Mathcad - Footing F-4

February 27, 2018 | Author: lnt4 | Category: N/A
Share Embed Donate


Short Description

Descripción: F-4...

Description

Calculation Sheet

8D

ISOLATED FOOTING, F-1

REFERENCE

Reference:C:\Users\Bong\Desktop\01 MathCad\Utilities.mcd(R) DESCRIPTION This section provides the design of ISOLATED FOOTING PAGE

CONTENTS

2

A.

DIMENSIONS

2

B.

MATERIAL PROPERTIES

4

C.

DESIGN LOADS

5

C.

ANALYSIS RESULTS

11

D.

FACTORED SOIL BEARING PRESSURE

13

E.

CHECK SHEAR

22

F.

REINFORCEMENT DESIGN

25

G.

SUMMARY/DETAILS

Footing F-4.xmcd

LNT - Page 1 of 41

Calculation Sheet

Customer

SATORP

Proj No

04811179 SA-JER-PI903-GCCC-070113

Project Title

JUBAIL EXPORT REFINERY (PACKAGE-8)

Calc No

Calculation Title Elec File Location

KFIP BERTH-22 MAINTENANCE BUILDING \ENG\ST\CA\References\MB\MATHCAD\

Phase/CTR

Project File Location

J:\ONSHORE\04811225

Rev

Date

By

Checked

C

Jun 11

LNT

VKJ

A.

Page

Rev

Date

By

Checked

Rev

Date

2 By

of

26 Checked

DIMENSIONS A.1

FOOTING AND PIER DATA

FOOTING DATA Footing Length, L =

5.000 m

Footing Width, B =

6.000 m

Footing Thickness, T =

0.500 m

Concrete Unit Wt., Yc =

24.000 kN/m³

Soil Depth, D =

0.800 m

Soil Unit Wt., Ys =

18.000 kN/m³

Pass. Press. Coef., Kp =

3.000

Coef. of Base Friction, µ =

0.400

Uniform Surcharge, Q =

0.000 kPa

Net Allow. SB Pressure, qs =

100 kPa

PIER DATA Number of Piers =

3 Nomenclature

Pier #1

B.

Pier #2

Pier #3

Xp (m) =

0.000

0.000

0.000

Zp (m) =

-2.000

0.000

2.000

Lpx (m) =

0.500

0.500

0.500

Lpz (m) =

0.500

0.500

0.500

h (m) =

1.000

1.000

1.000

MATERIALS PROPERTIES B.1

B.2

Footing F-4.xmcd

CONCRETE Compressive Strength

fc := 30MPa

Modulus of Elasticity

E c := 4700 ⋅

Concrete strain

εc := 0.003

Concrete Protection

cov := 75mm

Yield Strength of Steel

fy := 414MPa

fc ⋅ MPa

E c = 25743 ⋅ MPa

REBARS Modulus of Elasticity

5 E s := 2 × 10 MPa

LNT - Page 2 of 41

Calculation Sheet

BAR DESIGNATIONS, SIZES AND AREAS

Table No

0

1

2

3

4

5

6

7

8

9

10

db (mm)

0

0

8

10

12

16

20

22

25

28

32

As (mm²)

0

0

50

79

113

201

314

380

491

616

804

T No := No

T dia := d b mm

T 2 As := As mm

Example for bar at

bar := 4

No =4 bar

Bar diameter is:

dia = 12 ⋅ mm bar

Area of bar is:

As = 113 ⋅ mm bar

2

cL X-AXIS

SKETCH PLAN

cL Z-AXIS

Footing F-4.xmcd

LNT - Page 3 of 41

Calculation Sheet

C.

DESIGN LOADS

From STAAD Analysis and Design Output

ASD LOAD COMBINATIONS T NODES =

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Node_No := k

k := 0 .. Npier − 1

9 8 10

〈0〉 r := match⎛Node_No , ASD ⎞ k k ⎝ ⎠

N LC := rows( ASD_Comb)

( )

( )

FX := − ASD_Data 2 , r ⋅ kN k k

MX := ASD_Data 5 , r ⋅ kN ⋅ m k k

( )

MY := ASD_Data 6 , r ⋅ kN ⋅ m k k

( )

( )

MZ := ASD_Data 7 , r ⋅ kN ⋅ m k k

FY := ASD_Data 3 , r ⋅ kN k k

( )

FZ := ASD_Data 4 , r ⋅ kN k k

FX1 :=

k←0

FY1 :=

for i ∈ 0 .. N pier − 1

k←0

for i ∈ 0 .. N pier − 1

for j ∈ 0 .. NLC − 1

for j ∈ 0 .. NLC − 1

F ← FX k ij

F ← FY k ij

F ← FZ k ij

( )

k←k+1

( )

k←k+1

F

k←k+1

F

k←0

MY1 :=

F

k←0

MZ1 :=

k←0

for i ∈ 0 .. Npier − 1

for i ∈ 0 .. Npier − 1

for i ∈ 0 .. Npier − 1

for j ∈ 0 .. N LC − 1

for j ∈ 0 .. N LC − 1

for j ∈ 0 .. N LC − 1

F ← MX k ij

F ← MY k ij

F ← MZ k ij

( )

( )

k←k+1 F

LOAD1 :=

k←0

for j ∈ 0 .. NLC − 1

( )

MX1 :=

FZ1 :=

for i ∈ 0 .. N pier − 1

( )

k←k+1

k←k+1

F

k←0 for i ∈ 0 .. N pier − 1

F

NODE1 :=

k←0 for i ∈ 0 .. N pier − 1

for j ∈ 0 .. NLC − 1

for j ∈ 0 .. NLC − 1

(

)

F ← ASD_Comb k j

F ← Node_No if mod k , N LC = 0 k i

k←k+1

F ← " " otherwise k

F

k←k+1 F

Footing F-4.xmcd

LNT - Page 4 of 41

Calculation Sheet

ASD LOAD COMBINATIONS

SUPPORT REACTIONS NODE

LOAD

9

100 101 102 103 104 105 106 100 101 102 103 104 105 106 100 101 102 103 104 105 106

8

10

Footing F-4.xmcd

ALL UNITS ARE IN -FORCE-X 0.20 8.95 -0.22 6.58 -0.29 9.10 -0.06 -2.94 7.26 -2.32 4.14 -3.05 8.16 -1.42 -0.53 8.95 -0.37 6.43 -0.56 9.22 -0.10

FORCE-Y 441.82 406.58 386.44 420.57 405.46 235.58 215.43 799.73 640.25 647.81 719.18 724.85 352.34 359.89 574.79 472.30 499.49 539.38 559.77 274.88 302.06

FORCE-Z -2.75 -2.33 32.87 -2.12 24.28 -1.48 33.72 -5.24 -2.57 21.87 -3.75 14.58 -1.55 22.89 8.52 5.80 35.73 8.25 30.70 3.52 33.46

KN METER MOM-X -7.62 -5.24 79.41 -4.95 58.54 -3.31 81.35 -12.30 -5.53 71.80 -7.98 50.01 -3.35 73.98 16.41 11.70 85.73 16.52 72.04 7.09 81.12

MOM-Y -2.30 -0.97 -1.18 -1.18 -1.33 -0.39 -0.59 -0.35 -0.14 0.38 -0.18 0.21 -0.06 0.46 -0.82 -0.62 0.85 -0.65 0.46 -0.41 1.07

MOM-Z 0.30 28.40 -1.16 20.75 -1.42 29.01 -0.55 -4.44 28.06 -4.01 18.68 -5.37 29.49 -2.58 -1.42 28.63 -1.00 20.66 -1.57 29.41 -0.22

LNT - Page 5 of 41

Calculation Sheet

LRFD COMBINATIONS 〈0〉 r := match⎛Node_No , LRFD ⎞ k k ⎝ ⎠

N LC := rows( LRFD_Comb)

( )

( )

FXU := − LRFD_Data 2 , r ⋅ kN k k

MXU := LRFD_Data 5 , r ⋅ kN ⋅ m k k

( )

MYU := LRFD_Data 6 , r ⋅ kN ⋅ m k k

( )

( )

MZU := LRFD_Data 7 , r ⋅ kN ⋅ m k k

FYU := LRFD_Data 3 , r ⋅ kN k k

( )

FZU := LRFD_Data 4 , r ⋅ kN k k

FXU1 :=

k←0

FYU1 :=

k←0

for i ∈ 0 .. Npier − 1

for i ∈ 0 .. Npier − 1

for j ∈ 0 .. N LC − 1

for j ∈ 0 .. N LC − 1

for j ∈ 0 .. N LC − 1

F ← FXU k ij

F ← FYU k ij

F ← FZU k ij

k←k+1

k←k+1

k←k+1

)

(

F

)

( )

F

k←0

MYU1 :=

for i ∈ 0 .. N pier − 1

F

k←0

MZU1 :=

k←0

for i ∈ 0 .. Npier − 1

for i ∈ 0 .. Npier − 1

for j ∈ 0 .. NLC − 1

for j ∈ 0 .. N LC − 1

for j ∈ 0 .. N LC − 1

F ← MXU k ij

F ← MYU k ij

F ← MZU k ij

k←k+1

k←k+1

k←k+1

(

)

F

LOAD1 :=

FZU1 :=

for i ∈ 0 .. Npier − 1

(

MXU1 :=

k←0

(

)

(

F

k←0 for i ∈ 0 .. N pier − 1

)

F

NODE1 :=

k←0 for i ∈ 0 .. N pier − 1

for j ∈ 0 .. NLC − 1

for j ∈ 0 .. NLC − 1

(

)

F ← LRFD_Comb k j

F ← Node_No if mod k , N LC = 0 k i

k←k+1

F ← " " otherwise k

F

k←k+1 F

LRFD COMBINATIONS Footing F-4.xmcd

LNT - Page 6 of 41

Calculation Sheet SUPPORT REACTIONS NODE

LOAD

9

200 201 202 203 204 205 206 207 200 201 202 203 204 205 206 207 200 201 202 203 204 205 206 207

8

10

Footing F-4.xmcd

ALL UNITS ARE IN -FORCE-X -0.55 0.48 7.95 0.62 15.06 0.40 14.59 -0.07 -3.16 -3.80 3.82 -3.85 11.84 -3.49 13.20 -2.14 -0.95 -0.58 7.12 -0.33 14.74 -0.17 14.79 -0.11

FORCE-Y 598.50 535.91 519.17 503.05 493.84 461.61 351.27 319.04 1007.71 991.65 928.02 934.07 816.43 828.52 520.55 532.64 691.00 722.24 705.23 726.97 639.48 682.97 410.19 453.68

FORCE-Z -2.98 -3.55 -3.71 24.45 -3.50 52.82 -2.24 54.07 -3.55 -7.36 -7.39 12.17 -5.80 33.31 -2.34 36.77 7.96 11.36 11.46 35.40 9.84 57.74 5.30 53.19

KN METER MOM-X -6.78 -10.26 -10.58 57.14 -9.23 126.21 -5.00 130.45 -7.61 -17.50 -17.58 44.29 -13.53 110.20 -5.04 118.69 16.15 21.64 21.78 81.00 18.99 137.43 10.65 129.09

MOM-Y -2.04 -3.10 -2.71 -2.88 -1.81 -2.14 -0.53 -0.86 -0.29 -0.48 -0.43 -0.01 -0.29 0.54 -0.08 0.75 -0.75 -1.09 -1.16 0.02 -1.06 1.30 -0.62 1.74

MOM-Z -2.14 1.09 25.03 1.39 47.88 0.58 46.51 -0.78 -5.00 -5.67 19.63 -6.02 45.45 -5.86 47.39 -3.92 -2.73 -1.49 22.98 -0.73 47.13 -0.29 47.18 -0.23

LNT - Page 7 of 41

Calculation Sheet

D.

ANALYSIS RESULTS D.1

WEIGHTS AND LOADS FOUNDATION CENTROID: Xc := 0m

Yc := 0m

FOUNDATION, SOIL AND SURCHARGE: Base weight:

Wtbase := L ⋅ B ⋅ T ⋅ γc

Wtbase = 360.0 ⋅ kN

Soil weight:

Wtsoil := L ⋅ B ⋅ D ⋅ γs

Wtsoil = 432.0 ⋅ kN

Surcharge wt:

Wtsurc := L ⋅ B ⋅ Q

Wtsurc = 0.0 ⋅ kN

Total wt:

WTotal := Wtbase + Wtsoil + Wtsurc

WTotal = 792.0 ⋅ kN

PIER WEIGHTS AND LOADS: Excess Pier Weights

ExcessPier_wt := n

( ) if hn ≤ D Lpx ⋅ Lpz ⋅ ⎡D ⋅ ( γc − γs) + ( h − D) ⋅ γc⎤ n n ⎣ n ⎦ Lpx ⋅ Lpz ⋅ h ⋅ γc − γs n n n

otherwise

T ExcessPier_wt = ( 2.4 2.4 2.4 ) ⋅ kN Applied load + Excess pier weight

Pty := − Py + ExcessPier_wt n n n

TOTAL VERTICAL LOAD: P Total := WTotal +

∑ Ptyn n

CALCULATE FOOTING STABILITY D.3

CHECK STABILITY SLIDING CHECK: Passive Soil Pressure Passivex := T ⋅ B ⋅

⎡⎣( Kp ) ⋅ γs ⋅ ( D + T)

+ Kp ⋅ γs ⋅ ( D)⎤⎦ ⋅ 0.5

Passivex = 170.1 ⋅ kN

Passivez := T ⋅ L ⋅

⎡⎣( Kp ) ⋅ γs ⋅ ( D + T)

+ Kp ⋅ γs ⋅ ( D)⎤⎦ ⋅ 0.5

Passivez = 141.8 ⋅ kN

Friction Forces Frictionx := j

0kN if P Total ≤ 0kN j

(

)

μ ⋅ P Total − Wtsurc j

Frictionz := j

0kN if P Total ≤ 0kN j

(

)

μ ⋅ P Total − Wtsurc j

otherwise

otherwise

Factor of Safety:

FSSL.x := j

Passivex + Frictionx j

⎛∑ Fxn⎞ ⎜ ⎟ ⎝n ⎠j

if round⎡⎢

⎛∑ Fxn⎞ ⋅ ⎟ ⎢ ⎜⎝ n ⎠j ⎣

1 , 3⎥⎤ ≠ 0kN kN

⎥ ⎦

"INFINITY" otherwise

Footing F-4.xmcd

LNT - Page 8 of 41

Calculation Sheet

Check_FS SLx := j

"N.A." if FSSL.x = "INFINITY" j otherwise "OK,Safe against sliding @ X" if FSSL.x ≥ 1.5 j "N.G. Redesign" otherwise

SLIDING ALONG X-DIRECTION Comb

Passive + Ff

100 101 102 103 104 105 106

FSSL.z := j

Sum FX

1216.32 1097.43 1103.28 1161.43 1165.81 834.90 840.73

Passivez + Frictionz j

⎛∑ Fzn⎞ ⎜ ⎟ ⎝n ⎠j

FS Sliding

3.27 -25.16 2.91 -17.15 3.90 -26.48 1.58

⎡ ⎛ Fz ⎞ ⋅ ∑ n⎟ ⎢ ⎜⎝ n ⎠j ⎣

if round⎢

371.96 43.62 379.13 67.72 298.93 31.53 532.11

1 kN

Remarks OK,Safe against OK,Safe against OK,Safe against OK,Safe against OK,Safe against OK,Safe against OK,Safe against

sliding @ X sliding @ X sliding @ X sliding @ X sliding @ X sliding @ X sliding @ X



, 3⎥ ≠ 0kN

⎥ ⎦

"INFINITY" otherwise Check_FS SLz := j

"N.A." if FSSL.z = "INFINITY" j otherwise "OK,Safe against sliding @ Z" if FSSL.z ≥ 1.5 j "N.G. Redesign" otherwise

SLIDING ALONG Z-DIRECTION Comb 100 101 102 103 104 105 106

Passive + Ff 1187.97 1069.08 1074.93 1133.08 1137.46 806.55 812.38

Sum FZ

FS Sliding

0.53 0.90 90.47 2.38 69.56 0.49 90.07

2241.45 1187.87 11.88 476.08 16.35 1646.02 9.02

Remarks OK,Safe against sliding @ Z OK,Safe against sliding @ Z OK,Safe against sliding @ Z OK,Safe against sliding @ Z OK,Safe against sliding @ Z OK,Safe against sliding @ Z OK,Safe against sliding @ Z

UPLIFT CHECK: Upward Loads

P y.up := n

for j ∈ 0 .. 6

( )

( )

Up ← if ⎡ Py > 0 ⋅ kN , Py , 0 ⋅ kN⎤ j n j ⎣ nj ⎦ Uplift ← Up n Uplift n

Pty.uplift := j

Footing F-4.xmcd

⎛∑ P y.upn⎞ ⎜ ⎟ ⎝n ⎠j

LNT - Page 9 of 41

Calculation Sheet

Pty.down := P Total + j j

Downward Loads

⎛∑ P y.upn⎞ − Wtsurc ⎜ ⎟ ⎝n ⎠j

Factor of Safety: FSUL := j

Pty.down

j if Pty.uplift > 0kN j Pty.uplift j

"INFINITY" otherwise Check_FS UL := j

"N.A." if FSUL = "INFINITY" j otherwise "> 1.2, OK,Safe against sliding @ X" if FSUL ≥ 1.2 j "< 1.2, N.G. Redesign" otherwise

UPLIFT Comb

Downward F

100 101 102 103 104 105 106

Uplift F

2615.54 2318.33 2332.94 2478.33 2489.28 1662.00 1676.58

0.00 0.00 0.00 0.00 0.00 0.00 0.00

FS Uplift

Remarks

INFINITY INFINITY INFINITY INFINITY INFINITY INFINITY INFINITY

N.A. N.A. N.A. N.A. N.A. N.A. N.A.

OVERTURNING ABOUT X-AXIS CHECK: Moment due to Py:

Mex := Pty ⋅ − Z p n n n

Due to Fz and Mx:

Mox := − Fz ⋅ h + T + Mx n n n n

(

Eccentricity:

ez := − j

)

⎛∑ Mexn⎞ + ⎛∑ Moxn⎞ ⎜ ⎟ ⎜ ⎟ ⎝n ⎠j ⎝ n ⎠j P Total j

Overturning Moment due to Py: Mot.x := n

for j ∈ 0 .. 6 if

( Ptyn) j < 0 ⋅ kN (

)

OT ← Pty ⋅ j n j

(

⎛⎜ B ⎝2

)

OT ← − Pty ⋅ j n j

− Zp

⎞⎟

if Z p < 0 m n

n⎠

⎛⎜ B ⎝2

− Z p ⎞⎟ if Z p > 0m n n

)

⎛⎜ B ⎞⎟ ⎝ 2⎠



if Z p = 0m n

(

⋅ OT ← − Pty j n j

(

)

OT ← Pty ⋅ j n j

⎛⎜ B ⎞⎟ ⎝ 2⎠

if ez < 0m j if ez > 0m j

OT ← 0 kN ⋅ m otherwise j OT

Footing F-4.xmcd

LNT - Page 10 of 41

Calculation Sheet

Total Overturning Moment about X-axis:

MOT.x :=

∑ Moxn + ∑ Mot.xn n

Resisting Moment about X-axis due to Py:

n

Mrm.x := n

for j ∈ 0 .. 6

( Ptyn) j > 0 ⋅ kN

if

OT ← Pty ⋅ j n j

(

)

⎛⎜ B ⎝2

+ Zp

(

)

⎛⎜ B ⎝2

− Z p ⎟ if MOT.x < 0 kN m n⎠ j

OT ← Pty ⋅ j n j



n⎟⎠

if MOT.x > 0 kN m j



OT ← 0 kN ⋅ m otherwise j OT ← 0 kN ⋅ m otherwise j OT

Total Resisting Moment about X-axis:

MRM.x :=

B

∑ Mrm.xn + ( Wtbase + Wtsoil) ⋅ 2 n

Factor of Safety:

FSOT.x := j

MRM.x MOT.x

j

if

j

MOT.x

≠ 0 kN m

j

"INFINITY" otherwise Check_FS OTx := j

"N.A." if FSOT.x = "INFINITY" j otherwise "> 1.5, OK,Safe against overturning @ X" if FSOT.x ≥ 1.5 j "< 1.5, N.G. Redesign" otherwise

OVERTURNING MOMENT ABOUT X Comb 100 101 102 103 104 105 106

RM 8112.56 6823.55 6772.72 7197.37 7159.22 4907.40 4856.48

OM

FS OT

2.72 -2.28 -372.65 -7.16 -284.93 -1.17 -371.56

2988.05 2992.79 18.17 1005.22 25.13 4212.36 13.07

Remarks > 1.5, > 1.5, > 1.5, > 1.5, > 1.5, > 1.5, > 1.5,

OK,Safe against overturning @ X OK,Safe against overturning @ X OK,Safe against overturning @ X OK,Safe against overturning @ X OK,Safe against overturning @ X OK,Safe against overturning @ X OK,Safe against overturning @ X

OVERTURNING ABOUT Z-AXIS CHECK: Moment due to Py:

Mez := Pty ⋅ Xp n n n

Due to Fx and Mz:

Moz := Fx ⋅ h + T + Mz n n n n

Eccentricity:

Footing F-4.xmcd

(

ex := j

)

⎛∑ Mezn⎞ + ⎛∑ Mozn⎞ ⎜ ⎟ ⎜ ⎟ ⎝n ⎠j ⎝ n ⎠j P Total j

LNT - Page 11 of 41

Calculation Sheet

Overturning Moment due to Py:

Total Overturning Moment about X-axis:

Mot.z := n

MOT.z :=

for j ∈ 0 .. 6

(

if

)

Pty < 0 ⋅ kN n j

(

n

⎛⎜ L ⎝2

)

OT ← − Pty ⋅ j n j

)

⎛⎜ L ⎝2

(

)

(

OT ← Pty ⋅ j n j

∑ Mozn + ∑ Mot.zn

− Xp

⎞⎟

n⎠

n

if Xp < 0 m n

− Xp ⎞⎟ if Xp > 0m n⎠ n

if Xp = 0m n OT ← − Pty ⋅ j n j

(

)

OT ← Pty ⋅ j n j

⎛⎜ L ⎞⎟ ⎝ 2⎠

⎛⎜ L ⎞⎟ ⎝ 2⎠

if ez < 0m j if ez > 0m j

OT ← 0 kN ⋅ m otherwise j OT Resisting Moment about Z-axis due to Py:

Total Resisting Moment about X-axis:

Mrm.z := n

MRM.z :=

for j ∈ 0 .. 6 if

( Ptyn) j > 0 ⋅ kN

n

OT ← Pty ⋅ j n j

(

)

⎛⎜ L ⎝2

− Xp ⎟ if MOT.z > 0 kN m n⎠ j

(

)

⎛⎜ L ⎝2

+ Xp

OT ← Pty ⋅ j n j

L

∑ Mrm.zn + ( Wtbase + Wtsoil) ⋅ 2

⎞ ⎞

n⎟⎠

if MOT.z < 0 kN m j

OT ← 0 kN ⋅ m otherwise j OT ← 0 kN ⋅ m otherwise j OT Factor of Safety:

FSOT.z := j

MRM.z j MOT.z j

if

MOT.z ≠ 0 kN m j

Check_FS OTz := j

"N.A." if FSOT.z = "INFINITY" j otherwise

"INFINITY" otherwise

"> 1.5, OK,Safe against overturning @ Z" if FSOT.z ≥ 1.5 j "< 1.5, N.G. Redesign" otherwise

OVERTURNING MOMENT ABOUT Z Comb 100 101 102 103 104 105 106

RM 6538.85 5795.83 5832.35 6195.83 6223.20 4155.00 4191.45

OM

FS OT -0.66 47.35 -1.81 34.37 -2.51 48.19 -0.98

9982.98 122.40 3231.22 180.29 2479.36 86.22 4276.99

Remarks > 1.5, > 1.5, > 1.5, > 1.5, > 1.5, > 1.5, > 1.5,

OK,Safe against overturning @ Z OK,Safe against overturning @ Z OK,Safe against overturning @ Z OK,Safe against overturning @ Z OK,Safe against overturning @ Z OK,Safe against overturning @ Z OK,Safe against overturning @ Z

CALCULATE FOOTING STABILITY

Footing F-4.xmcd

LNT - Page 12 of 41

Calculation Sheet

NET SOIL BEARING PRESSURE:

MAX NET SOIL BEARING PRESSURE Comb

P Total (kN)

100 101 102 103 104 105 106

ex (m)

2615.54 2318.33 2332.94 2478.33 2489.28 1662.00 1676.58

CRITICAL LOAD COMBINATION

Pier #1

ez (m)

0.000 0.020 -0.001 0.014 -0.001 0.029 -0.001

K Coeff

0.101 0.058 0.257 0.099 0.238 0.048 0.325

1.10 1.08 1.26 1.12 1.24 1.08 1.33

P max (kPa) 95.99 83.63 97.80 92.14 102.86 59.99 74.09

P max.net (kPa) 72.59 60.23 74.40 68.74 79.46 36.59 50.69

Remarks < qs = 100 kPa, < qs = 100 kPa, < qs = 100 kPa, < qs = 100 kPa, < qs = 100 kPa, < qs = 100 kPa, < qs = 100 kPa,

O.K.! O.K.! O.K.! O.K.! O.K.! O.K.! O.K.!

ASD_Comb = 104 SL

Pier #2

Pier #3

Py (kN) =

-405.5

-724.9

-559.8

Fx (kN) =

0.3

3.1

0.6

Fz (kN) =

24.3

14.6

30.7

Mx (kN·m) =

-58.5

-50.0

-72.0

Mz (kN·m) =

-1.4

-5.4

-1.6

CALCULATE SOIL BEARING PRESSURE

Footing F-4.xmcd

LNT - Page 13 of 41

Calculation Sheet BEARING AREA: Dist x

d x = "N.A."

Dist z

d z = "N.A."

Brg. L1

L1 = 5.000 m

Brg. L2

L2 = 6.000 m

%Brg. Area

Brg_Area = 100.00 ⋅ %

Biaxial Case

Case = "N.A."

GROSS SOIL BEARING CORNER PRESSURES:

MAXIMUM NET SOIL PRESSURE:

P = 63.09 ⋅ kPa 1

P = 102.86 ⋅ kPa 3

P = 102.66 ⋅ kPa 2

P = 63.29 ⋅ kPa 4

P max.net := max ( P ) − γs ⋅ ( D + T) P max.net = 79.46 ⋅ kPa

(

Check_qs := if P max.net ≤ q s , "OK, q max < q allowable" , "N.G. Redesign" Check_qs = "OK, q max < q allowable"

E.

)

P max.net q uR

otherwise

x otherwise

⎛L d 6 := max ⎜ + Xp − n n ⎝2

Lpx ⎞ n − d e , 0m⎟ 2 ⎠

T d 6 = ( 1.835 1.835 1.835 ) m

⎛L d 5 := max ⎜ + Xp − n n ⎝2

Lpx ⎞ de n − , 0m⎟ 2 2 ⎠

T d 5 = ( 2.042 2.042 2.042 ) m

⎛L d 4 := max ⎜ + Xp − n n ⎝2

Lpx ⎞ n , 0m⎟ 2 ⎠

T d 4 = ( 2.25 2.25 2.25 ) m

⎛L d 3 := min⎜ + Xp + n n ⎝2

Lpx n ⎞⎟ ,L 2 ⎠

T d 3 = ( 2.75 2.75 2.75 ) m

⎛L d 2 := min⎜ + Xp + n n ⎝2

Lpx de ⎞ n + , L⎟ 2 2 ⎠

T d 2 = ( 2.957 2.957 2.957 ) m

⎛L d 1 := min⎜ + Xp + n n ⎝2

Lpx ⎞ n + d e , L⎟ 2 ⎠

T d 1 = ( 3.165 3.165 3.165 ) m

T b ox = ( 0.915 0.915 0.915 ) m

b ox := d 2 − d 5

qx CALCULATIONS

q at critical sections:

( )

q d1 = n

103.1 103.1 103.1

Footing F-4.xmcd

( )

⋅ kPa

q d6 = n

103.1 103.1 103.1

( )

⋅ kPa

q d2 = n

103.1 103.1 103.1

( )

⋅ kPa

q d5 = n

103.1 103.1 103.1

( )

⋅ kPa

q d3 = n

103.1 103.1 103.1

( )

⋅ kPa

q d4 = n

103.1 103.1

⋅ kPa

103.1

LNT - Page 17 of 41

Calculation Sheet

Diagrams

⎛L ⎜ ⎜2 ⎜ ⎜L ⎜2 ⎜ xp ( n ) := ⎜ L ⎜2 ⎜ ⎜L ⎜2 ⎜ ⎜L ⎝2

⎞ ⎟ ⎟ Lpx ⎟ n ⎟ 2 ⎟ Lpx ⎟ n⎟ 2 ⎟ Lpx ⎟ n ⎟ 2 ⎟ Lpx ⎟ n⎟ 2 ⎠ Lpx n 2

+ Xp − n + Xp + n + Xp + n + Xp − n + Xp − n

⎛ T ⎞ ⎜ ⎟ ⎜ T ⎟ y1p := ⎜ T + 0.5m ⎟ ⎜ T + 0.5m ⎟ ⎜ ⎟ ⎝ T ⎠

⎛ 0m ⎞ ⎜ ⎟ ⎜L⎟ xf := ⎜ L ⎟ ⎜ 0m ⎟ ⎜ ⎟ ⎝ 0m ⎠

L

0kN if x <

( Putyn) FL Vp_ ( x) :=

2

+ Xp

Mp_ ( x , n ) :=

n

Mp_ ( x) :=

⋅x

Mssf ( x) :=

Mp ← 0kN ⋅ m

Wu Total L



x

2

2

Moment due to Soil Pressure:

if q uR = 0 ⋅ kPa

Msbp ( x) :=

1 − ⎡⎢ ⋅ ( q uL + q ( x) ) ⋅ x⎤⎥ ⋅ Brgz if x ≤ Brgx ⎣2 ⎦ ⎛1 ⎞ − ⎜ ⋅ Brgx ⋅ q uL ⋅ Brgz⎟ otherwise ⎝2 ⎠ 1 − ⎡⎢ ⋅ q ( x) ⋅ ⎡⎣x − ( L − Brgx)⎤⎦⎥⎤ ⋅ Brgz ⎣2 ⎦

if q uR = 0 ⋅ kPa − ⎛⎜

1 2 1 2 ⋅ q uL ⋅ x + ⋅ q ( x) ⋅ x ⎞⎟ ⋅ Brgz 6 ⎝3 ⎠ 1 1 ⎡ ⎛ ⎞⎤ − ⎢ ⋅ Brgx ⋅ q uL ⋅ Brgz ⋅ ⎜x − ⋅ Brgx⎟⎥ ⎣2 ⎝ 3 ⎠⎦

if q uL = 0 ⋅ kPa

(

if x ≥ L − Brgx

)

if q uL = 0 ⋅ kPa 1 2 − ⎡⎢ ⋅ q ( x) ⋅ ⎡⎣x − L − Brgx ⎤⎦ ⎥⎤ ⋅ Brgz i ⎣6 ⎦

(

0 ⋅ kN otherwise

Footing F-4.xmcd

n

Moment due to Soil, Surcharge and Foundation:

Shear due to Soil Pressure:

⎡1 −⎢ ⎣2

+ Xp

Mp ← Mp + Mp_ ( x , i − 1)

Shear due to Soil, Surcharge and Foundation:

L

2

for i ∈ 1 .. Npier

Vp ← Vp + Vp_ ( x , i − 1)

Wu Total

L

L

for i ∈ 1 .. Npier

Vssf ( x) :=

0kN ⋅ m if x <

( Putyn) FL ⋅ ⎡⎢⎣x − ⎛⎜⎝ 2 + Xpn⎞⎟⎠⎤⎥⎦ − ( Muozn) F

otherwise

Vp ← 0kN

Vsbp ( x) :=

⎛ T ⎞ ⎜ ⎟ ⎜ T ⎟ ⎜ T + hn ⎟ yp ( n ) := ⎜ ⎟ ⎜ T + hn ⎟ ⎜ ⎟ ⎝ T ⎠

Moment due to Py:

Shear due to Py: Vp_ ( x , n ) :=

⎛ 0m ⎞ ⎜ ⎟ ⎜ 0m ⎟ yf := ⎜ T ⎟ ⎜T⎟ ⎜ ⎟ ⎝ 0m ⎠

( quL + q( x) ) x⎤⎥ ⋅ Brgz ⎦

)

0 ⋅ kN ⋅ m otherwise otherwise

⎛1

−⎜

⎝3

2 1 2⎞ ⋅ q uL ⋅ x + ⋅ q ( x) ⋅ x ⎟ ⋅ Brgz othe 6 ⎠

LNT - Page 18 of 41

Calculation Sheet

TOTAL SHEAR:

TOTAL MOMENT:

V( x) :=

M( x) :=

0 ⋅ kN if ( x = 0 ⋅ m) + ( x = L) Vsbp ( x) + Vssf ( x) + Vp_ ( x) otherwise

0 ⋅ kN ⋅ m if ( x = 0 ⋅ m) + ( x = L) Mssf ( x) + Msbp ( x) + Mp_ ( x) otherwise

a := 1000 L .. L a

Let

x := 0m ,

M1 :=

for i ∈ 0 .. a

V1 :=

for i ∈ 0 .. a

⎛ i ⋅ L ⎟⎞ M1 ← M⎜ i ⎝ a ⎠

⎛ i ⋅ L ⎟⎞ M ← V⎜ i ⎝ a ⎠

M1

M

X( c ) := match⎛⎜



max ( c ) 1 c ⎞ , ⎟0 ⋅ L ⋅ mm a mm ⎠

m1 := 100 ⋅ ⎛⎜ceil ⎛⎜0.011 ⋅





v1 := 100 ⋅ ⎛⎜ceil ⎛⎜0.011 ⋅

M( X( M1) ) ⎞⎞ ⎟⎟ kN m ⎠⎠



m1 = 0



M( X( M1) ) ⎞⎞ ⎟⎟ kN m ⎠⎠

v1 = 0

⎛ ⎝

⎛ ⎝

m1 := 100 ⋅ ⎜ceil ⎜0.011 ⋅

m1 = 1.7 × 10

(

max yp ( 0) , yp ( 1) , yp ( 2) mm

) ⎞⎞ ⎟⎟ ⎠⎠

⎛ 0.25m1 ⎞ y1 := ⎜ ⎟ ⎝ − 0.25m1 ⎠

⎛L⎞ ⎜2⎟ x1 := ⎜ ⎟ ⎜L⎟ ⎝2⎠

3

( )

q x.5 := q d 5 n n

( )

q x.2 := q d 2 n n

Diagrams

Footing F-4.xmcd

LNT - Page 19 of 41

Calculation Sheet

q uL = 103.1 ⋅ kPa

qu (kPa)

Soil Bearing Pressure Diagram

q uR = 103.0 ⋅ kPa

0

2× 10

3

4× 10

3

6× 10

3

L (mm)

Footing F-4.xmcd

LNT - Page 20 of 41

Calculation Sheet

Vu (kN)

Shear Diagram

0

2× 10

3

4× 10

3

6× 10

3

L (mm)

Footing F-4.xmcd

LNT - Page 21 of 41

Calculation Sheet

Mu (kN-m)

Moment Diagram

0

2× 10

3

4× 10

3

6× 10

3

L (mm)

Footing F-4.xmcd

LNT - Page 22 of 41

Calculation Sheet

Max Beam Shear & Bending Moment Beam Shear along Z-axis at d distance from face of col:

( )

( )

V d1 = n

V d6 = n

⋅ kN

727.6 727.6

-728.0 -728.0

727.6

Bending moment about Z-axis at critical sections:

( )

⋅ kN

-728.0

( )

M d3 = n

⋅ kN m

-1003.7 -1003.7

M d4 = n

-1003.7

-1004.3 -1004.3

⋅ kN m

-1004.3

Mupos.z := max ( M1)

MuRz := VuRz :=

for i ∈ 0 .. N pier − 1

VuRz = 727.6 ⋅ kN

( )

for i ∈ 0 .. N pier − 1

( )

m ← M d3 i i

v ← V d1 i i

min( m)

max ( v) MuRz = − 1003.7 ⋅ kN m MuLz := VuLz :=

for i ∈ 0 .. Npier − 1

( )

m ← M d4 i i

for i ∈ 0 .. Npier − 1

( )

v ← V d6 i i

min( m)

max ( v)

MuLz = − 1004.3 ⋅ kN m

VuLz = − 728.0 ⋅ kN

(

(

)

(

))

Muneg.z := if min MuLz , MuRz ≥ 0kN ⋅ m , 0kN ⋅ m , min MuLz , MuRz

Max Beam Shear & Bending Moment Wide-beam shear along Z direction

Max negative moment at face of support

Muneg.z = 1004.3 ⋅ kN m

VuLz = − 728.0 ⋅ kN

Max positive moment:

Mupos.z = 0.0 ⋅ kN m

F.2

Footing F-4.xmcd

VuRz = 727.6 ⋅ kN

FOOTING ANALYSIS ALONG Z-DIRECTIONS

LNT - Page 23 of 41

Calculation Sheet

B = 6m

q uL :=

Pu + Pu 1 4 2

q uR :=

q uL = 68.7 ⋅ kPa

Pu + Pu 3 2 2

q uR = 137.5 ⋅ kPa

qz CALCULATIONS

q at critical sections:

Δq :=

q ( x) :=

q uL − q uR

Δq = 11.471 ⋅

Brgz

kPa m

if q uR = 0kPa x ⎞ ⎟ if x ≤ Brgz Brgz ⎠

q uL ⋅ ⎛⎜1 −



0kPa otherwise if q uL = 0kPa

⎛ ⎝

q uR ⋅ ⎜1 +

x − B⎞



Brgz ⎠

0kPa otherwise

(

)

min q uL , q uR + Δq ⋅

(

)

if x ≥ B − Brgz

( Brgz − x)

if q uL > q uR

otherwise

x otherwise

⎛B d 6 := max ⎜ + Z p − n n ⎝2

Lpz n

⎛B d 5 := max ⎜ + Z p − n n ⎝2

Lpz n

Footing F-4.xmcd

2

2



− d e , 0m⎟





de 2



, 0m⎟



T d 6 = ( 0.335 2.335 4.335 ) m

T d 5 = ( 0.542 2.542 4.543 ) m

LNT - Page 24 of 41

Calculation Sheet ⎛B d 4 := max ⎜ + Z p − n n ⎝2

Lpz n 2

⎛B d 3 := min⎜ + Z p + n n ⎝2

Lpz

⎛B d 2 := min⎜ + Z p + n n ⎝2

Lpz

⎛B d 1 := min⎜ + Z p + n n ⎝2

Lpz

n



T d 4 = ( 0.75 2.75 4.75 ) m

, 0 ⋅ m⎟





T d 3 = ( 1.25 3.25 5.25 ) m

, B⎟



2 n

2 n

2

+

de 2



T d 2 = ( 1.458 3.458 5.457 ) m

, B⎟





T d 1 = ( 1.665 3.665 5.665 ) m

+ d e , B⎟



b oz := d 2 − d 5

T b oz = ( 0.915 0.915 0.915 ) m

WzR := Brgx − d 1

T WzR = ( 3.335 1.335 − 0.665 ) m

WzL := d 6

T WzL = ( 0.335 2.335 4.335 ) m

azL := d 4

T azL = ( 0.75 2.75 4.75 ) m

azR := Brgz − d 3

T azR = ( 4.75 2.75 0.75 ) m

qz CALCULATIONS

q at critical sections:

( )

q d1 = n

87.8 110.7 133.6

Footing F-4.xmcd

( )

⋅ kPa

q d6 = n

72.5 95.4 118.4

( )

⋅ kPa

q d2 = n

85.4 108.3 131.3

( )

⋅ kPa

q d5 = n

74.9 97.8 120.8

( )

⋅ kPa

q d3 = n

83.0 105.9 128.9

( )

⋅ kPa

q d4 = n

77.3 100.2

⋅ kPa

123.1

LNT - Page 25 of 41

Calculation Sheet

Diagrams

⎛B ⎜ ⎜2 ⎜ ⎜B ⎜2 ⎜ xp ( n ) := ⎜ B ⎜2 ⎜ ⎜B ⎜2 ⎜ ⎜B ⎝2

+ Zp − n + Zp + n + Zp + n + Zp − n + Zp − n

⎞ ⎟ 2 ⎟ Lpz ⎟ n ⎟ 2 ⎟ Lpz ⎟ n⎟ 2 ⎟ Lpz ⎟ n ⎟ 2 ⎟ Lpz ⎟ n⎟ 2 ⎠ Lpz n

⎛ 0m ⎞ ⎜ ⎟ ⎜B⎟ xf := ⎜ B ⎟ ⎜ 0m ⎟ ⎜ ⎟ ⎝ 0m ⎠

Moment due to Py:

Shear due to Py: Vp_ ( x , n ) :=

0kN if x <

( Vp_ ( x) :=

Puty n

) FL

B 2

+ Zp

Mp_ ( x , n ) :=

n

Mp_ ( x) :=

Vp ← 0kN

Mp ← 0kN ⋅ m

Moment due to Soil, Surcharge and Foundation: Mssf ( x) :=

⋅x

Wu Total B

Shear due to Soil Pressure:

Moment due to Soil Pressure:

Vsbp ( x) :=

Msbp ( x) :=

if q uR = 0 ⋅ kPa 1 − ⎡⎢ ⋅ ( q uL + q ( x) ) ⋅ x⎤⎥ ⋅ Brgx if x ≤ Brgz ⎣2 ⎦ 1 ⎛ ⎞ − ⎜ ⋅ Brgz ⋅ q uL ⋅ Brgx⎟ otherwise ⎝2 ⎠ 1 − ⎡⎢ ⋅ q ( x) ⋅ ⎡⎣x − ( B − Brgz)⎤⎦⎥⎤ ⋅ Brgx ⎣2 ⎦ 0 ⋅ kN otherwise

⎤ − ⎢ ( q uL + q ( x) ) x⎥ ⋅ Brgx ⎣2 ⎦

Footing F-4.xmcd



2 x 2

if q uR = 0 ⋅ kPa

⎛ 1 ⋅ q ⋅ x2 + 1 ⋅ q ( x) ⋅ x2⎞⎟ ⋅ Brg if uL x 6 ⎝3 ⎠ 1 1 − ⎡⎢ ⋅ Brgz ⋅ q uL ⋅ Brgx ⋅ ⎛⎜x − ⋅ Brgz⎞⎟⎥⎤ ⎣2 ⎝ 3 ⎠⎦ −⎜

if q uL = 0 ⋅ kPa

⎡1

otherwise

Mp ← Mp + Mp_ ( x , i − 1)

Shear due to Soil, Surcharge and Foundation: B

B + Zp n 2

for i ∈ 1 .. Npier

Vp ← Vp + Vp_ ( x , i − 1)

Wu Total

0kN ⋅ m if x <

( Putyn) FL ⋅ ⎡⎢⎣x − ⎛⎜⎝ B2 + Zpn⎞⎟⎠⎤⎥⎦ + ( Muoxn) FL

otherwise

for i ∈ 1 .. Npier

Vssf ( x) :=

⎛ 0m ⎞ ⎜ ⎟ ⎜ 0m ⎟ yf := ⎜ T ⎟ ⎜T⎟ ⎜ ⎟ ⎝ 0m ⎠

x ≤ Brgz otherwise

if q uL = 0 ⋅ kPa

(

)

if x ≥ B − Brgz

2⎤ ⎡1 − ⎢ ⋅ q ( x) ⋅ ⎡⎣x − B − Brgz ⎤⎦ ⎥ ⋅ Brgx if x ≥ B − Brgz ⎣6 ⎦

(

)

(

)

0 ⋅ kN ⋅ m otherwise otherwise

1 2 1 2 − ⎛⎜ ⋅ q uL ⋅ x + ⋅ q ( x) ⋅ x ⎞⎟ ⋅ Brgx otherwise 6 ⎝3 ⎠

LNT - Page 26 of 41

Calculation Sheet

TOTAL SHEAR:

TOTAL MOMENT:

V( x) :=

M( x) :=

0 ⋅ kN if ( x = 0 ⋅ m) + ( x = B) Vsbp ( x) + Vssf ( x) + Vp_ ( x) otherwise

0 ⋅ kN ⋅ m if ( x = 0 ⋅ m) + ( x = B) Mssf ( x) + Msbp ( x) + Mp_ ( x) otherwise

a := 1000

Let

x := 0m ,

B .. B a

B = 6 ⋅ mm a

⎛B⎞ ⎜2⎟ x1 := ⎜ ⎟ ⎜B⎟ ⎝2⎠

M1 :=

for i ∈ 0 .. a

V1 :=

for i ∈ 0 .. a

⎛ i ⋅ B⎞

M1 ← M⎜ i ⎝ a

⎛ i ⋅ B ⎞⎟ M ← V⎜ i ⎝ a ⎠

⎟ ⎠

M1

M

X( c ) := match⎛⎜



max ( c ) 1 c ⎞ , ⎟0 ⋅ B ⋅ mm a mm ⎠

( )

q z.5 := q d 5 n n

( )

q z.2 := q d 2 n n

Diagrams

Footing F-4.xmcd

LNT - Page 27 of 41

Calculation Sheet

q uL = 68.7 ⋅ kPa

qu (kPa)

Soil Bearing Pressure Diagram

q uR = 137.5 ⋅ kPa

0

2× 10

3

4× 10

3

6× 10

3

B (mm)

Footing F-4.xmcd

LNT - Page 28 of 41

Calculation Sheet

Vu (kN)

Shear Diagram

0

2× 10

3

4× 10

3

6× 10

3

B (mm)

Footing F-4.xmcd

LNT - Page 29 of 41

Calculation Sheet

Mu (kN-m)

Moment Diagram

0

2× 10

3

4× 10

3

6× 10

3

B (mm)

Footing F-4.xmcd

LNT - Page 30 of 41

Calculation Sheet

Max Beam Shear & Bending Moment Beam Shear along X-axis at d distance from face of col:

( )

( )

V d1 = n

V d6 = n

⋅ kN

121.6 330.9

-56.3 -61.4

165.1

VuRx :=

Bending moment about X-axis at critical sections:

( )

M d3 = n

⋅ kN

-231.7 -276.5

71.0

( )

⋅ kN m

M d4 = n

-48.6 -189.8

-137.3

⋅ kN m

21.6

for i ∈ 0 .. Npier − 1

( )

v ← V d1 i i max ( v

Mupos.x := max ( M1)

) MuRx :=

VuRx = 389.3 ⋅ kN

for i ∈ 0 .. Npier − 1

( )

m ← M d3 i i min( m)

VuLx :=

for i ∈ 0 .. N pier − 1

( )

MuRx = − 276.5 ⋅ kN m

v ← V d6 i i max ( v

)

MuLx :=

for i ∈ 0 .. N pier − 1

( )

m ← M d4 i i

VuLx = 109.5 ⋅ kN

min( m) MuLx = − 189.8 ⋅ kN m

(

(

)

(

Muneg.x := if min MuLx , MuRx ≥ 0kN ⋅ m , 0kN ⋅ m , min MuLx , MuRx

))

Max Beam Shear & Bending Moment Wide-beam shear along X direction

Max negative moment at face of support

Muneg.x = 276.5 ⋅ kN m

VuLx = 109.5 ⋅ kN

Max positive moment:

Mupos.x = 34.1 ⋅ kN m

F.4

VuRx = 389.3 ⋅ kN

PUNCHING SHEAR Capacity reduction factor

ϕv := 0.85

Shear strength provided

(

ϕVc := ϕv ⋅ 0.33 ⋅

) (

)

fc ⋅ MPa ⋅ b ox + b oz ⋅ d e

T ϕVc = ( 1167 1167 1167 ) ⋅ kN Punching Shear Perimeter around column/pier: Along x-direction

T b ox = ( 0.915 0.915 0.915 ) m

Along z-direction

T b oz = ( 0.915 0.915 0.915 ) m

Area of Punching Shear:

Footing F-4.xmcd

LNT - Page 31 of 41

Calculation Sheet T 2 Ap = ( 0.837 0.837 0.837 ) m

Ap := b ox ⋅ b oz n n n Total force from column/pier:

(

)

(

)

P uy := Puty + LF ⋅ ⎡Ap ⋅ T ⋅ γc + D ⋅ γs + Q ⎤ n n FL ⎣ n ⎦ T P uy = ( 495.9 862.8 717.3 ) ⋅ kN q at d/2 distance from supports: Along x-direction

T q x.2 = ( 103.1 103.1 103.1 ) ⋅ kPa T q x.5 = ( 103.1 103.1 103.1 ) ⋅ kPa

Along z-direction

T q z.2 = ( 85.4 108.3 131.3 ) ⋅ kPa T q z.5 = ( 74.9 97.8 120.8 ) ⋅ kPa

Total force acting on punched area Rq := n

1 2

(

)

⋅ max q x.5 + q x.2 , q z.5 + q z.2 ⋅ Ap n n n n n

T Rq = ( 86.3 86.3 105.5 ) ⋅ kN Net punching shear: Vup := P uy − Rq n n n T Vup = ( 409.6 776.5 611.8 ) ⋅ kN

Check if shear strength provided by concrete is greater than the maximum shear force.

(

(

)

ACI31811.3.1.1.Eq.11.3.p := if min( ϕVc ) > max Vup , "OK,shear strength provided > Vu." , "NG!"

(

ACI31811.3.1.1.Eq.11.3.p = "OK,shear strength provided > Vu." F.5

) )

min( ϕVc ) >=? max Vup = "YES!.. SATISFACTORY"

WIDE BEAM SHEAR Wide-beam shear along Z direction VuLz = − 728.0 ⋅ kN

VuRz = 727.6 ⋅ kN

(

Shear strength provided

ϕVn b := ϕv ⋅ 0.17 ⋅

)

fc ⋅ MPa ⋅ B ⋅ d e

ϕVn b = 1970.7 ⋅ kN

Check if shear strength provided by concrete is greater than the maximum shear force.

(

(

)

ACI31811.3.1.1.Eq.11.3.bsz := if ϕVn b > max VuLz , VuRz , "OK,shear strength provided > Vu." , "NG!"

(

ACI31811.3.1.1.Eq.11.3.bsz = "OK,shear strength provided > Vu."

) )

ϕVn b >=? max VuLz , VuRz = "YES!.. SATISFACTORY"

Wide-beam shear along X direction VuLx = 109.5 ⋅ kN

VuRx = 389.3 ⋅ kN

( Footing F-4.xmcd

) LNT - Page 32 of 41

Calculation Sheet (

Shear strength provided

ϕVn b := ϕv ⋅ 0.17 ⋅

)

fc ⋅ MPa ⋅ L ⋅ d e

ϕVn b = 1642.3 ⋅ kN

Check if shear strength provided by concrete is greater than the maximum shear force.

(

(

)

) ϕVn b >=? max ( VuLx , VuRx) = "YES!.. SATISFACTORY"

ACI31811.3.1.1.Eq.11.3.bsx := if ϕVn b > max VuLx , VuRx , "OK,shear strength provided > Vu." , "NG!" ACI31811.3.1.1.Eq.11.3.bsx = "OK,shear strength provided > Vu." G.

REINFORCEMENT DESIGN G.1

G.2

DESIGN MOMENT FOR BOTTOM BARS Capacity reduction factor

ϕf := 0.90

Moment at face of pedestal X-direction

Muneg.z = 1004.3 ⋅ kN m

Moment at face of pedestal Z-direction

Muneg.x = 276.5 ⋅ kN m

BOTTOM REINFORCEMENTS Temp steel reinforcement ratio

[ACI 318 7.12.2]

ρ temp := 0.0018 ρ min := ρ temp

Minimum steel reinf ratio

[ACI 318 10.5.4]

ρ min = 0.0018 Bars in X-direction

⎡ ⎣

Mr = ϕf ⋅ As ⋅ fy ⋅ ⎢d s −

Factored resistance

(

)

Mr := max Muneg.z , 0.001 kN m

⎛ As ⋅ fy ⎞⎤ ⎜ ⎟⎥ ⎝ 0.85 ⋅ fc ⋅ b ⎠⎦

1 ⋅ 2

Mr = 1004.3 ⋅ kN m

b := B

Size of bar

barx ≡ 6

Bar diameter

dia = 20 ⋅ mm barx

Proposed bar spacing

S x.bot := 200mm

Bar area

As = 314 ⋅ mm barx

Reinforcement provided

As ⋅b barx S x.bot

Area of steel provided

As :=

Distance from extreme compressive fiber to centroid of reinforcing steel

d := T − cov − 0.5 ⋅ dia barx

Solve the quadratic equation for the area of steel required

Given

As = 9420 ⋅ mm

2

d = 415 ⋅ mm

⎡ ⎣

Mr = ϕf ⋅ As ⋅ fy ⋅ ⎢d −

( )

As.reqd := Find As

1 ⋅ 2

⎛ As ⋅ fy ⎞⎤ ⎜ ⎟⎥ ⎝ 0.85 ⋅ fc ⋅ b ⎠⎦

As.reqd = 6638 ⋅ mm

Minimum reinforcement

As.min := min⎛⎜ρ min b d ,

Temperature reinforcement

As.temp := ρ temp b

Reinforcing steel required

As.reqd := max As.reqd , As.min , As.temp

Check As provided

As >=? As.reqd = "YES!.. SATISFACTORY"



(

2

4 As.reqd⎟⎞ 3 ⎠

As.min = 4482 ⋅ mm

T 2

2

2

As.temp = 2700 ⋅ mm

)

As.reqd = 6638 ⋅ mm

2

2

Bars in Z-direction

Footing F-4.xmcd

LNT - Page 33 of 41

Calculation Sheet ⎡ ⎣

Mr = ϕf ⋅ As ⋅ fy ⋅ ⎢d s −

Factored resistance

(

)

Mr := max Muneg.x , 0.001 kN m

1 2



⎛ As ⋅ fy ⎞⎤ ⎜ ⎟⎥ ⎝ 0.85 ⋅ fc ⋅ b ⎠⎦

Mr = 276.5 ⋅ kN m

b := L

Size of bar

barz ≡ 6

Bar diameter

dia = 20 ⋅ mm barz

Proposed bar spacing

S z.bot := 200mm

Bar area

As = 314 ⋅ mm barz

Reinforcement provided

As ⋅b barz

Area of steel provided

As :=

Distance from extreme compressive fiber to centroid of reinforcing steel

d := T − cov − dia − 0.5 dia barx barz

Solve the quadratic equation for the area of steel required

Given

As = 7850 ⋅ mm

S z.bot

2

d = 395 ⋅ mm

⎡ ⎣

Mr = ϕf ⋅ As ⋅ fy ⋅ ⎢d −

( )

As.reqd := Find As

G.3

2

1 2



⎛ As ⋅ fy ⎞⎤ ⎜ ⎟⎥ ⎝ 0.85 ⋅ fc ⋅ b ⎠⎦

As.reqd = 1893 ⋅ mm

⎛ ⎝

4

⎞ ⎠

Minimum reinforcement

As.min := min⎜ρ min b d ,

Temperature reinforcement

As.temp := ρ temp b

Reinforcing steel required

As.reqd := max As.reqd , As.min , As.temp

Check As provided

As >=? As.reqd = "YES!.. SATISFACTORY"

3

As.reqd⎟

As.min = 2525 ⋅ mm

T

2

2

As.temp = 2250 ⋅ mm

2

(

)

As.reqd = 2525 ⋅ mm

2

2

TOP REINFORCEMENTS Bars in X-direction

⎡ ⎣

Mr = ϕf ⋅ As ⋅ fy ⋅ ⎢d s −

Factored resistance

(

)

Mr := max Mupos.z , 0.001 kN m

1 2



⎛ As ⋅ fy ⎞⎤ ⎜ ⎟⎥ ⎝ 0.85 ⋅ fc ⋅ b ⎠⎦

Mr = 0.0 ⋅ kN m

b := B

Size of bar

barx.top := 5

Bar diameter

dia = 16 ⋅ mm barx.top

Proposed bar spacing

S x.top := 300mm

Bar area

As = 201 ⋅ mm barx.top

Reinforcement provided

As ⋅b barx.top

Area of steel provided

As :=

Distance from extreme compressive fiber to centroid of reinforcing steel

d := T − cov − 0.5 dia barx.top

Solve the quadratic equation for the area of steel required

Given

As = 4020 ⋅ mm

S x.top

⎡ ⎣

( )

As.reqd := Find As

Footing F-4.xmcd

1 2



⎛ As ⋅ fy ⎞⎤ ⎜ ⎟⎥ ⎝ 0.85 ⋅ fc ⋅ b ⎠⎦

As.reqd = 0 ⋅ mm 4

⎞ ⎠

Minimum reinforcement

As.min := min⎜ρ min b d ,

Temperature reinforcement

As.temp := ρ temp b

Reinforcing steel required

As.reqd := max As.reqd , As.min , As.temp

(

2

d = 417 ⋅ mm

Mr = ϕf ⋅ As ⋅ fy ⋅ ⎢d −

⎛ ⎝

3

2

As.reqd⎟

As.min = 0 ⋅ mm

T

2

2

As.temp = 2700 ⋅ mm

2

)

As.reqd = 2700 ⋅ mm

2

2

LNT - Page 34 of 41

Calculation Sheet Check As provided

As >=? As.reqd = "YES!.. SATISFACTORY"

Bars in Z-direction

⎡ ⎣

Mr = ϕf ⋅ As ⋅ fy ⋅ ⎢d s −

Factored resistance

(

)

Mr := max Mupos.x , 0.001 kN m

1 ⋅ 2

⎛ As ⋅ fy ⎞⎤ ⎜ ⎟⎥ ⎝ 0.85 ⋅ fc ⋅ b ⎠⎦

Mr = 34.1 ⋅ kN m

b := L

Size of bar

barz.top := 5

Bar diameter

dia = 16 ⋅ mm barz.top

Proposed bar spacing

S z.top := 300mm

Bar area

As = 201 ⋅ mm barz.top

Reinforcement provided

As ⋅b barz.top S z.top

Area of steel provided

As :=

Distance from extreme compressive fiber to centroid of reinforcing steel

d := T − cov − dia − 0.5 dia barx.top barz.top

Solve the quadratic equation for the area of steel required

Given

As = 3350 ⋅ mm

⎡ ⎣

( )

H.

2

d = 401 ⋅ mm

Mr = ϕf ⋅ As ⋅ fy ⋅ ⎢d −

As.reqd := Find As

1 ⋅ 2

⎛ As ⋅ fy ⎞⎤ ⎜ ⎟⎥ ⎝ 0.85 ⋅ fc ⋅ b ⎠⎦

As.reqd = 228 ⋅ mm

Minimum reinforcement

As.min := min⎛⎜ρ min b d ,

Temperature reinforcement

As.temp := ρ temp b

Reinforcing steel required

As.reqd := max As.reqd , As.min , As.temp

Check As provided

As >=? As.reqd = "YES!.. SATISFACTORY"



4 As.reqd⎟⎞ 3 ⎠

As.min = 304 ⋅ mm

T 2

(

2

2

As.temp = 2250 ⋅ mm

)

2

As.reqd = 2250 ⋅ mm

2

2

SUMMARY/DETAILS

PLAN REINFORCEMENTS



⎛ diabarx ⎞ ⎞ ⎟ , "mmØ at " , num2str⎛⎜ S x.bot ⎞⎟ , "mm O.C." ⎟ ⎝ mm ⎠ ⎝ mm ⎠ ⎠

Bot_BarsParallel.L := concat⎜num2str⎜





Top_Bars Parallel.L :=

⎛ diabarx.top ⎞ ⎞ ⎟ , "mmØ at " , num2str⎛⎜ S x.top ⎞⎟ , "mm O.C." ⎟ ⎝ mm ⎠ ⎝ mm ⎠ ⎠

concat⎜num2str⎜



if S x.top ≠ 0mm

"Rebars Not Required" otherwise



⎛ diabarz ⎞ ⎞ ⎟ , "mmØ at " , num2str⎛⎜ S z.bot ⎞⎟ , "mm O.C." ⎟ ⎝ mm ⎠ ⎝ mm ⎠ ⎠

Bot_BarsParallel.B := concat⎜num2str⎜



Footing F-4.xmcd

LNT - Page 35 of 41

Calculation Sheet



Top_Bars Parallel.B :=

⎛ diabarz.top ⎞ ⎞ ⎟ , "mmØ at " , num2str⎛⎜ S z.top ⎟⎞ , "mm O.C." ⎟ ⎝ mm ⎠ ⎝ mm ⎠ ⎠

concat⎜num2str⎜



if S z.top ≠ 0mm

"Rebars Not Required" otherwise

Center lines:

⎛ 0m ⎞ y1 := ⎜ ⎟ ⎝ 0m ⎠

⎛ − Scale ⋅ 2 ⋅ max ( L , B) ⎜ 2 x1 := ⎜ 1.2 ⋅ L ⎜ 2 ⎝

⎛ 1.2 ⋅ B ⎞ ⎜ 2 ⎟ y2 := ⎜ ⎟ ⎜ − 1.2 ⋅ B ⎟ 2 ⎠ ⎝

x2 :=

Footing:

⎛ −L ⎞ ⎜ 2 ⎟ ⎜ ⎟ ⎜ L ⎟ ⎜ 2 ⎟ ⎜ L ⎟ xf := ⎜ ⎟ ⎜ 2 ⎟ ⎜ −L ⎟ ⎜ 2 ⎟ ⎜ −L ⎟ ⎜ ⎟ ⎝ 2 ⎠

⎛ −B ⎞ ⎜ 2 ⎟ ⎜ ⎟ ⎜ −B ⎟ ⎜ 2 ⎟ ⎜ B ⎟ yf := ⎜ ⎟ ⎜ 2 ⎟ ⎜ B ⎟ ⎜ 2 ⎟ ⎜ −B ⎟ ⎜ ⎟ ⎝ 2 ⎠

Rebars:

⎛ − L − 2cov ⎞ ⎜ ⎟ 2 x1rebar := ⎜ ⎟ ⎜ L − 2cov ⎟ 2 ⎝ ⎠

⎛ − B − 2cov ⎞ ⎜ ⎟ 2 y2rebar := ⎜ ⎟ ⎜ B − 2cov ⎟ 2 ⎝ ⎠

⎛ B − 2cov ⎞ ⎜ 4 ⎟ y1rebar := ⎜ ⎟ ⎜ B − 2cov ⎟ ⎝ 4 ⎠

⎛ L − 2cov ⎞ ⎜ 4 ⎟ x2rebar := ⎜ ⎟ ⎜ L − 2cov ⎟ ⎝ 4 ⎠

Footing F-4.xmcd

⎛ 0m ⎞ ⎜ ⎟ ⎝ 0m ⎠

⎞ ⎟ ⎟ ⎟ ⎠

⎛ − B − 2cov ⎞ ⎜ ⎟ 5 y3 := ⎜ ⎟ ⎜ − down ⋅ m ⎟ ⎝ − down ⋅ m ⎠

⎛ B − 2cov ⎞ ⎜ 4 ⎟ y4 := ⎜ ⎟ ⎜ up ⋅ m ⎟ ⎝ up ⋅ m ⎠

LNT - Page 36 of 41

Calculation Sheet

Columns/pedestal:

⎛ ⎜ Xp − ⎜ n ⎜ ⎜ Xp + ⎜ n ⎜ xp ( n ) := ⎜ X p + ⎜ n ⎜ ⎜ Xp − ⎜ n ⎜ ⎜ Xp − ⎝ n

⎞ ⎟ 2 ⎟ Lpx ⎟ n⎟ 2 ⎟ Lpx ⎟ n ⎟ 2 ⎟ Lpx ⎟ n⎟ 2 ⎟ Lpx ⎟ n ⎟ 2 ⎠ Lpx n

⎛ ⎜ Zp − ⎜ n ⎜ ⎜ Zp − ⎜ n ⎜ yp ( n ) := ⎜ Z p + ⎜ n ⎜ ⎜ Zp + ⎜ n ⎜ ⎜ Zp − ⎝ n

⎞ ⎟ ⎟ Lpz ⎟ n⎟ 2 ⎟ Lpz ⎟ n ⎟ 2 ⎟ Lpz ⎟ n⎟ 2 ⎟ Lpz ⎟ n ⎟ 2 ⎠

Lpz n 2

PLAN REINFORCEMENTS

L = 5.000 m

BARS PARALLEL TO 'L'

cL X-Axis

B = 6.000 m

BARS PARALLEL TO 'B'

Footing F-4.xmcd

LNT - Page 37 of 41

Calculation Sheet

cL Z-Axis

SUMMARY OF REINFORCEMENTS: Bot_BarsParallel.L = "20mmØ at 200mm O.C."

Bot_BarsParallel.B = "20mmØ at 200mm O.C."

Top_Bars Parallel.L = "16mmØ at 300mm O.C."

Top_Bars Parallel.B = "16mmØ at 300mm O.C."

FOOTING DIMENSIONS:

L = 5.000 m

B = 6.000 m

T = 0.500 m

ELEVATION ALONG X-AXIS

T − ⎛cov + dia + 1⋅ barx ⎝

Center lines:

Footing F-4.xmcd

y1 :=

⎛ 0m ⎞ ⎜ ⎟ ⎝ 0m ⎠

⎛ − 1.2 ⋅ L ⎞ ⎜ 2 ⎟ x1 := ⎜ ⎟ 1.2 ⋅L ⎟ ⎜ ⎝ 2 ⎠

⎡T − ⎛cov + diabarx + 1 ⋅ diab ⎢ ⎝ ⎢ cov + dia + 1 ⋅ dia barx ba y3 := ⎢ ⎢ − down ⋅ m ⎢ − down ⋅ m ⎣

LNT - Page 38 of 41

Calculation Sheet

⎛ 1.2 ⋅ max ( h + T) ⎞ y2 :=

⎜ ⎜ ⎝



T 2

⎟ ⎟ ⎠

x2 :=

⎛ 0m ⎞ ⎜ ⎟ ⎝ 0m ⎠

Footing:

⎛ −L ⎞ ⎜ 2 ⎟ ⎜ ⎟ ⎜ L ⎟ ⎜ 2 ⎟ ⎜ L ⎟ xf := ⎜ ⎟ ⎜ 2 ⎟ ⎜ −L ⎟ ⎜ 2 ⎟ ⎜ −L ⎟ ⎜ ⎟ ⎝ 2 ⎠

⎛ 0m ⎞ ⎜ ⎟ ⎜ 0m ⎟ yf := ⎜ T ⎟ ⎜T⎟ ⎜ ⎟ ⎝ 0m ⎠

Rebars:

⎛ − L − 2cov ⎞ ⎜ ⎟ 2 x1rebar := ⎜ ⎟ ⎜ L − 2cov ⎟ 2 ⎝ ⎠

y2rebar :=

⎛ cov + 0.5 diabarx ⎞ ⎜ ⎟ y1rebar := ⎜ cov + 0.5 ⋅ dia ⎟ barx ⎠ ⎝

⎛ − L − 2cov ⎞ ⎜ ⎟ 2 x2rebar := ⎜ ⎟ ⎜ L − 2cov ⎟ 2 ⎝ ⎠

⎛ − L − 3cov ⎞ ⎜ ⎟ 2 ⎜ ⎟ ⎜ L − 3cov ⎟ ⎜ 2 ⎟ ⎜ L − 3cov ⎟ x3rebar := ⎜ ⎟ 2 ⎜ ⎟ ⎜ − L − 3cov ⎟ ⎜ ⎟ 2 ⎜ L − 3cov ⎟ ⎜− ⎟ 2 ⎝ ⎠

⎡ ⎛cov + diabarx + 1 ⋅ diabarz⎞ ⎤ ⎠ ⎥ ⎢ ⎝ ⎢ ⎛cov + dia ⎥ + 1 ⋅ dia barx barz⎞⎠ ⎥ ⎢ ⎝ ⎢ ⎥ y3rebar := T − ⎛⎝cov + diabarx + 1 ⋅ diabarz⎞⎠ ⎢ ⎥ ⎢T − ⎛cov + dia ⎥ + 1 ⋅ dia ⎞ barx barz⎠ ⎥ ⎢ ⎝ ⎢ ⎛cov + dia ⎥ + 1 ⋅ dia barx barz⎞⎠ ⎦ ⎣ ⎝

Footing F-4.xmcd

⎡ cov + 0.5 ⋅ diabarx ⎤ ⎢ ⎥ ⎢T − ⎛cov + 0.5 ⋅ dia ⎞ ⎥ barx⎠ ⎥ y4 := ⎢ ⎝ ⎢ ⎥ up ⋅ m ⎢ ⎥ up ⋅ m ⎣ ⎦

⎡T − ⎛cov + 0.5 ⋅ diabarx⎞ ⎤ ⎠⎥ ⎢ ⎝ ⎢T − ⎛cov + 0.5 ⋅ dia ⎞ ⎥ barx⎠ ⎦ ⎣ ⎝

LNT - Page 39 of 41

Calculation Sheet

Columns/pedestal:

⎛ ⎜ Xp − ⎜ n ⎜ ⎜ Xp + ⎜ n ⎜ xp ( n ) := ⎜ X p + ⎜ n ⎜ ⎜ Xp − ⎜ n ⎜ ⎜ Xp − ⎝ n

⎞ ⎟ 2 ⎟ Lpx ⎟ n⎟ 2 ⎟ Lpx ⎟ n ⎟ 2 ⎟ Lpx ⎟ n⎟ 2 ⎟ Lpx ⎟ n ⎟ 2 ⎠ Lpx n

⎛ T ⎞ ⎜ ⎟ ⎜ T ⎟ ⎜ T + hn ⎟ yp ( n ) := ⎜ ⎟ ⎜ T + hn ⎟ ⎜ ⎟ ⎝ T ⎠

ELEVATION ALONG X-AXIS

BARS PARALLEL TO 'L'

T = 0.500 m

BARS PARALLEL TO 'B' L = 5.000 m

Footing F-4.xmcd

LNT - Page 40 of 41

Calculation Sheet

END OF FTG DESIGN

Footing F-4.xmcd

LNT - Page 41 of 41

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF