Materials Data Book
February 3, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Materials Data Book...
Description
1
Materials Data Book
2003 Edition
Cambridge University Engineering Department
2
PHYSICAL CONSTANTS IN SI UNITS Absolute zero of temperature Acceleration due to gravity, g Avogadro’s number, N
– 273.15 °C 9. 807 m/s2 6.022x1026 /kmol
Base of natural logarithms, e Boltzmann’s constant, k Faraday’s constant, F Universal Gas constant, R Permeability of vacuum, µo Permittivity of vacuum, εo Planck’s constant, h Velocity of light in vacuum, c Volume of perfect gas at STP
2.718 1.381 x 10 –26 kJ/K 9.648 x 107 C/kmol 8.3143 kJ/kmol K 1.257 x 10 –6 H/m 8.854 x 10 –12 F/m 6.626 x 10 –37 kJ/s 2.998 x 108 m/s 22.41 m3/kmol
CONVERSION OF UNITS Angle, θ Energy, U Force, F Length, l Mass, M Power, P Stress, σ Specific Heat, Cp Stress Intensity, K Temperature, T Thermal Conductivity, λ Volume, V Viscosity, η
1 rad See inside back cover 1 kgf 1 lbf 1 ft 1 inch 1Å 1 tonne 1 lb
9.807 N 4.448 N 304.8 mm 25.40 mm 0.1 nm 1000 kg 0.454 kg
See inside back cover See inside back cover 1 cal/g.°C 1 ksi in 1 °F 1 cal/s.cm.oC 1 Imperial gall 1 US gall 1 poise 1 lb ft.s
4.188 kJ/kg.K 1.10 MPa m 0.556 K 4.18 W/m.K 4.546 x 10 –3 m3 3.785 x 10 –3 m3 0.1 N.s/m2 0.1517 N.s/m2
57.30 °
1
CONTENTS Page Number Introduction Sources
3 3 I. FORMULAE AND DEFINITIONS
Stress and strain Elastic moduli Stiffness and strength of unidirectional composites Dislocations and plastic flow Fast fracture Statistics of fracture Fatigue 7 Creep Diffusion Heat flow
4 4 5 5 6 6 7 8 8
II. PHYSICAL AND MECHANICAL PRO PROPERTIES PERTIES OF MATERIALS
Melting temperature Density Young’s modulus Yield stress and tensile strength Fracture toughness Environmental resistance Uniaxial tensile response of selected metals and polymers
9 10 11 12 13 14 15
III. MATERIAL PROPERTY CHARTS
Young’s modulus versus density Strength versus density Young’s modulus versus strength Fracture toughness versus strength
16 17 18 19
Maximum service temperature Material price (per kg)
20 21
IV. PROCESS ATTRIBUTE CHARTS
Material-process compatibility matrix (shaping) Mass Section thickness Surface roughness Dimensional tolerance Economic batch size
22 23 23 24 24 25
2 V. CLASSIFICATION A AND ND APPLICATIONS OF ENGINEERING MATERIALS
Metals: ferrous alloys, non-ferrous alloys Polymers and foams Composites, ceramics, glasses and natural materials
26 27 28
VI. EQUILIBRIUM (PHASE) DIAGRAMS
Copper – Nickel Lead – Tin Iron – Carbon Aluminium – Copper Aluminium – Silicon Copper – Zinc Copper – Tin Titanium-Aluminium Silica – Alumina
29 29 30 30 31 31 32 32 33
VII. HEAT TREATMENT OF ST STEELS EELS
TTT diagrams and Jominy end-quench hardenability curves for steels VIII. PHYSICAL PR PROPERTIES OPERTIES OF SELECTED ELEMENTS
Atomic properties of selected elements Oxidation properties of selected elements
34
36 37
3
INTRODUCTION The data and information in this booklet have been collected for use in the Materials Courses in Part I of the Engineering Tripos (as well as in Part II, and the Manufacturing Engineering Tripos). Numerical data are presented in tabulated and and graphical form, and a summary summary of useful formulae is included. A list of sources from which the data have been prepared is given below. below. Tabulated material and process data or information are from the Cambridge Engineering Selector (CES) software (Educational database of Granta are reproduced by permission; the same dataLevel source2), wascopyright used for the materialDesign propertyLtd, and and process attribute charts. It must be realised that many material properties (such as toughness) vary between wide limits depending on composition an andd previous treatme treatment. nt. Any final des design ign should bbee based on manufacturers’ or suppliers’ data for the material in question, and not on the data given here.
SOURCES Cambridge Engineering Selector software (CES 4.1), 2003, Granta Design Limited, Rustat House, 62 Clifton Rd, Cambridge, CB1 7EG M F Ashby, Materials Selection in Mechanical Design, 1999, Butterworth Heinemann M F Ashby and D R H Jones, Engineering Materials, Vol. 1, 1996, Butterworth Heinemann M F Ashby and D R H Jones, Engineering Materials, Vol. 2, 1998, Butterworth Heinemann M Hansen, Constitution of Binary Alloys, 1958, McGraw Hill I J Polmear, Light Alloys, 1995, Elsevier C J Smithells, Metals Reference Book, 6th Ed., 1984, Butterworths Transformation Characteristics of Nickel Steels, 1952, International Nickel
4
I. FORMULAE AND DEFINITIONS STRESS AND STRAIN σ t =
F A
σ n =
F Ao
l o
ε t = ln
l
ε n =
F = normal component of force
σ t = true stress
Ao = initial area
σ n = nominal stress
A = current area
ε t = true strain
l o =
ε n = nominal strain
initial length l = current length
Poisson’s ratio,
ν = −
l−lo lo
lateral strain longitudinal strain
Young’s modulus E = initial slope of σ t − ε t curve = initial slope of σ n − ε n curve. Yield stress σ y is the nominal stress at the limit of elasticity in a tensile test. Tensile strength σ ts is the nominal stress aatt maximum load in a tensile test. Tensile ductility ε f is the nom nominal inal plastic strain aatt failure in a tensile test. The gauge length of
the specimen should also be quoted. ELASTIC MODULI G=
E
2 (1 +ν )
K =
E
3 (1 − 2ν )
For polycrystalline solids, as a rough guide, Poisson’s Ratio
ν ≈
1 3
Shear Modulus
G≈
3 E 8
Bulk Modulus
K ≈ E
These approximations break down for rubber and porous solids.
5 STIFFNESS AND STRENGTH OF UNIDIRECTIONAL COMPOSITES E II = V f E f + ( 1 − V f ) E m
−1
V f 1 − V f E ⊥ = + E f E m f σ ts = V f σ f + ( 1 − V f ) σ ym
E II = composite modulus parallel to fibres (up (upper per bou bound) nd) E ⊥ = composite m modulus odulus transverse to fibres (lower bound) bound) V f = volume fraction of fibres E f = Young’s modulus of fibres E m = Young’s modulus of matrix
σ ts
= tensile strength of composite parallel to fibres
f σ f = fracture strength of fibres
σ ym = yield sstress tress of matrix
DISLOCATIONS AND PLASTIC FLOW
The force per unit length F on a dislocation, of Burger’s vector b , due to a remote shear stress τ , is F = τ b . The shear stress τ y required to move a dislocation on a single slip plane is τ y =
c T b L
where T = line tension (about 1 G b 2 , where G is the shear modulus) 2
L = inter-obstacle distance c = constant ( c ≈ 2 for strong obstacles, c < 2 for weak obstacles)
The shear yield stress k of a polycrystalline solid is related to the shear stress τ y required to move a dislocation on a single slip plane: k ≈ 32 τ y . The uniaxial yield stress σ y of a polycrystalline solid is approximately σ y = 2 k , where k is the shear yield stress. Hardness H (in MPa) is given approximately by: H ≈ 3 σ y . Vickers Hardness HV is given in kgf/mm2, i.e. HV = H / g , where g is the acceleration due
to gravity.
6 FAST FRACTURE
The stress intensity factor, K :
K = Y σ π a
Fast fracture occurs when K = K IC In plane strain, the relationship between stress intensity factor K and strain energy release rate G is: K =
EG ≈ E G (as ν 2 ≈ 0.1 ) 1 − ν 2 E G IC ≈ E G IC 2 1 − ν
Plane strain fracture toughness and toughness are thus related by: K IC = 2 K IC “Process zone size” at crack tip given approximately by: r p = 2 π σ f
Note that K IC (and GIC ) are only valid when conditions for linear elastic fracture mechanics apply (typically the crack length and specimen dimensions must be at least 50 times the process zone size). In the above: tress σ = remote tensile sstress a = crack length Y = dimensionless constant dependent on geometry; typically Y ≈ 1 K IC = plane strain fracture toughness; GIC = critical strain energy rele release ase rate, or toughness; toughness; E = Young’s modulus E ν = Poisson’s ratio σ f = failure strength STATISTICS OF FRACTURE
Weibull distribution, P s (V) = exp
∫
σ − V σ o
m
V o dV
σ m V For constant stress: P s (V) = exp − σ V o o P s = survival probability of component V = volume of component σ = tensile stress on component V o = volume of test sample
σ o = reference failure stress for volume Vo , which gives P s = 1 e = 0.37 m = Weibull modulus
7 FATIGUE
Basquin’s Law (high cycle fatigue): α ∆σ N f = C 1
Coffin-Manson Law (low cycle fatigue): pl
∆ε
β f N f
= C 2
Goodman’s Rule. For the same fatigue life, a stress range ∆σ operating with a mean stress σ m , is equivalent to a stress range ∆σ o and zero mean stress, according to the relationship:
∆σ = ∆σ o 1 −
σ m
σ ts
Miner’s Rule for cumulative damage (for i loading blocks, each of constant stress amplitude and duration N i cycles):
∑
N i
i
N fi
= 1
Paris’ crack growth law: d a d N
= A ∆ K n
In the above: ∆σ = stress range; ∆ε pl = plastic strain range; ∆ K = tensile stress intensity range; N = cycles; N f = cycles to failure; α , β , C 1 , C 2 , A , n = constants;
a = crack length; σ ts = tensile strength. CREEP
Power law creep:
ε & ss = A σ n exp ( − Q / RT )
ε & ss = steady-state strain-rate Q = activation energy (kJ/kmol) R = universal gas constant T = absolute temperature A , n = constants
8 DIFFUSION
Diffusion coefficient: D = Do ex p ( − Q / RT ) Fick’s diffusion equations:
J = − D
dC dx
∂ C ∂ 2 C = D 2 ∂ t ∂ x
and
C = concentration
J = diffusive flux
= distance t = time
D = diffusion coefficient (m2/s) Do = pre-exponential factor (m2/s)
Q = activation energy (kJ/kmol)
HEAT FLOW
Steady-state 1D heat flow (Fourier’s Law):
q = − λ
dT dx
∂ T ∂ 2T =a 2 ∂ t x ∂
Transient 1D heat flow:
T = temperature (K)
λ = thermal conductivity (W/m.K)
2
2
q = heat flux per ssecond, econd, per uunit nit area (W/m .s)
a = thermal diffusivity (m /s) For many 1D problems of diffusion and heat flow, the solution for concentration or temperature depends on the error function, erf : x or 2 D t
C ( x , t ) = f erf
x 2 a t
T ( x , t ) = f erf
A characteristic diffusion distance in all problems is given by x ≈ D t , with the corresponding characteristic heat flow distance in thermal problems being x ≈
a t .
The error function, and its first derivative, are: erf ( X ) =
2
X
π
0 exp − y
∫
2
d
2
( ) dy
and
dX [ erf ( X )] =
2
π exp − X
(
)
The error function integral has no closed form solution – values are given in the Table below. X
erf ( X ) X erf ( X )
0 0
0.1 0.11
0.2 0.22
00.3 .3 0.33
0.4 0.43
0.5 0.52
0.6 0.60
0.7 0.68
0.9 0.80
1.0 0.84
1.1 0.88 0.88
1.2 0.91
1.3 0.93
1.4 0.95
1.5 0.97
∞ 1.0
0.8 0.74
) m / g M (
3
ρ
5 2 5 4 3 5 5 1 6 4 1 2 6 2 3 1 5 4 8 2 9 . 9 . 9 . 9 . 2 . 2 . 8 . 3 . 9 . 1 . 2 . 4 . 9 . 3 . 2 . 9 . 0 . 2 . 5 . 4 . . 3 . 2 . 4 . 2 . 4 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 2 1 1 1
5 5 5 3 7 1 7 6 7 0 . . 1 . 1 . 4 . 0 . 0 0 0 0 0 0 0
- - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - -
9 2 3 2 3 3 2 4 3 6 9 9 4 2 3 4 4 . 5 3 . 1 8 . 9 9 . 4 1 9 2 . 9 . 0 . 2 . 1 . 1 3 . 1 . 8 . 0 . 1 . 1 1 . 2 . 1 0 4 . 1 0 . 9 . 9 . 1 . 3 . 0 . 9 9 . 0 0 1 1 1 0 0 1 1 . 1 1 1 0 1 1 2 1 1 1 0 0
6 8 7 6 8 7 1 1 3 0 . . 3 7 0 . 0 . 0 0 . 0 . 0 0 0 0 0
) U P ) p t U ( P s l c e i ( t s s ) a r l A e p C o ) m ( o ) ) r m R t s r s r C ) s P N e ) ( l a e e P E P h ( P ) ( S m m r ) E o T ( ) e R t l A ) e P y e r ) b e s o ) t E n ( e e M C a e I M b n R n a P ) e e a F l n n l b ( u ( A I a M n O T s r e ( y o l P b e R e e r P e h t E p r t P c t ( b y ( P e u n l n h s ( s i ( r e e o e e h e y r l r t r n l o s a t i e l R e a s c r u o i n r K a l n l c e y t p s u o x n e r u p y o l u m y A p y T r e l y l y l y C l o e l y o y E l o l c S l t o l i t l n y l e a e u V o o i B o E o E c c o o o V f e p h o s N N P S A C I o N P P P P A A P P P P T E P P B E I
) ) D ) L D D ) ) ) D L ( M V ( ( D D H L ( M m m m ( ( a a a o o o m m m F F F a a a r r r o o o e e e F F F r m y m r r m y e e y l e l l m y m m y o o o y l l P P P l o o o e l e P P P e l l b b b i d i d i i d x i x x i g g i g i e l e i e l l F F F R R R
t r c s i e e t s s m m o o a a l 1 t o m p s r F o s a e r r l e E e m r h T e m m h y y l l T
, Y T I S N E D
o P
o P
. V n o i t c e S e e s – s r e m y l o p f o s m y n o r c a d n a s e m a n l l u f r o F 1
2 . I I ) m / g M (
3
ρ
4 4 5 . 5 5 2 . 1 9 . 9 . 1 . 9 . 9 . 9 . 9 . 9 . . 8 . 9 7 7 7 7 7 8 2 8 1 1 8 4 7
2 9 8 3 5 5 1 9 9 . 3 . 2 . 1 . 3 . 6 . 9 . 8 . 2 . 5 . 4 . 2 . 3 . 5 2 2 2 2 2 2 3 3 3 2 2 3 3 1
7 9 . . 9 . 6 2 1 1
4 5 8 . 0 . 8 . 2 . . 8 0 0 1 0 0
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - -
- - - - -
4 3 4 5 8 . 5 . 5 . 6 . 3 0 . 8 . 8 . 8 0 . 7 7 7 7 7 2 9 . . 4 9 . 8 . 1 7
9 3 2 . . 5 . 7 4 . 2 . 5 . 3 3 3 . 2 . 6 5 . 2 5 . 4 . 1 2 2 3 2 2 2 1 . 3
6 5 . 5 6 . . 1 7
6 6 . 2 1 . 6 . . 8 . 0 0 0 1
1
2 1
7
2 2
8 1 8 4
s l e e s s t l s e S l y e n e s l s s y e l o t l t s l o e o S b S e e l y s e l o y A s l r n t t n a A l y s o S o l S m o A s o y m l y u s b y l o i l r C b n a l r l u A o o s l l s s A m i r o l a l m r e n l A e u e I C i i A u C A l n e i t h d n m p n c g k p d s g e w w i a a c a u n t a a i o o t l o e i i i N T Z L L S A C L M C H M
3 2
s e e s l s d d s a i i a l i e c r a i c l b t e d i d e r G m G p i d a N i y b i s e t e a b r r C t s r t r , i a m a a e l n e a i m t c a i u C C N t e i l e i C G L n n n n n - c r e i i n o o o s s s a a k s o o m m r i c g c d c n n c l c l r a i o l l u o l u l i n i o i r o t i i i i o l u B G S S B C S A A B S S S T
0 0
) l ) a e e n s d i i d r b r u e t a i v g s C n n a n o r o L T c ( ( i l l l i a a S c i c / i p p m y y u t t o i o r , , e d n P P b i d h o k m R m r t o u R F F a o a l e o o W A C G B C L W
l r l s s s s a e a t u e u u c i s o o e m o r r r n s y r r s M l o h a e e l e o i s s P l e c t n F f c G P T i o o a s l N r p m
0 1
a t e M
a r e C
m o C
u t a N
1 1
) a P G ( E
E , S U
L U D O M S ’ G N U O Y 3 . I I
5 2 4 2 2 3 4 6 2 5 0 4 0 0 0 0 2 2 4 9 4 5 4 7 4 5 7 3 1 0 0 9 0 0 4 4 2 1 3 0 0 0 0 2 8 8 5 1 . . . . . . . . . . . . . . . . . . . 5 . 8 . 0 . 4 . 0 0 0 0 0 0 0 2 2 0 3 2 4 0 4 3 5 1 3 2 4 0 3 4 4
1 3 2 0 0 1 8 8 0 . . 4 . 2 . 0 . 0 . 0 0 0 0 0 0 0
- - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - -
1 1 4 5 7 2 5 1 4 5 1 4 4 7 . 6 . 2 . 2 2 5 . 1 6 . 6 8 . 5 6 0 0 0 1 7 0 0 2 . 1 1 . 2 . 3 . 1 . 0 3 . 7 1 0 6 . 3 2 . 2 9 . 0 . 0 0 0 0 6 8 0 . 0 0 . 2 . 2 . 2 1 2 2 2 2 . 2 . 0 . 0 0 0 0 . 0 0 0 0 0 0 ) U P ) p t U ( P s l c e i ( t s s ) a r l A e p C o m ( ) o ) ) m R t s r s r r C ) s P N ) e ( l a e e P ( E ( S h ) P r ) E m m P T ) o e R t l y e ( A ) e P ( e E r ) b e s o ) t n e M C a e I M b ( n l a P ) e e n n M l b R I A n u a E a F O y n h T s r e o l b ( h P e ( P e R e P P t p t c t r ( b y n e u e ( r s ( s i l r e l e o e e y r ( i l r t o e s a h r n l t e R n s a c r o e i n r a p s u o x n e l m n c K e l r u p u o l u o t y A p y i y E l y T y y l y l y C l o e l y o l c S l t o l t r e l l n l e a e y u V o B o i o E o E c c o o o V f e p h o s o B E I N N P S A C I N P P P P A A P P P P T E P P
3 1 4 3 8 2 . 0 0 0 2 0 . 0 0 0 0 0 0 . . . 0 . 0 0 0 0
) ) D ) D L D ) ) ) M L ( V ( ( D D D M L m m m ( ( ( H a a a o o o m m m F F F a a a r r r o o o e e e F F F r r r m m m y e e e y y l l l m m o o o y m y y l l P P P l o o o e P P P e l e l l b b b i i d i i i i d x x x d g g i g i e i e l e l l F F F R R R
t r c s i e e t s s m m o o a a l 1 t o m p s r F s a o e r r l e E e m r h T e m m h y y l l T o P
o P
. V n o i t c e S e e s – s r e m y l o p f o s m y n o r c a d n a s e m a n l l u f r o F 1
) a P G (
0 0 0 5 6 5 7 0 8 8 1 1 1 1 1 2 4 5 7 2 2 5 1 2 2 2 2 2 8 1 1 4 2 1 9
3 8 2 5 0 0 0 0 4 1 4 2 0 8 1 1 4 7 5 6 1 2 6 1 7 7 5 3 2 4 3 4 1 4 3 7
0 0 0 5 8 1 1 2
5 0 0 . 5 . 0 2 0 0 2 3
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - -
- - - - -
E
0 0 8 5 0 0 0 1 9 8 2 5 . 2 6 0 0 0 0 8 6 1 2 4 9 9 6 1 2 2 2 2 1 1 1 1
2 0 0 0 0 0 1 4 8 8 0 5 9 . 5 1 0 0 4 0 8 0 6 6 6 6 1 2 6 2 3 4 1 3 2 6
1 9 5 8 6 1
5 3 1 . 6 5 . 1 1 0 0 0 0 .
s l e e s s t l s e S l e s s y e s y e l l t n t o s l o s l o S e e l S b l y e A e o y t n r n t A o s s l l y a o S S l o s m l y A o s b m y u l y s u l o i r C b A l n a r l o o l l s s i m A o r l a l m r e n l e A u e n e i A I C i l i u C A t h d n m p d g k n c s g e w w i a n c t a l u p a i o a i i o o t e a i N T Z L L S A C L M C H M
s e e s l s d d a i i a c s l r e c a b t l i e d e r i d G i i d a p m s G t N i y b e b r i r C a t r s e , r a t i m a a a n e e l m c u C t N i a i C e i C G L l e i i n i n n n n n t r - c s s s a a e o o o k o c i s i o m m r c l c g c d c n n r a n o l u o i l l u l i l i i i u r o t o l i o i B G S S B C S A A B S S S T
) l ) a e e n s d i i d r b r u e t a i v g s C n n r a n o o L T c ( ( i l l l i a a c S c / i i p p y m y t u o r t i o , , n e i P P b h d d t k o o m R R r u F F m l a o a e o o A C G B C L W W
l l r s s s s a e a t u e u u c i s o o e m o r r r n s y r r s M l o h a e e l e o i s e c t F f n i s P l c G P T o o a s l N p r m a t e M
a r e C
m o C
u t a N
3 1
) m √ a P M ( C I
K
9 1 2 5 9 2 4 9 0 . . 0 . 0 . 0 . 0 . 0 0 0 0 0 0 0
- - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - -
7 5 1 1 4 2 1 5 2 4 . 2 . 7 5 . 3 9 . 3 4 . 7 . 1 3 7 . 4 6 . 9 9 0 . 1 . 0 0 0 . 2 . 0 8 . 4 . 3 . 0 7 . 0 0 . 1 . 1 . 2 7 . 4 . 4 0 7 . 0 . 0 0 0 1 1 1 1 0 1 0 1 1 2 2 1
5 5 3 2 7 4 2 0 1 0 . 0 0 0 . . 0 . 0 . 0 0 . 0 0 0 0 0 0
) U P ) p t U ( P s l c e i ( t s s ) a r l A e p C o m ( ) o ) s ) m R t r s r r C ) s e e P ) e N ( l a P E P h ( P ) ( m m r ) o T ( A ) e S e R E t y e P l t ( e ) r ) b e E s n e o M C ) a e R b ( n l M a P I F e e n ) A n n M l b I u a a ( n O T s r e ( y o e l E b e R n t h P h e P e P P p t c t r ( b y ( ( r e u n l s e ( s i r e e o e h e y l r n l o s a t i e l R e a c a r t r n i r u o s r p K l n l m c e p s u e r o x n u o o y E y T y t y y y C l o o e l u o l y A p t y i y c S l l l l t r e l l l f l n l e a e y u V o o B i o E o E c c o o o V p h o e s N N P S A C I o N P P P P A A P P P P T E P P B E I
C I
K , ) N I A R T S E N A L P ( S S E N H G U O T E R U T C A R F 5 . I I
5 0 3 2 0 0 2 7 2 2 1 0 1 . 7 . 1 . 2 . 3 . 4 . 5 . 5 . 6 . 6 . 3 . 7 . 5 . 6 . 2 . 5 . 1 . 9 . 1 . 8 . 2 . 2 . 7 . . 3 . 4 0 0 0 0 0 0 0 4 2 3 5 4 4 1 5 1 4 4 1 4 5 1 2 1 1
) ) D ) D L D ) ) ) M L ( V ( ( D D D H M L ( m m m ( ( a a a o o o m m m F F F a a a r r r o o o e e e F F F r m r r m y m y e e y l e l l m y m m y o o o y l l P P P l o o o e P P P e l e l l b b b i d i i d i i d x x x i g g i g i e i e l e l l F F F R R R
t r c s i e e t s s m m o o a a l 1 t o m p s r F o s a e r r l e E e m r h T e m m h y y l l T o P
) m √ a P M ( C I
o P
s e c b i n a y a h c m e , . C ) m I 1 . . e r G 0 u , V t s s ≈ n c a e 2 o r i n t f h ν c c g s e i t u a S s o ( a T e l e C s e n I r a – a r G e i s t E r n e i l S ≈ m f e ) n y o l a 2 o s l ν P p n f i o . − ) o t s 1 ( s i d n / o m n C i y o t I n c i n G o r i r f o c f e E a D = d d i l C n a & 2 I a v e s a K e l y l m m n u o a o m r n r f o l C F d l I e u K : I f r e . t a o t m e i F o e t s N ( s e 1
0 0 0 0 0 4 2 2 2 0 8 5 0 5 8 1 2 0 5 9 9 8 2 2 3 9 1 1 1 1 1
5 4 7 8 . 7 . 8 . 4 . 8 . 5 . 9 . 4 . . 7 . 5 . 0 1 0 0 2 0 1 4 3 3 0 5 6 3
4 8 3 2 8 2
1 8 . . 7 0 5 9 0
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - -
- - - - -
2 7 2 1 4 2 2 0 5 2 0 4 0 2 2 1 4 1 6 2 3 1 8 1 1
5 7 . 4 . 5 1 5 . 6 . 3 . 5 . 3 5 . 5 . 4 2 0 1 0 5 . 3 . 0 3 2 2 8 . 2 0 0 0
5 1 . 7 1 6
5 5 3 5 5 . 0 . 0 0
K
s l e e s s l t s e S l y e n e s l s s y e l o t l t s l o o S e e l S b y s e t e l o y A s l n r n t A l y o s a o o S S l m o A s l y u s b m y y s u l o i l r C b A l n a r o o l l s s A m i l r A e o l a l e n e m r u A I C i i p n l i u C A l e t h d n m p d g k n c s g e w w i a n a l c t u o a a i i i e a i o o t L L S A C L M N T Z C H M
s e e s l s d d s a i i a c a l e c r l i t e d e b r i d G i p a i i m s G t d N y b i e b r r C t a e s r t r a , a i m a a C N n e l i e a i m t c C u C i e l G L e i i n n n n t r i s s s a a k c e n n o o o o s i o c i m m r c d i c l c g r a c n n o l l u l u o i l o l i o r o t i l i i i n u B G S S B C S A A B S S S T
) l ) a e e n s d i i r d b e r u v t a i s g n C n r n o a o L T c ( ( i l l l i a a S c c i / i p p y m y t u o r t i , , o n P P b e d d i h t k o o m R m r o o u R F F a o a l e W A C G B C L W
l l r s s s s a a e e u u u t c i s o o o e m r r r s n y r r s M l o a h e e l e o s i n i F f e c t s P l c G P T o o a s l N m r p a t e M
a r e C
m o C
u t a N
e c n a t s i s e r r a e W
B B B B B B B D C C C C C C C C B C D C C B C C C D E
) V U ( t h g i l n u S
B B B B B B B C B B C B A D B A C D C B A B B A A C B
r e t a w t l a S
A A A A A A A A A A A A A A A A A A A A A A A A A A A
r e t a w h s e r F
A A A A A A A A A A A A A A A A A A A A A A A A A A A
y t i l i b a m m a l F
E E E E E E B D D D C B B D D D D D D C A A B B D E C
) U P ) p t U ( P l s e c ( i t s s r ) a s l e A p m s m C o ) t a ( o ) ) o m m R s s r s r r C ) F a P e N a e ) o ( l m e r P E P ( P ) ( S h e F r ) E o m T ( ) e A r y e P e t R ) n ( e E m r ) C e s l y e e M o ) t l e I b M b ( n l a P F e e n n M ) A a n l o m b R I u a a ( e P O y n h T s r P y o l E e ( l b e R e h P e t P p r c y ( P ( r b e o u n l n t i ( ( s s t r e l e e e o e h e y l l s P e o s b o R r n l a c a r t r n i a K t r u e i r p l l n e u e s p m c r i o x n t y y y C l u o o y E l o o e l u o l y A p t i y x d y T y y c S l l t l l f l l r e l g l e i a e o i y o E o E c u V o c o o o V e p h o l i B e n s o B E I N N P S A C I N P P P P A A P P P P T E P P F R t r i c e e t s s s m o a o l m t m p a r s o o a e 1 l h F m s E r T r r e e h e T m m
E C N A T S I S E R L A T N E M N O R I V N E 6 . I I
y l o P
–
y l o
P
. r o o . p V y r n e o v i t c = e S E ; e r e o s o p – s = r e D m ; y e l o g p a r e f o v a s m = y C n ; o r d o c a o d g n = a s B e ; m d o a n o l : g l g u y e n r f r i v o k n F a = 1 R A
e c n a t s i s e r r a e W
A A A A A B C A C C B C E A A B A C A A A B A A A B C C D B B D
) V U ( t h g i l n u S
A A A A A A A A A A A A A A A A A A A A A A A A A A B B B A B B
r e t a w t l a S
C C C C C A B A A D A A C B A A A A A A A B A A A B A A C B B C
r e t a w h s e r F
B B B B B A A A A A A A A B A A A A A A A A A A A A A A C B B C
y t i l i b a m m a l F
A A A A A A B A A A A A A A A A A A A A A A A A A A B B D D D D e d i b r a C n o c i l i S / m u o r i o e n P P b i h d t k o m R R r m u l F F a o a e o A C G B C L W
s l e e n e o s t l t l s s s e S e S e e s y s e n e l , d d s l s s y i t o s i a c s l t e l e r a l o b e o t S b S e e l l e t y s i e d e r G i e l y A s l o a r n t t r N d i i n a m s G c d A o b l i y s e b S o r r l a C S m m t s o e l s r y t o A r s b n y a e l m a a i n y u l l r C b o i n a m o a i r l l u A c C a i o i u C C N e o s s i s A m l o r l l l a l C m G L r i e n A l n n n n n n t e u e I C i i p n e i A s s a - , i i l u C A o o o s t h d a n k d n o s i o i m p a g k a c r m m r c d i c l c i c g s g e w w i c n a a c u l u l u a t n a i o l i o r l l o i l i i i u o o t l o e i i i C H M L L S A C L M N T Z B G S S B A A B S S S T l r s s s s l a a e u u e u t c s o o o i e m r r r n s y r r s M l o h a e e l e o f c P t F i P s G e n s c T l i o o a s l N m p r t a e M
4 1
a r e
C
m o
C
t u a
N
15
II.7 UNIAXIAL TENSILE RESPONSE OF SELECTED SELECTED METALS & POLYMERS
Figure 2.1 2.1 Tensile response of some some co common mmon metals
Figure 2.2 Tensile res response ponse of some common polymers
16
III. MATERIAL PROPERTY CHARTS III.1 YOUNG’S MODULUS – DENSITY
Figure 3.1:
Young’s modulus, E , against density, ρ . The design guide-lines assist in selection of materials for minimum weight, stiffness-limited design.
17
III.2 STRENGTH – DENSITY
Figure 3.2: Failure strength, σ f , against density, ρ . Failure strength is defined as the tensile elastic limit (usually yield stress) for all materials other than ceramics, for which it is the compressive strength. The design guide-lines assist in selection of materials for minimum weight,
strength-limited design.
18
III.3 YOUNG’S MODULUS – STRENGTH
trength is defined as Figure 3.3: Young’s modulus, E , against failure strength, σ f . Failure sstrength the tensile elastic limit (usually (usually yield stress) for all materials other than ceramics, for which it is the compressive strength. The design guide-lines assist in the selection of materials for maximum stored energy, volume-limited design.
19
III.4 FRACTURE TOUGHNESS – STRENGTH
Figure 3.4: Fracture toughness (plane strain), K IC , against failure strength, σ f . Failure
strength is defined as the tensile elastic limit (usually yield stress) for all materials other than 2 2 ceramics, for which it is the compressive strength. The contours show K IC / πσ f , which is approximately the diameter diameter of the process zone at a crack tip. Valid application of linear elastic fracture mechanics using K requires that the specimen and crack dimensions are large compared to this process zone. The design guide-lines are uused sed in selecting materials for damage damage tolerant design.
20
III.5 MAXIMUM SERVICE TEMPERATURE
temperature. perature. The shaded shaded ba bars rs extend to the maximum service Figure 3.5: Maximum service tem temperature – materials may be used safely for all temperatures up to this value, without significant property degradation. (Note: there is a modest range of maximum service temperature in a given material class – not all variants within a class may be used up to the temperature shown, so caution should be exercised if a material appears close to its it s limit). NB: For full names and aacronyms cronyms of polym polymers ers – see Section V.
21
III.6 MATERIAL PRICE (PER KG)
Figure 3.6: Material price (per kg), C m (2003 data). C m represents raw material price/kg,
and does not include manufacturing or end-of-life costs. NB: For full names and aacronyms cronyms of polym polymers ers – see Section V.
2 2 d h e g t u a . o c e h i n t d i e , d h c a d e y m n b o i t h c t l a d e w o t o p u c e m d . a i f p B f h b e i s d y b . y m r l e e d o r d e n r f : a a o t d s s e l d l s o a e u n n h s i a a o r c e , c o e o i m t s t s s l r s e a p a l o o a e m l p u s l l q i r i r a r a m a e n t e e o h s r e t a C h c a d r o e s a . r t M o n i c l o s e o n e g w e n i s m s h m i a r e e a s u y t r a c l m r t o e l a o o a m N C G m P f N o s d t o n a t , l s u c d i o f f h t i e d m e r r a e d h
S T R A H C E T U B I R T T A S S E C O R P . V I
) G N I P A H S ( X I R T A M Y T I L I B I T A P M O C S S E C O R P – L A I R E T A M
g n i n i h c a M s d o h t e M r e d w o P
g n i m r o F t e e h S
n o i s u r t x E
g n i g r o F / g n i l l o R
g n i t s a C t n e m t s e v n I g n i t s a C e i D g n i t s a C d n a S
s l a t e M : a 1 4 . e r u g i F
s l e e t S n o b r a C h g i s / H n o m r I i u t d s e a C M
1 . V I
s l e e t S n o b r a C w o L
s l e e t S s s e l n i a t S / y o l l A w o L
, d a s e y L l o , l r A e p c n p i o Z C , s , m y o l m u l u i s A i n e l i n e m g k c u l a i A M N
g n i t s a C r e m y l o P
g n i d l u o M l a n o i t a t o R
g n i d l u o M n o i s s e r p m o C g n i d l u o M w o l B
s y o l l A m u i n a t i T
s u o r r e f n o N
s u o r r e F s l a t e M
g n i m r o F e t i s o p m o C
s m a g n i d l u o M o n o i t c e j n I F d n a s r g n i n i h c a M e m y l s s s o r s c t e i P t e m a m s s o a o F : o l t p m b r r s s 1 a o e e m h l r r e E 4 . T m y m l e e y o h l r T P o u P g i F
23
IV.2 MASS Sand casting
c g i n i m p a r a e h C s g n i d p n a a h r s e e t i m y s l o o p P m o c
Die casting
g n i p a h s l
Investment Casting
t a e M
Extrusion
Rolling/Forging
Sheet forming Powder methods Machining Injection moulding Blow moulding Compression moulding Rotational moulding Polymer casting Composite forming 10-3
10-2
0.1
1
10
102
103
104
Mass (kg)
Figure 4.2: Process attribute chart for shaping processes: mass range (kg)
IV.3 SECTION THICKNESS Sand casting Die casting g n i p Investment Casting a h s Rolling/Forging l a t Extrusion e M c g i n i m p a r a e s C h g n i d p n a a h r s e e t i m y s l o o p P m o c
Sheet forming Powder methods Machining Injection moulding Blow moulding Compression moulding Rotational moulding Polymer casting Composite forming 10-4
10-3
10-2
0.1
1
Section thickness (m)
thickness kness (m (m)) Figure 4.3: Process attribute chart for shaping processes: section thic
24
IV.4 SURFACE ROUGHNESS Sand casting g n i p a h s l a t e c g M i n i m p a r a e h C s g n i d p n a a h r s e e t i m y s l o o p P m o c
Die casting Investment Casting Rolling/Forging Extrusion Sheet forming Powder methods Machining Injection moulding Blow moulding
Compression moulding Rotational moulding Polymer casting Composite forming 0.1
1
10
102
Roughness ( m)
Figure 4.4: Process aattribute ttribute chart for shaping processes: surface roughness (µm)
IV.5 DIMENSIONAL TOLERANCE Sand casting Die casting g n i p Investment Casting a h s Rolling/Forging l a t Extrusion e M c g i n i m p a r a e h C s g n i d p n a a h r s e e t i m y s l o o p P m o c
Sheet forming Powder methods Machining Injection moulding Blow moulding Compression moulding Rotational moulding Polymer casting Composite forming 10-2
0.1
1
10
Tolerance (mm)
(mm) m) Figure 4.5: Process attribute chart for shaping processes: dimensional tolerance (m
25
IV.6 ECONOMIC BATCH SIZE Sand casting g n i p a h s l a t e c g M i n i m p a r a e h C s g n i d p n a a h r s e e t i m y s l o o p P m o c
Die casting Investment Casting Rolling/Forging Extrusion Sheet forming Powder methods Machining Injection moulding Blow moulding
Compression moulding Rotational moulding Polymer casting Composite forming 1
10
102
103
104
105
106
107
Economic batch size (units)
Figure 4.6: Process attribute chart for shaping processes: economic batch size
6 2
S L A I R E T A M G N I R E E N I G N E F O S N O I T A C I L P P A D N A N O I T A C I F I S S A L C . V
S Y O L L A S U O R R E F N O N , S Y O L L A S U O R R E F : S L A T E M 1 . V
, g s t n i r h a s p a e w v i t , o y r m e l o t t s u r u c e a ( ; n e e i a t r t e a n r o w n c c c o i t s c a ) s ) r s c e g s o t d f g d e m i e n t i o u b s d r n d q i a e e l o e , h , r t s t b m n l a g l , e c i a e n l s r , t s t s f o t c p s ) r k a f n s e r e a c h i a v s p e m n a e r n l r , r e l t u s ; r o c u a r y r c s d u u a a p , s n s t e i r , s w c l h e g s s a t r n i u , r r e n p a s , a t c ( g l , s , g s ( a s l t g s n p i s g e o f i r n t p o a r i r i a l t i a g g h e n o p i p e s b , a , n , , s k s e s i s t s c v e n s e a i h k l c o g t c e r m i p ; o t o d a n ( a r t m o m r e b e t o p l , c g , n – e u d p s s h a o m k g i r ) s , o i c ” e l n o f l l i d e e e s a b r g n t c e i a i i n d e e g s s i g n r n a a r n b n i a , e i d g s l l v e l u n g l b a s a , e n a m l c ) c “ g l i , i i ( ; s a r s n s s b m e t r p a e l , e v s h a e l o s h , c r s p s c t u n s n e l e t o a , , o t o v o m c p t i s u o t i t l t r y , r e o a t s o d a n g r s o g p i c i n e l b n s h l m i i t n e o p t t n e r r a c p u u e t a p r a A A C G S c S T m
s l e e s s t l e S l e n e e t o t S b S n r n o a o s b C b n r r a o a r C m I u C i t h d s g e w a i o C H M L
s l s l e e e e t S t S y s o l l s e A l n w i t o a L S
s o y l l A e l b a s t y a e s l o t r y l o l l A t A g a e n t h m i n u s i a o n C i N m u l A
s y o l l A e l b a t a s y e r l o t l t A a r e H e p p o C
s y o l l A s m y u o i l l s A e d n a g e a L M
s y o s l l y s A o l y l o A m l l l i u A e k n a c c i n t i i N T Z
s u o r r e f n
s u o r r e F l s a t e M
; , , s s s e l r r p i e e a h e n t i w s s k a t t o s n h o s o g c i e c l l e , n l e i w s e e t a r t t s l u h e . s f s p i g i s d i l c t o r h b i n e a t s , a i s e i s d , n l l n e p n c s t n a r a u v i m u s l n e s a g c a a , e a l e t g r n c g r o a i u h a t o t d n r p n e o c c e s i x u o m g v t r n e t i i e n o i a s d b t b t t r t d ; a a , s r a s o e s h g e i o h d f g n c ) n ; e n i o ) s a o i , s w s r t s n p y t t e g l o e l o a c h d c r c r l n i d e i g i u l ( i a l l a e t p n s o , b s a a ; s a s y e , h e p r a c c s l , e t g e s e t n e t n i a c y t a u h a c i b n a o a g i l p i r b i p t u o p t , , e c s s p d c g , , a l n w o s e n t s r a i c i c i h y o i e e c d o l t f n s n l l g a s , p l i l l e o a e i i r e s i A l u t a l d h r r p o c m e o e s a c u p r m o g b l u o t c a u c i n m e i r a y n e d , n a i v e r r t ) e t , t s h e g s m e X s k c o i r e u h , , l t l c x r a m , s e w o A r l e l t o s e m o t e t d b o e n d l u d e i r a n o , a n e e s h n g e , a g e d h w , o v i n ; t g n , g , t i e s i n s l s i n s i r d t i e o r y r o d g s d s d e c e o m t l j ( t n a d i a t e c e o l c e r t d a s n u g n b u i d t u n t u l s r d c a n a e ( p l a a n p g n l c i y a n s p o l n o u l i s a e o a e c c w e l l e b e c r g s n r a i v l v l t n u i c l i i d , t t t a u t b a a r a n e t o o i s c c c e p u f p t a m a r g r t i s i a m t t i a f r c o c o c h o c i s o n c t r t n a i e r i e o o u i c e l e r u l r A E a A E c R A p G A D
o N
7 2
S M A O F D N A S R E M Y L O P 2 . V
s s t f r e s a u p t o t o n b g o r r , n n t , e i s s n o t s s b i y t o n o a e p u l t a i a , l e l t t , s y , n u p x m p t n s e s o a s e o a c i n o t t m t g n i c c s i s i a t e , , m a a s l l e l e y , i o a s a t n n i g l v a i s u g o d s h c o o r i c s t u c g i s u i p n b e s l t a t i a h e i n s c s t n d b r i i d u s n s g l e p p i i a o l , e o , e l l a i j e n u f s m l i u d s p g a l a m e m s m r , s a a n l i c c u a s m i o s , o n p a , i s s c n s n n i , b r i , o s t c i r c e n r , g a l e u s i l t r s e c e c D r g i g a f t e o s c e a i p e t t c , e a p n t n , s o i l k , l l n r t e C e n i c r c g e i t a / s t d b i e b t a l n o g g c t t d r e n i l e e , i n t a l i f a t m n o h i e i n a f n t h t i , u e s , , c o s v t , s o g a s t e g c i a r o g t s , t s b o p c e i i e e s a l n h , e a , u r s l l h l p s t t h e y p b n s d r , k i e g u g t , t c a o v , e o s l , s i s g a t o o i a r s i t c e g n n r l v , t r , e s i , w b c m i s a ; p , / r t i h a s e a t k t i c a r k g n t a n b n , p i c s o o s o a k n n r s i e a c n t o e t k r o u t a e d c p , o e , s l w i a , t i o f u s a c u o i e e n p s , c k l b a s c s f o e , t u e i p a , s , , o d i a c d l l o e e o u p e n f a m n s r , e l g t , e c i m v i u s m g s o o h h e o s u l c p , s o i e d n e v e i e o t s a i t r n p a c r e , t g h o s t n l n e w i a n , a m , i s i , g u d s c c s i n , c z l r i o g a i , y o f r s s l e i i l s e a e l l e c f t , l r t e n s a h o b e u s , n s r e , e p r e s w e p e t b h a a l s a , u s s p t d s r y a , m l r g i u l d s c d d e t l n i k i , n b o a i n b i , c s r n a n p n l m q l u i e e r i g , t c u g l l , o o o , d s p e n t s a a , v c l o d p c n r a p t h n n s n - a i o a h b ; s t a c i , s i , , s n i t s e g u o o c t k s , e l g e t i , s y a f g a w i y f , e s n e n c b a n r e n s l o t g b s l s r s t n e , t s w g a n a t i c n a o i u , u a o o i d e g a b l b u i e n b e o t e g s s n l i s , p t l s r r a u t g i f - h o u s , o s d r l d s , r r a o n l g a e e c , p b , s , a g c , d , i r k g t n c u e n l O e s o n t i c g s g g g a a c n i i l , l e u l i n y , t a s a r e i n l a i c i v e i u n g , a o s m t w d n a o i n a n d n i s i n , t i l m i g o g i g c t c i g b c u n i p i , g t s u o g , k , t c e , f s y , s a m f a m r i r k s t r m a a r a t i , i s a e u s t t l s s , e e h s r k r k l k s v t c c m o c a f e c c w c s p y s e n h c n p e g e r c e r o e e p r o e e p e l o o u o p r a a l d i i l l a a l a a h u o o y i y A T B T G W P E C T P G S E P B A Z R T C P N A E F P T n o i t a i v e r b b A
A K E U U M M C T E S A F P P V T A C E E E M O P S B A V R R R l p E I N C e A C I P P P P P P P P P t P P
) c i l y r c ) A e t ( l a
) n e o s n l ) f c i e e t e r n s s y T ( e l a e e t l a t t s e e r p r p a m c l e e o m n h o t e t ) a y n A e e r a o ( n l s h c s i o m m e r t t r s r N y o n p a e F a e t ( s e d e h o e e c r o a e l n e t r h a h d e l t m t a k y e F r e e m e l T r E n i t e y e o u l l o e e y r N t m r e e r t ( a h e e m h n r y e l b r e s b o o y e o l n t e i n h u t n n l e l b p n l e e s a e n P o m l b v a c l e l a E i u r y o h e o r e h e l y y n s r P l r e b l f h e d t m R t p t a c t y y e i b r i e e e o y o e e n s e u n n l l i r s t r h h h e y o r e P y e n t s l e l r i x r t m a t t t o r n o l R e e r h a o i e b l l r u c u o l u m a c e e e m o p s u v t x n e i d y l y y p t l y x i y o e l y l y l y l y l y l y l y l y l y l y l y l y i y l c r l o t g l e i n l e a o l h o p o o o o o o o o o o o i c o o t o u h o P P P P P P P P P P P P E P P s N P P S A C I F R B E I r e m o t s a l E
s r e m y l o P
t e s o m r e h T
c i t s a l p o m r e h T
s m a o F r e m y l o P
8 2
S L A I R E T A M L A R U T A N D N A S E S S A L G , S C I M A R E C , S E T I S O P M O C 3 . V
) s g n i r p s , s r a o d n a l s u h t a o b , s d o o g s t r o p s , s e m a r f e k t n i a b l , p e l c a a i c m s p e o h s r e c d ( , o a s o t t s g r r s a a t p p r l o a e v p r i s u t , t o s c m t r u o r t t s a p s u n e t a , o v h s i g l t i l t i a o e u c i w h l m t o h t p t g a p u i o A A L B e d i b r a C n o c i l i S / m u i n P P i m R R u F F l A C G l r a e t e m y M l o P
s e t i s o p m o C
S M r E u o s M m n , r o i s a t , w s a c o g i l d n p n i i r p a a w s e e e R b r I v , l s , s u t t a r s t a s i v a t r n r , p e e g e s l p z e a o m g t m l n o u a g t e r i r h t t t y s n s l s h r o i n i b e i g t s i t u s n o i p t r h o s c s o e a , p t i i t e n s , v p s r i u k h s l i o p s i c g r e s c s e r a i n e b , r l i n r c o r t c i l d s s u c b u r r b e i g t e p r o i a i i u b t r n a a , e m r d u t s t i c e , s t , e c h h n l r n , s p m h s , i , e s e g o o s t p v e e l u c c , d e i i e l r o w , c n z a c o g g s s m u d s a z d n , g p , a r w s d n i i o u i s l s r e n e b n l u l n y i r b e p e u o q o a r t , i u c e o , w t e t k t o e a r t r r , t l s n u c , t i e a s c s l m e e a o i r r s g g r t r e p e o b m s t n d n t n i u i h s r b e u t s a l e t t , , s a , a c s a l l a m o l s r u l i r s l t t t a b i i v e , , r c i o h o , , o u g u p , o e r e f c s o r s s c i c r t l r m s r a a e w g a g t i i g e e g n r i n n c w c t i w w p o i n g n o t o e l i n k h d l r i d d r r t t h c h n i t i t e o g i i a n c g g i i e u v o i u e u u i O C H W B G B C M L M H B C
s d o o g s t r o p e s r , u g t i i g n n n i r r g u o f o a , l f k s , c t g a e n p k i , s g e a a r b k u t n s , a c l s i e p r p , t u e f o s r t b , s , a e r r o v o e l i r o p f , d a l s , d p a s , g , g i n g e s a n , b r i o d , l l s o g g o f f n i n f , u h n a b t i c o s d l o , n c t g a , c u r n s s t i s e d k l i r o n u o h o B C S C
s e e s s d d s i i a c l e r e a b t l i d d e r G i i d a G i m N b e a s b r i r C t e r s t r a i n m a a e l e m t u C c C a i C N t e i a i l G L e i n n n n n r i i n s s a o o o s a k c e o s i n m m o c c g c l c l n d c r r n a l o l l u o i u l i u i i r o t i i i o i o l B G S S B C S A A B S S S T
o r o e d b k h t m r a o a o e o B C L W
s e s s a l G s c i m a r e C
s u o r o P
l a c i n h c e T l a r u t a N
29
VI. EQUILIBRIUM (PHASE) DIAGRAMS
Figure 6.1 Copper – Nickel equilibrium diagram
Figure 6.2 Lead – Tin equilibrium diagram
30
Figure 6.3 Iron – Carbon equilibrium diagram
Figure 6.4 Aluminium – Copper equilibrium diagram
31
Figure 6.5 Aluminium – Silicon equilibrium diagram
Figure 6.6 Copper – Zinc equilibrium diagram
32
Figure 6.7 Copper – Tin equilibrium diagram
Figure 6.8 Titanium – Aluminium equilibrium diagram
33
Figure 6.9 Silica – Alumina equilibrium diagram
VII. HEAT TREATMENT OF STEELS
transformation formation diagram diagram for 1% nickel steel, BS BS503M40 503M40 (En (En12) 12) Figure 7.1 Isothermal trans
Figure 7.2 Jominy eend nd quench curves for 1% nickel steel, BS50 BS503M40 3M40 (En12)
34
35
transformation ation diagram for 1.5% Ni – Cr – Mo ssteel, teel, BS817M4 BS817M400 (En24) Figure 7.3 Isothermal transform
Figure 7.2 Jominy end quench curve curvess for 1.5% Ni Ni – Cr – Mo steel, BS817M40 (En24)
36
VIII. PHYSICAL PROPERTIES OF SELECTED ELEMENTS ATOMIC PROPERTIES OF SELECTED ELEMENTS Element
Symbol
Lattice constants 3 (at 20oC)
Atomic
Relative
Melting
Crystal
Number
Atomic1 Weight
Point (oC)
structure (at 20oC)
a, (b) (Å)
2
Aluminium Beryllium Boron Carbon Chlorine Chromium Copper Germanium Gold Hydrogen
Al Be B C Cl Cr Cu Ge Au H
13 4 5 6 17 24 29 32 79 1
26.982 9.012 10.811 12.011 35.453 51.996 63.54 72.59 196.967 1.008
660 1280 2300 3500 – 101 1900 1083 958 1063 – 259
f.c.c. h.c.p. t. hex. – b.c.c. f.c.c. d. f.c.c. –
4.0496 2.2856 8.73 2.4612 – 2.8850 2.5053 5.6575 4.0786 –
Iron Lead Magnesium Manganese Molybdenum Nickel Niobium Nitrogen Oxygen Phosphorus Silicon Silver Sulphur Tin Titanium Tungsten Vanadium Zinc Zirconium
Fe Pb Mg Mn Mo Ni Nb N O P Si Ag S Sn Ti W V Zn Zr
26 82 12 25 42 28 41 7 8 15 14 47 16 50 22 74 23 30 40
55.847 207.19 24.312 54.938 95.94 58.71 92.906 14.007 15.999 30.974 28.086 107.870 32.064 118.69 47.90 183.85 50.942 65.37 91.22
1534 327 650 1250 2620 1453 2420 – 210 – 219 44 1414 961 119 232 1670 3380 1920 419 1850
b.c.c. f.c.c. h.c.p. cub. b.c.c. f.c.c. b.c.c. – – cub. d. f.c.c. f.c.orth. f.c.ort h. b.c.t. h.c.p. b.c.c. b.c.c. h.c.p. h.c.p.
2.8663 4.9505 3.2094 8.912 3.1468 3.5241 3.3007 – – 7.17 ( at – 35oC) 5.4305 4.0862 10.437, (12.845) 5.8313 2.9504 3.1652 3.0282 2.6649 3.2312
c (Å) 3.5843 5.03 6.7079
5.2103
24.369 3.1812 4.6833
4.9468 5.1476
1
The values of atom atomic ic weight are those in the Report of the International Commission Commission on th 12 Atomic Weights Weights (1961). The unit is 1/12 of the mass of an atom of C .
2
f.c.c. = face-centred cubic; h.c.p. = hexagonal close-packed; b.c.c. = body-centred cubic; t. = tetragonal; hex. = he hexagonal; xagonal; d. = diamond structure; cub. = cu cubic; bic; f.c.orth. = face face-centred -centred oorthorhombic; rthorhombic; b.c.t. = bod body-centred y-centred tetragonal. Lattice constants are in Ångström units (1 Å = 10 –10 m)
3
7 3
S T N E M E L E D E T C E L E S F O S E I T R E P O R P N O I T A D I X O
) 2 O l o m / J 2 2 5 8 8 6 7 1 6 9 0 4 0 8 9 0 9 9 4 0 k 6 4 2 4 3 5 0 3 2 8 3 1 0 3 0 8 0 5 0 5 0 ( 8 8 1 0 0 8 8 7 7 6 6 5 5 5 5 4 4 3 3 2 2 y 1 – + 1 1 1 1 g r – – – – – – – – – – – – – – – – – – – – e n e
) K 3 7 2 t ( a n o i t a d i x o f o y g r e n e e e r F
e r F
2
2 N O 2 5 3 4 4 3 3 2 e C 2 3 O 2 2 O + O O O O O O O d O O O O 2 O i e g 2 O O 2 r 2 3 i – O 3 u – n 2 + o O e g u x B l r i b 2 Z b C T i N 2 C S W Z M O A A O i O M F A P N C S i 3 S
) s n o i t u l o s r a l o m , K 0 0 3 ( s l a i t n e t o p e d o r t c e l e d r a d n a t S
e t i s e h r e i e p d d m i l m m m m m u n m r b u l r d r m a r t m a u i i e u u n n i u i P r i c n a e t n e l i i y u o i g a e s u r i e d l p s n k n R l l c i , e n e m v l c d o o n o b i g p i t y c o e i n r l F d i n o b p a i r o r Z o n y n I a i n L o g m c t S G N t s u o T h c o l i l c i T S N C Z r i a l u i e M M B A l o o m C G S i a M i S M D
n e ) g s o t r l 6 6 6 4 4 5 4 3 0 5 4 0 7 0 3 2 d o 1 y v 3 . 4 . 7 . 8 . 3 . 2 . . 4 . 4 . 7 . 6 . 2 . 7 . 1 . 1 . 0 h ( 2 . 0 0 0 0 0 1 1 0 1 0 0 0 0 0 l l e 0 a – – – – – – – – + + + + + + + a m r c o s N e h t f – o ) – n H e o i – – – – – O t ( – 4 – e – u – e – – e – e – l + e e e e e e e – e + e 2 2 4 e 2 3 2 o 2 3 2 2 2 3 + 2 s + → + + H + + + + + + + + + r l + – 3 + 4 + + + + + + + + + 4 + o t a 2 + + + 2 e f e 2 2 3 2 2 g 3 n + 2 3 g u n r e i n b H S u 4 F n e M l A 2 A C 2 C F Z N S P o m A + i O → t → → c → O → + → → → → → → → → → + 2 g → u a 2 2 g l n r e i u H 2 e A n b H e A Z n N r C O F S P 2 A S C 2 F n M + H o i 2 2 t d a O i x O
8 3
0
CONVERSION OF UNITS – STRESS, PRESSURE AND ELASTIC MODULUS *
MN/m2 (or MPa) lb/in2
MN/m2 (or MPa) 1 6.89 x 10 –3
lb/in2 1.45 x 102 1
2
kgf/mm bar
kgf/mm2 0.102 7.03 x 10 –4
bar 10 6.89 x 10 –2
3
9.81 0.10
1.42 x 10 1.02 1x 10 –2 14.48
98.1 1
CONVERSION OF UNITS – ENERGY *
J cal eV ft lbf
J 1 4.19 1.60 x 10 –19 1.36
cal 0.239 1 3.83 x 10 –20 0.324
eV 6.24 x 1018 2.61 x 1019 1 8.46 x 1018
ft lbf 0.738 3.09 1.18 x 10 –19 1
CONVERSION OF UNITS – POWER *
kW (kJ/s) hp ft lbf/s
*
kW (kJ/s) 1 0.746 1.36 x 10 –3
hp 1.34 1 1.82 x 10 –3
ft lbf/s 7.38 x 102 5.50 x 102 1
To convert row unit to column unit, multiply by the number at the column-row intersection, thus
1 MN/m2 = 10 bar
View more...
Comments