Loads on column PD.slab DL B L 136.8 kN PL.slab LL B L 72 kN PB1 25cm ( 50cm 120mm) 25
kN 3
L 14.25 kN
m PB2 20cm ( 35cm 120mm) 25
kN 3
B 4.6 kN
m
Pwall.1 Brickhollow.10 ( 3.5m 50cm) L 29.657 kN Pwall.2 Brickhollow.10 ( 3.5m 35cm) B 20.76 kN n 6
Number of floors
PD PD.slab PB1 PB2 Pwall.1 Pwall.2 1.05 n 1298.219 kN PL PL.slab n 432 kN PD PL B L n
12.015
kN 2
m
SW = ( 5% 7%) PD PL PD PL Page 71
24.968 %
Pu 1.2 PD 1.6 PL 2249.063 kN
Determination of column section ρg 0.03
Assume
k=
b
k
h
300 500
ϕ 0.65 Pu 0.80 ϕ
Ag 0.85 f'c 1 ρg fy ρg
h
Ag k
Ag 1338.529 cm
472.322 mm
2
b k h 283.393 mm
h Ceil( h 50mm) 500 mm
b Ceil( b 50mm) 300 mm
b 300 mm h 500
Ag b h 1500 cm
2
Determination of steel area Pu Ast
0.80 ϕ
0.85 f'c Ag
Ast 30.851 cm
0.85 f'c fy 6
π ( 20mm) 4
2
6
Stirrups Main bars
D 20mm
Stirrup dia.
Dv 10mm
Spacing of tie
s min 16 D 48 Dv b 300 mm
Page 72
π ( 16mm) 4
2
2
30.913 cm
2
2. Short Columns
Safety provision Pu ϕPn M u ϕMn Equilibrium in forces
X = 0
Pn = C Cs T Pn = 0.85 f'c a b A's f's As fs Equilibrium in moments
M = 0
a h h h M n = Pn e = C Cs d' T d 2 2 2 2 a h h h M n = Pn e = 0.85 f'c a b A's f's d' As fs d 2 2 2 2 Conditions of strain compatibility εs εu
=
dc c
εs = εu
dc c
fs = Es ε s = Es ε u ε's εu
=
c d' c
ε's = ε u
dc c
c d' c
f's = Es ε's = Es ε u Page 73
c d' c
Unknowns = 5 :
a As A's fs f's
Equations = 4 :
X = 0
M = 0
Case of symmetrical columns:
As = A's
Case of unsymmetrical columns:
fs = fy
2 conditions of strain compatibility
A. Interaction Diagram for Column Strength Interaction diagram is a graph of parametric function, where Abscissa :
M n ( a)
Ordinate:
Pn ( a)
B. Determination of Steel Area Given:
M u Pu b h f'c fy
Find:
As = A's
Answer:
As = AsN( a) = AsM ( a) Pu 0.85 f'c a b ϕ AsN( a) = f's fs Mu AsM( a) =
h a 0.85 f'c a b ϕ 2 2 h d' fs d 2 2
f's
f's( a) = Es ε u fs( a) = Es ε u
h
c d' c dc c
fy fy
Page 74
Example 14.2 Construction of interaction diagram for column strength. b 500mm
Concrete dimension
As 5
Steel reinforcements
h 200mm
π ( 16mm)
2
4
10.053 cm
A's As 10.053 cm
2
d' 30mm 6mm
16mm 2
2
44 mm
d h d' 156 mm f'c 25MPa
Materials
fy 390MPa
Solution Case of axially loaded column Ag b h Ast As A's ϕ 0.65
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast fy Ast 1490.536 kN Case of eccentric column
β1 0.65 max 0.85 0.05
f'c 27.6MPa
c( a)
6.9MPa
min 0.85 0.85
a β1 5
Es 2 10 MPa fs( a) min Es ε u
ε u 0.003
d t d
d c( a)
fy c( a) c ( a ) d' f's( a) min Es ε u fy c ( a ) ϕ( a)
εt εu
d t c( a) c( a)
1.45 250 ε t min 0.90 3
ϕ 0.65 max
Page 75
ϕPn ( a) minϕ( a) 0.85 f'c a b A's f's( a) As fs( a) ϕPn.max ϕMn ( a) ϕ( a) 0.85 f'c a b
a 0
h 100
h
2
a
h A's f's( a) d' As fs( a) d 2 2
h
Interaction diagram for column strength 1500
1250
1000 ϕPn( a)
750
kN 500
250
0
0
20
40
60
ϕMn( a) kN m
Example 14.3 Determination of steel area. Required strength
Pu 1152.27kN M u 42.64kN m
Concrete dimension
b 500mm
Materials
f'c 25MPa
h 200mm
fy 390MPa Concrete cover to main bars
cc 30mm 6mm
Page 76
16mm 2
h
2
Solution Location of steel re-bars d' cc 44 mm d h cc 156 mm Case of axially loaded column Ag b h ϕ 0.65 Pu 0.85 f'c Ag ϕ 0.65 0.80 ϕ 2 Ast 2.465 cm 0.85 f'c fy Case of eccentric column
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa
min 0.85 0.85
a
c( a)
β1 5
Es 2 10 MPa
ε u 0.003
fs( a) min Es ε u
d c( a)
d t d
fy
c ( a ) d' f's( a) min Es ε u fy c( a) ϕ( a)
εt εu
c( a)
d t c( a) c( a)
1.45 250 ε t min 0.90 3
ϕ 0.65 max
Graphical solution Pu AsN( a)
ϕ( a)
0.85 f'c a b
f's( a) fs( a) Mu
AsM( a)
a1 134.2mm a a1 a1
a h 0.85 f'c a b ϕ( a) 2 2 h h f's( a) d' fs( a) d 2 2
a2 134.25mm
a2 a1 50
a2
Page 77
8.735 10
4
8.73 10
4
8.725 10
4
A sN( a) A sM( a)
8.72 10
4
4
8.715 10 0.13418
0.1342
0.13422
0.13424
0.13426
a
a 134.23mm AsN( a) 8.722 cm
2
AsM( a) 8.725 cm As
2
AsN( a) AsM( a) 2
8.724 cm
2
5
Page 78
π ( 16mm) 4
2
10.053 cm
2
Analytical solution ORIGIN 1 Asteel( No)
k1 for a cc cc
h No
h
f f's( a) fs( a) ( continue ) if f = 0 Pu AsN
ϕ( a)
0.85 f'c a b f
( continue ) if AsN 0 h h fd f's( a) d' fs( a) d 2 2 ( continue ) if fd = 0 Mu
AsM
a h 0.85 f'c a b ϕ( a) 2 2 fd
( continue ) if AsM 0 a h AsN Ag k Z AsM Ag A A sM sN Ag
Determination of Depth of Pile Cap Punching shear hc bc d d Outside ( d ) X Y 2 2 2 2 Vu ( d ) Ru Outside ( d )
Vu ( 700mm) 2247.864 kN
Punching shear strength ϕ 0.75
h c d b c d 2
b 0 ( d )
f'c ϕVc( d ) ϕ 0.332 MPa b ( d) d MPa 0
ϕVc( 700mm) 3921.75 kN
Beam shears
hc Left( d ) X d 2 bc Bottom( d ) Y d 2
hc Right( d ) X d 2 bc Top( d ) Y d 2
Vu1( d ) max Ru Left( d ) Ru Right( d )
Vu2( d ) max Ru Bottom( d ) Ru Top( d )
Vu1( 700mm) 764.364 kN
Vu2( 700mm) 0 N
Beam shear strength f'c ϕVc1( d ) ϕ 0.166 MPa B d MPa
ϕVc1( 700mm) 958.65 kN
f'c ϕVc2( d ) ϕ 0.166 MPa L d MPa
ϕVc2( 700mm) 1132.95 kN
Depth of pile cap D2 Cover c D1 99 mm 2 d
d 300mm Cover
while Vu ( d ) ϕVc( d ) Vu1( d ) ϕVc1( d ) Vu2( d ) ϕVc2( d ) d d 50mm d d 651 mm
h d Cover 750 mm Page 111
Steel Reinforcements ρshrinkage
( return 0.0020) if fy 50ksi ( return 0.0018) if fy 60ksi
return max 0.0018 60ksi 0.0014 otherwise fy In long direction b B M u1
As ρshrinkage b h shrinkage 3.6 cm As0
π Dshrinkage 4
2
n
2
As As0
b sshrinkage Floor 5mm 310 mm n D1 2 L c s D 1 1 2 n1 mm mm m D 2 Table B c 2 D2 s2 2 n2 m mm mm Dshrinkage sshrinkage "N/A" "N/A" mm mm
Page 113
Dimension of pile cap
Depth of pile cap
B=
2.20
m
L=
2.60
m
h=
750
mm
Direction
Length (mm)
Dia. (mm)
NOS
Spacing (mm)
Long
2.43
16
15
145
Short
2.03
16
18
140
Top
N/A
12
N/A
310
Page 114
17. Slab Design A. Design of One-Way Slabs La
= length of short side
Lb
= length of long side
La Lb La Lb
0.5
: the slab in one-way
0.5
: the slab is two-way
Thickness of one-way slab
Simply supported
Ln 20
One end continuous
Ln 24
Both ends continuous
Ln 28
Cantilever
Ln 10
Analysis of one-way slab Design scheme: continuous beam Determination of bending moments: using ACI moment coefficients
Design of one-way slab Design section: rectangular section of 1m x h Type section: singly reinforced beam
Cracking moment y t h y c 352.443 mm Ig M cr fr 106.225 kN m yt Location of neutral axis of cracked section C=T fc x 2
b = As fs
Ec ε u x b = 2 As Es ε s ε u x b = 2 As
Es Eu
εu
dx x
2
b x = 2 As n ( d x ) 2
x = 2 ρ n 1 d
x
d
ρ
As b d
0.012
2
x 2 ρ n x 2 ρ n = 0 d d
x d ρ n
2
( ρ n ) 2 ρ n 233.616 mm
Page 155
Moment of inertia of cracked section b x
Icr
3
3
2
5
A2 ( d x ) 4.806 10 cm
4
Effective moment of inertia of cracked section M pos M D.pos M L.pos 495.91 kN m
Im min Icr
M a M pos
3 Mcr 5 4 I I I g cr g 4.877 10 cm Ma
Calculation of deflection Effective moment of inertia
5
Ie 0.70 Im 0.15 Ie1 Ie2 4.958 10 cm Initial deflection due to dead and live loads M a 495.91 kN m M 0 M neg M pos 1138.34 kN m K 1.2 0.2
M0 Ma
0.741
5 M a Ln
2
ΔD+L K 25.259 mm 48 Ec Ie Long-term deflection due to dead load ξ 2 A's A's.mid λ
ξ 1 50 ρ'
ρ'
A's b d
1.461
M D.pos ΔD λ ΔD+L 23.761 mm M pos Long-term deflection due to sustained live load Δ0.20L ΔD+L
0.20 M L.pos M pos
1.799 mm
Short-term deflection due to live load Page 156
4
Δ0.80L ΔD+L
0.80 M L.pos M pos
7.195 mm
Total deflection Δ ΔD Δ0.20L Δ0.80L 32.755 mm Permisible deflection Ln 480
Ln
19.167 mm
360
Page 157
25.556 mm
20. Development Lengths A. Development length of deformed bar in tension Diameter of deformed bar
d b 20mm
Steel yield strength
fy 390MPa
Concrete compression strength
f'c 25MPa
Depth of concrete below development length
H 350mm
Reinforcement coating
Type of concrete
Concrete cover
c 1 d b
Clear spacing of re-bars
s 2 d b
ψt
ψt 1.3
1.3 if H 300mm 1.0 otherwise
ψe
ψe 1
1.0 if Coating = "Uncoated" otherwise 1.5 if c 3d b s 6d b 1.2 otherwise
ψs
0.8 if d b 20mm
ψs 0.8
1.0 otherwise λ
λ1
1.3 if Concrete = "Lightweight" 1.0 otherwise
Ktr 0
(for a design simplification)
db s db cb 1.5d b max min c min 2.5db 30 mm 2 2
Development of tension bar in tension Page 158
cb Ktr db
1.5
Ld max
fy
ψt ψe ψs λ
f'c cb Ktr 1.107MPa MPa d b
Ld db
d b 300mm 977.055 mm
48.853
Ceil Ld 10mm 980 mm
B. Splice length in tension Splice class
Lst
1.0 Ld if Class = "Class A"
Lst 1270.172 mm
1.3 Ld otherwise
Lst db
63.509
Ceil Lst 10mm 1280 mm
C. Development length of deformed bar in compression Diameter of development bar
d b 32mm
Steel yield strength
fy 390MPa
Concrete compression strength
f'c 25MPa
Development length in compression
Ldc max
fy
f'c 4.152MPa MPa
Ldc db
d b
fy 22.983MPa
d b 200mm 601.156 mm
18.786
Ceil Ldc 10mm 610 mm
Page 159
D. Development length of standard hook in tension
Diameter of development bar
d b 10mm
Steel yield strength
fy 390MPa
Concrete compression strength
f'c 25MPa
Reinforcement coating
Type of concrete
Side cover
cside 65mm
Cover beyond hook
cbeyond 50mm
ψe
ψe 1
1.0 if Coating = "Uncoated" otherwise 1.5 if c 3d b s 6d b 1.2 otherwise
λ
λ1
1.3 if Concrete = "Lightweight" 1.0 otherwise Page 160
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.