Materi AST I

March 17, 2017 | Author: Hanter Jum | Category: N/A
Share Embed Donate


Short Description

Download Materi AST I...

Description

Materi dan Evaluasi Materi:

Evaluasi

-Pendahuluan & Konsep Dasar

-Absensi

-Transformator

-Tugas

-Mesin Sinkron

-Quiz 1 & 2

-Saluran Transmisi

-UTS

-Penyelesaian Aliran Daya (Metode Gauss Seidel, Newton Raphson)

-UAS

Referensi -Analisa Sistem Tenaga, William D. Stevenson JR. -Power System Analysis, John J. Grainger -Electrical Power Systems, MEEL Hawary 6/21/2009

PS S1 Teknik Elektro

1

BAB I - Konsep Dasar 1.1 Pendahuluan Sebuah arus dan tegangan yang diekspresikan sebagai fungsi waktu adalah: i = 7.07 cos ωt v = 141.4 cos(ωt + 30o ) Untuk menyatakan besaran2 ini sebagai sebagai phasor, kita gunakan identitas euler.

Jika arus adalah phasor referensi: o j 0 I = 5ε = 5∠0o = 5 + j 0 A

Maka tegangan mendahului phasor referensi dengan 30° : 6/21/2009

o V = 100ε j 30 = 100∠30o = 86.6 + j 50 A PS S1 Teknik Elektro

2

1.2 Notasi Subscript Tunggal V − VL IL = t ZA

Vt = E g − I L Z g

Sebuah rangkaian ac dengan emf Eg dan impedansi beban ZL.

6/21/2009

PS S1 Teknik Elektro

3

1.3 Notasi Subscript Ganda

6/21/2009

PS S1 Teknik Elektro

4

1.4 Arah Aliran Daya Hubungan antara P, Q dan tegangan bus V, atau tegangan yang dibangkitkan terhadap tanda P dan Q adalah penting ketika aliran daya dalam sistem ditinjau. Pertanyaan yang ada adalah apakah daya dibangkitkan atau diserap oleh mesin saat tegangan dan arus ditentukan ? Daya yang diserap didalam kotak dinyatakan dengan : S=VI* = P+jQ

6/21/2009

PS S1 Teknik Elektro

5

Contoh 1.1 Dua sumber tegangan ideal didisain sebagai mesin 1 dan mesin 2 yang terhubung, seperti ditunjukkan pada gambar dibawah. Jika E1=100∠0° V, E2=100∠30° V, dan Z0=0+j5 Ω, Tentukan: a.

Apakah setiap mesin membangkitkan atau menyerap daya nyata?

b.

Apakah setiap mesin menerima atau mensuplai daya reaktif?

c.

Berapakah P dan Q yang diserap oleh impedansi?

6/21/2009

PS S1 Teknik Elektro

6

1.5 Tegangan dan Arus Dalam Rangkaian 3 Phase Seimbang Pada generator, emf Ea’0, Eb’0, Ec’0, adalah sama dalam besaran dan terpisah 120° masing-masing. Jika besaran adalah 100 V dengan Ea’0 sebagai reference:

Gambar diagram phasor dibawah menunjukkan emf dengan urutan phase abc

Tegangan terminal generator terhadap netral

Rangkaian diagram generator hubungan Y dan beban seimbang hubungan Y

6/21/2009

PS S1 Teknik Elektro

7

1.5

Gambar disamping adalah diagram Phasor arus dalam sebuah beban tiga phase seimbang. a. Phasor digambar dari sebuah titik bersama b. Penambahan Phasor-phasor membentuk segitiga tertutup Karena Ea’0, Eb’0, Ec’0, adalah sama dalam besaran dan terpisah 120° dalam phase, dan impedansinya identik, maka arus juga akan menjadi sama dalam besaran dan terpisah 120° dalam phase.

6/21/2009

PS S1 Teknik Elektro

8

Huruf a digunakan secara umum untuk menandai operator yang menyebabkan perputaran 120° dalam arah berlawanan arah jarum jam. Sedemikian sebuah operator adalah sebuah bilangan komplex dari besaran unit dengan sudut 120° dan didefinisikan oleh

1.5

Phasor yang diputar 240° dan 360° adalah:

Diagram Phasor fungsi2 operator a 6/21/2009

PS S1 Teknik Elektro

9

1.5

Metode penggambaran alternatif dari phasor-phasor. Diagram Phasor tegangan line-to-line dalam hubungan dengan tegangan line-to-netral dalam sebuah rangkaian tiga-phase seimbang.

6/21/2009

PS S1 Teknik Elektro

10

Contoh 1.2 Dalam sebuah rangkaian tiga fase seimbang tegangan Vab adalah 173.2∠0° V. Tentukan semua tegangan dan arus dalam beban terhubung Y yang mempunyai ZL adalah 10∠20° Ω. Asumsikan urutan phase adalah abc.

6/21/2009

PS S1 Teknik Elektro

11

1.5

Diagram rangkaian beban tiga phase terhubung ∆ Diagram phasor arus saluran dalam hubungan dengan arus phase pada beban seimbang tiga phase terhubung ∆ 6/21/2009

PS S1 Teknik Elektro

12

1.5

6/21/2009

PS S1 Teknik Elektro

13

Contoh 1.3 Tegangan terminal pada beban terhubung Y terdiri dari tiga impedansi yang sama 20∠30° Ω adalah 4.4 kV line to line. Impedansi setiap tiga saluran yang menghubungkan beban pada substation bus adalah ZL = 1.4∠75° Ω. Tentukan tegangan line-to-line di substation bus tersebut. Penyelesaian: Tegangan line to netral di beban adalah: 4400/√3=2540 V. Dengan Van sebagai reference

Tegangan line to netral di bus substation :

Magnitude tegangan di bus substation :

6/21/2009

PS S1 Teknik Elektro

14

1.6 Besaran Per-Unit Contoh:

Untuk sebuah tegangan line-toline 108 kV dalam set tiga phase seimbang, tegangan line-to-netral adalah 108/√3 = 62.3 kV.

Untuk daya 3 phase 18,000 kW dan daya per phase 6,000 kW

6/21/2009

PS S1 Teknik Elektro

15

Base impedansi dan base arus dapat dihitung secara 1.6 langsung dari harga tiga phase kilovolts base dan kilovoltampere base

6/21/2009

PS S1 Teknik Elektro

16

Contoh 1.4 Carilah penyelesaian pada contoh 1.3 dengan bekerja dalam per unit pada base 4.4 kV, 127 A sehingga besaran tegangan dan arus akan menjadi 1.0 per unit. Penyelesaian: Base impedansi adalah Maka impedansi beban adalah 1.0 per unit.

Dan Impedansi saluran adalah:

6/21/2009

PS S1 Teknik Elektro

17

1.6 Perubahan Besaran Base Per-Unit

Contoh 1.5

Reaktansi disain generator X’’ adalah 0.25 per unit berdasarkan pada rating nameplate generator 18 kV, 500 MVA. Base untuk perhitungan adalah 20 kV, 100 MVA. Tentukan X’’ pada base yang baru.

Atau dengan mengkonversi harga terhadap ohm dan dibagi dengan impedansi base yang baru 6/21/2009

PS S1 Teknik Elektro

18

BAB 2. Impedansi Seri Saluran Transmisi Suatu saluran transmisi listrik mempunyai empat parameter yang mempengaruhi kemampuannya untuk berfungsi sebagai bagian dari suatu sistem tenaga : 1. Resistansi, 2. Induktansi, 3. Konduktansi, 4. Kapasitansi Jika arus mengalir pada suatu rangkaian listrik, beberapa sifat rangkaian itu dapat djelaskan menurut medan magnet dan medan listrik yang timbul disekitarnya. Gambar 2.1 memperlihatkan suatu saluran fasa‐tunggal serta medan magnet dan listriknya. Garis fluks magnetisnya membentuk lingkaran tertutup yang meliputi rangkaian, dan garis‐ garis fluks listriknya bermula dari muatan positif pada salah satu penghantar dan berakhir pada muatan negatif pada penghantar yang lain.

Gb. 2.1 Medan‐ medan magnet dan listrlk dari saluran dua kawat. 6/21/2009 PS S1 Teknik Elektro

19

2.1 Jenis-jenis Penghantar Bermacam‐ macam jenis penghantar aluminium dapat dikenal dari lambang‐ lambang berikut ini: AAC ''all‐aluminium conductors",seluruhnya terbuat dari aluminium AAAC ''all-aluminium‐alloy conductors'', seluruhnya terbuat dari campuran aluminium ACSR "Aluminium conductor, steel‐reinforced'', penghantar aluminium yang diperkuat dengan baja ACAR ''aluminiumn conductor, alloy‐reinforced", penghantar aluminium yang diperkuat dengan logam campuran

Gambar 2.2 Penampang penghantar kabel ACSR dengan penguatan baja, Diperoleh 7 serat btta,dan 24 serat aluminium

6/21/2009

PS S1 Teknik Elektro

20

2.2 RESISTANSI Resistansi penghantar saluran transmisi adalah penyebab yang terpenting dari rugi daya (power loss) pada saluran transmisi.

Resistansi dc dinyatakan

Perubahan resistansi penghantar logam dengan berubahnya suhu boleh dikatakan linear pada batas‐ batas pengoperasian yang normal.

6/21/2009

PS S1 Teknik Elektro

Gb.2.3 Resistansi penghantar logam sebagai fungsi dari suhu.

21

2.3 Tabel Nilai Resistansi Contoh 3 1. Tabel karakteristik listrik untuk penghantar berlilitan Marigold yang terbuat seluruhnya dari aluminium memberikan resistansi dc O,01558 Ω per 1000 ft pada 20°C dan resistansi ac O,0956Ω /mil pada 50°C. Penghantar tersebut mempunyai 61 serat dan ukurannya ialah 1.113.000 cmil. Periksalah nilai resistansi dc dan hitunglah perbandingan resistansi ac terhadap resistansi dc. JAWABAN: Pada 20°C dan peningkatan sebesar 2% karena lilitan, Dari persamaan (3.2) memberikan

Pada suhu 50°C dari Persamaan (3.3)

Efek kulit rnenyebabkan kenaikan resistansi sebesar 3,7%. 6/21/2009

PS S1 Teknik Elektro

22

2.4 Definisi Induktansi Persamaan yang menghubungkan tegangan lnbas dengan kecepatan perubahan fluks yang lneliputi suatu rangkaian

Jika ψ adalah lambang fasor untuk fluks gandeng

Fasor jatuh‐tegangan (voltages drop) karena fluks gandeng adalah Jika arus pada rangkaian berubah‐ ubah, medan magnet yang ditimbulkannya pasti juga berubah‐ ubah.

Sehingga L adalah

Jika fluks gandeng berubah secara linear maka 6/21/2009

Jika arus I2 menghasilkan fluks gandeng dengan rangkaian 1 sebesar ψ12 , maka induktansi timbal baliknya adalah

Fasor jatuh‐tegangan pada rangkaian 1 yang disebabkan fluks gandeng dari rangkaian 2 adalah PS S1 Teknik Elektro

23

2.5 Induktansi Penghantar Yang Disebabkan Oleh Fluks Internal Gambar 3.1 hanya memperlihatkan garis fluks yang berada di luar penghantar (external). Tetapi sebenarnya sebagian dari medan magnet juga berada di dalam penghantar (internal) Untuk mendapatkan nilai induktansi yang teliti dari suatu saluran transmisi, fluks internal dan eksternal perlu dipertimbangkan

Gb.2.4 Penampang suatu penghantar berbentuk

6/21/2009

PS S1 Teknik Elektro

24

2.6 Induktansi Antara Dua Titik Diluar Penghantar Yang Tersendiri Induktansi yang disebabkan oleh fluks yang berada di antara P1 dan P2 adalah

Gb.2.5 Suatu penghantar dan titik eksternal P1 dan P2. 6/21/2009

PS S1 Teknik Elektro

25

2.7 Induktansi Saluran Dua Kawat Berfasa Tunggal Induktansi rangkaian yang disebabkan oleh arus pada penghantar 1. Untuk fluks eksternal Untuk fluks internal

Induktansi total rangkaian yang disebabkan oleh arus pada penghantar 1 saia adalah

Gb.2.6 Penghantar dengan jari-jari yang berbeda dan medan magnet yang ditimbulkan oleh arus pada penghantar 1 saja.

6/21/2009

Induktansi untuk keseluruhan rang kaian adalah

PS S1 Teknik Elektro

26

2.8 Induktansi Saluran Dengan Penghantar Terpadu Penghantar lilitan termasuk ke dalam klasifikasi umum untuk penghantar terpadu yaitu yang terbuat dari dua elemen atau serat atau lebih, yang secara elektris terhubung paralel. Penghantar X tersusun dari n serat yang terhubung paralel dan induktansinya Gb.2.8 Saluran berfasa‐tunggal yang terdiri dari dua penghantar terpadu.

Dengan mengganti Dm dan Ds

6/21/2009

PS S1 Teknik Elektro

27

2.8 Induktansi Saluran Dengan Penghantar Terpadu

Perkalian m jarak untuk masing‐masing n serat menghasilkan suku mn. Akar pangkat mn dari perkalian mn jarak dinamakan jarak rata-rata geometris (geometric mean distance) antara penghantar X dan penghantar Y. Singkatannya adalah Dm atau GMD dan sering juga disebut GMD bersama antara dua penghantar. Akar pangkat n2 dari Suku‐ suku ini disebut GMD sendiri dari penghantar X, GMD sendiri disebut juga jari-jari rata-rata geometris (Geometric Mean Radius) GMR yang dinyatakan dengan Ds

Induktansi penghantar Y ditentukan dengan cara yang sama, dan induktansi salurannya adalah 6/21/2009

PS S1 Teknik Elektro

28

Contoh 3.2 Suatu rangkalan saluran transmisi fasa tunggal terdiri dari tiga kawat padat dengan jari-jari O,25 cm. Rangkaian‐kembali terdiri dari dua kawat dengan jari-jari O,5 cm. Susunan penghantar diperlihatkan dalam Gambar 3.9. Hitunglah Induktansi akibat arus di inasing‐ masing sisi saluran dan induktahsi keseluruhan saluran dalam henry per meter(dan dalam milihenry per mil).

Gambar 3.9 Susunan penghantar untuk Contoh 3 2.

6/21/2009

PS S1 Teknik Elektro

29

Contoh 3.2 Pertama‐tama kita hitung GMD antara sisi‐sisi x dan y:

Kemudian kita hitung GMR untuk sisi

6/21/2009

PS S1 Teknik Elektro

30

Contoh 3.2 dan untuk sisi Y

Induktansi total saluran adalah

6/21/2009

PS S1 Teknik Elektro

31

2.9 Pengguanan Tabel Tabel nilai-nilai GMR biasanya sudah tersedia untuk penghantar-penghantar standard dan memberikan data yang cukup baik untuk menghitung reaktansi induktif maupun reaktansi kapasitif paralel dan resistansi. Biasanya reaktansi induktif lebih diinginkan daripada induktansi. Reaktansi induktif sebuah penghantar dari saluran dua-penghantar fasa-tunggal adalah:

Contoh: Hitunglah reaktansi induktif per mil untuk saluran fasa-tunggal yang bekerja pada 60 Hz. Penghantarnya adalah dari jenis Partridge, dan jarak pemisah antara pusat-pusatnya adalah 20 kaki. Jawab: Ds=0.0217 kaki

6/21/2009

PS S1 Teknik Elektro

32

2.9 Pengguanan Tabel

6/21/2009

PS S1 Teknik Elektro

33

2.10 Induktansi Saluran 3 Fasa Dengan Jarak Pemisah Tidak Simetris

Jika jarak pemisah penghantar-penghantar suatu saluran tiga-fasa tidak sama, persoalan untuk menemukan induktansi meniadi lebih sulit. Dalam hal ini, fluks gandeng dan induktansi masing‐masing fasa menjadi berlainan. Induktansi yang berbeda pada setiap fasa menghasilkan suatu rangkaian yang tidak seimbang. Keseimbangan ketiga fasa dapat dikembalikan dengan mempertukarkan posisi‐posisi penghantar pada selang jarak yang teratur di sepaniang saluran sedemikian rupa sehingga setiap penghantar akan menduduki posisi semula penghantar yang lain pada suatu jarak yang sama. Pertukaran posisi penghantar semacam ini disebut transposisi (transposition).

Induktansi rata-rata perfasa: 6/21/2009

PS S1 Teknik Elektro

34

2.10 Induktansi Saluran 3 Fasa Dengan Jarak Pemisah Tidak Simetris Contoh: Suatu saluran tiga fasa rangkaian tunggal yang bekerja pada frekuensi 60 Hz tersusun seperti dalam Gambar disamping. Penghantar‐penghantarnya adalah ACSR Drake. Hitunglah induktansi per mil per fasa. Dari Tabel A.1,

6/21/2009

PS S1 Teknik Elektro

35

2.11 Penghantar Berkas Dengan menggunakan dua penghantar atau lebih per fasa yang disusun berdekatan dibandingkan dengan jarak pemisah antara fasa‐fasanya, maka gradien tegangan tinggi pada penghantar dalam daerah EHV dapat banyak dikurangi. Saluran semacam ini dikatakan sebagai tersusun dari penghantar berkas (bundled conductor). Berkas ini dapat terdiri dari 2, 3 atau 4 penghantar. Untuk berkas 1 penghantar Untuk berkas 2 penghantar Untuk berkas 3 penghantar

6/21/2009

PS S1 Teknik Elektro

36

Contoh Masing‐masing penghantar pada saluran dengan penghantar berkas seperti terlihat pada Gambar disamping adalah jenis ACSR, 1.272,000 cmil Pheasant. Hitunglah reaktansi induktif dalam ohm per km(dan per mil) per fasa untuk d=45 cm. Hitunglah juga reaktansi seri per‐unit saluran jika panjangnya 160 km dan dasar yang dipakai adalah 100 MVA, 345 kV. Jawaban: Dari Tabel A.1 Ds=0.0466 kaki, dan dikalikan 0.3048 untuk dirubah menjadi meter

Gambar Jarak Pemisah Peng-hantar Masing‐masing pada suatu saluran berkas

6/21/2009

PS S1 Teknik Elektro

37

2.12 Saluran 3 Fasa Rangkaian Paralel Dua rangkaian tiga‐fasa yang identik susunannya dan secara elektris terhubung paralel mempunyai reaktansi induktif yang sama.

Gambar Susunan penghantar pada suatu saluran tiga-fasa rangkaian-paralel

6/21/2009

PS S1 Teknik Elektro

38

Contoh Suatu saluran tiga‐fasa rangkaian ganda terdiri dari penghantar-penghantar ACSR Ostrich 300,000 cmil 26/7 yang disusun seperti gambar dibawah. Tentukan reaktansi induktif dalam ohm per mil per fasa untuk 60 Hz. Jawab: Menurut tabel A.1 untuk Ostrich Ds= 0.0229 ft

Gambar Susunan penghantar pada suatu saluran tiga-fasa rangkaian-paralel

6/21/2009

PS S1 Teknik Elektro

39

BAB 3. Kapasitansi Saluran Transmisi Admitansi shunt (Shunt admittance) suatu saluran transmisi terdiri dari konduktansi dan reaktansi kapasitif. Konduktansi ini biasanya diabaikan karena sumbangannya pada admitansi shunt sangat kecil. Alasan lain untuk mengabaikan konduktansi ialah karena tidak ada cara yang baik untuk memperhitungkannya karena konduktansi ini cukup berubah‐ubah. Kapasitansi suatu saluran transmisi adalah akibat beda potensial antara penghantar(konduktor); kapasitansi menyebabkan penghantar tersebut bermuatan seperti yang teriadi pada pelat kapasitor bila teriadi beda potensial di antaranya. Kapasitansi antara penghantar adalah muatan per unit beda potensial.

6/21/2009

PS S1 Teknik Elektro

40

3.1 Kapasitansi Saluran Dua Kawat Kapasitansi antara dua penghantar pada saluran dua kawat didefinisikan sebagai muatan pada penghantar itu per unit beda potensial di antara keduanya. Dalam bentuk persamaan, kapasitansi per satuan panjang saluran adalah:

Jika ra = rb = r Gambar penampang saluran kawat sejajar

6/21/2009

PS S1 Teknik Elektro

41

Kapasitansi saluran ke netral F/m Reaktansi Kapasitif antara penghantar dan netral

Gambar (a) dan (b) Hubungan konsep kapasitansi antar saluran dan kapasitansi saluran ke netral.

Dibagi 1609 menjadi mil

Jika kapasitansi antar saluran dianggap terdiri dari dua kapasitansi yang sama dalam hubungan seri, maka tegangan antara saluran terbagi dua sama besar diantara kedua kapasitansi tersebut dan titik hubung antara keduanya berada pada potensial tanah. Jadi Kapasitansi ke netral adalah satu dari dua kapasitansi seri yang sama, atau dua kali kapasitansi antar saluran. 6/21/2009

PS S1 Teknik Elektro

42

Contoh 1 Carilah suseptansi kapasitif per mil saluran fase-tunggal yang bekerja pada 60 Hz. Penghantarnya adalah Partridge, dan jarak pemisahnya adalah 20 kaki antara pusatnya. Jawaban: Dari tabel A1, Nilai diameter luar adalah 0.642 in. Atau dengan reaktansi kapasitif pada jarak pemisah 1 kaki (Tabel A1) dan faktor pemisah reaktansi kapasitif (Tabel A3) diperoleh

Reaktansi kapasitif antar saluran:

Suseptansi kapasitif antar saluran: 6/21/2009

PS S1 Teknik Elektro

43

3.2 Kapasitansi Saluran Tiga-Fasa Dengan Jarak Pemisah Yang Tidak Simetris

Gambar penampang saluran tiga fasa dengan jarak pemisah tidak simetris.

6/21/2009

PS S1 Teknik Elektro

44

Contoh 2 Carilah kapasitansi dan reaktansi kapasitif untuk 1 mil saluran seperti yang digambarkan dalam contoh 3.4, Jika panjang saluran 175 mil dan tegangan kerja normal 220 kV, tentukan reaktansi kapasitif ke netral untuk seluruh saluran, arus pengisian per mil, dan mega volt ampere pengisian total. Contoh 3.4: Suatu saluran tiga fasa rangkaian tunggal yang bekerja pada frekuensi 60 Hz tersusun seperti dalam Gambar disamping. Penghantar‐penghantarnya adalah ACSR Drake. Hitunglah induktansi per mil per fasa. Jawaban:

Dari Tabel

Untuk saluran sepanjang 175 mil, Reaktansi kapasitif = 6/21/2009

PS S1 Teknik Elektro

45

Contoh 2 Arus Pengisian per mil:

Atau Ichg = 0.681 x 175 = 119 A untuk saluran. Daya reaktif adalah Q = √3 x 220 x 119 x 10-3 = 45.3 Mvar.

6/21/2009

PS S1 Teknik Elektro

46

BAB 4. Model Sistem Saluran Pendek Kurang dari 80 km (50 mi) Saluran Menengah antara 80 km – 240 km (50 mi-150 mi) Saluran Panjang lebih 240 km (150 mi)

6/21/2009

PS S1 Teknik Elektro

47

4.1 Saluran Transmisi

A. Saluran Transmisi Pendek

6/21/2009

PS S1 Teknik Elektro

48

B. Saluran Transmisi Menengah

6/21/2009

PS S1 Teknik Elektro

49

Saluran Transmisi Menengah

6/21/2009

PS S1 Teknik Elektro

50

C. Saluran Transmisi Panjang

6/21/2009

PS S1 Teknik Elektro

51

C. Saluran Transmisi Panjang Persamaan Dalam Bentuk Hiperbolis

6/21/2009

PS S1 Teknik Elektro

52

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

53

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

54

4.2 Mesin Sinkron Xs Xar Ef

Xl

Ra

Er

Vt

Rangkaian Ekivalen Generator ac

Vt = Tegangan terminal Xs = reaktansi sinkron = Xar + Xl Xar = Reaktansi jangkar Xl = Reaktansi bocor jangkar Ra = Tahanan jangkar 6/21/2009

PS S1 Teknik Elektro

55

Mesin Sinkron

6/21/2009

PS S1 Teknik Elektro

56

Pembangkitan 3 Fasa

Tiga coil a, b, c merepresentasikan tiga kumparan jangkar stator. Satu coil f merepresentasikan kumparan medan rotor. Sumbu coil a dipilih pada θd=0º, dan coil b,c dipilih pada θd=120º, 240º . Coil a, b dan c mempunyai induktansi diri: Mutual induktansi Lab, Lbc dan Lca adalah negatif constan:

Mutual induktansi antara coil medan dan stator:

Induktansi diri coil medan : 6/21/2009

PS S1 Teknik Elektro

57

Mesin Sinkron

Medan berputar pada kecepatan sudut konstan ω, untuk mesin dua kutub :

Persamaan fluks gandeng untuk coil jangkar menjadi:

Persamaan fluks gandeng untuk coil jangkar:

6/21/2009

Persamaan λa mempunyai dua komponen fluks gandeng, yaitu akibat arus jangkar ia dan akibat arus medan If . Jika coil a mempunyai tahanan R, maka drop tegangan va adalah:

PS S1 Teknik Elektro

58

Mesin Sinkron ea’ : tegangan terminal fasa a saat ia=0 : tegangan tanpa beban : tegangan open circuit : tegangan internal sinkron : emf dibangkitkan pada fasa a. Sudut θd0 menunjukkan posisi kumparan medan sumbu d terhadap fasa a pada t=0. Maka δ = θd0-90º menunjukkan posisi sumbu q yang terletak 90º dibelakang sumbu d, sehingga θd0 = δ + 90º dan

Diperoleh

6/21/2009

PS S1 Teknik Elektro

59

Mesin Sinkron

Rangkaian ekivalen generator 6/21/2009

PS S1 Teknik Elektro

Diagram phasor 60

Mesin Sinkron Xs Xar Ef

Xl

Ra

Er

Vt

Rangkaian Ekivalen Generator ac

Ef = ea’ Vt = Va Xar = XLs Xl = XMs Ra = R Xd = Xs

6/21/2009

PS S1 Teknik Elektro

61

4.3 Transformator

6/21/2009

PS S1 Teknik Elektro

62

Contoh Soal

Rangkaian Ekivalen Transformator

6/21/2009

PS S1 Teknik Elektro

63

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

64

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

65

4.4 Diagram Segaris

6/21/2009

PS S1 Teknik Elektro

66

Diagram Segaris

Diagram segaris sistem tenaga listrik

Diagram impedansi dari diagram segaris

6/21/2009

PS S1 Teknik Elektro

67

Diagram Segaris •Resistansi sering diabaikan dalam perhitungan gangguan, karena reaktansi induktif jauh lebih besar dari resistansinya. •Pada transformator, admitansi shunt diabaikan karena arus magnetisasi sangat kecil dibanding arus beban penuh. •Beban-beban yang tidak menyangkut mesin yang berputar sangat kecil pengaruhnya terhadap arus saluran total apabila terjadi gangguan dan biasanya diabaikan. •Beban berupa motor serempak selalu dimasukkan dalam perhitungan gangguan karena emf yang dibangkitkan besar pengaruhnya terhadap arus gangguan.

6/21/2009

PS S1 Teknik Elektro

68

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

69

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

70

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

71

BAB 5. Penyelesaian Aliran Daya 5.1 Kesetaraan Sumber Jika tegangan VL sama, kedua sumber dengan masing-masing impedansinya akan menjadi setara (ekivalen). Dengan membandingkan kedua persamaan diatas, maka kedua rangkaian akan menjadi identik asal: Untuk rangkaian yang mempunyai emf konstan Eg dan impedansi seri Zg, tegangan pada beban adalah

dan

Untuk rangkaian yang mempunyai sumber arus konstan Is dan impedansi shunt Zp, tegangan pada beban adalah 6/21/2009

PS S1 Teknik Elektro

72

5.2 Persamaan Simpul Titik-titik sambungan yang terbentuk, jika dua atau lebih elemen murni (R, L atau C atau sumber tegangan atau arus ideal) dihubungkan satu sama lain pada ujung-ujungnya dinamakan simpul-simpul (nodes). Untuk mempelajari persamaan simpul dimulai dengan diagram segaris pada gambar 7.2. Diagram reaktansi untuk sistem ditunjukkan pada gambar 7.3.

6/21/2009

PS S1 Teknik Elektro

73

Persamaan Simpul Diagram reaktansi pada gambar 7.3 ditunjukkan dalam persatuan. Simpul-simpul ditunjukkan dalam titik-titik, Nomor ditunjukkan untuk simpul-simpul besar. Jika rangkaian digambar kembali dengan emf dan impedansi seri yang menghubungkannya ke simpul-simpul besar digantikan dengan sumber arus ekivalen dan admitansi shunt ekivalen, hasilnya adalah seperti gambar 7.4. Nilai admitansi diperlihatkan dalam persatuan menggantikan nilai impedansi.

6/21/2009

PS S1 Teknik Elektro

74

Persamaan Simpul Notasi subscript tunggal akan dipakai untuk menunjukkan tegangan masing-masing rel (bus) terhadap netral yang diambil sebagai simpul pedoman 0 (reference node). Dengan menerapkan hukum arus Kirchoff pada simpul 1, yaitu arus sumber yang menuju simpul tersebut samadengan arus yang meninggalkannya, diperoleh : simpul 1: simpul 4: Dengan mengatur kembali persamaan2 diatas diperoleh: simpul 1: simpul 4:

6/21/2009

PS S1 Teknik Elektro

75

Persamaan Simpul Keempat persamaan dalam bentuk matriks adalah :

Disebut dengan matriks admitansi rel, Yrel (Ybus) Matriks ini simetris terhadap diagonal utamanya. Admitansi Y11, Y22, Y33 dan Y44 dinamakan admitansi sendiri (self admitansi), masing2 sama dengan jumlah semua admitansi yang berujung pada simpul yang ditandai dengan subskrip yang berulang. 6/21/2009

PS S1 Teknik Elektro

Admitansi yang lain adalah admitansi bersama (mutual admittance), masing-masing sama dengan jumlah negatif semua admitansi yang dihubungkan langsung antara simpul yang disebutkan menurut subskrip gandanya. Rumus umum untuk arus sumber yang mengalir menuju simpul k suatu jaringan yang mengandung N buah simpul, selain netral adalah:

76

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

77

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

78

Contoh Soal

[YBUS]-1

[ZBUS]=[YBUS]-1

[YBUS]-1

[YBUS]

Hasil perhitungan :

Matriks bujursangkar diatas didapat dengan membalikkan matriks admitansi bus disebut matriks impedansi bus.

6/21/2009

PS S1 Teknik Elektro

79

Contoh Soal Tegangan simpul adalah :

6/21/2009

PS S1 Teknik Elektro

80

5.3 Analisa Aliran Daya Metode Gauss Seidel Merupakan metode iterasi yang paling umum digunakan. Asumsikan bahwa diberikan himpunan n persamaan: [A][X] = [C] a11x1 + a12x2 + a13x3 + …… + a1nxn = c1 a21x1 + a22x2 + a23x3 + …… + a2nxn = c2 a31x1 + a32x2 + a33x3 + …… + a3nxn = c3 x1 = (c1- a12x2 - a13x3 - …… - a1nxn)/ a11 x2 = (c2- a21x1 - a23x3 - …… - a2nxn)/ a22 x3 = (c3- a31x1 - a32x2 - …… - a3nxn)/ a33

6/21/2009

PS S1 Teknik Elektro

81

Persamaan Umum Aliran Daya Daya Masuk Bus = Daya Keluar Bus 1

= S12 + S13 = (P12+jQ12) + (P13+jQ13) = V1I12*+V1I13* = V1(I12*+I13*) = V1(I12+I13) * = V1I1* (P1+jQ1)* = (V1I1* )* S1 P1+jQ1

P1-jQ1

6/21/2009

2

3

= V1 * I 1

PS S1 Teknik Elektro

82

Persamaan Umum Aliran Daya

P1 – jQ1 = V1* I1 P1 – jQ1 = V1* (Y11V1+ Y12V2+ Y13V3+ Y14V4)

Pi − jQi = Vi *

n

∑ j =1

6/21/2009

YijV j

Persamaan Umum Aliran Daya

PS S1 Teknik Elektro

83

Klasifikasi Bus A. Load Bus (PQ Bus)

Slack/Swing Bus

1.

Terhubung dengan beban

2.

P dan Q tetap

3.

|V| dan θ dihitung

B. Generator Bus (PV Bus) 1.

Terhubung dengan generator

2.

P dan |V| tetap

3.

Q dan θ dihitung

C. Slack/Swing Bus 1.

Terhubung dengan generator

2.

|V| dan θ tetap

3.

P dan Q dihitung

6/21/2009

P dan Q ditentukan setelah seluruh iterasi terselesaikan. Biasanya slack bus yang digunakan dalam analisa ini jumlahnya hanya satu dan dipilih sebagai bus ke satu atau yang terakhir, yang terhubung dengan generator berkapasitas besar. Konsep Slack Bus ini diperlukan, karena aliran daya kedalam sistem pada setiap bus tidak dapat ditetapkan sampai seluruh iterasi diselesaikan. Karena bus ini berfungsi sebagai referensi, maka sudut fasa tegangannya sama dengan nol.

PS S1 Teknik Elektro

84

Contoh Soal

6/21/2009

PS S1 Teknik Elektro

85

Contoh Soal

Base 100 MVA 230 kV At 230 kV

6/21/2009

PS S1 Teknik Elektro

86

Contoh Soal

Table 9.3 Bus data for example 9.2

The Q values of load are calculated from the corresponding P values assuming a power factor of 0.85

6/21/2009

PS S1 Teknik Elektro

87

Bus Beban (PQ Bus) Untuk memperbaiki konvergensi, digunakan faktor percepatan α. Umumnya α diset sebesar 1.6 dan tidak lebih dari 2.

Bus Generator (PV Bus) Besaran V4 dikoreksi dengan persamaan:

6/21/2009

PS S1 Teknik Elektro

88

5.4 Analisa Aliran Daya Metode Newton Raphson

Gambar Metode Newton Raphson Garis Tangen

Saat y(x) = 0

6/21/2009

PS S1 Teknik Elektro

89

Contoh soal Hitunglah F(x) = x3 – 64 dengan menggunakan metode Newton Raphson Maka Harga awal

Proses Iterasi

Iterasi ke dua

Iterasi pertama

6/21/2009

PS S1 Teknik Elektro

90

Metode Newton Raphson dengan n Persamaan Misal 2 Persamaan Non Linier adalah sbb:

Persamaan Umum:

Matriks Jacobian dihitung secara numeri pada titik awal x1(0) dan x2(0)

Matriks Jacobian Sehingga iterasi pertama diselesaikan dengan:

6/21/2009

PS S1 Teknik Elektro

91

Contoh soal Gunakan Metode Newton Raphson untuk menyelesaikan persamaan berikut:

Element Jacobian-nya adalah

Jawab. Turunan Parsial adalah

Maka

Harga awal adalah Hasil iterasi pertama

6/21/2009

PS S1 Teknik Elektro

92

Contoh soal Perhitungan Iterasi ke-dua

Hasil iterasi kedua :

Element Jacobian-nya adalah

Hasil iterasi ke-3 sampai ke-8 :

Maka

6/21/2009

PS S1 Teknik Elektro

93

Metode Newton Raphson Persamaan aliran daya. Polar Form

Rectangular Form

Tegangan Bus Admitansi

Power Mismatch

Hybrid Form

6/21/2009

PS S1 Teknik Elektro

94

Metode Newton Raphson

Dalam bentuk matriks

Jacobian 6/21/2009

correction PS S1 Teknik Elektro

mismatches 95

Contoh soal

Dari matriks YBUS

= 0.06047 6/21/2009

PS S1 Teknik Elektro

96

Contoh soal

6/21/2009

PS S1 Teknik Elektro

97

Contoh soal Elemen Baris ke lima kolom ke 5

Set pada iterasi pertama

6/21/2009

PS S1 Teknik Elektro

98

Contoh soal Hasil Penyelesaian Aliran Daya Metode Newton Raphson

6/21/2009

PS S1 Teknik Elektro

99

Tabel A1

6/21/2009

PS S1 Teknik Elektro

100

Tabel A2

6/21/2009

PS S1 Teknik Elektro

101

Tabel A3

6/21/2009

PS S1 Teknik Elektro

102

Jadwal Kuliah Pertemuan ke-

Hari/Tanggal

Materi Pokok Bahasan

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6/21/2009

PS S1 Teknik Elektro

103

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF