materiales de construcción
Short Description
Download materiales de construcción...
Description
MATERIALES DE CONSTRUCCION
UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL SEMINARIO
MATERIALES DE CONSTRUCCION Curso:
QUIMICA
Profesor:
Ing° JUAN CARLOS FLORES CERNA
Alumnos: -
TASILLA ARAUJO, Elmer Jhon ARAUJO BAUTISTA, Freddy Francisco CARDOZO RÍOS, Víctor Omar
Cajamarca, 11 de Febrero del 2005
PRESENTACION: 1
MATERIALES DE CONSTRUCCION
El siguiente informe ha sido ideado con el objetivo de adquirir un conocimiento más completo y útil acerca de los Materiales de Construcción. Este texto está basado en los conocimientos de autores que constituyen una gama de científicos e ingenieros
y
reconocidos
expertos
en
la
construcción de megaproyectos. En el presente trabajo grupal hemos pretendido dar a conocer todo sobre cada uno de los materiales empleados en la construcción pues es importante ya ir conociéndolos desde el primer año de nuestra carrera. Así como damos a conocer su importancia en el desarrollo de la civilización tratando de hacerlo lo más didáctico posible para un buen entendimiento del tema.
Introducción: Como una pequeña introducción hablaremos sobre la Construcción:
2
MATERIALES DE CONSTRUCCION
Construcción: 1.
INTRODUCCIÓN
conjunto de procedimientos llevados a cabo para levantar diversos tipos de estructuras. Las principales tendencias actuales en la construcción se alejan del trabajo manual a pie de obra y se orientan hacia el montaje en el lugar de la obra de componentes mayores y más integrados, fabricados en origen. Otra característica de la construcción moderna relacionada con las mencionadas tendencias es la mayor coordinación de las dimensiones, lo que significa que las edificaciones se diseñan, y los componentes se fabrican en una variedad de módulos estándar, lo que reduce mucho las operaciones de corte y ajuste a pie de obra. Otra tendencia es la construcción o rediseño de grandes complejos y estructuras como los centros comerciales, ciudades dormitorio, campus universitarios y ciudades enteras o sectores de las mismas.
3
MATERIALES DE CONSTRUCCION
2.
CARGAS
DE
UN
EDIFICIO
Las cargas que soporta un edificio se clasifican en muertas y vivas. Las cargas muertas incluyen el peso del mismo edificio y de los elementos mayores del equipamiento fijo. Siempre ejercen una fuerza descendente de manera constante y acumulativa desde la parte más alta del edificio hasta su base. Las cargas vivas comprenden la fuerza del viento, las originadas por movimientos sísmicos, las vibraciones producidas por la maquinaria, mobiliario, materiales y mercancías almacenadas y por máquinas y ocupantes, así como las fuerzas motivadas por cambios de temperatura. Estas cargas son temporales y pueden provocar vibraciones, sobrecarga y fatiga de los materiales. En general, los edificios deben estar diseñados para soportar toda posible carga viva o muerta y evitar su hundimiento o derrumbe, además de prevenir cualquier distorsión permanente, exceso de movilidad o roturas.
4
MATERIALES DE CONSTRUCCION
3.
PRINCIPALES ELEMENTOS DE UN EDIFICIO
Los principales elementos de un edificio son los siguientes: 1) los cimientos, que soportan y dan estabilidad al edificio; 2) la estructura, que resiste las cargas y las trasmite a los cimientos; 3) los muros exteriores que pueden o no ser parte de la estructura principal de soporte; 4) las separaciones interiores, que también pueden o no pertenecer a la estructura básica; 5) los sistemas de control ambiental, como iluminación, sistemas de reducción acústica, calefacción, ventilación y aire acondicionado; 6) los sistemas de transporte vertical, como ascensores o elevadores, escaleras mecánicas y escaleras convencionales; 7) los sistemas de comunicación como pueden ser intercomunicadores, megafonía y televisión por circuito cerrado, o los más usados sistemas de televisión por cable, y 8) los sistemas de suministro de electricidad, agua y eliminación de residuos. 3.1.
Cimientos
El diseño de la estructura de un edificio depende en gran medida de la naturaleza del suelo y las condiciones geológicas del subsuelo, así como de las transformaciones realizadas por el hombre en esos dos factores.
5
MATERIALES DE CONSTRUCCION
3.1.1. Condiciones
del
suelo
Si se pretende construir un edificio en una zona con tradición sísmica, se deberá investigar el tipo de suelo a una profundidad considerable. Es evidente que deberán evitarse las fallas en la corteza terrestre bajo la superficie. Ciertos suelos pueden llegar a licuarse al sufrir terremotos y transformarse en arenas movedizas. En estos casos debe evitarse construir o en todo caso los cimientos deben tener una profundidad suficiente para alcanzar zonas de materiales sólidos bajo el suelo inestable. Se han encontrado suelos arcillosos que se llegan a expandir hasta 23 cm o más al someterlos a largos periodos de humedecimiento o secado, con lo que se producen potentes fuerzas que pueden cizallar o fragmentar los cimientos y elevar edificios poco pesados. Los suelos con alto contenido orgánico llegan a comprimirse con el paso del tiempo bajo el peso del edificio, disminuyendo su volumen inicial y provocando el hundimiento de la estructura. Otros tienden a deslizarse bajo el peso de las construcciones. Los terrenos modificados de alguna forma suelen tener un comportamiento diferente, en especial cuando se ha añadido o se ha mezclado otro tipo de suelo con el original, así como en aquellos casos en que el suelo se ha humedecido o secado más de lo normal, o cuando se les ha añadido cemento u otros productos químicos como la cal. A veces el tipo de suelo sobre el que se proyecta construir varía tanto a lo largo de toda la superficie prevista que no resulta viable desde el punto de vista económico o no es posible edificar con seguridad. Por tanto, los análisis geológicos y del suelo son necesarios para saber si una edificación proyectada se puede mantener adecuadamente y para hallar los métodos más eficaces y económicos.
6
MATERIALES DE CONSTRUCCION
Si hay una capa rocosa firme a corta distancia bajo la superficie de la obra, la resistencia de la roca permitirá que la extensión sobre la que descanse el peso de la construcción no tenga que ser demasiado grande. A medida que se van encontrando rocas y suelos más débiles, la extensión sobre la que se distribuirá el peso deberá ser mayor. 3.1.2. Tipos
de
cimientos
Los tipos de sistemas de cimentación más comunes se clasifican en profundos y superficiales. Los sistemas superficiales se encuentran a poca distancia bajo la base del edificio, como las losas continuas y las zapatas. Los cimientos profundos se extienden a varios metros bajo el edificio, como los pilotes y los pozos de cimentación. La elección de los cimientos para un edificio determinado dependerá de la fortaleza de la roca y el suelo, la magnitud de las cargas estructurales y la profundidad del nivel de las aguas subterráneas. Los cimientos más económicos son las zapatas de hormigón armado, empleados para edificios en zonas cuya superficie no presenta dificultades especiales. Estos cimientos consisten en planchas de hormigón situadas bajo cada pilar de la estructura y una plancha continua (zapata continua) bajo los muros de carga.
7
MATERIALES DE CONSTRUCCION
Los cimientos de losa continua se suelen emplear en casos en los que las cargas del edificio son tan grandes y el suelo tan poco resistente que las zapatas por sí solas cubrirían más de la mitad de la zona de construcción. Consisten en una losa de hormigón armado, que soporta el peso procedente de los soportes. La carga que descansa sobre cada zona de la losa no es excesiva y se distribuye por toda la superficie. En las cimentaciones bajo edificios de gran envergadura, las cargas se pueden repartir por medio de nervaduras o muros cruzados, que rigidizan la losa. Los pilotes se emplean sobre todo en zonas en las que las condiciones del suelo próximo a la superficie no son buenas. Están fabricados con madera, hormigón o acero y se colocan agrupados en pilares. Los pilotes se introducen a determinada profundidad dentro de la roca o suelo y cada pilar se cubre con una capa de hormigón armado. Un pilote puede soportar su carga tanto en su base como en cualquier parte de su estructura por el rozamiento superficial. La cantidad de pilotes que debe incluirse en cada pilar dependerá de la carga de la estructura y la capacidad de soporte de cada pilote de la columna. Los pilotes de madera o vigas son troncos de árboles, con lo que su longitud resulta limitada. En cambio, un pilote de hormigón puede tener una altura aceptable y se puede introducir por debajo del nivel freático. En edificios muy pesados o muy altos se emplean pilotes de acero, llamados por su forma pilotes en H, que se introducen en la roca, a menudo hasta 30 m de profundidad. Con estos pilotes se alcanza más fácilmente una mayor profundidad que con los pilotes de hormigón o madera. Aunque los pilotes de acero son mucho más caros, su coste está justificado en los grandes edificios, que suelen representar una importante inversión financiera.
8
MATERIALES DE CONSTRUCCION
Los cimientos de zapatas rígidas se emplean cuando hay un suelo adecuado para soportar grandes cargas, bajo capas superficiales de materiales débiles como turba o tierra de relleno. Un cimiento de zapatas rígidas consiste en unos pilares de hormigón construidos en forma de cilindros que se excavan en los lugares sobre los que se asentarán las vigas de la estructura. Estos cimientos soportan las cargas del edificio en su extremo inferior, que suele tener forma de campana.
9
MATERIALES DE CONSTRUCCION
3.1.3. Nivel freático La construcción de los cimientos puede complicarse debido a la existencia de agua subterránea por encima del nivel previsto para los cimientos. En estos casos, los laterales de la excavación pueden no estar seguros y derrumbarse. La operación de bajar el nivel del agua por bombeo requiere la instalación previa de planchas entrelazadas en los lados de la excavación para evitar derrumbamientos. Cuando la cantidad de agua en una excavación es excesiva, los métodos de bombeo ordinarios, que extraen a la superficie tierra suelta mezclada con agua, pueden minar los cimientos de edificios vecinos. Para evitar los daños que puede causar el drenaje al remover el suelo, se emplean sistemas de puntos de drenaje y desagüe. Los puntos de drenaje consisten en pequeñas picas o tuberías con un filtro en uno de sus extremos, y se introducen en el suelo de modo que el filtro, que impide que la tierra entre junto con el agua, quede bajo el nivel del agua. Esta pequeña tubería está conectada a una tubería múltiple que se comunica por un tubo flexible a una bomba de agua. Así se extrae el agua bajo la excavación sin peligro para los edificios próximos. El sistema de desagüe puede incluso ahorrar la instalación de planchas en los lados de la excavación, siempre que no se prevea que el suelo pueda deslizarse sobre la obra debido a su composición o a las vibraciones de maquinaria o tráfico pesado en las cercanías. 3.2.
Estructura Los elementos básicos de una estructura
ordinaria son suelos y cubierta (incluidos los elementos de apoyo horizontal), pilares y muros (soportes verticales) y el arriostramiento (elementos diagonales) o conexiones rígidas para dar estabilidad a la estructura.
10
MATERIALES DE CONSTRUCCION
3.2.1. Edificios
de
una
o
dos
plantas
En el caso de edificios bajos es posible una mayor variedad de formas y estilos que en los edificios grandes. Además del sistema de pórticos —también utilizado en grandes edificios—, las pequeñas edificaciones pueden tener cubiertas a dos aguas, bóvedas y cúpulas. Una estructura de un solo piso puede consistir en una solera de hormigón directamente sobre el suelo, muros exteriores de albañilería soportados por una losa (o por zapatas continuas, alrededor del perímetro del edificio) y una cubierta. En edificios bajos, el uso de pilares interiores entre los muros de carga es un método muy común. También pueden emplearse pilares espaciados, apoyados en losas o zapatas, pero en este caso los muros exteriores se soportan por los pilares o están colocados entre éstos. Si la luz de cubierta del tejado es corta, se utilizan entarimados de apoyo, hechos de madera, acero u hormigón para formar la estructura del techo.
11
MATERIALES DE CONSTRUCCION
Cada material de la estructura tiene su propia relación peso-resistencia, costo y durabilidad. Como regla general, cuanto mayor sea la luz de cubierta o techo, más complicada será la estructura que lo soporte y habrá menos posibilidades para escoger los materiales apropiados. Dependiendo de la longitud de la luz, la cubierta podrá tener una estructura de vigas unidireccionales (figura 2a) o una estructura de vigas bidireccionales, apoyadas en vigas maestras de mayor tamaño que abarquen toda la extensión de la luz. Los apuntaladores son sustituibles por cualquiera de esos métodos y pueden tener una profundidad de menos de 30 cm o más de 9 m, y se forman entrelazando los elementos de tensión y compresión en forma de triángulos. Suelen ser de madera o acero, aunque también se pueden hacer de hormigón armado. La estructura de un edificio de una sola planta también puede consistir en un armazón de techo y muros en combinación, afirmados entre ellos o hechos de una sola pieza. Las formas posibles de la estructura son casi infinitas, incluida la variedad de tres lados de un rectángulo afirmados en un conjunto llamado armadura, la de forma de iglesia de lados verticales y techo inclinado, la de parábola y la de semicírculo o cúpula. La estructura básica y los muros exteriores, suelos y techo pueden estar hechos como un todo unido, muy parecido a una tubería rectangular con los extremos abiertos o cerrados. Estas formas pueden moldearse en plástico.
12
MATERIALES DE CONSTRUCCION
3.2.2. Edificios
de
varias
plantas
La forma más frecuente de construcción de edificaciones es el entramado reticular metálico. Se trata en esencia de los elementos verticales combinados con una estructura horizontal. En los edificios altos ya no se emplean muros de carga con elementos horizontales de la estructura, sino que se utilizan generalmente muros-cortina, es decir, fachadas ligeras no portantes. La estructura metálica más común consiste en múltiples elementos de construcción, como se recoge en la figura 3c. Para estructuras de más de 40 plantas se emplean diversas formas de hormigón armado, acero o mezcla de estos dos. Los elementos básicos de la estructura metálica son los pilares verticales o pies derechos, las vigas horizontales que abarcan la luz en su mayor distancia entre los pilares y las viguetas que cubren la luz de distancias más cortas. La estructura se refuerza para evitar distorsiones y posibles derrumbes debidos a pesos desiguales o fuerzas vibratorias. La estabilidad lateral se consigue conectando entre sí los pilares, vigas y viguetas maestras, por el soporte que proporcionan a la estructura los suelos y los muros interiores, y por las conexiones rígidas en diagonal entre pilares y entre vigas. El hormigón armado puede emplearse de un modo similar, pero en este caso se deben utilizar muros de hormigón en lugar de riostras, para dar una mayor estabilidad lateral. Entre las nuevas técnicas de construcción de edificios de cierta altura se encuentran la inserción de paneles prefabricados dentro del entramado metálico, las estructuras suspendidas o colgantes y las estructuras estáticas compuestas.
13
MATERIALES DE CONSTRUCCION
En la técnica de inserción se construye una estructura metálica con un núcleo central que incluye escaleras de incendios, ascensores, fontanería, tuberías y cableado eléctrico. En los huecos entre las estructuras horizontales y verticales se insertan paneles prefabricados en forma de cajón. Éstos permitirán efectuar transformaciones posteriores en el edificio. En la técnica colgante, se construye un núcleo central vertical, y en su parte superior se fija una fuerte estructura horizontal de cubierta. Todos los pisos a excepción de la planta baja quedan sujetos al núcleo y a los elementos de tensión que cuelgan de la estructura de la cubierta. Una vez terminado el núcleo central, las plantas se van construyendo de arriba a abajo. En la técnica de apilamiento o estructura estática compuesta se colocan paneles prefabricados en forma de cajón con la ayuda de grúas especiales, unos sobre otros, y posteriormente se fijan entre ellos.
14
MATERIALES DE CONSTRUCCION
En edificios de más de 40 plantas el acero se considera el material más adecuado. Sin embargo, los últimos avances en el desarrollo de nuevos tipos de hormigón compiten con el acero. Los edificios de gran altura a menudo requieren soluciones estructurales más elaboradas para resistir la fuerza del viento y, en ciertos países, la fuerza de terremotos. Uno de los sistemas de estructura más habituales es el tubo exterior estructural, empleado en la construcción del World Trade Center (411 m) en Nueva York. En él, con pilares separados y conectados firmemente a vigas de carrera horizontales sobre el perímetro del edificio, se consigue la fuerza suficiente para soportar las cargas y la rigidez necesaria para reducir las desviaciones laterales. En este caso, para el tubo estructural se empleó una mezcla de hormigón y materiales de construcción compuestos, hechos de elementos estructurales de acero encofrados con hormigón armado. En los edificios de gran altura se suele utilizar una combinación de acero y hormigón armado. La elevada relación resistencia-peso del acero es excelente para los elementos de luz horizontal. Los hormigones de alta dureza pueden aportar de un modo económico la resistencia a la fuerza de compresión necesaria en los elementos verticales. Además, las propiedades de la masa interna y la humedad del hormigón ayudan a reducir los efectos de las vibraciones, uno de los problemas más usuales en los edificios de gran altura.
15
MATERIALES DE CONSTRUCCION
3.3.
Muros exteriores (fachadas) y cubiertas Los muros de
cortina o fachadas ligeras son el tipo más frecuente de muros no portantes, y se pueden montar a pie de obra o en origen. Son elementos cuya superficie o piel exterior se ha tratado con material de aislamiento, barreras de vapor o aislamientos acústicos, y una superficie interior que puede formar parte de los muros de cortina o unirse a ellos. La capa exterior puede estar hecha de metales (acero inoxidable, aluminio, bronce), albañilería (hormigón, ladrillo, baldosa) o vidrio. Para las fachadas también se utiliza piedra caliza, mármol, granito y paneles de hormigón prefabricados. El método tradicional de construcción de las cubiertas es colocar rollos de tela asfáltica laminada cubiertos de grava, sobre los elementos de hormigón o acero de la estructura. También se utilizan materiales sintéticos en lugar de rollos de tela asfáltica. Hay algunos en forma de hierba y alfombras hechas de plástico que se pueden instalar en zonas recreativas del tejado a bajo coste. 3.4.
Separaciones interiores Los métodos tradicionales de
división interna de los edificios han consistido en muros de albañilería de 10 a 15 cm de espesor de hormigón, yeso o piedra pómez, pintados o encalados; también se han utilizado estructuras de madera o metal cubiertas con listones de madera enyesados. El uso de cartón yeso y madera laminada está muy extendido.
16
MATERIALES DE CONSTRUCCION
Para conseguir mayor flexibilidad dentro de los edificios se emplean sistemas intercambiables y desmontables cuya única restricción es el espacio que queda entre los pilares. Estas separaciones pueden estar hechas de materiales metálicos, paneles prefabricados de cartón yeso, sistemas de cortinas plegables a modo de acordeón, o en caso de problemas de ruidos, cortinas plegables en sentido horizontal o vertical. Los materiales ligeros suelen tener el inconveniente de no aislar los ruidos y no proteger adecuadamente la intimidad. No obstante las nuevas tendencias incluyen la instalación de separaciones ligeras pero utilizando cada vez más materiales que reduzcan y limiten el ruido. En muchos edificios los únicos muros de albañilería son los muros contra incendios, entre los que se incluyen los huecos de ascensores, escaleras y pasillos principales. 3.5.
Control ambiental En muchos países se han desarrollado
importantes avances en sistemas de control de calefacción, refrigeración, ventilación, iluminación y de sonidos. En la mayoría de los grandes edificios se ha estandarizado el aire acondicionado para todo el año. Algunas zonas de los edificios se refrigeran incluso en invierno, dependiendo de la distancia entre los muros exteriores y del calor que pueden generar la iluminación, los equipos eléctricos o la actividad humana dentro del edificio. Al mejorar el nivel y la calidad de la iluminación, el coste de los sistemas mecánicos y eléctricos en los edificios grandes ha crecido en mayor medida que en las casas familiares. Estos costes pueden llegar a suponer un tercio o un cuarto del coste total de la construcción.
17
MATERIALES DE CONSTRUCCION
3.6.
Sistemas eléctricos y de comunicación La extensión del
uso de electricidad, teléfono, equipos de transmisión por fax, circuitos cerrados de televisión, intercomunicaciones, alarmas y sistemas de seguridad, ha supuesto un aumento en la cantidad de cableado que se instala en los edificios. Los cables principales se tienden verticalmente en conductos abiertos que se ramifican por cada planta a través de los techos de las mismas o debajo de las baldosas. La electricidad que necesitan los edificios ha aumentado a causa de los numerosos y complejos equipos que se instalan. Para evitar las consecuencias de fallos en el suministro se suelen instalar equipos generadores de emergencia en muchos edificios, que en algunos casos, como en zonas alejadas, disponen de sus propios sistemas para generar energía. Cuando se utilizan generadores diesel o de turbina de gas, el calor que producen las máquinas puede aprovecharse para otros usos del edificio. 3.7.
Transporte vertical Los ascensores por cable, de control
automático y alta velocidad, son el tipo de transporte vertical más utilizado en edificaciones de altura. Los edificios bajos y las plantas inferiores de los edificios comerciales suelen tener escaleras mecánicas. En caso de incendio debería contarse al menos con dos vías de salida de la zona principal del edificio. Por ello, además de los ascensores y las escaleras mecánicas, todos los edificios, incluso los más altos, deben disponer de dos escaleras protegidas a lo largo de todo el edificio.
18
MATERIALES DE CONSTRUCCION
3.8.
Suministro de agua y eliminación de residuos Los
edificios deben contar con un sistema de tuberías de suministro de agua para beber, lavado, cocinado, instalaciones sanitarias, sistemas internos de extinción de incendios (ya sea con tuberías y mangueras fijas o por aspersores automáticos), sistemas de aire acondicionado y calderas. La eliminación de los desperdicios secos y húmedos en los edificios se lleva a cabo por medio de una gran variedad de sistemas. Un método muy usual es verter los desperdicios líquidos a tuberías conectadas a la red de alcantarillado. 4. MATERIALES DE CONSTRUCCIÓN La existencia de un material natural está estrechamente relacionada con la invención de las herramientas para su explotación y determina las formas constructivas. Por ejemplo, la carpintería de madera apareció en las diferentes áreas boscosas del planeta, y la madera sigue siendo, aunque su uso esté en declive, un material de construcción importante en esas áreas. En otras zonas, las piedras naturales se utilizaron en los monumentos más representativos debido a su permanencia y a su resistencia al fuego. Dado que la piedra se puede tallar, la escultura se integró fácilmente con la arquitectura. El empleo de piedras naturales en la construcción está en decadencia, debido a su elevado precio y a su complicada puesta en obra. En su lugar se utilizan piedras artificiales, como el hormigón y el vidrio plano, o materiales más ligeros, como el hierro o el hormigón pretensado, entre otros.
19
MATERIALES DE CONSTRUCCION
En las regiones donde escaseaban la piedra y la madera se usó la tierra como material de construcción. Aparecen así el tapial y el adobe: el primero consiste e n un muro de tierra o barro apisonado y el segundo es un bloque constructivo hecho de barro y paja, y secado al sol. Posteriormente aparecen el ladrillo y otros productos cerámicos, basados en la cocción de piezas de arcilla en un horno, con más resistencia que el adobe. Por tanto, las culturas primitivas utilizaron los productos de su entorno e inventaron utensilios, técnicas de explotación y tecnologías constructivas para poderlos utilizar como materiales de edificación. Su legado sirvió de base para desarrollar los modernos métodos industriales. La construcción con piedra, ladrillo y otros materiales se llama albañilería. Estos elementos se pueden trabar sólo con el efecto de la gravedad (a hueso), o mediante juntas de mortero, pasta compuesta por arena y cal (u otro aglutinante). Los romanos descubrieron un cemento natural que, combinado con algunas sustancias inertes (arena y piedras de pequeño tamaño), se conoce como argamasa. Las obras construidas con este material se cubrían posteriormente con mármoles o estucos para obtener un acabado más aparente. En el siglo XIX se inventó el cemento Portland, que es completamente impermeable y constituye la base para el moderno hormigón.
20
MATERIALES DE CONSTRUCCION
Otro de los inventos del siglo XIX fue la producción industrial de acero; los hornos de laminación producían vigas de hierro mucho más resistentes que las tradicionales de madera. Es más, los redondos o varillas de hierro se podían introducir en la masa fresca de hormigón, aumentando al fraguar la capacidad de este material, dado que añadían a su considerable resistencia a compresión la excepcional resistencia del acero a tracción. Aparece así el hormigón armado, que ha revolucionado la construcción del siglo XX por dos razones: la rapidez y comodidad de su puesta en obra y las posibilidades formales que ofrece, dado que es un material plástico. Por otra parte, la aparición del aluminio y sus tratamientos superficiales, especialmente el anodizado, han popularizado el uso de un material extremadamente ligero que no necesita mantenimiento. El vidrio se conoce desde la antigüedad y las vidrieras son uno de los elementos característicos de la arquitectura gótica. Sin embargo, su calidad y transparencia se han acrecentado gracias a los procesos industriales, que han permitido la fabricación de vidrio plano en grandes dimensiones capaces de iluminar grandes espacios con luz natural.
21
MATERIALES DE CONSTRUCCION PRINCIPALES MATERIALES DE CONSTRUCCIÓN
Ladrillo: Bloque de arcilla o cerámica cocida empleado en la construcción y para revestimientos decorativos. Los ladrillos pueden secarse al sol, pero acostumbran a secarse en hornos. Tienen un coste bastante bajo, resisten la humedad y el calor y pueden durar en algunos casos más que la piedra. Su color varía dependiendo de las arcillas empleadas y sus proporciones cambian de acuerdo a las tradiciones arquitectónicas. Algunos ladrillos están hechos de arcillas resistentes al fuego para construir chimeneas y hornos. Otros están hechos con vidrio o se someten a procesos de vitrificación. Los ladrillos se pueden fabricar de diferentes formas, dependiendo de la manera en que se vayan a colocar sus costados largos (al hilo) y sus extremos cortos (cabezales). El ladrillo constituyó el principal material en la construcción de las antiguas Mesopotamia y Palestina, donde apenas se disponía de madera y piedras. Los habitantes de Jericó en Palestina fabricaban ladrillos hace unos 9.000 años. Los constructores sumerios y babilonios levantaron zigurats, palacios y ciudades amuralladas con ladrillos secados al sol, que recubrían con otros ladrillos cocidos en hornos, más resistentes y a menudo con esmaltes brillantes formando frisos decorativos. En sus últimos años los persas construían con ladrillos al igual que los chinos, que levantaron la gran muralla. Los romanos construyeron baños, anfiteatros y acueductos con ladrillos, a menudo recubiertos de mármol.
22
MATERIALES DE CONSTRUCCION
En el curso de la edad media, en el imperio bizantino, al norte de Italia, en los Países Bajos y en Alemania, así como en cualquier otro lugar donde escaseara la piedra, los constructores valoraban el ladrillo por
sus
cualidades
decorativas
y
funcionales.
Realizaron
construcciones con ladrillos templados, rojos y sin brillo creando una amplia variedad de formas, como cuadros, figuras de punto de espina, de tejido de esterilla o lazos flamencos. Esta tradición continuó en el renacimiento y en la arquitectura georgiana británica, y fue llevada a América del norte por los colonos. El ladrillo ya era conocido por los indígenas americanos de las civilizaciones prehispánicas. En regiones secas construían casas de ladrillos de adobe secado al sol. Las grandes pirámides de los olmecas, mayas y otros pueblos fueron construidas con ladrillos revestidos de piedra. Pero fue en España donde, por influencia musulmana, el uso del ladrillo alcanzó más difusión, sobre todo en Castilla, Aragón y Andalucía. El ladrillo industrial, fabricado en enormes cantidades, sigue siendo un material de construcción muy versátil. Existen tres clases: ladrillo de fachada o exteriores, cuando es importante el aspecto; el ladrillo común, hecho de arcilla de calidad inferior destinado a la construcción; y el ladrillo refractario, que resiste temperaturas muy altas y se emplea para fabricar hornos. Los ladrillos se hacen con argamasa, una pasta compuesta de cemento, masilla de cal y arena.
2.
Adobe:
23
MATERIALES DE CONSTRUCCION
Término empleado para designar un bloque constructivo hecho de tierra arcillosa y secado al sol. La tierra arcillosa o barro se encuentra por todo el mundo, especialmente en zonas áridas o semiáridas como el norte de África, México y el suroeste de Estados Unidos. El adobe se ha utilizado durante siglos para construir casas y otras edificaciones en Babilonia, en el antiguo Egipto y en numerosas culturas europeas —especialmente en la zona meridional—, africanas y americanas. El barro se compone de una mezcla de arcilla, cuarzo y otros minerales. Se puede moldear con facilidad mientras está húmedo, pero cuando se seca es prácticamente indeformable. Los suelos arcillosos son muy fértiles cuando se riegan, y pueden producir cosechas anuales de cereales, alfalfa y otros cultivos. Los adobes se fabrican formando pequeños bloques (del tamaño de un ladrillo) de barro y paja o heno, que se dejan secar al sol durante una o dos semanas. Debido a su escasa resistencia a la humedad, sólo se construye con adobes en zonas poco lluviosas. Los edificios suelen protegerse de la humedad con aleros y cimientos pétreos. Las estructuras de barro se asocian normalmente con las culturas populares
de
todo
el
mundo,
especialmente
en
España
y
Latinoamérica. En la actualidad se investiga, tanto en Europa como en Estados Unidos, sobre el uso del adobe como material de construcción alternativo. Su empleo resulta, al igual que el del tapial, ecológico y asequible, por lo que puede representar una solución al problema de la vivienda en los países en vías de desarrollo.
24
MATERIALES DE CONSTRUCCION
3.
Tierra seleccionada: la tierra seleccionada es un material muy utilizado por el sistema tradicional para la construcción de muros, compuesto por tierra estabilizada apisonada dentro de un encofrado de madera. Para construir tapiales es necesario contar con un terreno levemente arcilloso, pero no tanto como el que se emplea en el adobe, el bahareque o la quincha. Entre las cualidades del tapial destaca su elevada inercia, que le dota de una extraordinaria capacidad aislante, térmica y acústica, aunque también le confiere un excesivo peso que ha provocado su desaparición de la construcción industrializada. A pesar de todo, continúa siendo uno de los sistemas más apropiados para la autoconstrucción, así como para las zonas con mano de obra abundante y barata, gracias al coste nulo de material y transporte. La construcción del tapial comienza con la extracción del terreno en el lugar de la obra y, si es necesario, su estabilización con una lechada de cal o cemento. Después se dispone un encofrado rígido compuesto por tablas, llamadas costales o tapieras, donde se vierte el material para su posterior apisonado manual. Esta operación se repite en sucesivas tongadas o tapiadas del tamaño adecuado, hasta que se completa el muro, que deberá secarse antes de proceder a su puesta en carga. En algunos casos, además, se realiza un recubrimiento exterior con mortero de cal, conocido con el nombre de calicostra.
Hormigón o Concreto INTRODUCCIÓN:
25
MATERIALES DE CONSTRUCCION
Material artificial utilizado en ingeniería que se obtiene mezclando cemento Portland, agua, algunos materiales bastos como la grava y otros refinados, y una pequeña cantidad de aire.
El hormigón es casi el único material de construcción que llega en bruto a la obra. Esta característica hace que sea muy útil en construcción, ya que puede moldearse de muchas formas. Presenta una amplia variedad de texturas y colores y se utiliza para construir muchos tipos de estructuras, como autopistas, calles, puentes, túneles, presas, grandes edificios, pistas de aterrizaje, sistemas de riego y canalización, rompeolas, embarcaderos y muelles, aceras, silos o bodegas, factorías, casas e incluso barcos. Otras características favorables del hormigón son su resistencia, su bajo costo y su larga duración. Si se mezcla con los materiales adecuados, el hormigón puede soportar fuerzas de compresión elevadas. Su resistencia longitudinal es baja, pero reforzándolo con acero y a través de un diseño adecuado se puede hacer que la estructura sea tan resistente a las fuerzas longitudinales como a la compresión. Su larga duración se evidencia en la conservación de columnas construidas por los egipcios hace más de 3.600 años.
26
MATERIALES DE CONSTRUCCION
4.2.
COMPOSICIÓN
Los componentes principales del hormigón son pasta de cemento Portland, agua y aire, que puede entrar de forma natural y dejar unas pequeñas cavidades o se puede introducir artificialmente en forma de burbujas. Los materiales inertes pueden dividirse en dos grupos: materiales finos, como puede ser la arena, y materiales bastos, como grava, piedras o escoria. En general, se llaman materiales finos si sus partículas son menores que 6,4 mm y bastos si son mayores, pero según el grosor de la estructura que se va a construir el tamaño de los materiales bastos varía mucho. En la construcción de elementos de pequeño grosor se utilizan materiales con partículas pequeñas, de 6,4 mm. En la construcción de presas se utilizan piedras de 15 cm de diámetro o más. El tamaño de los materiales bastos no debe exceder la quinta parte de la dimensión más pequeña de la pieza de hormigón que se vaya a construir. Al mezclar el cemento Portland con agua, los compuestos del cemento reaccionan y forman una pasta aglutinadora. Si la mezcla está bien hecha, cada partícula de arena y cada trozo de grava queda envuelta por la pasta y todos los huecos que existan entre ellas quedarán rellenos. Cuando la pasta se seca y se endurece, todos estos materiales quedan ligados formando una masa sólida.
27
MATERIALES DE CONSTRUCCION
En condiciones normales el hormigón se fortalece con el paso del tiempo. La reacción química entre el cemento y el agua que produce el endurecimiento de la pasta y la compactación de los materiales que se introducen en ella requiere tiempo. Esta reacción es rápida al principio pero después es mucho más lenta. Si hay humedad, el hormigón sigue endureciéndose durante años. Por ejemplo, la resistencia del hormigón vertido es de 70.307 g/cm2 al día siguiente, 316.382 g/cm2 una semana después, 421.842 g/cm2 al mes siguiente y 597.610 g/cm2 pasados cinco años. Las mezclas de hormigón se especifican en forma de relación entre los volúmenes de cemento, arena y piedra utilizados. Por ejemplo, una mezcla 1:2:3 consiste en una parte por volumen de cemento, dos partes de arena y tres partes de agregados sólidos. Según su aplicación, se alteran estas proporciones para conseguir cambios específicos en sus propiedades, sobre todo en cuanto a resistencia y duración. Estas relaciones varían de 1:2:3 a 1:2:4 y 1:3:5. La cantidad de agua que se añade a estas mezclas es de 1 a 1,5 veces el volumen de cemento. Para obtener hormigón de alta resistencia el contenido de agua debe ser bajo, sólo el suficiente para humedecer toda la mezcla. En general, cuanta más agua se añada a la mezcla, más fácil será trabajarla, pero más débil será el hormigón cuando se endurezca.
28
MATERIALES DE CONSTRUCCION
El hormigón puede hacerse absolutamente hermético y utilizarse para contener agua y para resistir la entrada de la misma. Por otra parte, para construir bases filtrantes, se puede hacer poroso y muy permeable. También puede presentar una superficie lisa y pulida tan suave como el cristal. Si se utilizan agregados pesados, como trozos de acero, se obtienen mezclas densas de 4.000 kg/m3. También se puede fabricar hormigón de sólo 481 kg/m3 utilizando agregados ligeros especiales y espumas. Estos hormigones ligeros flotan en el agua, se pueden serrar en trozos o clavar en otras superficies. Para pequeños trabajos o reparaciones, puede mezclarse a mano, pero sólo las máquinas mezcladoras garantizan una mezcla uniforme. La proporción recomendada para la mayoría de usos a pequeña escala — como suelos, aceras, calzadas, patios y piscinas— es la mezcla 1:2:3. Cuando la superficie del hormigón se ha endurecido requiere un tratamiento especial, ya sea salpicándola o cubriéndola con agua o con materiales que retengan la humedad, capas impermeables, capas plásticas, arpillera húmeda o arena. También hay pulverizadores especiales. Cuanto más tiempo se mantenga húmedo el hormigón, será más fuerte y durará más. En época de calor debe mantenerse húmedo por lo menos tres días, y en época de frío no se debe dejar congelar durante la fase inicial de endurecimiento. Para ello se cubre con una lona alquitranada o con otros productos que ayudan a mantener el calor generado por las reacciones químicas que se producen en su interior y provocan su endurecimiento.
29
MATERIALES DE CONSTRUCCION
4.3.
TÉCNICAS
DE
CONSTRUCCIÓN
El hormigón se moldea de muchas maneras. Para construir los cimientos de pequeños edificios se vierte directamente en zanjas cavadas en la tierra. Para otros tipos de cimientos y algunos muros, se vierte entre los soportes o encofrados de madera o de hierro, que se eliminan cuando el hormigón se ha secado. En la construcción con losas prefabricadas, las planchas que forman techos y suelos se montan en el suelo y después se elevan con gatos hidráulicos y se fijan las columnas a la altura precisa. Los encofrados deslizantes se utilizan para formar columnas y los núcleos de los edificios. Se van moviendo hacia arriba de 15 a 38 cm por hora mientras se vierte el hormigón y se colocan los refuerzos. El método de fraguar hacia arriba se suele utilizar en la construcción de edificios de una o dos plantas. Las paredes se fraguan en tierra o en la planta correspondiente y se sitúan con grúas. Después se fijan las paredes por sus extremos o entre ellas a unas columnas de hormigón. Para pavimentar carreteras con hormigón se utiliza una máquina pavimentadora de cimbra móvil. Esta máquina arrastra una estructura con dos guías metálicas separadas. Se vierte una capa de hormigón entre las dos guías y la máquina va avanzando lentamente. Las guías de los laterales mantienen el hormigón en su sitio hasta que éste se seca. Estas pavimentadoras pueden forjar una capa continua de pavimento de hormigón de uno o dos carriles.
30
MATERIALES DE CONSTRUCCION
En ciertas aplicaciones, como la construcción de piscinas, canales y superficies curvas, el hormigón puede aplicarse por inyección. Con este método el hormigón se pulveriza a presión con máquinas neumáticas sin necesidad de utilizar encofrados. Así se elimina todo el trabajo de los moldes de hierro y madera y se puede aplicar hormigón en lugares donde los métodos convencionales serían difíciles o imposibles de emplear. El hormigón con aire ocluido es hormigón en el que se introducen pequeñas burbujas de aire en la mezcla con el cemento, durante su fabricación, preparación o en la fase de mezclado con la arena y los agregados. La presencia de estas burbujas aporta propiedades favorables al hormigón, tanto cuando está fresco como cuando se ha endurecido. Cuando está fresco y recién mezclado las burbujas de aire actúan como lubricante; hacen la mezcla más manejable por lo que reducen la cantidad de agua necesaria para hacerla. Este sistema de aire también reduce la cantidad de arena necesaria. El aire presente en el hormigón endurecido reduce radicalmente los ajustes que derivan de la utilización de productos químicos anticongelantes en calles y carreteras. También previene los daños que producen en los pavimentos las heladas y deshielos. Las burbujas de aire
funcionan
como
diminutas
válvulas
de
seguridad
que
proporcionan espacio al agua para expandirse si la temperatura baja y se hiela.
31
MATERIALES DE CONSTRUCCION
4.4.
ALBAÑILERÍA
CON
HORMIGÓN
En todos los tipos de construcción de albañilería se utilizan ladrillos o bloques de hormigón. Se emplean por ejemplo en muros de carga y paredes, malecones, bardas o cortafuegos; como refuerzo de paredes de ladrillo, piedra o enlucidas con estuco o yeso; para proteger del fuego estructuras de acero y recintos como huecos de escaleras y ascensores, y para construir muros de contención, chimeneas y suelos. Alrededor del 60% de los productos de hormigón para albañilería, como los bloques de escoria, se elaboran con agregados ligeros. Los más utilizados son arcillas tratadas, escoria de altos hornos, esquisto micáceo, agregados volcánicos naturales y cenizas. El tamaño de estos bloques, que se utilizan para construir paredes, tanto por debajo como por encima del suelo, suele ser de 20 × 20 × 40 cm. Estos bloques se colocan de forma horizontal y no suelen ser macizos para reducir peso y para que se forme una cámara de aire aislante. Se han desarrollado otros tipos de bloques de hormigón con dibujo que se utilizan sin revestimiento en casas, centros comerciales, escuelas, iglesias e instalaciones públicas. La medida de los bloques está ya estandarizada: se pueden conseguir bloques específicos para cualquier trabajo sin tener que cortar y ajustar. También hay moldes para producir bloques con dibujos y relieves para paredes interiores y exteriores. Es posible conseguir cualquier color o tipo de textura. HORMIGÓN ARMADO
32
MATERIALES DE CONSTRUCCION
En la mayoría de los trabajos de construcción, el hormigón se refuerza con armaduras metálicas, sobre todo de acero; este hormigón reforzado se conoce como ‘hormigón armado’. El acero proporciona la resistencia necesaria cuando la estructura tiene que soportar fuerzas longitudinales elevadas. El acero que se introduce en el hormigón suele ser una malla de alambre o barras sin desbastar o trenzadas. El hormigón y el acero forman un conjunto que transfiere las tensiones entre los dos elementos. El hormigón pretensado ha eliminado muchos obstáculos en cuanto a la envergadura y las cargas que soportan las estructuras de hormigón para ser viables desde el punto de vista económico. La función básica del acero pretensado es reducir las fuerzas longitudinales en ciertos puntos de la estructura. El pretensado se lleva a cabo tensando acero de alta resistencia para inducir fuerzas de compresión al hormigón. El efecto de esta fuerza de compresión es similar a lo que ocurre cuando queremos transportar una fila de libros horizontalmente; si aplicamos suficiente presión en los extremos, inducimos fuerzas de compresión a toda la fila, y podemos levantar y transportar toda la fila, aunque no se toquen los libros de la parte central.
33
MATERIALES DE CONSTRUCCION
Estas fuerzas compresoras se inducen en el hormigón pretensado a través de la tensión de los refuerzos de acero antes de que se endurezca el hormigón, aunque en algunos casos el acero se tensa cuando ya se ha secado. En el proceso de pretensado, el acero se tensa antes de verter el hormigón. Cuando el hormigón se ha endurecido alrededor de estos refuerzos tensados, se sueltan las barras de acero; éstas se encogen un poco e inducen fuerzas de compresión al hormigón. En otros casos, el hormigón se vierte alrededor del acero, pero sin que entre en contacto con él; cuando el hormigón se ha secado se ancla un extremo del refuerzo de acero al hormigón y se presiona por el otro extremo con gatos hidráulicos. Cuando la tensión es la requerida, se ancla el otro extremo del refuerzo y el hormigón queda comprimido.
34
MATERIALES DE CONSTRUCCION
5.
Cemento
INTRODUCCIÓN: Tiene diversas aplicaciones, como la obtención de hormigón por la unión de arena y grava con cemento Portland (es el más usual), para pegar superficies de distintos materiales o para revestimientos de superficies a fin de protegerlas de la acción de sustancias químicas. El cemento tiene diferentes composiciones para usos diversos. Puede recibir el nombre del componente principal, como el cemento calcáreo, que contiene óxido de silicio, o como el cemento epoxiaco, que contiene resinas epoxídicas; o de su principal característica, como el cemento hidráulico o el cemento rápido. Los cementos utilizados en la construcción se denominan en algunas ocasiones por su origen, como el cemento romano, o por su parecido con otros materiales, como el caso del cemento Portland, que tiene cierta semejanza con la piedra de Portland, utilizada en Gran Bretaña para la construcción. Los cementos que resisten altas temperaturas se llaman cementos refractantes. El cemento se fragua o endurece por evaporación del líquido plastificante, como el agua, por transformación química interna, por hidratación o por el crecimiento de cristales entrelazados. Otros tipos de cemento se endurecen al reaccionar con el oxígeno y el dióxido de carbono de la atmósfera.
35
MATERIALES DE CONSTRUCCION
5.2.
CEMENTO
PORTLAND
Los cementos Portland típicos consisten en mezclas de silicato tricálcico (3CaO·SiO2), aluminato tricálcico (3CaO·Al2O3) y silicato dicálcico (2CaO·SiO2) en diversas proporciones, junto con pequeñas cantidades de compuestos de hierro y magnesio. Para retardar el proceso de endurecimiento se suele añadir yeso. Los compuestos activos del cemento son inestables, y en presencia de agua reorganizan su estructura. El endurecimiento inicial del cemento se produce por la hidratación del silicato tricálcico, el cual forma una sílice (dióxido de silicio) hidratada gelatinosa e hidróxido de calcio. Estas sustancias cristalizan, uniendo las partículas de arena o piedras —siempre presentes en las mezclas de argamasa de cemento— para crear una masa dura. El aluminato tricálcico actúa del mismo modo en la primera fase, pero no contribuye al endurecimiento final de la mezcla. La hidratación del silicato dicálcico actúa de modo semejante, pero mucho más lentamente, endureciendo poco a poco durante varios años. El proceso de hidratación y asentamiento de la mezcla de cemento se conoce como curado, y durante el mismo se desprende calor.
36
MATERIALES DE CONSTRUCCION
El cemento Portland se fabrica a partir de materiales calizos, por lo general piedra caliza, junto con arcillas, pizarras o escorias de altos hornos que contienen óxido de aluminio y óxido de silicio, en proporciones aproximadas de un 60% de cal, 19% de óxido de silicio, 8% de óxido de aluminio, 5% de hierro, 5% de óxido de magnesio y 3% de trióxido de azufre. Ciertas rocas llamadas rocas cementosas presentan en su composición estos elementos en proporciones adecuadas y se puede obtener cemento a partir de ellas sin necesidad de emplear grandes cantidades de otras materias primas. No obstante, las cementeras suelen utilizar mezclas de diversos materiales. En la fabricación del cemento se trituran las materias primas mezcladas y se calientan hasta que se funden, formando el “clínquer”, que a su vez se tritura hasta lograr un polvo fino. Para el calentamiento se suele emplear un horno rotatorio de más de 150 m de largo y más de 3,2 m de diámetro. Estos hornos están ligeramente inclinados, y las materias primas se introducen por su parte superior, ya sea en forma de polvo seco de roca o como pasta húmeda hecha de roca triturada y agua. A medida que desciende a través del horno, se va secando y calentando con una llama situada al fondo del mismo. Según se acerca a la llama se separa el dióxido de carbono y la mezcla se funde a temperaturas entre 1.540 y 1.600 ºC. El material tarda unas seis horas en pasar de un extremo a otro del horno. Después de salir del horno, el clínquer se enfría con rapidez y se tritura, transportándose a una empaquetadora o a silos o depósitos de almacenamiento. El material obtenido tiene una textura tan fina que el 90% o más de sus partículas podría atravesar un tamiz o colador con 6.200 agujeros por centímetro cuadrado.
37
MATERIALES DE CONSTRUCCION
En los hornos modernos se pueden obtener de 27 a 30 kg de cemento por cada 45 kg de materia prima. La diferencia se debe sobre todo a la pérdida de agua y dióxido de carbono. Por lo general, en los hornos se quema carbón en polvo, consumiéndose unos 450 kg de carbón por cada 900 g de cemento fabricado. También se utilizan gases y otros combustibles derivados del petróleo. Para comprobar la calidad del cemento se llevan a cabo numerosas pruebas. Un método común consiste en tomar una muestra de argamasa de tres partes de arena y una de cemento y medir su resistencia a la tracción después de una semana sumergida en agua.
38
MATERIALES DE CONSTRUCCION
5.3.
CEMENTOS
ESPECIALES
Mediante la variación del porcentaje de sus componentes habituales o la adición de otros nuevos, el cemento Portland puede adquirir diversas características de acuerdo a cada uso, como el endurecimiento rápido y resistencia a los álcalis. Los cementos de fraguado rápido, a veces llamados cementos de dureza extrarrápida, se consiguen aumentando la proporción de silicato tricálcico o mediante una trituración fina de modo que el 99,5% logre pasar un filtro de 16.370 aberturas por centímetro cuadrado. Algunos de estos cementos se endurecen en un día como los cementos ordinarios lo hacen en un mes. Sin embargo, durante la hidratación producen mucho calor y por ello no son apropiados para grandes estructuras en las que esa cantidad de calor puede provocar la formación de grietas. En los grandes vertidos se suelen emplear cementos especiales de poco calor de fraguado, que por lo general contienen mayor cantidad de silicato dicálcico. En obras de hormigón expuestas a agentes alcalinos (que atacan al hormigón fabricado con cemento Portland común) se suelen utilizar cementos resistentes con bajo contenido en aluminio. En estructuras construidas bajo el agua del mar se emplean normalmente cementos con un contenido de hasta un 5% de óxido de hierro, y cuando se precisa resistencia a la acción de aguas ricas en sulfatos se utilizan cementos con una composición de hasta un 40% de óxido de aluminio.
39
MATERIALES DE CONSTRUCCION
5.4.
HISTORIA
Aunque ciertos tipos de cementos hidráulicos eran conocidos desde la antigüedad, sólo han sido utilizados a partir de mediados del siglo XVIII. El término cemento Portland se empleó por primera vez en 1824 por el fabricante inglés de cemento Joseph Aspdin, debido a su parecido con la piedra de Portland, que era muy utilizada para la construcción en Inglaterra. El primer cemento Portland moderno, hecho de piedra caliza y arcillas o pizarras, calentadas hasta convertirse en clínquer y después trituradas, fue producido en Gran Bretaña en 1845. En aquella época el cemento se fabricaba en hornos verticales, esparciendo las materias primas sobre capas de coque a las que se prendía fuego. Los primeros hornos rotatorios surgieron hacia 1880. El cemento Portland se emplea hoy en la mayoría de las estructuras de hormigón.
La mayor producción de cemento se produce, en la actualidad, en los países más poblados y/o industrializados, aunque también es importante la industria cementera en los países menos desarrollados. La antigua Unión Soviética, China, Japón y Estados Unidos son los mayores productores, pero Alemania, Francia, Italia, España y Brasil son también productores importantes. 6.
Asfalto:
40
MATERIALES DE CONSTRUCCION
Sustancia negra, pegajosa, sólida o semisólida según la temperatura ambiente; a la temperatura de ebullición del agua tiene consistencia pastosa, por lo que se extiende con facilidad. Se utiliza para revestir carreteras, impermeabilizar estructuras, como depósitos, techos o tejados, y en la fabricación de baldosas, pisos y tejas. No se debe confundir con el alquitrán, que es también una sustancia negra, pero derivada del carbón, la madera y otras sustancias. El asfalto se encuentra en depósitos naturales, pero casi todo el que se utiliza hoy es artificial, derivado del petróleo. Para pavimentar se emplean asfaltos de destilación, hechos con los hidrocarburos no volátiles que permanecen después de refinar el petróleo para obtener gasolina y otros productos. En la fabricación de materiales para tejados y productos similares se utilizan los asfaltos soplados, que se obtienen de los residuos del petróleo a temperaturas entre 204 y 316 °C. Una pequeña cantidad de asfalto se craquea a temperaturas alrededor de los 500 °C para fabricar materiales aislantes.
41
MATERIALES DE CONSTRUCCION
El asfalto natural se utilizaba mucho en la antigüedad. En Babilonia se empleaba como material de construcción. En el Antiguo Testamento —en los libros del Génesis y el Éxodo— hay muchas referencias a sus propiedades impermeabilizadoras como material para calafatear barcos (véase Betún). Los depósitos naturales de asfalto suelen formarse en pozos o lagos a partir de residuos de petróleo que rezuman hacia la superficie a través de fisuras en la tierra. Entre ellos destacan el lago Asfaltites o mar Muerto, en Palestina; los pozos de alquitrán de La Brea, en Los Ángeles, en los cuales se han encontrado fósiles de flora y fauna prehistóricas; el lago de la Brea, en la isla de Trinidad, y el lago Bermúdez, en Venezuela. También se aprovechan los depósitos de rocas asfálticas o rocas impregnadas de asfalto. Otro tipo de asfalto de importancia comercial es la gilsonita, que se encuentra en la cuenca del río Uinta, al suroeste de Estados Unidos, y se utiliza en la fabricación de pinturas y lacas.
42
MATERIALES DE CONSTRUCCION
7.
Cerámica (ingeniería) (en griego keramos, 'arcilla'): En la antigüedad arte de hacer objetos de cerámica con arcilla. Ahora es un término general que se aplica a la ciencia que se ocupa de la fabricación de objetos con materiales terrosos, blandos, endurecidos mediante tratamientos a altas temperaturas. Los materiales cerámicos son compuestos inorgánicos no metálicos, en su mayoría óxidos, aunque también se emplean carburos, nitruros, boruros y siliciuros. La cerámica incluye los trabajos de alfarería, porcelana, ladrillos, baldosas y azulejos de gres. Estos productos no sólo se utilizan con fines decorativos o para servicio de mesa, también se utilizan en los materiales de construcción, e incluso para fabricar soportes magnéticos. Las partículas de óxido de hierro constituyen el componente activo de muchos medios de grabación magnética, como las cintas de casete y los disquetes o discos de ordenador (computadora). Los aislantes cerámicos tienen una amplia variedad de propiedades
eléctricas
y
han
reemplazado
a
los
materiales
convencionales. Se han descubierto en fechas recientes propiedades eléctricas de superconductividad, en la familia de compuestos cerámicos basados en óxido de cobre, a temperaturas mucho más altas que a las que ciertos metales experimentaban este fenómeno. En la tecnología espacial se utilizan unos materiales cerámicos llamados cermets para fabricar la parte delantera de los cohetes, las placas resistentes al calor de los transbordadores espaciales y otros muchos componentes. Los cermets son aleaciones de alta resistencia al calor que se obtienen mediante mezcla, prensado y cocción de óxidos y carburos con metales en polvo. 7. 1. Azulejo 7.1.1.
INTRODUCCIÓN 43
MATERIALES DE CONSTRUCCION
Pieza delgada de arcilla vidriada o sin vidriar que se utiliza para cubrir o decorar suelos y paredes. A veces, por extensión, se aplica a piezas delgadas de vidrio, plástico, piedra, asfalto o de material de aislamiento acústico como el amianto, así como a algunos bloques cerámicos huecos utilizados en la construcción (para desagües y tabiques). Los azulejos se fabrican introduciendo a presión arcilla fresca dentro de un molde. Los azulejos modernos para solar se fabrican con arcilla de grano fino prensada a máquina; también mediante vaciado de barbotina, proceso que consiste en verter barbotina (arcilla líquida) dentro de un molde poroso y dejar que seque. Antes de la cocción puede añadirse barniz y hacer una decoración pintada con óxidos metálicos. Dependiendo del tipo de arcilla y de la temperatura de cocción, los azulejos pueden variar desde los de loza porosa hasta los de porcelana vidriada. 7.1.2. SUELOS Aunque los suelos de azulejos colocados a modo de mosaicos ya eran conocidos en épocas antiguas, su uso no se popularizó hasta finales de la edad media. Las iglesias francesas del siglo XII tenían suelos de mosaico de color blanco, verde y amarillo. Los de las catedrales del siglo XIII eran de baldosas tratadas a la encáustica (de arcilla roja con incrustaciones de arcilla blanca y amarilla). En el siglo XVI este tipo fue desplazado por los azulejos de mayólica italianos y españoles. Los suelos de azulejos dejaron paso a los de madera y mármol durante el siglo XVII, pero en el siglo XVIII se extendió el uso de los azulejos planos de color rojo y de forma cuadrada. Los pavimentos de cerámica más comunes en la actualidad, están hechos de pequeños azulejos vidriados prensados a máquina y coloreados.
44
MATERIALES DE CONSTRUCCION
7.1.3. PAREDES Las
paredes
de
azulejos
o
recubrimientos
similares
más
espectaculares de la antigüedad fueron los murales de ladrillo y azulejo vidriado de brillante colorido de Mesopotamia y Asiria. Los azulejos vidriados chinos se caracterizaban por su decoración en bajorrelieve. Persia se convirtió durante la edad media en el centro de los azulejos islámicos vidriados, con decoración floral y caligráfica. España se hizo famosa por sus azulejos de loza dorada y mayólica. En el siglo XIV en Alemania se fabricaron grandes estufas con azulejos vidriados en verde, pardo y amarillo, que fueron reemplazadas después del 1600 por las estufas con azulejos blancos y azules de Delft. Originarios de los Países Bajos, los azulejos de Delft en azul-y-blanco (de porcelana blanca pintada en azul cobalto bajo cubierta), que se habían puesto de moda a raíz del descubrimiento de la porcelana china, fueron muy apreciados desde mediados del siglo XVII. Más adelante el intenso color cobalto se sustituyó por el púrpura de manganeso. El azulejo, al que podría considerarse una modalidad de la cerámica, debió en España su impulso a los árabes. Fue en Sevilla donde se inició la producción española de azulejos con los llamados de ‘cuerda seca’, a los que seguirían los de ‘cuenca’ y ‘arista’. En la Alhambra de Granada se conservan azulejerías de esta primera época. Otros centros de floreciente producción fueron Valencia y Cataluña, donde se produjeron los azulejos de dibujos geométricos, de múltiples combinaciones, policromados con infinitas tintas y reflejos metálicos. En Aragón y Toledo, aunque también se notó el influjo árabe, se desarrolló el azulejo con un estilo más propio y peculiar. Las diferencias se notan sobre todo en Talavera de la Reina, ciudad que al estar situada en el centro de la península Ibérica, se vio obligada a modificar su producción. A partir del siglo XVI comienza
45
MATERIALES DE CONSTRUCCION
a proliferar en esta localidad castellana la producción de frisos de azulejos inspirados en temas mitológicos y cotidianos con fines decorativos. Algunos ejemplos de ello son el palacio del Infantado en Guadalajara, el palacio de Sessa en Torrijos, el de Frías en Oropesa y las catedrales de Salamanca, Toledo, Plasencia y Ávila. De España el gusto por los azulejos pasó a Portugal, donde desde el siglo XVII ha tenido un gran desarrollo y se han producido algunas de las azulejerías más notables, tanto por sus dimensiones como por la extraordinaria finura de sus dibujos. En América también se utilizaron los azulejos como elementos decorativos de primer orden, aplicados sobre todo al exterior de los templos en México y Perú. Los azulejos sin vitrificar se han usado también en la decoración mural desde tiempos antiguos. Los arquitectos actuales pueden elegir entre un amplio abanico de azulejos vidriados y sin vidriar, lisos y con relieve, y es frecuente que encarguen a ceramistas afamados la realización de azulejos hechos a mano para murales. Éste es el caso del español Josep Llorens Artigas, que colaboró con pintores de la talla de Raoul Dufy, Georges Braque y, sobre todo, Joan Miró, en la realización de monumentales murales cerámicos como el del palacio de la Organización de las Naciones Unidas (UNESCO) en París.
46
MATERIALES DE CONSTRUCCION
Madera: INTRODUCCIÓN Sustancia dura y resistente que constituye el tronco de los árboles y se ha utilizado durante miles de años como combustible y como material de construcción. Aunque el término madera se aplica a materias similares de otras partes de las plantas, incluso a las llamadas venas de las hojas, en este artículo sólo se va a hablar de las maderas de importancia comercial.
Para más información sobre los aspectos botánicos de la madera, incluidos su estructura y crecimiento, véase Árbol y Xilema; en cuanto a crecimiento y distribución, véase Bosque; sobre el cultivo de árboles para la producción de madera, véase Silvicultura, y sobre tala y manufactura de la madera, véase Industria maderera. 8.2.
VETAS
Y
ESTRUCTURA
El dibujo que presentan todas las variedades de madera se llama veta, y se debe a su propia estructura. La madera consiste en pequeños tubos que transportan agua, y los minerales disueltos en ella, desde las raíces a las hojas. Estos vasos conductores están dispuestos verticalmente en el tronco. Cuando cortamos el tronco en paralelo a su eje, la madera tiene vetas rectas. En algunos árboles, sin embargo, los conductos están dispuestos de forma helicoidal, es decir, enrollados alrededor del eje del tronco. Un corte de este tronco producirá madera con vetas cruzadas, lo que suele ocurrir al cortar cualquier árbol por un plano no paralelo a su eje.
47
MATERIALES DE CONSTRUCCION
El tronco de un árbol no crece a lo alto, excepto en su parte superior, sino a lo ancho. La única parte del tronco encargada del crecimiento es una fina capa que lo rodea llamada cámbium. En los árboles de las zonas de clima templado, el crecimiento no es constante. La madera que produce el cámbium en primavera y en verano es más porosa y de color más claro que la producida en invierno. De esta manera, el tronco del árbol está compuesto por un par de anillos concéntricos nuevos cada año, uno más claro que el otro. Por eso se llaman anillos anuales. Aunque la fina capa de cámbium es la única parte del tronco que está viva, en el sentido de que es la parte que crece, también hay células vivas esparcidas por el xilema de la albura. Según envejecen los árboles, el centro del tronco muere; los vasos se atascan y se llenan de goma o resina, o se quedan huecos. Esta parte central del tronco se llama duramen. Los cambios internos de los árboles van acompañados de cambios de color, diferentes según cada especie, por lo que el duramen suele ser más oscuro que la albura. 8.3.
CLASIFICACIÓN
Las maderas se clasifican en duras y blandas según el árbol del que se obtienen. La madera de los árboles de hoja caduca se llama madera dura, y la madera de las coníferas se llama blanda, con independencia de su dureza. Así, muchas maderas blandas son más duras que las llamadas maderas duras. Las maderas duras tienen vasos largos y continuos a lo largo del tronco; las blandas no, los elementos extraídos del suelo se transportan de célula a célula, pero sí tienen conductos para resina paralelos a las vetas. Las maderas blandas suelen ser resinosas; muy pocas maderas duras lo son. Las maderas duras suelen emplearse en ebanistería para hacer mobiliario y parqués de calidad. 48
MATERIALES DE CONSTRUCCION
Los nudos son áreas del tronco en las que se ha formado la base de una rama. Cuando la madera se corta en planchas, los nudos son discontinuidades o irregularidades circulares que aparecen en las vetas. Donde nacen las ramas del árbol, los anillos del nudo continúan las vetas del tronco; pero según sale a la superficie, las vetas rodean al nudo y la rama crece aparte. Durante la fase de secado de la madera (ver más abajo), ésta se encoge según la dirección de la veta, y los nudos se encogen con más rapidez que el resto. Los nudos superficiales suelen desprenderse de las planchas y dejan agujeros. Los nudos de la base no se desprenden, pero deforman la madera que los rodea debido a su encogimiento más acusado, y debilitan las tablas incluso más que los agujeros que dejan los otros nudos. Los nudos de la madera no son deseables por consideraciones estéticas, aparte de su efecto debilitador. Sin embargo algunos tipos de madera con nudos, como el pino, sí resultan vistosas por el dibujo de su veta y se utilizan para decoración y revestimiento de paredes.
49
MATERIALES DE CONSTRUCCION
El aspecto de la madera es una de las propiedades más importantes cuando se utiliza para decoración, revestimiento o fabricación de muebles. Algunas maderas, como la de nogal, presentan vetas rectas y paralelas de color oscuro que le dan una apariencia muy atractiva, lo que unido a su dureza la sitúan entre las más adecuadas para hacer chapado (véase contrachapado más abajo). Las irregularidades de las vetas pueden crear atractivos dibujos, por lo que a veces la madera se corta a propósito en planos oblicuos para producir dibujos ondulados y entrelazados. Muchos chapados se obtienen cortando una fina capa de madera alrededor del tronco, haciendo un rollo. De esta manera, los cortes con los anillos se producen cada cierta distancia y el dibujo resultante tiene vetas grandes y espaciadas. 8.4.
PROPIEDADES
FÍSICAS
Las propiedades principales de la madera son resistencia, dureza, rigidez y densidad. Ésta última suele indicar propiedades mecánicas puesto que cuanto más densa es la madera, más fuerte y dura es. La resistencia engloba varias propiedades diferentes; una madera muy resistente en un aspecto no tiene por qué serlo en otros. Además la resistencia depende de lo seca que esté la madera y de la dirección en la que esté cortada con respecto a la veta. La madera siempre es mucho más fuerte cuando se corta en la dirección de la veta; por eso las tablas y otros objetos como postes y mangos se cortan así. La madera tiene una alta resistencia a la compresión, en algunos casos superior, con relación a su peso a la del acero. Tiene baja resistencia a la tracción y moderada resistencia a la cizalladura. Véase Ciencia y tecnología de los materiales: Propiedades mecánicas de los materiales.
50
MATERIALES DE CONSTRUCCION
La alta resistencia a la compresión es necesaria para cimientos y soportes en construcción. La resistencia a la flexión es fundamental en la utilización de madera en estructuras, como viguetas, travesaños y vigas de todo tipo. Muchos tipos de madera que se emplean por su alta resistencia a la flexión presentan alta resistencia a la compresión y viceversa; pero la madera de roble, por ejemplo, es muy resistente a la flexión pero más bien débil a la compresión, mientras que la de secuoya es resistente a la compresión y débil a la flexión. Otra propiedad es la resistencia a impactos y a tensiones repetidas. El nogal americano y el fresno son muy duros y se utilizan para hacer bates de béisbol y mangos de hacha. Como el nogal americano es más rígido que el fresno, se suele utilizar para mangos finos, como los de los palos de golf. Otras propiedades mecánicas menos importantes pueden resultar críticas en casos particulares; por ejemplo, la elasticidad y la resonancia de la picea la convierten en el material más apropiado para construir pianos de calidad. DURACIÓN DE LA MADERA
51
MATERIALES DE CONSTRUCCION
La madera es, por naturaleza, una sustancia muy duradera. Si no la atacan organismos vivos puede conservarse cientos e incluso miles de años. Se han encontrado restos de maderas utilizadas por los romamos casi intactas gracias a una combinación de circunstancias que las han protegido de ataques externos. De los organismos que atacan a la madera, el más importante es un hongo que causa el llamado desecamiento de la raíz, que ocurre sólo cuando la madera está húmeda. La albura de todos los árboles es sensible a su ataque; sólo el duramen de algunas especies resiste a este hongo. El nogal, la secuoya, el cedro, la caoba y la teca son algunas de las maderas duraderas más conocidas. Otras variedades son resistentes al ataque de otros organismos. Algunas maderas, como la teca, son resistentes a los organismos perforadores marinos, por eso se utilizan para construir embarcaderos. Muchas maderas resisten el ataque de los termes, como la secuoya, el nogal negro, la caoba y muchas variedades de cedro. En la mayoría de estos casos, las maderas son aromáticas, por lo que es probable que su resistencia se deba a las resinas y a los elementos químicos que contienen. Para conservar la madera hay que protegerla químicamente. El método más importante es impregnarla con creosota o cloruro de cinc. Este tratamiento sigue siendo uno de los mejores, a pesar del desarrollo de nuevos compuestos químicos, sobre todo de compuestos de cobre. También se puede proteger la madera de la intemperie recubriendo su superficie con barnices y otras sustancias que se aplican con brocha, pistola o baño. Pero estas sustancias no penetran en la madera, por lo que no previenen el deterioro que producen hongos, insectos y otros organismos. SECADO 52
MATERIALES DE CONSTRUCCION
La madera recién cortada contiene gran cantidad de agua, de un tercio a la mitad de su peso total. El proceso para eliminar este agua antes de procesar la madera se llama secado, y se realiza por muchos motivos. La madera seca es mucho más duradera que la madera fresca; es mucho más ligera y por lo tanto más fácil de transportar; tiene mayor poder calorífico, lo que es importante si va a emplearse como combustible; además, la madera cambia de forma durante el secado y este cambio tiene que haberse realizado antes de serrarla. La madera puede secarse con aire o en hornos; con aire tarda varios meses, con hornos unos pocos días. En ambos casos, la madera ha de estar apilada para evitar que se deforme, y el ritmo de secado debe controlarse cuidadosamente. 8.7.
CONTRACHAPADO
El contrachapado, también denominado triplay o chapa, está compuesto por varias capas de madera unidas con cola o resina sintética. Las capas se colocan con la veta orientada en direcciones diferentes, en general perpendiculares unas a otras, para que el conjunto sea igual de resistente en todas las direcciones. Así el conjunto es tan resistente como la madera, y si se utilizan pegamentos resistentes a la humedad, el contrachapado es tan duradero como la madera de la que está hecho. La madera laminada es un producto similar, pero en ella se colocan las capas de madera con las vetas en la misma dirección. De esta forma, el producto es, como la madera, muy fuerte en una dirección y débil en el resto.
53
MATERIALES DE CONSTRUCCION
Sólo las capas exteriores del contrachapado tienen que ser duras y con buen aspecto; las interiores únicamente tienen que ser resistentes. En algunos casos, sólo una de las caras es de calidad. Estos contrachapados se utilizan en trabajos de ebanistería en los que la parte interior no es visible. Las maderas finas y costosas, como la caoba o el madero de indias, suelen utilizarse en chapados, de forma que una capa fina de madera cara cubre varias capas de otras maderas resistentes pero de poco valor. De esta manera se reduce el precio de la madera sin sacrificar la apariencia, además de aumentar la dureza y la resistencia al alabeo. También se hacen contrachapados de las maderas más baratas para fabricar sustitutos para metales. 8.8.
PRODUCTOS QUÍMICOS DERIVADOS DE LA MADERA
La madera es una materia prima importante para la industria química. Cada año se reducen a pasta enormes cantidades de madera, que se reconstituye de forma mecánica para hacer papel. Otras industrias se encargan de extraer algunos componentes químicos de la madera, como taninos, pigmentos, gomas, resinas y aceites, y de modificar estos constituyentes. Además de agua, el componente principal de la madera es la celulosa. De la gran cantidad de celulosa que se utiliza para fabricar rayón y nitrocelulosa, una parte se extrae del algodón, pero la mayor parte se obtiene de la madera. El mayor problema que presenta la extracción de celulosa de la madera es eliminar las impurezas, de las cuales la más importante es la lignina, una sustancia polimérica compleja. Al principio se desechaba, pero más tarde se ha descubierto que es una buena materia prima para la fabricación de plásticos y una sustancia adecuada para el cultivo de levadura de cerveza, que es un importante alimento para el ganado y las aves de corral. 54
MATERIALES DE CONSTRUCCION
También se utiliza la madera, sin separar la celulosa de la lignina, para obtener otros productos químicos mediante procesos determinados. En el método Bergius, la madera se trata con ácido clorhídrico para obtener azúcares, que se utilizan como alimento para el ganado o se fermentan para producir alcohol. La madera puede transformarse en combustible líquido por hidrogenación. También se obtienen productos químicos por destilación. La mayoría de estos productos, como el ácido acético, metanol y acetona, se obtienen ya de forma sintética. Otros nuevos productos se obtienen mezclando la madera con ciertos compuestos químicos; la mezcla resultante tiene propiedades mecánicas similares a las de la madera, pero es más fuerte y resistente desde el punto de vista químico. Los métodos más importantes para realizar estas mezclas consisten en impregnar la madera de ciertos compuestos, como fenol y formaldehído; después se calienta la madera impregnada y los productos químicos reaccionan con las células de la madera y forman una capa plástica. La madera tratada de esta forma se llama impreg; es muy duradera y resiste el ataque de los insectos perforadores; su densidad relativa es mayor, aunque su dureza es casi la misma. Otro producto, llamado compreg, se obtiene comprimiendo la madera impregnada en una prensa hidráulica. Se la somete a una determinada presión mientras se produce la reacción química en el exterior. Esta madera tiene una densidad relativa de 1,35, su dureza es muy superior a la de la madera sin tratar y su resistencia un poco mayor, aunque su rigidez puede ser un poco inferior.
55
MATERIALES DE CONSTRUCCION
9.
Plástico: La construcción es otro de los sectores que más utilizan todo tipo de plásticos, incluidos los de empaquetado descritos anteriormente. El polietileno de alta densidad se usa en tuberías, del mismo modo que el PVC. Éste se emplea también en forma de láminas como material de construcción. Muchos plásticos se utilizan para aislar cables e hilos, y el poliestireno aplicado en forma de espuma sirve para aislar paredes y techos. También se hacen con plástico marcos para puertas, ventanas y techos, molduras y otros artículos.
56
MATERIALES DE CONSTRUCCION
10.
Arena: Masa desagregada e incoherente de materias minerales en estado granular fino, que consta normalmente de cuarzo (sílice) con una pequeña proporción de mica, feldespato, magnetita y otros minerales resistentes. Es el producto de la desintegración química y mecánica de la rocas bajo meteorización y abrasión (véase Erosión). Cuando las partículas acaban de formarse suelen ser angulosas y puntiagudas, haciéndose más pequeñas y redondeadas por la fricción provocada por el viento y el agua. La arena es un constituyente importante de muchos suelos y es muy abundante como depósito superficial a lo largo de los cursos de muchos ríos, en las orillas de lagos, en las costas y en las regiones áridas. Véase Suelo; Acondicionamiento del suelo. Un tipo particular de arena es el ingrediente principal en la fabricación de vidrio. Otras clases se utilizan en fundición para hacer moldes o para fabricar cerámicas, yesos y cementos. La arena se usa como abrasivo moledor y pulidor bajo la forma de papel de lija, hoja de papel con una de sus caras cubierta de arena o de una sustancia abrasiva similar. La utilización de chorros de arena, impulsados por aire o vapor a presión, es una técnica importante en la limpieza de la piedra o en el pulido de superficies metálicas rugosas.
57
MATERIALES DE CONSTRUCCION
Arcilla: Suelo o roca sedimentaria, plástica y tenaz cuando se humedece. Se endurece permanentemente cuando se cuece o calcina. De gran importancia en la industria, la arcilla se compone de un grupo de minerales aluminosilicatos formados por la meteorización de rocas feldespáticas, como el granito. El grano es de tamaño microscópico y con forma de escamas. Esto hace que la superficie de agregación sea mucho mayor que su espesor, lo que permite un gran almacenamiento de agua por adherencia, dando plasticidad a la arcilla y provocando la hinchazón de algunas variedades. La arcilla común es una mezcla de caolín, o arcilla china (arcilla hidratada) y de polvo fino de algunos minerales feldespáticos anhidros (sin agua) no descompuestos. Las arcillas varían en plasticidad, todas son más o menos maleables y capaces de ser moldeadas cuando se humedecen con agua. Las arcillas plásticas se usan en todos los tipos de alfarería, en ladrillos, baldosas, pipas, ladrillos refractarios y otros productos. Las variedades más comunes de arcilla y de roca de arcilla son: la arcilla china o caolín; la arcilla de pipa, similar al caolín pero con un contenido mayor de sílice; la arcilla de alfarería, no tan pura como la arcilla de pipa; la arcilla de escultura, o arcilla plástica, una arcilla fina de alfarería mezclada, a veces, con arena fina; arcilla para ladrillos, una mezcla de arcilla y arena con algo de materia ferruginosa (con hierro); la arcilla refractaria, con pequeño o nulo contenido de caliza, tierra alcalina o hierro (que actúan como flujos), por tanto, es infusible y muy refractaria; el esquisto y la marga.
58
MATERIALES DE CONSTRUCCION
En España existen muchas variedades de arcilla, desde la de cocción negra hasta el caolín, base de la riqueza arcillosa del país. Los yacimientos de arcilla más importantes se encuentran en Galicia, sierra de Guadarrama, Cataluña y País Vasco. 12.
Acero 12.1. INTRODUCCIÓN Aleación de hierro que contiene entre un 0,04 y un 2,25% de carbono y a la que se añaden elementos como níquel, cromo, manganeso, silicio o vanadio, entre otros. 12.2. FABRICACIÓN
DEL
ACERO
El acero se obtiene eliminando las impurezas del arrabio, producto de fundición de los altos hornos, y añadiendo después las cantidades adecuadas de carbono y otros elementos. La principal dificultad para la fabricación del acero es su elevado punto de fusión, 1.400 ºC, que impide utilizar combustibles y hornos convencionales. En 1855, Henry Bessemer desarrolló el horno o convertidor que lleva su nombre y en el que el proceso de refinado del arrabio se lleva a cabo mediante chorros de aire a presión que se inyectan a través del metal fundido. En el proceso Siemens-Martin, o de crisol abierto, se calientan previamente el gas combustible y el aire por un procedimiento regenerativo que permite alcanzar temperaturas de hasta 1.650 ºC. 12.3. CLASIFICACIÓN
DEL
ACERO
Los aceros se clasifican en: aceros al carbono, aceros aleados, aceros inoxidables, aceros de herramientas y aceros de baja aleación ultrarresistentes. Los aceros al carbono contienen diferentes cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Los aceros aleados poseen vanadio y
59
MATERIALES DE CONSTRUCCION
molibdeno además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono. Los aceros inoxidables llevan cromo y níquel, entre otros elementos de aleación. Los aceros de herramienta contienen volframio, molibdeno y otros elementos de aleación que les proporcionan mayor resistencia, dureza y durabilidad. Los aceros de baja aleación ultrarresistentes tienen menos cantidad de elementos de aleación y deben su elevada resistencia al tratamiento especial que reciben. 12.4. ESTRUCTURA
DEL
ACERO
Las propiedades físicas del acero y su comportamiento a distintas temperaturas varían según la cantidad de carbono y su distribución en el hierro. Antes del tratamiento térmico, la mayor parte de los aceros son una mezcla de tres sustancias: la ferrita, blanda y dúctil; la cementita, dura y frágil; y la perlita, una mezcla de ambas y de propiedades intermedias. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está compuesto por perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita. Al elevar la temperatura del acero, la ferrita y la perlita se transforman en austenita, que tiene la propiedad de disolver todo el carbono libre presente en el metal. Si el acero se enfría despacio, la austenita vuelve a convertirse en ferrita y en perlita, pero si el enfriamiento es repentino, la austenita se convierte en martensita, de dureza similar a la ferrita, pero con carbono en disolución sólida. 12.5.
TRATAMIENTO TÉRMICO DEL ACERO El objetivo de este proceso es controlar la cantidad, la forma, el tamaño y la distribución de las partículas de cementita contenidas en la ferrita, que son las que determinan las propiedades físicas del
60
MATERIALES DE CONSTRUCCION
acero. Consiste en calentar el metal hasta una temperatura a la que se forma austenita y después enfriarlo rápidamente sumergiéndolo en agua o aceite. Otro método de tratamiento térmico es la cementación, en la que se endurecen las superficies de las piezas de acero calentándolas con compuestos de carbono o nitrógeno. 12.6. Clavo Pequeño cilindro alargado de metal (afilado en un extremo y dotado con frecuencia de una cabeza) empleado para unir o fijar materiales, sobre todo madera y otros materiales de construcción. Los clavos son esenciales en carpintería y construcción. Su longitud varía desde menos de 1 centímetro hasta 20 o más centímetros. Los más finos son los clavos para placas aislantes, parecidos a alfileres. Los clavos están diseñados para fines específicos, y van desde los clavos corrientes hasta los clavos estriados para albañilería o los clavos de doble cabeza. Las cabezas planas hacen que la mayoría de los clavos puedan extraerse; sin embargo, los clavos de acabado y de revestimiento casi no tienen cabeza. Los clavos cortos con cabeza suelen denominarse tachuelas.
13.
Aglomerado: Material compacto compuesto por partículas ligadas mediante una sustancia aglomerante. Los aglomerados también se conocen como conglomerados. Aunque existen numerosos tipos, dependiendo de las sustancias que intervengan, entre los más generalizados destacan los de virutas de madera o corcho, ciertos plásticos y los aglomerados pétreos.
61
MATERIALES DE CONSTRUCCION
Los aglomerantes, por sí solos o con la colaboración del agua, se adhieren a los cuerpos sólidos y constituyen la masa del aglomerado. Pueden endurecerse por secado, como la arcilla, el yeso o la cal aérea, o por fraguado (en contacto con el agua), como el cemento y la cal hidráulica. Entre los aglomerados pétreos destacan los morteros, compuestos por cal o cemento, arena y agua, y los hormigones, que incluyen la grava y requieren de un aglomerante hidráulico. En la construcción también se emplean diversos aglomerados a base de betún o asfalto, especialmente como impermeabilizantes y para la pavimentación de obras públicas. Los aglomerados de virutas de madera o corcho son habituales en la fabricación de muebles, tableros y en distintos tipos de revestimientos, como el linóleo. Suelen estar ligados por colas o resinas (naturales o sintéticas). La resina de poliéster, además, se emplea en la fabricación de aglomerados plásticos, como la fibra de vidrio o la de carbono. Estos productos reciben el nombre de composites cuando el material aglomerado se moldea previamente para mejorar sus cualidades. 14.
Yeso: Mineral común consistente en sulfato de calcio hidratado (CaSO4·2H2O). Es un tipo ampliamente distribuido de roca sedimentaria, formado por la precipitación de sulfato de calcio en el agua del mar y está asociado con frecuencia a otras formas de depósitos salinos, como la halita y la anhidrita, así como a piedra caliza y a esquisto. El yeso se origina en zonas volcánicas por la acción de ácido sulfúrico sobre minerales con contenido en calcio; también se encuentra en muchas arcillas como un producto de la reacción de la caliza con ácido sulfúrico. Se halla en todo el mundo; algunos de los mejores yacimientos están en Francia, en Suiza, en
62
MATERIALES DE CONSTRUCCION
Estados Unidos y en México. El alabastro, la selenita y el aragonito fibroso son variedades de este mineral. El yeso artificial se obtiene como producto derivado en un método antiguo para la fabricación de ácido fosfórico. El fosfato en roca, cuyo constituyente esencial es el fosfato tricálcico, se trata con ácido sulfúrico, produciendo ácido fosfórico y yeso. Este se comprime en bloques que pueden usarse en edificios para la construcción de paredes que no deban soportar excesivo peso. Controlando la concentración y la temperatura del ácido sulfúrico añadido al fosfato en roca, se puede obtener una mezcla de fosfato monocálcico, dicálcico y yeso. Esta combinación, útil como fertilizante, se conoce como superfosfato. El yeso cristaliza en el sistema monoclínico en cristales blancos o incoloros, macizos o laminados. Hay muchas muestras con colores verdes, amarillos o negros debido a la presencia de impurezas. Con una dureza que varía entre 1,5 y 2, es lo bastante blando como para ser rayado con la uña. Su densidad relativa es de 2,3. Cuando se calienta a 128 °C pierde parte del agua y se convierte en escayola de París, CaSO4· H2O. Cuando este material se mezcla con agua, se solidifica en un breve lapso de tiempo en un bloque duro; los cristales rehidratados se forman y entrelazan de tal manera que se produce una expansión de volumen. Gracias a su capacidad para crecer y rellenar todos los pequeños espacios, la escayola de París se utiliza para hacer moldes en la fabricación de estatuas, de cerámica, de placas dentales, de tablillas quirúrgicas y de piezas metálicas delicadas para instrumentos de precisión. El yeso no calcinado se usa como fertilizante en terrenos secos y alcalinos. También se utiliza como lecho en el pulido de planchas de vidrio y como base en pigmentos para pinturas. Se
63
MATERIALES DE CONSTRUCCION
utilizan grandes cantidades de yeso como retardador en cemento Portland.
15. 15.1.
Aislante: INTRODUCCIÓN Cualquier material que conduce mal el calor o la electricidad y que se emplea para suprimir su flujo. 15.2. AISLANTES ELÉCTRICOS El aislante perfecto para las aplicaciones eléctricas sería un material absolutamente no conductor, pero ese material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Estos materiales conductores tienen un gran número de electrones libres (electrones no estrechamente ligados a los núcleos) que pueden transportar la corriente; los buenos aislantes apenas poseen estos electrones. Algunos materiales, como el silicio o el germanio, que tienen un número limitado de electrones libres, se comportan como semiconductores, y son la materia básica de los transistores. En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel
64
MATERIALES DE CONSTRUCCION
especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio, porcelana u otro material cerámico.
La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de epoxy y los poliuretanos pueden proteger contra los productos químicos y la humedad. 15.3. AISLANTES
TÉRMICOS
Los materiales de aislamiento térmico se emplean para reducir el flujo de calor entre zonas calientes y frías. Por ejemplo, el revestimiento que se coloca frecuentemente alrededor de las tuberías de vapor o de agua caliente reduce las pérdidas de calor, y el aislamiento de las paredes de una nevera o refrigerador reduce el flujo de calor hacia el aparato y permite que se mantenga frío. El aislamiento térmico puede cumplir una o más de estas tres funciones: reducir la conducción térmica en el material, que corresponde a la transferencia de calor mediante electrones; reducir las corrientes de convección térmica que pueden establecerse en espacios llenos de aire o de líquido, y reducir la transferencia de calor por radiación, que corresponde al transporte de energía térmica por ondas electromagnéticas. La conducción y la convección no tienen lugar en el vacío, donde el único método de transferir calor es la radiación. Si se emplean superficies de alta reflectividad, también
65
MATERIALES DE CONSTRUCCION
se puede reducir la radiación. Por ejemplo, puede emplearse papel de aluminio en las paredes de los edificios. Igualmente, el uso de metal reflectante en los tejados reduce el calentamiento por el sol. Los termos o frascos Dewar impiden el paso de calor al tener dos paredes separadas por un vacío y recubiertas por una capa reflectante de plata o aluminio. Véase también Transferencia de calor.
El aire presenta unas 15.000 veces más resistencia al flujo de calor que un buen conductor térmico como la plata, y unas 30 veces más que el vidrio. Por eso, los materiales aislantes típicos suelen fabricarse con materiales no metálicos y están llenos de pequeños espacios de aire. Algunos de estos materiales son el carbonato de magnesio, el corcho, el fieltro, la guata, la fibra mineral o de vidrio y la arena de diatomeas. El amianto se empleó mucho como aislante en el pasado, pero se ha comprobado que es peligroso para la salud y ha sido prohibido en los edificios de nueva construcción de muchos países. En los materiales de construcción, los espacios de aire proporcionan un aislamiento adicional; así ocurre en los ladrillos de vidrio huecos, las ventanas con doble vidrio (formadas por dos o tres paneles de vidrio con una pequeña cámara de aire entre los mismos) y las tejas de hormigón (concreto) parcialmente huecas. Las propiedades aislantes empeoran si el espacio de aire es suficientemente grande para permitir la convección térmica, o si penetra humedad en ellas, ya que las partículas de agua actúan como conductores. Por ejemplo, la propiedad aislante de la ropa seca es el resultado del aire atrapado entre
las
fibras;
esta
capacidad
aislante
puede
reducirse
significativamente con la humedad.
66
MATERIALES DE CONSTRUCCION
Los costes de calefacción y aire acondicionado en las viviendas pueden reducirse con un buen aislamiento del edificio. En los climas fríos se recomiendan unos 8 cm de aislamiento en las paredes y entre 15 y 20 cm de aislamiento en el techo.
Recientemente se han desarrollado los llamados superaislantes, sobre todo para su empleo en el espacio, donde se necesita protección frente a unas temperaturas externas cercanas al cero absoluto. Los tejidos superaislantes están formados por capas múltiples de mylar aluminizado, cada una de unos 0,005 cm de espesor, separadas por pequeños espaciadores, de forma que haya entre 20 y 40 capas por centímetro.
16.
Aluminio 16. 1. INTRODUCCIÓN De símbolo Al, es el elemento metálico más abundante en la corteza terrestre. Su número atómico es 13 y se encuentra en el grupo 13 de la tabla periódica. El químico danés Hans Christian Oersted lo aisló por primera vez en 1825, por medio de un proceso químico que utilizaba una amalgama de potasio y cloruro de aluminio. Entre 1827 y 1845, el químico alemán Friedrich Wöhler mejoró el proceso de Oersted utilizando potasio metálico y cloruro de aluminio. Wöhler fue el primero en medir la densidad del aluminio y demostrar su ligereza. En 1854, Henri Sainte-Claire Deville obtuvo el metal en Francia reduciendo cloruro de aluminio con sodio. Con el apoyo financiero de Napoleón III, Deville estableció una planta experimental a gran escala, y en la exposición de París de 1855 exhibió el aluminio puro.
67
MATERIALES DE CONSTRUCCION
16.2. PROPIEDADES De color plateado y muy ligero, su masa atómica es 26,9815; tiene un punto de fusión de 660 ºC, un punto de ebullición de 2.467 ºC y una densidad relativa de 2,7. Es un metal muy electropositivo y altamente reactivo. Al contacto con el aire se cubre rápidamente con una capa dura y transparente de óxido de aluminio que resiste la posterior acción corrosiva. Tiene la propiedad de reducir muchos compuestos metálicos a sus metales básicos. Por ejemplo, al calentar termita (una mezcla de óxido de hierro y aluminio en polvo), el aluminio extrae rápidamente el oxígeno del óxido; el calor de la reacción es suficiente para fundir el hierro. Este fenómeno se usa en el proceso Goldschmidt o Termita para soldar hierro. Entre sus compuestos más importantes están el óxido, el hidróxido, el sulfato y el sulfato mixto. El óxido de aluminio es anfótero, es decir, presenta a la vez propiedades ácidas y básicas. El cloruro de aluminio anhidro es importante en la industria petrolífera. Muchas gemas (el rubí y el zafiro, por ejemplo) consisten principalmente en óxido de aluminio cristalino. 16.3. ESTADO
NATURAL
El aluminio es el elemento metálico más abundante en la corteza terrestre; sólo los elementos no metálicos oxígeno y silicio son más abundantes. Se encuentra normalmente en forma de silicato de aluminio puro o mezclado con otros metales como sodio, potasio, hierro, calcio y magnesio, pero nunca como metal libre. Los silicatos no son menas útiles, porque es extremamente difícil, y por tanto muy caro, extraer el aluminio de ellas. La bauxita, un óxido de aluminio hidratado impuro, es la fuente comercial de aluminio y de sus compuestos.
68
MATERIALES DE CONSTRUCCION
En 1886, Charles Martin Hall en Estados Unidos y Paul L. T. Héroult
en
Francia
descubrieron
por
separado
y
casi
simultáneamente que el óxido de aluminio o alúmina se disuelve en criolita
fundida
(Na3AlF6),
pudiendo
ser
descompuesta
electrolíticamente para obtener el metal fundido en bruto. El proceso Hall-Héroult sigue siendo el método principal para la producción comercial de aluminio, aunque se están estudiando nuevos métodos. La pureza del producto se ha incrementado hasta el 99,5% de aluminio en los lingotes comerciales; más tarde puede ser refinado hasta un 99,99 por ciento. 16.4. APLICACIONES Un volumen dado de aluminio pesa menos que 1/3 del mismo volumen de acero. Los únicos metales más ligeros son el litio, el sodio, el berilio y el magnesio. Debido a su elevada proporción resistencia-peso es muy útil para construir aviones, vagones ferroviarios y automóviles, y para otras aplicaciones en las que es importante la movilidad y la conservación de energía. Por su elevada conductividad térmica, el aluminio se emplea en utensilios de cocina y en pistones de motores de combustión interna. Solamente presenta un 63% de la conductividad eléctrica del cobre para alambres de un tamaño dado, pero pesa menos de la mitad. Un alambre de aluminio de conductividad comparable a un alambre de cobre es más grueso, pero sigue siendo más ligero que el de cobre. El peso tiene mucha importancia en la transmisión de electricidad de alto voltaje a larga distancia, y actualmente se usan conductores de aluminio para transmitir electricidad a 700.000 voltios o más. Este metal se utiliza cada vez más en arquitectura, tanto con propósitos estructurales como ornamentales. Las tablas, las contraventanas y las láminas de aluminio constituyen excelentes materiales de construcción. Se utiliza también en reactores nucleares 69
MATERIALES DE CONSTRUCCION
a baja temperatura porque absorbe relativamente pocos neutrones. Con el frío, el aluminio se hace más resistente, por lo que se usa a temperaturas criogénicas. El papel de aluminio de 0,018 cm de espesor, actualmente muy utilizado en usos domésticos, protege los alimentos y otros productos perecederos. Debido a su poco peso, a que se moldea fácilmente y a su compatibilidad con comidas y bebidas, el aluminio se usa mucho en contenedores, envoltorios flexibles, y botellas y latas de fácil apertura. El reciclado de dichos recipientes es una medida de ahorro de energía cada vez más importante. La resistencia del aluminio a la corrosión por el agua de mar también lo hace útil para fabricar cascos de barco y otros mecanismos acuáticos. Se puede preparar una amplia gama de aleaciones recubridoras y aleaciones forjadas que proporcionen al metal más fuerza y resistencia a la corrosión o a las temperaturas elevadas. Algunas de las nuevas aleaciones pueden utilizarse como planchas de blindaje para tanques y otros vehículos militares. 16.5. PRODUCCIÓN La producción mundial de aluminio ha experimentado un rápido crecimiento, aunque se estabilizó a partir de 1980. En 1900 esta producción era de 7.300 toneladas, en 1938 de 598.000 toneladas y en 1998 la producción de aluminio primario fue de unos 22.700 millones de toneladas. Los principales países productores son Estados Unidos, Rusia, Canadá, China y Australia.
17.
Dolerita Roca ígnea básica intermedia entre el gabro y el basalto, se suele encontrar como filón intrusivo, aunque también es posible su
70
MATERIALES DE CONSTRUCCION
aparición en fisuras entre basaltos, o bien en el interior de coladas basálticas de gran potencia. En general, el término diabasa se refiere a las doleritas alteradas y que tienen color oscuro, casi siempre verde. Su composición es la del basalto olivínico pero con textura porfídica, es decir, con aspecto más granulado. Sus componentes esenciales son: las plagioclasas y el piroxeno monoclínico. Además puede haber olivino, magnetita, así como óxidos y sulfuros de hierro y cobre. En las microfotografías de sección delgada aparecen los piroxenos alterados y con color amarillo rodeados de las plagioclasas. Una variedad, la ofita o diabasa ofítica, es verde con cristales pequeños rosas, blancos y negros. El nombre deriva de su aspecto, que recuerda a la piel de una serpiente u ofidio. Es una roca que se ha utilizado en construcción y el adoquinado de las calles. 18. Estuco (material)
Material que se utiliza en la construcción para cubrir muros y paredes, normalmente los exteriores. Se obtiene mezclando arena, cal, yeso y cemento Portland. Puede colorearse añadiendo un pigmento a la mezcla, aunque también puede pintarse cuando está seco. La textura se obtiene añadiendo arena o guijarros a la mezcla. 19. Piedra Mineral inorgánico o concreción de suelo, de origen sedimentario ígneo o metamórfico, usado de forma habitual en construcción, ingeniería civil, industria y arte. Algunas de las piedras de construcción son el basalto, el pedernal, el granito, la caliza, el mármol, el pórfido, la arenisca, la pizarra y la laja. Entre las piedras ornamentales, a excepción de las piedras preciosas y las gemas, están el alabastro, la fluorita, el jade, el jaspe, el lapislázuli, la labradorita y la malaquita. El ónice u ónix mexicano (aragonito 71
MATERIALES DE CONSTRUCCION
estalagmítico) y el argelino, de color menos elegante, son incorporaciones recientes al grupo de las piedras ornamentales. En los últimos años casi el 83% de la piedra usada en monumentos ha sido granito, y un 17% mármol. La cantería de piedra en algunos países implica una gran proporción de terreno afectado por minería de superficie. En algunos países sólo es superada por la extracción de carbón, arena y grava. 19.1.
Granito Roca ígnea con formación y textura cristalina visible. Se compone de feldespato (en general feldespato de potasio y oligoclasa), cuarzo, con una cantidad pequeña de mica (biotita o moscovita) y de algunos otros minerales accesorios como circón, apatito, magnetita, ilmenita y esfena. El granito suele ser blanquecino o gris y con motas debidas a cristales más oscuros. El feldespato de potasio da a la roca un tono rojo o de color carne. El granito cristaliza a partir de magma enfriado de forma muy lenta a profundidades grandes bajo la superficie terrestre. Velocidades de enfriamiento muy lentas dan lugar a una variedad de grano grueso llamada pegmatita. El granito, junto a otras rocas cristalinas, constituye la base de las masas continentales y es la roca intrusiva más común entre las expuestas en la superficie terrestre. La densidad del granito varía entre 2,63 y 2,75 g/cm3. Su resistencia a la presión se sitúa entre 1.000 y 1.400 kg por cm2. Es más duro que la arenisca, la caliza y el mármol, y su extracción es, por tanto, más difícil. Es una piedra importante en la construcción; las mejores clases son muy resistentes a la acción de los agentes atmosféricos.
72
MATERIALES DE CONSTRUCCION
El granito se encuentra particularmente extendido en los antiguos escudos precámbricos, formados hace más de 4.000 millones de años, de Rusia, África, Canadá, Sudamérica y Escocia. 19.2.
Caliza
Tipo común de roca sedimentaria, compuesta por calcita (carbonato de calcio, CaCO3). Cuando se calcina (se lleva a alta temperatura) da lugar a cal (óxido de calcio, CaO). La caliza cristalina metamórfica se conoce como mármol. Muchas variedades de caliza se han formado por la unión de caparazones o conchas de mar, formadas por las secreciones de CaCO3 de distintos animales marinos. La creta es una variedad porosa y con grano fino compuesta en su mayor parte por caparazones de foraminíferos; la lumaquela es una caliza blanda formada por fragmentos de concha de mar. Una variedad, conocida como caliza oolítica, está compuesta por pequeñas concreciones ovoides, cada una de ellas contiene en su núcleo un grano de arena u otra partícula extraña alrededor de la cual se ha producido una deposición. Ciertos tipos de caliza se usan en la construcción, como la piedra de cantería. 19.3.
Arenisca Roca sedimentaria con granulado grueso formado por masas consolidadas de arena. Su composición química es la misma que la de la arena; así, la roca está compuesta en esencia de cuarzo. El material cimentador que mantiene unidos los granos de arena suele estar compuesto por sílice, carbonato de calcio u óxido de hierro. El color de la roca viene determinado por el material cimentador: los óxidos de hierro generan arenisca roja o pardo rojiza, mientras que los otros producen arenisca blanca, amarillenta o grisácea. Cuando la arenisca se rompe, los granos de arena permanecen enteros, con lo que las superficies cobran un aspecto granular. Areniscas con
73
MATERIALES DE CONSTRUCCION
distintas edades geológicas y con importancia comercial están distribuidas por todo el mundo. Aparte de servir como depósito natural de petróleo y gas, se usan en la construcción y en la fabricación de piedras de afilar y de moler.
74
MATERIALES DE CONSTRUCCION
Mármol: Variedad cristalina y compacta de caliza metamórfica, que puede pulirse hasta obtener un gran brillo y se emplea sobre todo en la construcción y como material escultórico. Comercialmente, el término se amplía para incluir cualquier roca compuesta de carbonato de calcio que pueda pulirse, e incluye algunas calizas comunes; también incluye, en términos genéricos, piedras como el alabastro, la serpentina y, en ocasiones, el granito. La superficie del mármol se deshace con facilidad si se expone a una atmósfera húmeda y ácida, pero es duradero en ambientes secos si se le protege de la lluvia. El mármol más puro es el mármol estatuario, que es blanco con una estructura cristalina visible. El brillo característico de este tipo de mármol se debe al efecto que produce la luz al penetrar levemente en la piedra antes de ser reflejada por las superficies de los cristales internos. La variedad más famosa de este mármol procede de las canteras del monte Pentelikon, en Ática, que fue el utilizado por los grandes escultores de la antigua Grecia, incluidos Fidias y Praxíteles. La colección Elgin está compuesta de mármol de Pentelikon. El mármol de Paros, utilizado también por los escultores y arquitectos de la Grecia antigua, era extraído fundamentalmente de las canteras del monte Parpessa, en la isla griega de Paros. El mármol de Carrara, que abunda en los Alpes italianos y se extrae en la región de Carrara, Massa y Serravezza, fue utilizado en Roma con fines arquitectónicos en tiempos de Augusto, el primer emperador, aunque las variedades más finas de mármol escultórico fueron descubiertas más adelante. Los mejores trabajos de Miguel Ángel son de este tipo de mármol; es muy utilizado por los escultores contemporáneos. 75
MATERIALES DE CONSTRUCCION
Otros mármoles contienen una cantidad variable de impurezas, que dan lugar a los modelos jaspeados que tan apreciados son en muchos de ellos. Se usan para la construcción, sobre todo en interiores, y también en pequeños trabajos ornamentales, como pies de lámpara, mesas, escribanías y otras novedades. Las variedades escultóricas y arquitectónicas están distribuidas por todo el mundo en forma de grandes depósitos. Basalto Es la variedad más común de roca volcánica. Se compone casi en su totalidad de silicatos oscuros de grano fino, sobre todo feldespato, piroxeno y plagioclasas, y magnetita. Es el equivalente extrusivo del gabro, se forma por la efusión de lava a lo largo de las cordilleras oceánicas, donde el fondo marino, extendiéndose, añade corteza nueva para contrarrestar las pérdidas por subducción. Suele ser de color gris oscuro, y tiene muchas veces una textura vesicular que conserva los vestigios de burbujas producidas por vapor de agua en expansión, generado durante el enfriamiento y la solidificación de la lava. También son características las masas con forma almohadillada, causadas por el enfriamiento rápido de lava emitida tras una erupción en el fondo marino. Además de en torrentes de lava, el basalto se encuentra en diques y sills (diques concordantes). La disyunción prismática, como la mostrada en la Calzada de los Gigantes en Irlanda, es un rasgo común de las coladas basálticas. Skye y otras de las islas Hébridas de Escocia están compuestas por mesetas basálticas. 19.4.
Pedernal Variedad común criptocristalina masiva de cuarzo, de color mate y en general oscuro, encontrado con frecuencia como nódulos en depósitos
76
MATERIALES DE CONSTRUCCION
de marga. El pedernal de mayor calidad proviene de los yacimientos de marga de Gran Bretaña y del norte de Francia; son peores los de las piedras calizas del periodo cretácico. La presencia de espículas de esponjas y de restos de diatomeas sugiere que estos esqueletos, en general silíceos, servían de núcleo para la deposición del sílice. En las superficies recién fracturadas, el pedernal tiene un lustre de cera. El pedernal se quiebra con una fractura concoidea visible, su superficie queda curvada y marcada por anillos concéntricos produciendo ejes agudos. Los pueblos prehistóricos utilizaban fragmentos en armas afiladas y en instrumentos cortantes como cabezas de hachas, flechas y cuchillos. Cuando se golpea contra el acero, se producen chispas con facilidad; se usaba, por tanto, para encender mechas y para hacer explotar la pólvora en las armas de chispa. En la actualidad, el pedernal se utiliza sobre todo en alfarería fina. La piedra usada en los encendedores es una aleación de tierras raras con hierro (metal miscible) y no tiene ninguna relación con el cuarzo pedernal. 19.7. Pórfido(del griego porphyros, 'púrpura') Término aplicado originalmente a una roca egipcia compuesta por cristales prominentes de feldespato incrustados en una matriz roja o púrpura, pero hoy se aplica a cualquier roca ígnea que tenga cristales bien definidos incrustados en una masa relativamente fina de materia granulada. Esta matriz de grano fino se llama pasta y los cristales grandes son los fenocristales. Rocas ígneas con cualquier composición pueden tener variedades porfídicas. La sustancia llamada cobre pórfido consiste en minerales de cobre distribuidos en un cuerpo de pórfido. 77
MATERIALES DE CONSTRUCCION 19.8.
Pizarra
Roca fósil y densa con grano fino, formada por el metamorfismo de esquisto micáceo, arcilla o, con menor frecuencia, de rocas ígneas. El proceso de metamorfismo produce la consolidación de la roca original y la formación de nuevos planos de exfoliación en los que la pizarra se divide en láminas características, finas y extensas. Muchas rocas que muestran esta exfoliación se llaman también, por extensión, pizarras. La pizarra auténtica es dura y compacta y no sufre meteorización apreciable. Los minerales básicos contenidos en la pizarra son el cuarzo y la moscovita, un tipo de mica; la biotita, la clorita y la hematites están presentes muchas veces como minerales accesorios; y el apatito, el grafito, el caolín, la magnetita, la turmalina y el circonio pueden aparecer como minerales accesorios secundarios. La pizarra suele ser de color negro azulado o negro grisáceo, pero se conocen variedades rojas, verdes, moradas y variegadas. Hay canteras en Gales, Francia, Alemania y Estados Unidos. Se extrae en explotaciones a cielo abierto y sólo en algunas minas subterráneas. La piedra se divide mejor cuando acaba de ser extraída de la cantera. La pizarra se emplea en la construcción de tejados, como piedra de pavimentación y como "pizarras" o "pizarrones" tradicionales para escuela.
20. Vidrio (industria) 20.1.
INTRODUCCIÓN Sustancia amorfa fabricada sobre todo a partir de sílice (SiO2) fundida a altas temperaturas con boratos o fosfatos. También se encuentra en la naturaleza, por ejemplo en la obsidiana, un material volcánico, o en los enigmáticos objetos conocidos como tectitas. El vidrio es una
78
MATERIALES DE CONSTRUCCION
sustancia amorfa porque no es ni un sólido ni un líquido, sino que se halla en un estado vítreo en el que las unidades moleculares, aunque están dispuestas de forma desordenada, tienen suficiente cohesión para presentar rigidez mecánica. El vidrio se enfría hasta solidificarse sin que se produzca cristalización; el calentamiento puede devolverle su forma líquida. Suele ser transparente, pero también puede ser traslúcido u opaco. Su color varía según los ingredientes empleados en su fabricación. El vidrio fundido es maleable y se le puede dar forma mediante diversas técnicas. En frío, puede ser tallado. A bajas temperaturas es quebradizo y se rompe con fractura concoidea (en forma de concha de mar). Se fabricó por primera vez antes del 2000 a.C., y desde entonces se ha empleado para fabricar recipientes de uso doméstico así como objetos decorativos y ornamentales, entre ellos joyas. (En este artículo trataremos cualquier vidrio con características comercialmente útiles en cuanto a trasparencia, índice de refracción, color... En Vidrio (arte) se trata la historia del arte y la técnica del trabajo del vidrio). 20.2. MATERIALES
Y
TÉCNICAS
El ingrediente principal del vidrio es la sílice, obtenida a partir de arena, pedernal o cuarzo. 20.2.1.
Composición
y
propiedades
La sílice se funde a temperaturas muy elevadas para formar vidrio. Como éste tiene un elevado punto de fusión y sufre poca contracción y dilatación con los cambios de temperatura, es adecuado para aparatos de laboratorio y objetos sometidos a choques térmicos (deformaciones debidas a cambios bruscos de temperatura), como los espejos de los telescopios. El vidrio es un mal conductor del calor y la electricidad, por lo que resulta práctico para el aislamiento térmico y eléctrico. En
79
MATERIALES DE CONSTRUCCION
la mayoría de los vidrios, la sílice se combina con otras materias primas en distintas proporciones. Los fundentes alcalinos, por lo general carbonato de sodio o potasio, disminuyen el punto de fusión y la viscosidad de la sílice. La piedra caliza o la dolomita (carbonato de calcio y magnesio) actúa como estabilizante. Otros ingredientes, como el plomo o el bórax, proporcionan al vidrio determinadas propiedades físicas. 20.2.1.1.
Vidrio
soluble
y
vidrio
sodocálcico
El vidrio de elevado contenido en sodio que puede disolverse en agua para formar un líquido viscoso se denomina vidrio soluble y se emplea como barniz ignífugo en ciertos objetos y como sellador. La mayor parte del vidrio producido presenta una elevada concentración de sodio y calcio en su composición; se conoce como vidrio sodocálcico y se utiliza para fabricar botellas, cristalerías de mesa, bombillas (focos), vidrios de ventana y vidrios laminados. 20.2.1.2.
Vidrio al plomo. El vidrio fino empleado para
cristalerías de mesa y conocido como cristal es el resultado de fórmulas que combinan silicato de potasio con óxido de plomo. El vidrio al plomo es pesado y refracta más la luz, por lo que resulta apropiado para lentes o prismas y para bisutería. Como el plomo absorbe la radiación de alta energía, el vidrio al plomo se utiliza en pantallas para proteger al personal de las instalaciones nucleares. 20.2.1.3.
Vidrio de borosilicato. Este vidrio contiene bórax
entre sus ingredientes fundamentales, junto con sílice y álcali. Destaca por su durabilidad y resistencia a los ataques químicos y las altas temperaturas, por lo que se utiliza mucho en utensilios de cocina, aparatos de laboratorio y equipos para procesos químicos. 20.2.1.4.
Color. Las impurezas en las materias primas
afectan al color del vidrio. Para obtener una sustancia clara e incolora,
80
MATERIALES DE CONSTRUCCION
los fabricantes añaden manganeso con el fin de eliminar los efectos de pequeñas cantidades de hierro que producen tonos verdes y pardos. El cristal puede colorearse disolviendo en él óxidos metálicos, sulfuros o seleniuros. Otros colorantes se dispersan en forma de partículas microscópicas. 20.2.1.5.
Ingredientes diversos. Entre los componentes
típicos del vidrio están los residuos de vidrio de composición similar, que potencian su fusión y homogeneización. A menudo se añaden elementos de afino, como arsénico o antimonio, para desprender pequeñas burbujas durante la fusión. 20.2.1.6.
Propiedades físicas
Según su composición,
algunos vidrios pueden fundir a temperaturas de sólo 500 °C; en cambio, otros necesitan 1.650 ºC. La resistencia a la tracción, que suele estar entre los 3.000 y 5.500 N/cm2, puede llegar a los 70.000 N/cm2 si el vidrio recibe un tratamiento especial. La densidad relativa (densidad con respecto al agua) va de 2 a 8, es decir, el vidrio puede ser más ligero que el aluminio o más pesado que el acero. Las propiedades ópticas y eléctricas también pueden variar mucho. 20.2.2.
Mezcla
y
fusión
Después de una cuidadosa medida y preparación, las materias primas se mezclan y se someten a una fusión inicial antes de aplicarles todo el calor necesario para la vitrificación. En el pasado, la fusión se efectuaba en recipientes de arcilla (barro) que se calentaban en hornos alimentados con madera o carbón. Todavía hoy se utilizan recipientes de arcilla refractaria, que contienen entre 0,5 y 1,5 toneladas de vidrio, cuando se necesitan cantidades relativamente pequeñas de vidrio para trabajarlo a mano. En las industrias modernas, la mayor parte del vidrio se funde en grandes calderos, introducidos por primera vez en 1872. Estos calderos pueden contener más de 1.000 toneladas de
81
MATERIALES DE CONSTRUCCION
vidrio y se calientan con gas, fuel-oil o electricidad. Las materias primas se introducen de forma continua por una abertura situada en un extremo del caldero y el vidrio fundido, afinado y templado, sale por el otro extremo. En unos grandes crisoles o cámaras de retención, el vidrio fundido se lleva a la temperatura a la que puede ser trabajado y, a continuación, la masa vítrea se transfiere a las máquinas de moldeo. 20.2.3.
Moldeado
Los principales métodos empleados para moldear el vidrio son el colado, el soplado, el prensado, el estirado y el laminado. Todos estos procesos son antiguos, pero han sufrido modificaciones para poder producir vidrio con fines industriales. Por ejemplo, se han desarrollado procesos de colado por centrifugado en los que el vidrio se fuerza contra las paredes de un molde que gira rápidamente, lo que permite obtener formas precisas de poco peso, como tubos de televisión. También se han desarrollado máquinas automáticas para soplar el vidrio. 20.2.4.
Vidrio tensionado. Es posible añadir tensiones de
modo artificial para dar resistencia a un artículo de vidrio. Como el vidrio se rompe como resultado de esfuerzos de tracción que se originan con un mínimo arañazo de la superficie, la compresión de ésta aumenta el esfuerzo de tracción que puede soportar el vidrio antes de que se produzca la ruptura. Un método llamado temple térmico comprime la superficie calentando el vidrio casi hasta el punto de reblandecimiento y enfriándolo rápidamente con un chorro de aire o por inmersión en un líquido. La superficie se endurece de inmediato, y la posterior contracción del interior del vidrio, que se enfría con más lentitud, tira de ella y la comprime. Con este método pueden obtenerse compresiones de superficie de hasta 24.000 N/cm2 en piezas gruesas de vidrio. También se han desarrollado métodos químicos de reforzamiento en los que se altera la composición o la estructura de la 82
MATERIALES DE CONSTRUCCION
superficie del vidrio mediante intercambio iónico. Este método permite alcanzar una resistencia superior a los 70.000 N/cm2. Véase también Recocido. 20.3. TIPOS DE VIDRIO COMERCIAL La amplia gama de aplicaciones del vidrio ha hecho que se desarrollen numerosos tipos distintos. 20.3.1.
Vidrio de ventana. El vidrio de ventana, que ya se
empleaba en el siglo I d.C., se fabricaba utilizando moldes o soplando cilindros huecos que se cortaban y aplastaban para formar láminas. En el proceso de corona, técnica posterior, se soplaba un trozo de vidrio dándole forma de globo aplastado o corona. La varilla se fijaba al lado plano y se retiraba el tubo de soplado. La corona volvía a calentarse y se hacía girar con la varilla; el agujero dejado por el tubo se hacía más grande y el disco acababa formando una gran lámina circular. La varilla se partía, lo que dejaba una marca. En la actualidad, casi todo el vidrio de ventana se fabrica de forma mecánica estirándolo desde una piscina de vidrio fundido. En el proceso de Foucault, la lámina de vidrio se estira a través de un bloque refractario ranurado sumergido en la superficie de la piscina de este material y se lleva a un horno vertical de recocido, de donde sale para ser cortado en hojas. 20.3.2.
Vidrio de placa. El vidrio de ventana normal
producido por estiramiento no tiene un espesor uniforme, debido a la naturaleza del proceso de fabricación. Las variaciones de espesor distorsionan la imagen de los objetos vistos a través de una hoja de ese vidrio. El método tradicional de eliminar esos defectos ha sido emplear vidrio laminado bruñido y pulimentado, conocido como vidrio de placa. Éste se produjo por primera vez en Saint Gobain (Francia) en 1668, vertiendo vidrio en una mesa de hierro y aplanándolo con un rodillo.
83
MATERIALES DE CONSTRUCCION
Después del recocido, la lámina se bruñía y pulimentaba por ambos lados Hoy, el vidrio de placa se fabrica pasando el material vítreo de forma continua entre dobles rodillos situados en el extremo de un crisol que contiene el material fundido. Después de recocer la lámina en bruto, ambas caras son acabadas de forma continua y simultánea. En la actualidad, el bruñido y el pulimentado están siendo sustituidos por el proceso de vidrio flotante, más barato. En este proceso se forman superficies planas en ambas caras haciendo flotar una capa continua de vidrio sobre un baño de estaño fundido. La temperatura es tan alta que las imperfecciones superficiales se eliminan por el flujo del vidrio. La temperatura se hace descender poco a poco a medida que el material avanza por el baño de estaño y, al llegar al extremo, el vidrio pasa por un largo horno de recocido. En arquitectura se emplea vidrio laminado sin pulir, a menudo con superficies figurativas producidas por dibujos grabados en los rodillos. El vidrio de rejilla, que se fabrica introduciendo tela metálica en el vidrio fundido antes de pasar por los rodillos, no se astilla al recibir un golpe. El vidrio de seguridad, como el utilizado en los parabrisas de los automóviles o en las gafas de seguridad, se obtiene tras la colocación de una lámina de plástico transparente (polivinilbutiral) entre dos láminas finas de vidrio de placa. El plástico se adhiere al vidrio y mantiene fijas las esquirlas incluso después de un fuerte impacto. 20.3.3.
Botellas y recipientes. Las botellas, tarros y otros
recipientes de vidrio se fabrican mediante un proceso automático que combina el prensado (para formar el extremo abierto) y el soplado (para formar el cuerpo hueco del recipiente). En una máquina típica para soplar botellas, se deja caer vidrio fundido en un molde estrecho invertido y se presiona con un chorro de aire hacia el extremo inferior
84
MATERIALES DE CONSTRUCCION
del molde, que corresponde al cuello de la botella terminada. Después, un desviador desciende sobre la parte superior del molde, y un chorro de aire que viene desde abajo y pasa por el cuello da la primera forma a la botella. Esta botella a medio formar se sujeta por el cuello, se invierte y se pasa a un segundo molde de acabado, en la que otro chorro de aire le da sus dimensiones finales. En otro tipo de máquina que se utiliza para recipientes de boca ancha, se prensa el vidrio en un molde con un pistón antes de soplarlo en un molde de acabado. Los tarros de poco fondo, como los empleados para cosméticos, son prensados sin más. 20.3.4.
Vidrio óptico. La mayoría de las lentes que se
utilizan en gafas (anteojos), microscopios, telescopios, cámaras y otros instrumentos ópticos se fabrican con vidrio óptico. Éste se diferencia de los demás vidrios por su forma de desviar (refractar) la luz. La fabricación de vidrio óptico es un proceso delicado y exigente. Las materias primas deben tener una gran pureza, y hay que tener mucho cuidado para que no se introduzcan imperfecciones en el proceso de fabricación. Pequeñas burbujas de aire o inclusiones de materia no vitrificada pueden provocar distorsiones en la superficie de la lente. Las llamadas cuerdas, estrías causadas por la falta de homogeneidad química del vidrio, también pueden causar distorsiones importantes, y las tensiones en el vidrio debidas a un recocido imperfecto afectan también a las cualidades ópticas. En la antigüedad, el vidrio óptico se fundía en crisoles durante periodos prolongados, removiéndolo constantemente con una varilla refractaria. Después de un largo recocido, se partía en varios fragmentos; los mejores volvían a ser triturados, recalentados y prensados con la forma deseada. En los últimos años se ha adoptado un método para la fabricación continua de vidrio en tanques revestidos de platino, con agitadores en las cámaras cilíndricas de los extremos 85
MATERIALES DE CONSTRUCCION
(llamadas homogeneizadores). Este proceso produce cantidades mayores de vidrio óptico, con menor coste y mayor calidad que el método anterior. Para las lentes sencillas se usa cada vez más el plástico en lugar del vidrio. Aunque no es tan duradero ni resistente al rayado como el vidrio, es fuerte y ligero y puede absorber tintes. 20.3.5.
Vidrio fotosensible. En el vidrio fotosensible, los
iones de oro o plata del material responden a la acción de la luz, de forma similar a lo que ocurre en una película fotográfica. Este vidrio se utiliza en procesos de impresión y reproducción, y su tratamiento térmico tras la exposición a la luz produce cambios permanentes. El vidrio fotocromático se oscurece al ser expuesto a la luz tras lo cual recupera su claridad original. Este comportamiento se debe a la acción de la luz sobre cristales diminutos de cloruro de plata o bromuro de plata distribuidos por todo el vidrio. Es muy utilizado en lentes de gafas o anteojos y en electrónica. 20.3.6.
Vitrocerámica. En los vidrios que contienen
determinados metales se produce una cristalización localizada al ser expuestos a radiación ultravioleta. Si se calientan a temperaturas elevadas, estos vidrios se convierten en vitrocerámica, que tiene una resistencia mecánica y unas propiedades de aislamiento eléctrico superiores a las del vidrio ordinario. Este tipo de cerámica se utiliza en la actualidad en utensilios de cocina, conos frontales de cohetes o ladrillos termorresistentes para recubrir naves espaciales. Otros vidrios que contienen metales o aleaciones pueden magnetizarse, son resistentes y flexibles y resultan muy útiles para transformadores eléctricos de alta eficiencia. 20.3.7.
Fibra de vidrio Es posible producir fibras de
vidrio —que pueden tejerse como las fibras textiles— estirando vidrio fundido hasta diámetros inferiores a una centésima de milímetro. Se
86
MATERIALES DE CONSTRUCCION
pueden producir tanto hilos multifilamento largos y continuos como fibras cortas de 25 o 30 centímetros de largo. Una vez tejida para formar telas, la fibra de vidrio resulta ser un excelente material para cortinas y tapicería debido a su estabilidad química, solidez y resistencia al fuego y al agua. Los tejidos de fibra de vidrio, sola o en combinación con resinas, constituyen un aislamiento eléctrico excelente. Impregnando fibras de vidrio con plásticos se forma un tipo compuesto que combina la solidez y estabilidad química del vidrio con la resistencia al impacto del plástico. Otras fibras de vidrio muy útiles son las empleadas para transmitir señales ópticas en comunicaciones informáticas y telefónicas mediante la nueva tecnología de la fibra óptica, en rápido crecimiento. 20.3.8.
Otros tipos de vidrio. Los paveses de vidrio son
bloques de construcción huecos, con nervios o dibujos en los lados, que se pueden unir con argamasa y utilizarse en paredes exteriores o tabiques internos. La espuma de vidrio, empleada en flotadores o como aislante, se fabrica añadiendo un agente espumante al vidrio triturado y calentando la mezcla hasta el punto de reblandecimiento. El agente espumante libera un gas que produce una multitud de pequeñas burbujas dentro del vidrio. En la década de 1950 se desarrollaron fibras ópticas que han encontrado muchas aplicaciones en la ciencia, la medicina y la industria. Si se colocan de forma paralela fibras de vidrio de alto índice de refracción separadas por capas delgadas de vidrio de bajo índice de refracción, es posible transmitir imágenes a través de las fibras. Los fibroscopios, que contienen muchos haces flexibles de estas fibras, pueden transmitir imágenes a través de ángulos muy
87
MATERIALES DE CONSTRUCCION
cerrados, lo que facilita la inspección de zonas que suelen ser inaccesibles. Las aplicaciones de la fibra óptica rígida, como lupas, reductores y pantallas también mejoran la visión. Empleadas en combinación con láseres, las fibras ópticas son hoy cruciales para la telefonía de larga distancia y la comunicación entre ordenadores (computadoras). El vidrio láser es vidrio dopado con un pequeño porcentaje de óxido de neodimio, y es capaz de emitir luz láser si se monta en un dispositivo adecuado y se ‘bombea’ con luz ordinaria. Está considerado como una buena fuente láser por la relativa facilidad con que pueden obtenerse pedazos grandes y homogéneos de este vidrio.
Los vidrios dobles son dos láminas de vidrio de placa o de ventana selladas por los extremos, con un espacio de aire entre ambas. Para su construcción pueden usarse varios tipos de selladores y materiales de separación. Empleados en ventanas, proporcionan un excelente aislamiento térmico y no se empañan aunque haya humedad.
En la década de 1980 se desarrolló en la Universidad de Florida (Estados Unidos) un método para fabricar grandes estructuras de vidrio sin utilizar altas temperaturas. La técnica, denominada de solgel, consiste en mezclar agua con un producto químico como el tetrametoxisilano para fabricar un polímero de óxido de silicio; un aditivo químico reduce la velocidad del proceso de condensación y permite que el polímero se constituya uniformemente. Este método podría resultar útil para fabricar formas grandes y complejas con propiedades específicas. 21. Agua 21.
INTRODUCCIÓN 88
MATERIALES DE CONSTRUCCION
Nombre común que se aplica al estado líquido del compuesto de hidrógeno y oxígeno H2O. Los antiguos filósofos consideraban el agua como un elemento básico que representaba a todas las sustancias líquidas. Los científicos no descartaron esta idea hasta la última mitad del siglo XVIII. En 1781 el químico británico Henry Cavendish sintetizó agua detonando una mezcla de hidrógeno y aire. Sin embargo, los resultados de este experimento no fueron interpretados claramente hasta dos años más tarde, cuando el químico francés Antoine Laurent de Lavoisier propuso que el agua no era un elemento sino un compuesto de oxígeno e hidrógeno. En un documento científico presentado en 1804, el químico francés Joseph Louis GayLussac y el naturalista alemán Alexander von Humboldt demostraron conjuntamente que el agua consistía en dos volúmenes de hidrógeno y uno de oxígeno, tal como se expresa en la fórmula actual H2O.
Casi todo el hidrógeno del agua tiene una masa atómica de 1. El químico estadounidense Harold Clayton Urey descubrió en 1932 la presencia en el agua de una pequeña cantidad (1 parte por 6.000) de lo que se denomina agua pesada u óxido de deuterio (D2O); el deuterio es el isótopo del hidrógeno con masa atómica 2. En 1951 el químico estadounidense Aristid Grosse descubrió que el agua existente en la naturaleza contiene también cantidades mínimas de óxido de tritio (T2O); el tritio es el isótopo del hidrógeno con masa atómica 3. 21.2. PROPIEDADES El agua pura es un líquido inodoro e insípido. Tiene un matiz azul, que sólo puede detectarse en capas de gran profundidad. A la presión atmosférica (760 mm de mercurio), el punto de congelación del agua es de 0 °C y su punto de ebullición de 100 °C. El agua alcanza su densidad máxima a una temperatura de 4 °C y se expande al congelarse. Como muchos otros líquidos, el agua puede existir en 89
MATERIALES DE CONSTRUCCION
estado sobreenfriado, es decir, que puede permanecer en estado líquido aunque su temperatura esté por debajo de su punto de congelación; se puede enfriar fácilmente a unos -25 °C sin que se congele. El agua sobreenfriada se puede congelar agitándola, descendiendo más su temperatura o añadiéndole un cristal u otra partícula de hielo. Sus propiedades físicas se utilizan como patrones para definir, por ejemplo, escalas de temperatura.
El agua es uno de los agentes ionizantes más conocidos. Puesto que todas las sustancias son de alguna manera solubles en agua, se le conoce frecuentemente como el disolvente universal. El agua combina con ciertas sales para formar hidratos, reacciona con los óxidos de los metales formando ácidos (véase Ácidos y bases) y actúa como catalizador en muchas reacciones químicas importantes. 21.3. ESTADO
NATURAL
El agua es la única sustancia que existe a temperaturas ordinarias en los tres estados de la materia, o sea, sólido, líquido y gas. Como sólido o hielo se encuentra en los glaciares y los casquetes polares, así como en las superficies de agua en invierno; también en forma de nieve, granizo y escarcha, y en las nubes formadas por cristales de hielo. Existe en estado líquido en las nubes de lluvia formadas por gotas de agua, y en forma de rocío en la vegetación. Además, cubre las tres cuartas partes de la superficie terrestre en forma de pantanos, lagos, ríos, mares y océanos. Como gas, o vapor de agua, existe en forma de niebla, vapor y nubes. El vapor atmosférico se mide en términos de humedad relativa, que es la relación de la cantidad de vapor de agua en el aire a una temperatura dada respecto a la máxima que puede contener a esa temperatura.
90
MATERIALES DE CONSTRUCCION
El agua está presente también en la porción superior del suelo, en donde se adhiere, por acción capilar, a las partículas del mismo. En este estado, se le denomina agua ligada y tiene unas características diferentes del agua libre. Por influencia de la gravedad, el agua se acumula en los intersticios de las rocas debajo de la superficie terrestre formando depósitos de agua subterránea que abastecen a pozos y manantiales, y mantienen el flujo de algunos arroyos durante los periodos de sequía. 21.4. EL
AGUA
EN
LA
VIDA
El agua es el componente principal de la materia viva. Constituye del 50 al 90% de la masa de los organismos vivos. El protoplasma, que es la materia básica de las células vivas, consiste en una disolución de grasas, carbohidratos, proteínas, sales y otros compuestos químicos similares en agua. El agua actúa como disolvente transportando, combinando y descomponiendo químicamente esas sustancias. La sangre de los animales y la savia de las plantas contienen una gran cantidad de agua, que sirve para transportar los alimentos y desechar el material de desperdicio. El agua desempeña también un papel importante en la descomposición metabólica de moléculas tan esenciales como las proteínas y los carbohidratos. Este proceso, llamado hidrólisis, se produce continuamente en las células vivas. 21.5. CICLO
NATURAL
DEL
AGUA
La hidrología es la ciencia que estudia la distribución del agua en la Tierra, sus reacciones físicas y químicas con otras sustancias existentes en la naturaleza, y su relación con la vida en el planeta. El movimiento continuo de agua entre la Tierra y la atmósfera se conoce como ciclo hidrológico. Se produce vapor de agua por evaporación en la superficie terrestre y en las masas de agua, y por transpiración de los seres vivos. Este vapor circula por la atmósfera y precipita en forma de lluvia o nieve. 91
MATERIALES DE CONSTRUCCION
Al llegar a la superficie terrestre, el agua sigue dos trayectorias. En cantidades determinadas por la intensidad de la lluvia, así como por la porosidad, permeabilidad, grosor y humedad previa del suelo, una parte del agua se vierte directamente en los riachuelos y arroyos, de donde pasa a los océanos y a las masas de agua continentales; el resto se infiltra en el suelo. Una parte del agua infiltrada constituye la humedad del suelo, y puede evaporarse directamente o penetrar en las raíces de las plantas para ser transpirada por las hojas. La porción de agua que supera las fuerzas de cohesión y adhesión del suelo, se filtra hacia abajo y se acumula en la llamada zona de saturación para formar un depósito de agua subterránea, cuya superficie se conoce como nivel freático. En condiciones normales, el nivel freático crece de forma intermitente según se va rellenando o recargando, y luego declina como consecuencia del drenaje continuo en desagües naturales como son los manantiales. 21.6. COMPOSICIÓN Debido a su capacidad de disolver numerosas sustancias en grandes cantidades, el agua pura casi no existe en la naturaleza. Durante la condensación y precipitación, la lluvia o la nieve absorben de la atmósfera cantidades variables de dióxido de carbono y otros gases, así como pequeñas cantidades de material orgánico e inorgánico. Además, la precipitación deposita lluvia radiactiva en la superficie de la Tierra. En su circulación por encima y a través de la corteza terrestre, el agua reacciona con los minerales del suelo y de las rocas. Los principales componentes disueltos en el agua superficial y subterránea son los sulfatos, los cloruros, los bicarbonatos de sodio y potasio, y los óxidos de calcio y magnesio. Las aguas de la superficie suelen contener también residuos domésticos e industriales. Las aguas subterráneas
92
MATERIALES DE CONSTRUCCION
poco profundas pueden contener grandes cantidades de compuestos de nitrógeno y de cloruros, derivados de los desechos humanos y animales. Generalmente, las aguas de los pozos profundos sólo contienen minerales en disolución. Casi todos los suministros de agua potable natural contienen fluoruros en cantidades variables. Se ha demostrado que una proporción adecuada de fluoruros en el agua potable reduce las caries en los dientes. El agua del mar contiene, además de grandes cantidades de cloruro de sodio o sal, muchos otros compuestos disueltos, debido a que los océanos reciben las impurezas procedentes de ríos y arroyos. Al mismo tiempo, como el agua pura se evapora continuamente el porcentaje de impurezas aumenta, lo que proporciona al océano su carácter salino. Véase Océanos y oceanografía. 21.7. PURIFICACIÓN
DEL
AGUA
Las
impurezas
suspendidas y disueltas en el agua natural impiden que ésta sea adecuada para numerosos fines. Los materiales indeseables, orgánicos e inorgánicos, se extraen por métodos de criba y sedimentación que eliminan los materiales suspendidos. Otro método es el tratamiento con ciertos compuestos, como el carbón activado, que eliminan los sabores y olores desagradables. También se puede purificar el agua por filtración, o por cloración o irradiación que matan los microorganismos infecciosos. En la ventilación o saturación de agua con aire, se hace entrar el agua en contacto con el aire de forma que se produzca la máxima difusión; esto se lleva a cabo normalmente en fuentes, esparciendo agua en el aire. La ventilación elimina los olores y sabores producidos por la descomposición de la materia orgánica, al igual que los desechos industriales como los fenoles, y gases volátiles como el cloro. También convierte los compuestos de hierro y manganeso disueltos en
93
MATERIALES DE CONSTRUCCION
óxidos hidratados insolubles que luego pueden ser extraídos con facilidad. La dureza de las aguas naturales es producida sobre todo por las sales de calcio y magnesio, y en menor proporción por el hierro, el aluminio y otros metales. La que se debe a los bicarbonatos y carbonatos de calcio y magnesio se denomina dureza temporal y puede eliminarse por ebullición, que al mismo tiempo esteriliza el agua. La dureza residual se conoce como dureza no carbónica o permanente. Las aguas que poseen esta dureza pueden ablandarse añadiendo carbonato de sodio y cal, o filtrándolas a través de ceolitas naturales o artificiales que absorben los iones metálicos que producen la dureza, y liberan iones sodio en el agua. Los detergentes contienen ciertos agentes separadores que inactivan las sustancias causantes de la dureza del agua. El hierro, que produce un sabor desagradable en el agua potable, puede extraerse por medio de la ventilación y sedimentación, o pasando el agua a través de filtros de ceolita. También se puede estabilizar el hierro añadiendo ciertas sales, como los polifosfatos. El agua que se utiliza en los laboratorios, se destila o se desmineraliza pasándola a través de compuestos que absorben los iones. 21.8. DESALINIZACIÓN
DEL
AGUA
Para satisfacer las crecientes demandas de agua dulce, especialmente en las áreas desérticas y semidesérticas, se han llevado a cabo numerosas investigaciones con el fin de conseguir métodos eficaces para eliminar la sal del agua del mar y de las aguas salobres. Se han desarrollado varios procesos para producir agua dulce a bajo costo. Tres de los procesos incluyen la evaporación seguida de la condensación del vapor resultante, y se conocen como: evaporación de múltiple efecto, destilación por compresión de vapor y evaporación
94
MATERIALES DE CONSTRUCCION
súbita. En este último método, que es el más utilizado, se calienta el agua del mar y se introduce por medio de una bomba en tanques de baja presión, donde el agua se evapora bruscamente. Al condensarse el vapor se obtiene el agua pura.
La congelación es un método alternativo que se basa en los diferentes puntos de congelación del agua dulce y del agua salada. Los cristales de hielo se separan del agua salobre, se lavan para extraerles la sal y se derriten, convirtiéndose en agua dulce. En otro proceso, llamado ósmosis inversa, se emplea presión para hacer pasar el agua dulce a través de una fina membrana que impide el paso de minerales. La ósmosis inversa sigue desarrollándose de forma intensiva. La electrodiálisis se utiliza para desalinizar aguas salobres. Cuando la sal se disuelve en agua, se separa en iones positivos y negativos, que se extraen pasando una corriente eléctrica a través de membranas aniónicas y catiónicas. Un problema importante en los proyectos de desalinización son los costos para producir agua dulce. La mayoría de los expertos confían en obtener mejoras sustanciales para purificar agua ligeramente salobre, que contiene entre 1.000 y 4.500 partes de minerales por millón, en comparación a las 35.000 partes por millón del agua del mar. Puesto que el agua resulta potable si contiene menos de 500 partes de sal por millón, desalinizar el agua salobre es comparativamente más barato que desalinizar el agua del mar.
Bibliografía: Enciclopedia® Microsoft® Encarta 2001. © 1993-2000 Microsoft Corporation. 95
View more...
Comments