iii

y = ex + 1 x y = ex

y= 1 x x

0

1 x c y = +e x 1 dy = − 2 + ex dx x d ii 2 loge x < 0, ∴ x ∈ (0, 1) y iii y = 2 loge x

7 128

x

(197.5, 0)

36 a k = 4

√ √ 13 10 − 2 2 ii b i E(X ) = iii 6 4 12 c 0.1857 2 37 a k = 2 a a a2 b E(X ) = , Var(X ) = 18 √3 √ 6−4 2 c d a = 1000( 2 + 2) 9 1 cy= x − loge 10 38 a 7 10 d ii 36.852 n+1 39 a k = n + 1 b E(X ) = n+2 n+1 c (n + 2)2 (n +3) n+1 1 d Median = e Mode = 1 2 √ dy x 40 a b(0, 2 6) = √ dx x 2 + 24 c Even d y

10 0

x (0.7, –0.7)

y=–x

y=x

2√6 x

y = –x

y = – 5x + 10

iv (0.7, 3.4) 35 a i e = 12.5, g = 15, d = 37.5, a = 7.5, b = 7.5

e y = −5x + 10

779

f 14 units/second

P1: FXS/ABE

P2: FXS

052161547Xans-4.xml

Answers

780

CUAT018-EVANS

November 8, 2005

10:32

Essential Mathematical Methods 3 & 4 CAS √ √ 35 h 12 loge ( 7 − 1) − 2 7 + √ 2 3 x 3x b V = a r = 41 9 3 60 dx 1 2 dV = d = x c dt x 2 dx 3 1 8 1 53 23 3 180t 3 f ex = 3  42 a i 0 ii −0.6745 iii 0.6745 iv 1.3490 v 99.3% vi 0.7% b i  ii  − 0.6745 iii  + 0.6745 iv 1.3490 v 0.9930 vi 0.7%

Appendix A

d

n+1 

i4

i=1

3a b

n  i=1 5 

i=0

d

4 

x i · 25−i = 32 + 16x + 8x 2 + 4x 3 + 2x 4 + x 5 x i × 2i × 36−i = 36 + 2 × 35 × x + 22 × 34 × x 2 + 23 × 33 × x 3 + 24 × 32 × x 4 + 25 × 3 × x 5 + 26 × x 6 (x − xi )i = (x − x1 ) + (x − x2 )2

i=0

Exercise A1 1 63 4 a 5040 5 a 120 6 18 7 a 5 852 925 8 100 386 9 a 792 10 a 200 d 462

2 26 b 210 b 120

3 336

c

b

4  i=1 5 

c

i 3 = 1 + 8 + 27 + 64 = 100 k 3 = 1 + 8 + 27 + 64 + 125 = 225 (−1)i i = −1 + 2 − 3 + 4 − 5 = −3

i=1

(k − 1)2 = 0 + 1 + 4 + 9 = 14

k=1

4 1 1 (i − 2)2 = (1 + 0 + 1 + 4) = 2 3 i=1 3 6  h i 2 = 1 + 4 + 9 + 16 + 25 + 36 = 91

g

i=1

2a

n  i=1

i

x 2−i . 22−i

d

(2x)3−i . 3i

i=0

c6

i=1

f

i=0

3 

Exercise A3

b 336 b 75 e 81

5 1 1 i = (1 + 2 + 3 + 4 + 5) = 3 d 5 i=1 5 6  i = 1 + 2 + 3 + 4 + 5 + 6 = 21 e 4 

x 5−i . 3i

+ (x − x3 )3 + (x − x4 )4 5  b x 5−i . (−3)i

b 1 744 200

k=1

5 

i=0 2  i=0

Exercise A2 1a

4a

5 

5  1 i i=1

xi = x + x2 + x3 + · · · + xn

i=0

6 c

e

b

11  i=1

xi

c

10 1  xi 10 i=1

1 a x 6 + 36x 5 + 540x 4 + 4320x 3 + 19 440x 2 + 46 656x + 46 656 b 32x 5 + 80x 4 + 80x 3 + 40x 2 + 10x + 1 c 32x 5 − 80x 4 + 80x 3 − 40x 2 + 10x − 1 d 64x 6 + 576x 5 + 2160x 4 + 4320x 3 + 4860x 2 + 2916x + 729 e 64x 6 − 1152x 5 + 8640x 4 − 34 560x 3 + 77 760x 2 − 93 312x + 46 656 f 16x 4 − 96x 3 + 216x 2 − 216x + 81 g x 6 − 12x 5 + 60x 4 − 160x 3 + 240x 2 − 192x + 64 h x 10 + 10x 9 + 45x 8 + 120x 7 + 210x 6 + 252x 5 + 210x 4 + 120x 3 + 45x 2 + 10x + 1 2 a −960x 3 b 960x 3 c −960x 3 d 192 456x 5 e 1 732 104x 5 f −25 344b7 x 5 16 7 x 3− 4 −336 798x 6 243 5 (−x + 1)11 = −x 11 + 11x 10 − 55x 9 + 165x 8 − 330x 7 + 462x 6 − 462x 5 + 330x 4 − 165x 3 + 55x 2 − 11x + 1 6 a 40 b −160 c −80 d 181 440 e 432 f 1080 7 83 026 944 8 −768

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF