Matematika Za 1 Razred Gimnazije Banja Luka

April 7, 2017 | Author: VinkaGajic | Category: N/A
Share Embed Donate


Short Description

Download Matematika Za 1 Razred Gimnazije Banja Luka...

Description

:

Ма а

а

а

Ра к В к

I

ћ,

ка I а

2010-11.

ј

. .

.

.

1

:

I

Садржај I

.............................................................................................................................. 5 .......................................................................................................... 5 1.1 .............................................................................................................. 6 1.2 ............................................................................................................. 6 1.3 .............................................................................................................. 8 1.4 ...................................................................................... 10 1.5 .......................................................................................................... 11 2. .......................................................................................................................... 13 2.1 .......................................................................................... 13 2.2 ............................................................................................................ 16 2.3 ................................................................................................................. 17 3. .................................................................................................................... 18 3.1 ............................................................................................................ 18 4. .................................................................................................................. 21 4.1 ............................................................................................................ 21 4.2 ........................................................................................... 24 4.3 ..................................................................................... 25 4.4 ................................................................................................................. 26 II .......................................................................................................................... 28 5. ......................................................................................................... 28 5.1 ................................................................................... 28 5.2 .......................................................................................................... 30 5.3 ..................................................................................................... 34 6. .................................................................................................................. 36 6.1. ....................................................................................................... 36 6.2. ....................................................................................................... 38 6.3. ....................................................................................... 40 6.4. ................................................................................................. 44 7. ....................................................................................................................... 46 7.1. ...................................................................................... 46 7.2. ................................................................................... 48 7.3. ......................................................................................... 49 8. ....................................................................................................................... 51 III .................................................................................................................. 55 λ. ................................................................................................................... 56 λ.1. , ............................................................................. 57 λ.2. .......................................................................................... 59 λ.3. .................................................................................... 60 λ.4. ........................................................................................ 61 λ.5. .................................................................................. 62 10. .................................................................................................................... 62 10.1. .................................................................... 63 10.2. ....................................................................... 64 1.

2

:

I

10.3. ...................................................................................... 66 10.4. .............................................................................................................. 67 11. .......................................................................................................... 67 11.1. ................................................................................. 68 11.2. .......................................................................... 70 11.3. ....................................................................................... 73 11.4. .................................................................................. 75 11.5. ...................................................................................... 77 IV ................................................................................................................... 80 12. ......................................................................................................... 80 12.1. .................................................................................... 81 12.2. ........................................................................ 83 13. ............................................................................................................. 86 13.1. ............................................................................................... 87 13.2. ..................................................................................... 89 13.3. ........................................................................................................... 92 13.4. .................................................................................................... 93 14. ................................................................................................................ 93 14.1. ........................................................................................... 94 14.2. ...................................................................................................... 97 14.3. ................................................................................................ 98 15. ............................................................................................ 102 15.1. ....................................................................................................... 102 15.2. ............................................................................................................ 105 V ....................................................................................................................... 107 16. Ј ............................................................................................................ 108 16.1. ..................................................................................... 109 16.2. ............................................................................................... 113 16.3. ................................................................................. 118 17. ....................................................................................................... 121 17.1 ................................................................................................... 121 17.2. .................................................................................. 123 17.3. ............................................................................. 126 VI ..................................................................................................................... 130 18. ................................................................................................. 130 18.1. ........................................................................................ 130 18.2. ................................................................................. 133 18.3. Ј ............................................................................................ 137 1λ. ............................................................................................................... 139 1λ.1. ....................................................................................... 139 1λ.2. ........................................................................................ 145 1λ.3. Ј .......................................................................... 148 VII ................................................................................................................ 153 20. .......................................................................... 154 20.1. Ј ..................................................................................... 154 20.2. ..................................................................... 156

3

: 20.3. 21. 21.1. 21.2. 21.3. VIII 22. 22.1. 22.2. 22.3. 23. 23.1. 23.2. 24. 24.1. 24.2.

I

.................................................................................................... 159 .................................................................................... 162 ................................................................................. 162 ....................................................................................... 163 ........................................................................................ 164 ..................................................................................................... 170 .............................................................................................. 170 ................................................ 170 ................................................................... 173 ...................................................................................................... 175 .......................................................................................... 178 .......................................................................................... 179 ....................................................................................... 181 ........................................................................................... 184 ............................................................................... 184 ................................................................................................. 188

4

:

I

I 1. А .

,

,

, , .

,

.

, ,

ђ

, .

.

,

,

, ,

, .

,

ђ

,

,

,

.

.

,

. „ .

, .

, . ђ

,

,

. ,

,

,

.

,

. )ν ).

ђ

.



,

1. 2.

.

“ .

,

,



μ

( . ( .

5

: ( ) =  (



(„ - “).

I ( ) = 

. „ “), 1 0.

.

1.1 1.1.1 „2+3ο5“

. „2+3ο6“

1.1.2 „

.

180њ“

.

1.1.3 „



1.1.4 „

.

. 1.1.5 „Ј

“ 4 6

, “

.

.

, ,

,

,

.

„ - “)



A, B „

.

A  B („ .

“, „ . .

“) ,

“) ,„

“, „ ,„

,



“) , “



“.

, 

,

.



“.

(„ .

A  B („

A, B



,

, ,

,

,

 (



,

.

!

,

,

,

,

1.2 („ “).

.

: 









 6

:  

 

 

 



,

,„ „



 

AB(

,



“.

 

.„ B

B„) ,„

B“)

.

.



AB( .„ , .

A, B

  , ,

A  B („ . .

A, B

A, B

  μ

.

.

I

B“)

( ),

(). ,

μ   



 

  

 ,

.

  

 

  

. , :

) (a  b)  a  b; b T 

,

.

1.2.1.

a T T

 

,

.

:

  

) (a  b)  a  b. ab T T

(a  b)  

) a  

b  T

a  b  

 T T

7

:  

T 

 T

T 

I  T

T T

 T

T T

1.3 μ

 17 11   5 3  ( ) (2,3456 – 1,2345 = 10/9); (b)        ;  19 13   7 5   17 13   13 9  1 1 1 1 1 1  (c)          ; (d)        .  19 15   15 11   2 3 6   3 4 12 

1.3.1

μ

 m  1 m  2   m m  1  m m 2 (a) m  n  2        ; (b)  .  n 1 n  2   n n 1   n n2 

1.3.2

1.3.3

,

(a)

; (b) .

; (c)

;

, μ (a) A & B = (A  B)  (A  B); (b) A  B = B  A; (c) A  B = (A  B)  (A  B). 1.3.4 (i) A  (B  A); (ii) ((A  B)  A)  A; (iii) (A  B)  ((B  C)  (A  C)).

:

( . B  A).

(i),

.

,

, (

,

,

,

B

, .

1.3.5 (iv) A  B  A; (v) A  B  B; (vi) (A  B)  ((A  C)  (A  B  C)).

C

AB

( .

= T)

( = ). .

.

:

μ

(vi) B

,

). (B = T)

AC

ABC

(A  C)  (A  B  C)

 8

:

   

   





 



I

  





  ,

,

.

(vi)

1.3.6 (vii) A  A  B; (viii) B  A  B; (ix) (A  C)  ((B  C)  (A  B  C)).

:

1.3.7 (x) (A  B)  (A  B); (xi) (A  B)  (B  A); (xii) (A  B)  ((B  A)  (A  B)). 1.3.8 (xiii) A  (A  B); (xiv) (A  B)  ((A  B)  A); (xv) (A  B)  ((A  B)  B). 1.3.9

.

:

:

,

. ,

a, b a b  ba a  (b  c)  (a  b)  c a  (b  c)  (a  b)  (a  c)

a, b, c

μ



“; ;

a, b, c .

9

:

1854.

џ

„ “ ,

,

,

/

I

,

,

.

.

1.4 ,

.

,

,

.

.

, : 1. 2.

AB

ν

3. „

“.

ν (Modus ponens)

,

B

(

.

)

,

|- A, ђ

.

.

, . .

: 1. (Modus ponens). B; 2. (Demonstratio per enumerationem – C BC , 3. (Deductio ad absurdum – ђ B  B , .

B

, 

). (A  B)  C; ). A. , .

(1) ,

B = ,

 B

10

:

I .

,

B = .

,

.

: 1. A |- B  A ( B 2. A  B |- (B  C)  (A  C) ( AB 3. A  B, B  C |- B  (A  C) ( AB BC 4. |- (A  B)  (B  A) ( 5. |- (A  (A  B))  (A  B) ( 6. |- ((A  B)  A)  ((A  B)  B); 7. |- (((B  C)  C)  (A  C))  (B  (A  C)); 8. |- (A  (B  C))  (B  (A  C)); 9. |- (A  B)  (A)  (B) ( ); 10. |- (A  B)  (A)  (B). . (1)

.

(ii),

(i), ђ

. (2)

,





(iii),

,

.

, „

); ... );

,

ђ

()

... ); );

. (3) , ђ

().

,

μ (xN)(yN)(x < y), x = 1.

,

1.4.1. ς ) (xR)(yR)(x < y); ) (xR)(yR)(x < y); ) (aZ)(bZ)(a + b = 0); ) (aZ)(bZ)(a + b = 0); R , Z .

1.5 Ј

. ,

,

,

, .

. AB

.

,

( )μ

.

11

:

I

А

B A  B,

μ А

.

B

AB

μ B A

AB

μ

B

1.5.1

: A  (B  C), A  (B  C).

1.5.2 , : (1) A  (B  C) = (A  B)  (  C); (2) A  (B  C) = (A  B)  (A  C).

12

:

I

(Claude Elwood Shannon, 1916. – 2001), . 21-

-

.

ђ

1939. 1λ48.

,

.

2. , .

.

,

. .

1λ18), 1874.

10

џ

ђ .

.

(1845 –

. ђ

, . .

,

. ,

,

.

2.1 S .

, -

,

.

13

: ,

B

-

I ,

-

Њ

.

: S={

,

,

ј

},

={

,

,

= 3.

S B,

„ μ

 B. “

,

ђ

,

}, B = {

,

}.

|S| = 3, |E| = 2, |B|

ђ

.

,



„ “ S E, „

 S,  S,  E,



B, “

E, B.

 B;  E;  B. .

,

P =SB

x  P  x  S  x  B.

S B

P = {x| x  S  x  B}, .P

S , . P  E = .

P={

B. }.

.

P

E

,

U=SB S B

x  U  x  S  x  B.

U = {x| x  S  x  B}, .U U={

S ,

,

B.

ј

, (

,

}. )

μ

14

:

I

. S U S U. 2.1.1

U x  S  x  U. А

S .

B

2.1.2 А B 1. A  A  B B  A  B; 2. A  B  A A  B  B. 

A  B B  A. 

A= B

.

:

.

, R=S\B x  R  x  S  x  B.

S B

R = {x| x  S  x  B}, .R

S R={ S S.

S' = {x| x  S}, .

,

B.

ј

}.

U U

U \ S.

U S

S.

. {A| A  S}.

(S)

(S) = {, { ј }, S}.

}, {

}, {

ј

}, {

,

S,

}, {

,

ј

}, {

,

15

: (S)

23

I

. ђ

A, B

,

.

A  B = {(x, y)| x  A  y  B}.

2.2

A  (B  C) = (A  B)  (A  C) .

2.2.1 A, B, C

30 ђ . .

2.2.2 13 ђ

5, ς

1λ ђ 7.

.

2

,

P, L, I. ,

,

A, B, C

, B   

3.

(A  B)’ ο A’  B’

2.2.3

A   

,

AB   

4, 3, 5 .

(A  B)’ ο A’  B’.

μ

. A’   

,

8, 30.

,

, (A  B)’   

,

14,

6

2

.

5,

μ

B’   

. .

A’  B’   

16

: 





I









, μ A  (B  C) = (A  B)  (A  C),

2.2.4

.

. ђ ( x, y). ( x, y)  A  (B  C)  x  A  y  (B  C)  x  A  ( y  B  y  C).

,

(x  A  y  B)  (x  A  y  C)  (( x, y)  A  B)  (( x, y)  A  C)  ( x, y)  (A  B)  (A  C). , , .

2.3 2.3.1 A, B, C μ A  C = {a, b, c, d, e, f, g}, B  C = {d, e, f, g}, A  C = {e}, B  C = {e, f}, A \ B = {a, b, c}, B \ C = {d}.

2.3.2 M, N, P μ M  N = {1, 2, 3, 4, 5, 6}, N  P = {2, 4, 5, 6, 7, 8}, P  M = {1, 3, 5, 6, 7, 8}, M  N = {5, 6}, N \ P = {7, 8}.

2.3.3 B μ (a) A  B  A  B = A; (b) A  B  A  B = B; (c) A  (A  B) = A; (d) A  (A  B) = A. 2.3.4 A B ( ) AB= |A  B| = |A| + |B|; (b) |A  B| = |A| + |B| - |A  B|; (c) |A \ B| = |A| - |A  B|. 2.3.5

(S)?

S

S.

,

(a) 10; (b) 12;

( )

2.3.6

ν (b)

.

2.3.7 A, B, C (a) A \ (B  C) = (A \ B)  (A \ C); (b) A \ (B  C) = (A \ B)  (A \ C). 2.3.8 , (a) A  (B \ C) = (A  B) \ (A  C); (b) A \ (B  C) = (A \ B)  C; (c) ( \ B)’ ο (B \ A)’ν (d) A  (B  C) = (A  B)  (A  C); (e) A  (B \ C) = (A  B) \ (A  C). 2.3.9

B

17

:

(a) (b) (c)

A = {a, b, c}

I

A  B = (A \ B)  (B \ A). B = {b, c, d, e}, A  B.

A  B = (A  B) \ (A  B).

.

2.3 (1) A = {a, b, c, d, e}, B = {d, e, f}, C = {e, f, g}; (2) M = {1, 3, 5, 6}, N = {2, 4, 5, 6}, P = {1, 3, 5, 6, 7, 8}. (5a) 210 = 1024.

3.

ј ђ

.

. ,

,

ђ



A  B.

B

A  B:

,

.



 = {(b,1), (b,2), (c,2)},

. (b,1), (b,2), (c,2)  , - , , ).

b1, b2, c3. B, ( . (b,1)  (1,b).

,

.

3.1 3.1.1.

ђ

.

.

:  = {(a,a), (a,e), (b,b), (b,d), (b,e), (c,d), (d,c), (e,c)}. 3.1.2

ς

= {a, b, c}

B = {1, 2}.

: A  B = {(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)}. |A  B| = |A||B| = 32 = 6 , ђ . 26 = 64 , , 63 ( ). BA 63 . , 126 .

18

: 3.1.3 ђ

I 

Z ο д…, -1, 0, 1, 2, 3, …ж. , m < n, .

(m,n)

 = {(m,n)  Z  Z | m < n}.



Z. , “.

3.1.4 3.1.5 

,

R.

,

R.

1

.

 .



xy

 = {(x,y) | x, y  R, x2 + y2 = 1, y > 0}. , (0,0)

. (

)

   

μ

μ (x) xx. μ (x,y) xy  yx. μ (x,y) xy  yx  x = y. μ (x,y,z) xy  yz  xz. ,

, ,

ђ

ђ

,

.

,

,



mn

. ,

,

“.

.

,

.



ђ .

, ,

.

, , . ,„



,



.

( )

„ “

.

ђ

,

, , . . .Ј

, ,

19

: ,

(

I )

,

[x] = {y | xy},  . x  A, [x]  ; в  [x], [x] = [y], x, y  A; x, y  A, [x] = [y], [x]  [y] = ;

1. 2. 3. 4.

.

. ,

μ

. . .

3.1.6

,

(x,y)  

.

.

,

, ,

N ο д1, 2, 3, …ж. 3,



,

2.

xy  x  y (mod 3),

,

.

0, 1, .

μ

,

Д0Ж ο д3, 6, λ, …ж – Д1Ж ο д1, 4, 7, …ж – Д2Ж ο д2, 5, 8, …ж –

.

.

. ,

[3]

[4]

,

.

.

{[0], [1], [2]}. .

.

.

[0],

,

, xy  x – y  0 (mod 3),

.

.

3.1.7 , , , .



,

, . д2, 4, 6, …ж,

,

.

.

.

д1, 3, 5, …ж.

xy [2]

[1]

20

:

4.

I

ј .

,

,

.

f: A  B, f(a) = 1, f(b) = 2, f(c) = 2. f = {(a,1), (b,2), (c,3)ж ,

. μ

(xA)(!yB) y = f(x), .

. X Y (x,y1), (x,y2)  f

f D(f) = X,

ђ

X Y,

X

,

.

. (Leibniz, 1646-1716) „

. f(x),

(Dirichlet, 1805-185λ),

Y, .

,

,

„ “

.

,



(Clairant) 1734. (Euler, 1707-1783)

4.1

, .

y1 = y2.

,

.

. ,

μ

(yY)(xX) y = f(x), .

.

21

: ,

.

,

I

1-1

.

,

μ

B,

f(x1) = f(x2)  x1 = x2 . 4.1.1

.

,

3

f ,

b

.

c

B .

ђ

1 2 3 4  , . f(1) = 3, f(2) = 4, f(3) = 4, f(4) = 1 f   3 4 4 1 {1, 2, 3, 4}2 = {1, 2, 3, 4}{1, 2, 3, 4}. , .

4.1.2

ZZ f(n) = 2n - 3, 2n – 3

4.1.3 , ,

,

n. ђ

2B

,

,

f = {(n, 2n-3) | n  Z}. n n.

, 2n – 3 = m

,

n = (m – 3)/2,

.

mο2 .

, f(n1) = f(n2)  2n1 – 3 = 2n2 – 3  n1 = n2 ,

.

. 4.1.4

f = x2 ,

.

.

f: R  [0,

+].

,

.

.

22

:

I

f = x2 , . f: x  x2 , . ,

, -

,

.

ο 2,

(2, 4) .

2 ,

4.1.5 .

, .

=4

,

.

B,

ђ

, -

 1 2 3 4  . g 1    4 3 1 2 ,

,

4.

(+2)2 = (-2)2 = 4, .

. 1 2 3 4  g   3 4 2 1

, . ђ

μ

. .

4.1.6. 4.1.7

.

f(x+1) = x - 2 !

ђ

,

, . :

ο1 ο2 ο3 ο4 ο5 ... . x+1 = t,

f(2) = -1, f(3) = 0, f(4) = 1, f(5) = 2, f(6) = 3, x = t – 1,

f(t) = t – 3, 23

:

I

f(x) = x – 3. , ,

t.

.

,

, . f(x) = x – 3,

(4.1.7)

.

f(x) = x – 3,

r

.

, x – 3 = r. r

x = r + 3, f-1(x) = x + 3. f-1

,

.

+ 3,

,

.

.

4.2

f- „ ,

f-1

“. .

,

(„ “) (  B) (  ).

“ (  B)



.

, ! 3.

,

(

(„1-1“

(2  B)

4.1.6), , . 4.2.1

f(S)

B  A,

,

. f : X  Y. S f.

X Y {f(x) | x  S} A = {a, b, c}

4.2.2

S  X,

f(A) = {1, 2}. f(A  B) = f(A)  f(B),

f A

: y  f(AB).

), (b, c  ). .

B f y = f(x)

D. .

x  AB.

B

y  f(A)f(B).

D.

24

:

I

f(AB)  f(A)  f(B). , y  f(A)  f(B). y = f(a) a  A, y = f(b) b  B. f(b), a = b. , y  f(AB). f(AB) = f(A)  f(B). , f(x) = f(y) x  y.  f(B) = {f(x)}  .

.

y  f(A)

y  f(B). , f(a) = f(A)  f(B)  f(AB).

f(AB) = f(A)  f(B) D. . , x, y  D ο {x} B = {y}. AB = , f(AB) = . ђ , f(A) f(AB)  f(A)  f(B), . ,

4.3

f:AB

g : B  C,

.

h : A  C, h(x) = (g o f)(x) = g(f(x)). ,

g.

μ h(a) = (g o f)(a) = g(f(a)) = g(1) = , h(b) = (g o f)(b) = g(f(b)) = g(2) = , h(c) = (g o f)(c) = g(f(c)) = g(2) = .

4.3.1

1 2 3 4  1 2 3 4  , g    . f   3 1 4 2 2 3 4 1 ) f o g ν ) g o f ν ) f2 = f o f ν ) g2.

)

) μ fog gof (f o g)(1) = f(g(1)) = f(3) = 4 (g o f)(1) = g(f(1)) = g(2) = 1 (f o g)(2) = f(g(2)) = f(1) = 2 (g o f)(2) = g(f(2)) = g(3) = 4 (f o g)(3) = f(g(3)) = f(4) = 1 (g o f)(3) = g(f(3)) = g(4) = 2 (f o g)(4) = f(g(4)) = f(2) = 3 (g o f)(4) = g(f(4)) = g(1) = 3  1 2 3 4 1 2 3 4  1 2 3 4  ν ) g  f    ; ) f 2    . ) f  g    4 2 1 3 1 4 2 3  3 4 1 2 . , . 4.3.2

(x  R). ) f o (g o h) = (f o g) o h. )

f(x) = 2x + 1, g(x) = 2x – 3, h(x) = 3x – 1,

,

f o g o h. 25

:

I

: ) [f o (g o h)](x) = f((g o h)(x)) = f(g(h(x))) [(f o g) o h](x) = (f o g)(h(x)) = f(g(h(x))). ) f(g(h(x))) = f(g(3x – 1)) = f(2(3x – 1) – 3) = 2(2(3x – 1) – 3) + 1 = 12x – 9.

4.4

f:RR

,

x2 ) f(x) = 2x2 – x + 1 ; b) f(x) = x3 + 2x ; c) f(x) = |x| – 3x + 2 ; d) f ( x)  . x3

4.4.1

4.4.2 a) b)

A = {1, 2, 3}. .

:

.

,f:RR: x 2 x 1 x 1 3x  2 2x  3 2x  1 ; b) f ( ; c) f ( ; a) f ( ) ) ) x 2 x 2 x 1 3x  2 2x  3 3x  2 1 1 1 1 d) 2 f ( x)  f ( )  3x ; e) 3 f ( x)  2 f ( )  ; f) f ( x)  3 f ( )  x2 . x x x x 1  2t 2 1 1  2t 1  5t x 1 1 t f (t )  , , : )  x t 1  2t 1 t 5  4t x 2 3 2 1 t 1 1  5x . d) x = t, 2 f (t )  f ( )  3t ; f ( x)  t 5  4x 1 3 x = 1/t, 2 f ( )  f (t )  . t t 3 1 t 2u  v  3t 2v  u  , u  f (t ) , v  f ( ) t t 1 1 . u  2t  , f ( x)  2 x  . t x 4.4.3

4.4.4 a) b) c)

1 2 3 4  1 2 3 4  1 2 3 4  , g    h    . f   3 3 4 1 2 4 3 1 4 3 2 1 f2,g3 h3; ς e je u v, fo u =h vo g =h . (f o g)-1 = g -1 o f -1.

4.4.5 f : X  Y A, B  X. a) f(AB) = f(A)  f(B); b) f(AB)  f(A)  f(B); c) f(A\B)  f(A) \ f(B),

: .

26

: f : X  Y,

4.4.6

SY

μ a) f (AB) = f -1(A)  f -1(B); b) f -1(AB) = f -1(A)  f -1(B); c) f -1(A\B) = f -1(A) \ f -1(B).

I

f -1(S) = {x  X | f(x)  S}.

A, B  Y.

-1

A  B,

4.4.7

A, B |A| = |B|.

a) b) c) d) : d)

,

f : A  B.

ђ :

ν , . Z  N; , . Q  N; -1 1, . R  (-1, 1).

f ( x) 

x 1 x

R

(-1, 1).

27

:

I

II .

,

(R), , .

μ (I),

(Q).

(Z), (N). .

5. Ц ј

ј

N ο д1, 2, 3, 4, … ж Z = {0, 1, -1, 2, -2, 3, -3, … ж, f : N  Z, (

)

0 –

N  Z,

(Z ) #

ђ

,

. |N| = |Z| = 0.

kard N = kard Z,

,

5.1 x y

.

„ „



5.1.1: y  S.

, 5.1.2:

, .



.

,

  S  Z#, S  Z#,

 S. S 1. n  no , n  Z#, nS n + 1 S; 2. no  m < n , n  Z#, mS n  S. # Tada {n  Z | n  no }  S.

xS

μ

.

no

28

: 5.1.3

μ 1  2  3  ...  n 

n

1,

1  (1  1) , . 2

ђ 1.

1 2  3  4 

10, !

ђ

4  (4  1) , 2

!

I

n(n  1) . 2 .

,

n = 1.

1, ,

,

.

,

n = 4.

,

(n  no) S(n)  S(n+1),

. .

μ

n(n  1) 2 (n  1)(n  2) . S(n+1) : 1  2  3  ...  n  (n  1)  2 S(n+1) S(n) n(n  1) (n+1). ђ  (n  1) , 2

S(n) : 1  2  3  ...  n 

(n  1)(n  2) , 2

. ,

,

.

.

(n  3) 2n + 1  2n .

5.1.4

n = 3, n = 4, n = 5,

,

23 + 1  2 , 24 + 1  24 , 25 + 1  25 , 3

, , ,

7  8. λ  16. 11  32.

μ

(n  no = 3) S(n)  S(n+1), μ n+1 S(n) : 2n + 1  2 , S(n + 1) : 2(n+1)+ 1  2 . S(n+1) S(n). 2(n+1)+ 1 = 2n + 2 + 1 = (2n + 1) +2  2n + 2 , S(n)  2n +2n , n  3 2  2n = 2n+1 , S(n+1) . , 2n + 1  2n n  3. n

29

:

) ) ) )

I

5.1.5 μ n  {1, 2, 3, ...} 2 n 1 n 3  (1) 2  0 (mod 5) , . n(n  1)(2n  1) ; 12  2 2  32  ...  n 2  6 6ν 7n 1 n n2 .

5.2

(

)

2

4

5.2.1. 8.

2n. 3 6+λ+λ+λ+3 3n.

,

λ.

75

,

λ.

5n . 7

14

25.

7.

,

7.

,

2,

4.

5 25,



2

6λλλ3

,

3.

5n

203

λ·1 ο 26, 26 . 57575736

13. ,

, 57575746 5.2.2.

13.

.

4

,

nN λ

λ

3n

11 11. , 1 358 024 67λ (3+8+2+6+λ) – (1+5+0+4+7) = 28 – 17 ο 11 13

8

n

5.

25.

.

25

,

123...λ75 n

7

20 – 2·3 ο 14,

11 11. 351 .

13 ђ

,

4

6  2  4  14 4 6  2  3  12 .

4,

n

35 –

4.

.

30

: ) 23

ν ) 47 10, 11, 12, ... : )

.

23

,

23 : 2 = 12 12 : 2 = 6 6:2=3 3:2=1 1:2=0

3ν ) 56, n = 7; ) 98, n ο 12. A, B, C, … . 2

q

,

x – qy

(5.1.1) q  Z.

r

,

S. r py + r , ђ .

7 ο 23 + 1, .

x = qy + r . ,

0r, r  |y| = y .

, r – y  S, r  |y| = -y , . x = p|y| + r, 0  r < |y| , q=-p .

0.

y  0. 0  r < |y| . 7

x = qy + r,

, .

y > 0. je y  1. S = {x – uy | u  Z, x – uy  0}.

S

r S .

r=

r < |y|. x – (q+1)y = (x – qy) – y = r – y  r , p . x= 0  r < |y| ,

q r. x = qy + r = q’y + r’, 0  r , r’ ξ еy|. r – r’ ο (q – |r – r’е ο еq – q’ееy| . -|y| < r – r’ ξ еy|, |r’ – r| < |y|. 0  |q – q’е ξ 1. q – q’ , , |r’ – r| ο 0. , q – q’ ο 0 r’ – r ο 0, . q = q’ r’ = r . q r .

q’ q’)y .

r’

5.2.4 q , qy + r,

x, y  Z x = qy + r,

7, 3  Z

, 1

. ђ

2

).

, ,3

,

10 . 23  110012 . 110012  1  2 4  1  23  0  2 2  0  21  1  2 0  16  8  0  0  1  23

. 1 0 0 1 1

5.2.3. (

2

I

0  r < |y|.

r

|y| = y ,

x , x = qy + r,

0  r ,

ABD,

BC > AC, . a > b.

ABC,



D, ADC



A D BAC =

 = ABD, .  >  > .

10.1.7.

.

 > ,

,

a > b. b > a. ( .

.

10.2. 1. 2. 3.

10.2.1. AB CD  2 AB CD  2 AB CD  2

: 1. AD > CD DB > CD AD CD ( ACD =  (

.

) 2:1

CD

ABC:

C > 90. C = 90. C < 90.

ABC ACD > , DCB > .

 >  + , 180, DB CD) DCB > ).  = 90.

.

 > 180 - ,

 > 90. 2.

 =  + ,

, .

64

:

λ0 (

,

.

I

)

.

λ0,

λ0. .

.

,

10.2.2. . : B

C

D.

1 + 2 = 180. 10.2.3.

) )

,  + 2 = 180.

ABCD 360, 

,



ABC C

.

)

ђ ,

ς

3645'30''

ђ

6225'30'' .

. B.

: )

,

,

ђ

60. , )

,

. . . 10.2.4. : A B  +  = 90. ABS,

S 135,

S .

135. 

45. 135.

.

ABC , . , ,

/2 /2, , λ0.

B(

)

45, C

65

: 10.2.5. Ј

5

I 12

: ο 13

.

-

.

,Ј ABC. ABC =  = 90 x2  5 2  12 2 , .

.

Ј 45 +  = 112,38.

10.3. ,



.

.

)

,

.

.

10.3.1. . 2.

1.

1.

=1+2 AD

(

,

. ,

OBC =  , AD  = 2. 3.

3.

AOB  = 2 DB,

BOC, . 2.  1 = 2 1  2= 2 2 ,  =  1 –  2,

BD. 10.3.2. (

)

.

66

:

(

) )

I

. ), ђ

)

(

)

.

.

: )

2. ACD )

180.

.

BCD. tAB ACB

,

.

,

CAD

10.4. 1.

.

.

2.

.

3. λ. 4.

.

ς 

5. 6.

ABC



ђ 

CD



. 105.

AB CD = BC.

C.

7.

AA’

8. H AHB + C = 180.

11.

,

BB’

ABC

(

ha

(

,

,

hb)

ABC,

)

, ,

ђ

AB

,

.

. ,

,

,

67

: , ) ) ) )

.

ђ

,

I

,

(

)μ ν

ν ν ,

. ( AB1C

 1

11.0.1. М Op OM

)

.

AB2C

(

),

,

b.

2

1

Opq Q

M



2.

M. Oq

P MP = MQ,

Opq.

:

, OMP OMQ (P = Q = 90), , OM. MP = MQ, OMP  OMQ, POM = QOM.

11.1. 11.1.1. :

Q

ђ

.

,

ADC A1D1C1 a = a 1 h = h1,

ABC

,

.

A1B1C1 μ BC  B1C1 , AC  A1C1 CD  C1 D1 , . a  a 1, b  b1 h  h1. , . D = 90. a  b. ,

D = D1,

68

: ADC  A1D1C1. , ABC  A1B1C1.

(

10.1.7.), . A = A1.

A = A1,

,

(

.

.

AE

 = .

ABC

ab

.

(

) ,

. ,

ABC, ==

CD. AD = DB.

E ADE (

h,

)

: C/2,

b

a = a 1 , b = b1

.

2:1 11.1.2.

I

, C-D-E CD = DE. ), BDC  ADE. AEC , . AC = AE. AC = BC, . .

CD BDC = BC = ,

11.1.3. . :

AC = BC , . AEC BDC, AE = BD, . , = BT ο 2/3

AD = BE,

,

AC = BC, .

EC = CD = C .

, AEC  BDC,

, . AE = BD, DT = ET ο 1/3 ATD = BTE. ATD BTE. ABC

,

AT

69

: 11.1.4. ( ABC A1B1C1 AB A1B1. BCD = B1C1D1, :

(

),

.

I , 17. D D1 AD = A1D1.

1λ83.

)

BCD B1C1D1 AB – DB = A1B1 – D1B1,

DB = D1B1

AD =

A1D1.

11.1.5. 1. ABC A’B’C’ ) b = b’, ha = ha ’,  = ’; ) hc = hc’,  = ’,  = ’; ) a = a’, c = c’, tc = tc’; ) hc = hc’, tc = tc’, c = c’. 2. )

ν )

.

3.

4.

μ

μ

. M

AB

5. ) )

. ν

.

6. (

(

)

.

11.2. ,

,

.

.

AM = BM.

)

μ

,

,

.

11.2.1.

,

. ,

70

:

I

.

,

ABCD

AC. ACB = CAD,

CAB = ACD, ABC  CDA.

.

.

11.2.2. , DA . E CDE (

. AB CD ABCD,

BC

ABE 

)

.

,

(

, .

).

11.2.3.

.

11.2.4.

.

:

ABC

M N

AC

.

MN . P-M-N PM = MN. ANCP (2) CN PA . ,

11.2.5. ABCD. :

M N DM BN ,

AME = FC.

CNF

EG || MB EGF  AME ( ђ AE = EF. AC .

11.2.6.

.

DM BN ( ) MBGE ), DM BN .

P (3)

(2)

, MN AB AB = 2MN.

.

ABNP

MN

BC,

AB CD

.

AC E

F.

AE

2μ1

71

:

:

ABC

,

(

.

ABDC. CM BN (N  T V S

,

TV A.

) AS CM

AS

D. CD)

I

AD AT = TV = VD. AT = 2TS,

T

2μ1

AS

11.2.7.

.

.

. ,

. .

11.2.8. ( ABCD AC, E .

, 15. AB > BC. AB1 CD. : DCA AB1

,

AEC ђ

11.2.9. BAM

DC BC

:

B1

,

.

CB1E CAB

CAB CAB1 AB

AC. DCA CAB1, (AE = EC). , CB1 = CB = DA DEA CEB1, ADE CB1E .

ABCD N.

DC

1λ84.) B ADE

M. AM = DM + BN.

P

P-D-M PD = BN, . ADP  ABN, APD PAM, APD = ANB = 90 - , PAM = PAD + DAM =  + (90 , AMP 2) = 90 - . . AM = MP = DM + DP = MD + BN.

72

:

.

,

.

,

I



,



, . .

. 11.2.10.1.

) )

ν

2.

ђ

3.

ν

ν

.

.

. AC ABC  ACD.

4. C. 5.

ABCD

A ,

.

6. M N + CD = 2MN.

AD

7.

8. CD BD

μ

) )

BC

ABCD,

AB ,

. (

ABCD BC  AD,

) M N AC

11.3.

10.3.

(

)

(

,

. ( (

AB  AC

.

) )

BD.

( 10.3.2.)

10.3.1.). ђ

.

.

73

: 11.3.1. CD = BC + AD. еAB – CD| = |AD – BC|.

I

ABCD

AB +

. ABCD M, N, P

CD

DA.

DQ.

AB, BC, A, B, C D , . AM = AQ, BN = BM, CN = CP DP = AB + CD = BC + AD. 11.3.2.

Q,

(180).

: ABCD. BD, .  +  = 180.

(

( A C)

)

11.3.3.

A. B C.

(λ0).

BAC :

, AS SA SB

SA SB SA = SB = SC. S

,

.

A ,

A, B C, A

BC 11.3.4. 1.

65, 105

ς

2.

115. 1μ2μ3.

A, B C ABC.

3. s – c,

s

.

a bc 2

s – a, s – b .

74

: 4.

.

5.

I

.

.

. А

6. D.

ABC

BC

ς

ABD

[30] 7.

O

AB. C D.

A B COD .

11.4. 180 ( 360 (

10.1.2.), ( 10.1.4.). ђ

,

ђ ,

10.1.3.), .

,

. 11.4.1.

(&10.).

,

.

:

 

ABC

AO sA sB.

ON OP CA AB.

APO /2. /2,

BPO OP = OM.

OP = ON.

OCM,

.

ђ ,

OP = ON = OM. CNO, OM = ON.

OCN

11.4.2.

ANO

BMO

CMO

,

BO OM, BC,

CO

,

OP = ON = OM .

.

75

: :

ABC

S BC

I sa CA.

M N

. ,

MBS MCS . NCS NAS. ,

sb

BS = CS.

CS = AS. AS = BS = CS. ABS sc

S

ђ ,

AB. S

ABC. . 11.4.3. :

, ,

A, B C

. ABC NP, PM MN BC, CA AB. BMC, CNA

APB

, ,

. A, B C NP, PM MN. MNP

(11.1.2.), H,

ABC. ,

.

(&11.1.). ђ ,

,

11.4.4. 1. 2.

2:1 (

11.2.4.)

2μ1

,

. (

11.2.6) , .

.

. . .

.

76

:

. 1. T. ,

I

,

AN BM

ABC

MN .

AB ABT

ђ

.

PQ, AB

MN || PQ MN = PQ. MNT PQT MNT  PQT, AT Q BT, A B. 2. AN BM ABC

PT = TN QT = TM.

T. CP

BM . , BS = 2SM,

,

BS 

2 BM . 3 2 BT  BM . 3

.

,

S

, BT = 2TM BS = BT, S T .

,

CP

P 2μ1

11.4.5. 1.

ђ

. .

2. 3.

.

4. BC

D

[

DE  BC.

AB F

CD BED GF || BD, DE GF.

ABC. DE. . G GF  CD. , CF

BE F ABE

11.5. 10.1.6.

7.).

E AE  CF. GE

CF  DG. AE || DG

CDG, ђ , DG AE  CF.] (

77

:

I ,

. 11.5.1. (

)

,

:

BC . ACD BAC =  DAC = ADC = .  < BAD, BDA < BAD. 10.1.7.) a ’

a = a’, b = b’

c > c’. A= CB’ AB

DB = DB’. AD + DB’ ρ AB’,

c > c’

μ  = ’,  < ’,

 > ’.

 > ’. 1)

.

11.5.4.

ђ

1.

 . 2) 

. .

2.

.

3. [

(

,

: C = C’, . s BCB’ D. DCB  DCB’ ( ), , AB > AB’.

11.5.3. :



O

ABC BO  AO, BOC: /2 < /2

    . CO < BO.

, ABO: /2  /2 , CO.]

78

:

I .

4. 5.

ђ

. .

6. [ ,

7.

μ

.

10. ABC ) ACB < AMB; ) AM + MB < AC + CB.

M.

:

11. ABC s < AM + BM + CM < a + b + c,

M.

:

c

. .

ν

a, b

tc < a + c/2] .

¾

8. 9. ) )

tc < b + c/2

, s

.

79

:

I

IV . , ,

,

(

(&13), ђ ,

(

,

ῖ "–

μ" υ .

ђ

) ,

,

12. К

,

ђ

.

). (&14.).

,

ј 2

,

.

.

. : 1μ 2: 3μ 4μ

ν ν

5μ 6μ   

ν ν

ν

. :

( - - ) ( - - )

ν

 

ν

ν

( - - ) ( - - )

ђ ν . ,

ђ , . 2

,

ђ ,

(42λ-384. . . . .)μ „

,

.

,

,

,

,

μ

.“

80

:

  

,



  

ђ

.

. .

,

.

.

.

,

a, b (

.

)

ha ,

ABC.

A

.

.

,

12.1.1. .

B C BC

ν

.

μ

12.1.

ν

ν

,

.

μ

,

,

I

a, b,

C

ha . . B

,

k(B,a)

a

Bx

BC.

.

BC : Bx; C = Bx  k(B,a). k1(C,b). n BC C; P, Q  n  k2(C, ha ). p q P Q BC. А: p  k1(C,b), q  k1(C,b), AiBC (i = 1, 2, 3, 4 ),

.

.

.

81

: . < ha , b = ha ,

,

I

2,

4

,

b .

b > ha .

12.1.2.



.

. ABC,

a + c.

. AB D.

B-D, AD = c + a.

B A-

BDC s

DC

B. . ADC,

, .

. B = AD  s. .

s(D,C) ABC.

DC ADC, BDC  D = /2. , AD = AB + BD = c + a, AB + BC = a + c.

s

, BD = BC = a, ADC ( B,

.

ADC, DC.

, a + c, /2 ).

.  < 90

s

  90

AD .

. 12.1.3. 1. ha , hb

.

2. hb, tb 3.

4.

.

ђ

.

,

.

. ђ

a, b

tc. .

ta , tb , tc.

82

: 5.

,

.

6.

.

AB = c, hc

AC = b, BC = c

7. )

I

tc

ABC.

ha

ABC. μ

ν )

μ ) b – c, , hb (b > c); ) a + c, b, .

8. ) c – a, b,  (c > a); ) b + c, hb, ; 9.

,

 – .

a, b – c

. 10.

.

.

12.2. ,

12.2.1. ,

3



:

k

. M, N P.

CE = h N,

=s

.

P, CN AN = NB. AB К h AB ј μ

ON. G

M P .

G O, G

C = h  k. ON. :

NO,

3

ј :

, M, CG = t

ABC CF

ACB , ђ

ANB.

N M

.

G = CP  ON . ABC. NO ,

k

M

, 1λ60.

83

: 12.2.2.

(

,

).

.



,

: AB, BC, CD DA  A.  = 180 – . PQ

k

I

P, Q, R S

, B

,

.

p

BD PQ

k K. К

ј μ PQ

l

SR PQ.

.

. A C

RS DR, DS, BP

μ

BQ.

ABC.

BK



K

RS L



k

.

, DL

Q

S R

. S P, .

.

ν

12.2.3. .А

PBK = CBK, . ADC. , BD ABCD

)

ј μ

( :

k1

,

ђ

.

=  K L )

k2

.

K L. D = k  p, B = l  p. DS BP DR BQ.

p

PK = QK (

.

PQ

 

S ,

. 4

O1

O2,

. d.

4

1λ5λ.

84

: ,

t1 , AB = d

t2

CD =

d. O2P k3

I

.

O2Q O2 O2P = O2Q.

К

ј :

O2.

d

.

,

k2. k3

k1

ј :

.

.

(d)

O2

k3.

,

,

(O2)

,

.

,

k1

k3.

,

.

ς

. 12.2.4. .

. AB = a.

ABC B

BC = a/2, .

C

a/2, AC

D

E. ,

DE = a. AD . AD = x, M  AB M x : (a – x). .

a a  a    x  , 2 2  2

2

2

AB + BC = AC

2

a : x  x : (a  x) .

2

2

AM =

x2  a (a  x) ,

12.2.5. 1.

.

85

:

I .

2.

.

3. 4. )

μ

ν )

5. )

ν )

6. )

ν )

7. )

. μ

.

μ

. μ

ν ) .

8.

9.

k

. .

d ( d < k).

k

d. ,

10.

13.

.

.

ј m

(A,B  )(! m  R  m  0) d(A,B) = m.

: ,



A B

ђ

m m.

m

.

A, B

d(A,B) A B.

μ 1. d(A,A) = 0; 2. d(A,B) = d(B,A); 3. d(A,B)  d(A,C) + d(C,B). .

A, B C .

(3) .

μ

(

)

,

.

86

:

I

(f :   ) : d(A,B) = d(f(A),f(B)), . d(f(A),f(B))

A B d(A,B)

B,

f(A) ,

,

f(B)



f

f(A) = A. . 1)

ν

2)

A .

A 

μ

, ,

ν

ν

3) 4) 5) 6) 7)

ν .

ν

.

13.1. A A’

p

p



А

AA’

Ss :    A’

, .

s

13.1.1. :

. AB,

.

AB

A’B’

s, Ss : AB  A’B’. , .

A’B’ AB’, AA’

BSS2  B’SS2 AB = A’B’.

S1 SA = SA’

13.1.2.

5

.

S2. SB = SB’.

,

5

d(A,B) = d(A’,B’).

BB’ s ASS1  A’SS1

S, SAB  SA’B’

.

, 1λ68.

87

: .А

μ

, 

M, N P O

k ABC. BN CP –

I 

AM, S,

.

CAM = BAM  CM = BM  OM  BC. CBN = ABN  CN = AN  ON  AC. ACP = BCP  AP = BP  OP  AB.

BAC = 180 – NOP, . , BOC = 2BAC.

BAC К

ј μ OM, ON OP. MOC = . B ON. μ

NOP. OM. A

C

AM, BN CP C AM

. , B CM = BM, . CAM = BAM .

BC. CAB. ј μ Qq



OC C OM  =

OM

M, N P .

,

13.1.3.

Opq

.

PQ :

1

Pp

.

2

p

.

q, p

1 2

P

Q.

q

PQ .

TP + PQ + QT = T1P + PQ + QT2 = T1T2. , . TP’ + P’Q’ + Q’T = T1P’ + P’Q’ + Q’T2 T1PQT2 T1P’Q’T2. , .

. , .

.

ђ

,

.

μ

88

:

I

13.1.4. 1. )

ν )

μ

ν )

2.

.

AB :

)

s; )

A B

s.

A B

s.

: a) a, hb, b + c; ) c, ha , a + c.

3. 4.

μ

a,

) ) )

d

b p

5.

c; k; k1

k2.

A B APB

6.

ABC D

P p

p. .

BC

AC = BC E.

AB = c. ABE

AC

3c.

ABC.

13.2.

13.2.1. S .

,A B

SS : A  B

μ

AB, A

B 13.2.2.

S. F1

F2

S, 1 2

S,

.

.

)

13.2.3.

Sp

p

p'

p;

) m||p (

M ђ m||p').

QQ'

Q

Q'

p

p'

89

: : ) B'

А'

I Аp

Bp

S,

S, p' ђ А' B', . AS = SA', BS = SB' ASB = A'SB' SAB   SA'B' ,  = '. ђ , , p||p'. c S p p' A'SC'

,

C C', CS = SC',

C p' n  p'

C'

) np N, SAN  SA'N', NS = SN', . Q Q' q QQ' S, M  m. Q rp P M PM = MP'. NN'PP' NP SM || NP, . m || p. c,

p

S. N'. S

p p

Q' ,

13.2.4. )

)

ASC  S.

.

. M

p'

p',

ђ r  p' ђ NSMP

.

M. P'. SM = .

.

)

. 13.2.5. ( :

.

).

AB A'B' S . , AS = SA’ SB = SB’ , ASB = A’SB’ SAB  SA’B’ AB = A’B’  = ’ AB || A’B’, . .

SAB  SA’B’ S.

S.

,

AB A’B’

S. , AB A’B’ AA’ BB’ ,  = ’,  = ’,

90

:

(

)

,

.

13.2.6.

.

13.2.7. : a’, b’  ’ a’b’ ο T’  ’

I

.

,

,

a, b

S. ђ a || a’, b || b’. М   M-S-M’ M’  S. STM  ST’M’ MS = SM’, . ' S. 13.2.8. .

.

:

A, B

A’, B’ ASB  A’SB’ .

AB  A’B’.

S

’.

,

13.2.9. 1. ) ) ) 2. )

(1.

(1. (1.

ν 2.

ν 3.

, .

);

). μ

ν )

,

5)

ν 3.

ν )

3)

4)

ν 2. ν 2.

μ



. ђ

.

,

. .

91

: 6)

I

ABCD. A1, B1, C1 DD1.

CC1

13.3. MOM’ ο 

D1

B, C, D A1B1C1D1





M OM = OM’.

( = aOb)

.

A ђ

S , .

(a, b).

13.3.1.

, : M  M’.

(Oa

AOA’ =  BOB’ = 

M'

ђ

.

,

13.3.2.

OA = OA’, OB = OB’. AB = A’B’. ) A B . ,

.

 = 120.

2. 3.

ђ

30.

5.

.

: )  = 30; )  = 45; )  = 60.

1.

4.

O μ

AOB  A’OB’ (

,

AA1, BB1,

S :   

Ob)

AB  ,

:

.

.

. .

92

: 6.

I

ђ

,

.

13.4.

Sv :   

 ,

M’

 v

M

MM ' Sv  M  M ' .

.

13.4.1.

.  v

:

Sv : AB  A' B' ,

.

A B

ABB’A’, , .

.

13.4.2.

: )

1. 2.

aOb,

ђ

p

ν )

.

d. d.

q || p

k1(C1, r 1) k2(C2, r 2), r 1  r 2 A  k1, B  k2 AB || C1C2.

3.

4.

.

5.

AB, ABCD

p

d.

ђ

AB = d

. Ck Dp

k. .

6.

. [

. . .]

14. .

(

)

А', B' 

' ',

А, B  АB : А'B' .

93

: '

.

I

Ф ~ Ф'.

' ,

,

.

.

14.1. (

ђ

(

.

, . . Intercept theorem),

624. – 546. . . . .)

, „

„ , 14.1.1.

“.

,

.

,

.

. “.

ABC

DE (D  AB, E  AC).

.

μ

DE || BC

94

:

I

AD / BD = k, AE / CE = k. : DE , DG BE

CD.

CD.

1  AD  EF 2 1 P(ADE) =  AE  DG 2

P(ADE) =

.

,

k ,

ABC

BC. AD / BD = AD / CE. E D EF AB AC . , μ EF  AB  DG  AC, BE,

1  BD  EF , 2 1 P(CED) =  CE  DG . 2

P(BDE) =

P(ADE) / P(BDE) = AD / BD P(ADE) / P(CED) = AE / CE.

ђ

P(BDE) = P(CED) BC, . AD / BD = AE / CE

DE B C. .

ADE = ADC AED = ACB. , AD / BD = AE / CE BD / AD = CE / AE, BD / AD + 1 = CE / AE + 1, (BD + AD)/AD = (CE + AE)/AE, . AB / AD = AC / AE, AD / AB = AE / AC. 14.1.2. :

,

. ABC

l

AB AC AD / DB = AL / LC, DL || BC.

D

l

L

. BC

p, DP. (14.1.1.) AD / DB = AP / PC. AP / PC = AL / LC.

AD / DB = AL / LC

. 14.1.3.

.

,

95

:

: AE BE ,  EC ED ABCD

I

ABCD . .

AB. CE CF ,  EA FB DE CF CE DE , . EF   EB FB EA EB ABCD .

E

EF (F  BC) (14.1.1.)

CD.

AB || DC

14.1.4.

.

:

p ,

c

q

a, b A, B C,

. p || q a, b c

(p) AGED ђ , GHFE

ACH je BG || CH, AB DE .  BC EF

1.

14.1.5. M, N P

AB, BC :

) P(AMP) = P(BNM); ) P(MNP) =

CA

4. ) ab; )

F,

A, G H. , AG = DE. , GH = EF. AB AG ,  BC GH

ABC,

1 P (ABC ) . 4

2.

3. ) 5, ) 7

D, E AB DE .  BC EF А.

. ; )

a : b.

a b a a b a b ; ) ; ) ; ) ; ђ) . ab b a b a b a b a

b

2

μ

2

96

: 5.

I μ

DC || AB

6.

ABC

14.2.



h: А OA'  k  OA, k  R\{0}.

A’ = h(A). k

.

.

, k0

. h

μ 1. AB

AB’ (

2. 14.2.1. : OC),

C’A’.

k = 2. k(C,r). .

Ф’(C’,2r),

,

)

, AB = kAB’; .

.

k’ k’

k OC : OC’ = CA : C’T’,

OC’ = 2OC (C’ 

OC'  2  OC

CA ||

k.

97

: (k > 0) (k < 0)

h

,

.

I

14.2.2. ABC

A’B’C’.

:

1 , k   ,  ABC. 2

k = – 0,5

A’, B’

C’

A’–O–A OA = 2OA’, B’–O–B OB = 2OB’ C’–O–C OC = 2OC’. A’B’C’  ABC 1 1 OA'   OA, OB'   OB 2 2

k = – 0,5 14.2.3. 1.

(

3 2 μ ) k ; ) k . 2 3

2.

7 5 : ) k ; ) k . 3 3

30

,

1 OC'   OC . 2

)

ABC

15, 9

3. 45. 4.

.

5.

.

6.

14.3.

, .

ς 14.3.1.

(A, B  ) A’B’ = kAB,



f:   A’ = f(A), B’ = f(B), k > 0.

98

: (

μ

~

')

I A, B 

' f ( A) f ( B)  k  AB .

k (

)

. ,

.

14.3.2.

.

, 1. (

. :

)

.

2. ( ) 3. (

)

4. (

)

,

. . . .

3.

,

(

)

, BC : B’C’ = AC : A’C’ A = A’ ADC A’B’C’ , ABC ~ A’B’C’

BC < AC, ,

.

. ђ B = B’.

14.3.3. :

ABC

tc’ = CD’

99

: A’B’C

tc’,

I

. ,

.

,

. AB || A’B’. К ј μ ABC AD ( C D ( ) tc’ = CD’. AB A’ AC B’ BC. 2. ( ) ABC ~ A’B’C. ,

14.3.4.

A’B’C. .

,

.

:

AB), D’

,

ABC

, ђ

p

AA’ CC’ AD CE. .

,

AD H. 2.( ) A’OT ~ AHT OT : TH = A’T : TA = 1 : 2. , OT : TH = 1 : 2. p

p H .

H’ ђ

p

OT : TH’ = 1 : 2,

p

ђ

14.3.5. 1. 2. (

. .

H

.

,

2. ( ).

,

AD CE H’ ђ TH = TH’, . H ђ

CD

. ABC ABC. μ

)

100

: 3.

I

. :

ABC a

b.

C h CD AD = p DB = q AB = c.

1) ACD  CBD ( 2. ) p:h=h:q . 2) CBD ~ ABC a : q = c : a, ACD ~ ABC b : p = c : b, . 3) , a2 = cq b2 = cp a 2 + b2 = cq + cp = c(q + p) = c2. , a 2 + b2 = c2, ABC C. B’ CB’ = CB = a ACB’ = 90. a 2 + b2 = d2, d = AB’. ђ , 2 2 2 a +b =c d = c. ( ) ABC AB’C, ACB = ACB’ = 90. 14.3.6.

a

:

( AD = a, DB = b

 AB.

14.3.7. ђ : CDP P. A C ,

k ,

P

b.

10.3.2.). A–D–B (a + b = AB) .

ђ CD

.

OA = OB. C ABC a

CD b.

.

ABP

k

BD ADP ~ CBP, AP : DP = CP : BP. APBP = CPDP .

14.3.8. p2 = PAPB = PCPD.

P

k

101

: 14.3.9.

6, 7

1. ) ) 2.

I

λ.

,

ς

.

3. )

ABC C; )

4.

A B ) C.

(

ABC

.

AB, 5.

.

6. ) 15 ; ) 10 ; ) 7. )

13?

μ

7; )

a, b, c

d.

a  b ; ) a bc ; ) 2

2

5.

a  b ; ) ab  cd . 2

13, 14

8. 9.

k

10.

15.

ј

15.

. .

P

P

μ

2

. ,

k,

ђ

.

ј

15.1. AB, .

1. AB:AF = AF:FB. :

,

F

AB = a,

102

:

I

k1(O, a/2) BC = a, BCAB, A-D-O-E, D, E  k1, k2(A, AD), AD = x = AF, F  AB. F AB . . : ABO, ABO = 90 AB BAO = 30. k1(O, ). 2 A-D-O-E, D, E  k1. k2(A, AD). k2  AB = {F}. F AB . : A k1 ADAE = AB2. x2  a 2  ax , . x2  a (a  x) , x2  ax  a 2 , x  (x  a)  a 2 , ( ђ , 12.2.4.). a : x  x : (a  x) , 6

2.

O

ABC.

1,

. :

D, E

2,

3

BC, CA, AB 1,

F

2,

3.

BC, AC AB, . O2AC = 3, CAO = 2, OAB = 1, OBC = 1. 1,

2

3

ADC ~ BEC,

ACB. 2  1, O1C  O2C, 3  OO2  AC 2 AC.

2. ,

1

BC . 1

3,

1

a 7

:

7

1,

3,

2,

A, B, C

2

3,

2.

3.

6

K

3

AB.

b

C

.

,

. a'

a

C

λ0.

, 1λ72. , 1λ71.

103

: b, B = b  a' A  a.

a'

I

a . C

(

ђ b 4. (

ABC

b a' , C 90). C b  a'. ba

a ba b a, b || a' ,

ђ

A B, λ0 . ba

C

a. (

) :

2μ1

) 2μ1 .

AA1

,

.. ,

ђ

.

BB1

А А1. A1B1 . T  BB1 BT : B1T = 2 : 1, CT : C1T = 2 : 1, –1/2

AB CC1

CC1

, T .

5. . :

, AE  BE  CE 

DB = q,

p

q pq . 2 CD  pq

pq . 2

pq ,

,

, ABC CD

AB

AE CDE

CD < CE .

pq pq  , 2

AD = p

.

p = q.

104

: 6.

I .

A, B C C C.

AB

8

A B

ACt = ’, BCt’ ο ’, CBA = , AC = x, BC = y,

:

P ђ

Q. d

t

.

D  AB

A B C. ,

 = ’

 = ’. ACD ~ CQB  d : q = x : y. , BDC ~ CPA  p : d = x : y. d : q = p : d, . d2 = pq,

.

15.2. 1. .) [

.

ς(

μ

c, tc

tb  tc,

AC c 5  t c  c .] 4 4

tc. 2.

C

k

A B . [

8 9

μ ђ A B

D

, 1λ70. , 1λ71.

AD : BD = m : n. , m=n

.

AC

BC

m . n 9 ?

D .]

.

105

: 10

3.

I

M, N P , .

ABC

M, N P. 4.

ABC ABC 11

ABC. 5.

. a 2 + b2 = c2, a b  c 2 .

a, b, c .

c

ђ

,

a, b .

6. .

12

( .

.]

[

10 11 12

Ј

)

, 1λ6λ. , 1λ71. , 1λ73.

.

.

106

:

I

V .

, ,

,

. .





,

.

,

,

.

, (ax = b), bx + c ο 0) ђ (x2 + y2 = z2).

(ax2 +

(Ἥ ω ὁ Ἀλ α ύ , 10 – 70. .) (Δι φα Ἀ α , 210 – 2λ0. .)



. „ -џ

.

)“

(

μ

(al-Khwarizmi, 780 – 840. .) (Omar Khayyam, 1048 – 1131.) ( ) (Abū KāmТХ, 850 – λ30.). x + y + z = 10, x2 + y2 = z2

xz = y2.

(Leonardo Fibonacci, 1170 – 1250.) x3 + 2x2 + cx = d, (Scipione del Ferro, 1465 – 1526.), (Niccolò Fontana Tartaglia, 1500 – 1557.) (Gerolamo Cardano, 1501 – 1576.). (Lodovico Ferrari, 1522 – 1565.) , 1λ. (Niels Henrik Abel, 1802 – 1829.) (Evariste Galois, 1811 – 1832.) .

107

: ,

16.

(René Descartes, 1596 – 1650.)

,

Њ

I .

(Carl Friedrich Gauss, 1777 – 1855.),

. Cauchy, 1789 – 1857.), (Sophus Lie, 1842 – 1899.).

,

(Arthur Cayley, 1821 – 1895.)

.

(Augustin

(William Rowan Hamilton, 1805 – , . (Hermann Grassmann, 1809 – 1877.) (Josiah Willard Gibbs, 1839 – 1903.) . ,

1865.) .

(George Boole, 1815 – 1864.) .

16. Ј Ј

. ,

, 5x + 7 = 22, x

. (

3. .

= 3) . ђ

(

ђ

. , |x + 2| + |x – 3| = 5 (

,

) x  [-2, 3], ,

,

.

) . x + 1 = x + 2. ,

x

2x  6  2, x3

„ο“ .

3.

„“

,

.

.

,

108

:

x– 1 =0

.

x2 – 1 = 0 {1}, .

,

{1, -1}.

(

(

)

.

I

) μ 5x + 7 = 22, / -7 5x + 7 – 7 = 22 – 7, 5x = 15, /:5 5 x 15  , 5 5 x = 3.

,

1510. – 1558.).

14x + 15 = 71,

16.1.1. :

. 8x – 5 = 2x + 7

.

, je 82 – 5 = 22 + 7 ? 16 – 5 = 4 + 7 11 = 11 T

8x – 5 = 2x + 7 , /+5 8x = 2x + 12 , /-2x 6x = 12 , /:6 x = 2.

16.1.2. Ј (F)

(C) 212F.

,

1557.

(Robert Recorde,

16.1.

.

.

F = 1,8C + 32.

: 212 = 1,8C + 32  212 – 32 = 18C  18C = 180  C = 100. 30%

16.1.3. :

21). λ

.

,

. x

,

21

ς + 21.

30 ( x  21) , . 10 x  3x  63 , 100

. x = 30%(x + ο λ.

109

: 16.1.4. ).

I

&6.2. (

)

&6.3. (

16.1.5.

: 2x + 5y = 11, y = 3x + 2.

. 1 . x 17

:

( ) 2x + 5(3x + 2) = 11, 37 1 , y  3  2 , . y  . 17 17

.

16.1.6.

( 2

) 2, 10x + 6y = 8, 21x – 6y = 9. 17 . 31x = 17, x 31

.

5

13 . 31

16.1.7.

(

)

7

17 13  2  3, 31 31

μ

a(x + y) + b(x – y) = a, a(x – y) – b(x + y) = b.

μ (a + b)x + (a – b)y = a

– (a – b)y = b. ( a  b) y 

3.

17 13  3  4 31 31

:Ј a b . 2

( a = -b  0, b)

)

(

y

1 37  5  11 , 17 17

(

μ 5x + 3y = 4, 7x – 2y = 3.

:

)

(a + b)x a b ( a  b) x  2

,

0x = 0, 0y = 0, .

a= b=0 a = b  0,

). xR x

y

1 . 2

x

1 2

y  R. (a 

1 1 , y  . 2 2

110

:

I

,

k, n

,

.

y = kx + n,

,

y = 2x – 3 x -2, -1, 0, 1, 2, ... y = -7, -5, -3, -1, +1, ... . ђ ( , ) (-2, -7), (-1, -5), (0, -3), (1, -1), (2, 1), ..., .

,

. ,

k ρ 0, X . Y .

kξ0

. k

,

.

„ .

16.1.8.

,

“ kο 0

.

n μ

5x + 3y = 4, 7x – 2y = 3. : 7 5 4 3 y   x , y  x . 2 3 3 2

μ

А(17/31, 13/31) .

(1)

, . (2)

њ μ ? 16.1.9. 1. ) 3 – 2(4 – 3(5 – 4(6 – x))) = 20x + 127;  5 x 2 x   2 x 3x  ) 3    5    6 x  43 ; 5   3 4  2 ) 1 2 3 4  7 1 x   x   x   x      x  ; 2 3 4 5    12 5 2. x, y ) a (ax  1)  2(2 x  1) ;

: ) x – 5(x – 4(x – 3(2x – 1))) = 4x – 140;  4 x 3x   5 x 2 x  ) 5    3    4 x  37 ; 4  2 5   3 ђ) 1 12 34 5 3  5      1  x   x  . 3 23 45 6 7   16 a, b, p, ) b y  4  b( y  4) ;

q

μ

2

111

: )

ay ay 2ay ;   2 b  a a  b a  b2

)

3. ) |2x – 1| + |x + 2| = -3x – 1; ) |x + 1| + |x| + |x – 1| = x + 1; 4.

145

.

1λλ

ς 5

. 7

6. 35 3 7. )

)

)

3

. 30

3

џ

ς

5

џ

,

)

1 2 y  3x  2 y  2 x  3 y , 2 3 9 x  23 y  621 ;

)

5x  3 y  3 4 x  7 y  1   4, 6 9 7 x  3 y  5 5x  2 y  1   3; 12 14

ђ)

ς

μ

x

3 5x  3 y  1 3x  5 y , 3 5 15x  11y  195 ;

3x  2 y  2 5 x  6 y  2   2; 10 12 6x  2 y  2 4x  3 y  2   3; 15 21

7x + 4y = 27, 6y + 7z = 9, 4z + 6x = 42. μ

5x  3 y  1  2x  7 y  3 2  1 , 3 x + 5y + 1 = -6y;

9. ) y = 2x – 3  y = -x + 3; ) 3x – 5y = -1  2x + 3y = 12; 10.

џ

.

5x + 3y = 1, 2y + 5z = 14, 3z + 2x = 16; 8. )

2 x  p x  q 3 px  ( p  q) 2 .   q p pq

: ) |3x + 2| – |2x – 1| = 5x + 1; ) |x – 2| – |x| + |x + 2| = x + 4.

.

5.

I

)

4x  2 y  1  5x  3 y  1 3  1, 7 10x – 7y + 2 = 21 – 9x;

: ) y = 0,5x – 1  y = -1,5x + 3; ) 5x + 2y = 3  -7x + 3y = 19. m 112

: )

I

) -3x + (m+ 1)y = 3, (m+ 1)x – 3y = 3; ς ς

) ) 11. )

-2x + (m -1)y = 5, (m + 1)x – 4y = 5;

μ

)

|x + 1| + |y – 2| = 3, 2|x + 1| = 3y – 1;

12. ) y = |2x – 1| + 3; ) y = |3x – 1| + 2x – 5;

:

|x + y| + |x – y| = 5, 3|x – y| = 2x + 1.

) y = |2x + 1| – 3; ) y = -0,5|x + 2| + 1,5(x – 1).

13. )

)

μ

16.2. ,

(

.

μ a11x1  a12 x2  b1 a 21x1  a 22 x2  b2 , )

x1  , 1

x2 2

.



,

.   x1  1 ,   x2   2 ,

a11 a12  a11a 22  a12 a 21 , a 21 a 22

1 

2 

b1 b2 a11

a12  b1a 22  a12b2 , a 22 b1

a 21 b2

 a11b2  b1 a 21 .

113

: 

I 1

. 2

x1.

.

x2. ( (

) ).

16.2.1.

a11x1  a12 x2  b1 a 21x1  a 22 x2  b2 , .

:

a 22 a 12 . x2 (a11a 22  a 21a12 ) x1  b1a 22  b2 a12 , . . ,   x1  1 a 21 a 11 . x1 , (a11a 22  a 21a12 ) x2  b1a 21  b2 a11 , .   x2   2 . . ,

.

16.2.2.

m m

μ

x – my = m, x + ny = n. 

:

x 

,

 mn  (mn)  2mn

n n   x  x,   y  y,

1 m 1

y 

n

 n  m,

1 m 1 n

 n  m.

,

μ

(n  m) x  2mn , (n  m) y  n  m . (n + m ο 0), , . n = -m  0,

, . n = m = 0, x = 0, y – .

. ,

,

114

:

I

(n + m  0)

x

nm 2mn , y nm nm

m n. .

,

a11x1  a12 x2  a13 x3  b1 , a 21x1  a 22 x2  a 23 x3  b2 , a 31x1  a 32 x2  a 33 x3  b3 , x1 , x2 x3 , (   x1  1 ,   x2   2 ,   x3   3 , . , μ a 11 a 12 a 13

.

,

,

, .

b1 1  b2

a 12 a 22

b3

a 32

  a 21 a 22 a 31 a 32 ,

a 11 b1 a 13 a 23 ,  2  a 21 b2 a 31 b3 a 33

μ

)

 , 1 , 2

3

a 23 , a 33 ,

a 11 a 12 a 13 a 23 ,  3  a 21 a 22 a 31 a 32 a 33

,

b1 b2 . b3 .

.

,

a11

a 12

  a 21 a 22 a 31 a 32

a 13 a11

a12

a 23 a 21 a 22 = a 33 a 31 a 32

= a11a 22a 33  a12a 23a 31  a13a 21a 32 – ( a 31a 22a13  a 32a 23a11  a 33a 21a12 ). 16.2.3.

:

2 x  3 y  z  9   5 x  y  2 z  12  x  2 y  3z  1.  ,

:

115

:

2 3

I

1 2 3

  5 1  2 5 1 = -6 + 6 – 10 – (1 + 8 + 45) = -64. 1 2 3 1 2 μ 9 3 1 9 3

 x  12 1

1  2 12 2 3 1

2 9

 y  5 12 1 1

1 = 27 + 6 – 24 – (1 – 36 + 108) = -64, 2

1 2 9

 2 5 12 = -72 + 18 + 5 – (12 – 4 + 135) = -192, 3 1 1

2 3 9 2 3

 z  5 1 12 5 1 = 2 – 36 + 90 – (-9 – 48 – 15) = 128. 1 2 1 1 2   x  x ,   y  y,   z  z , -64x = -64, -64y = -192, -64z = 128, . x = 1, y = 3, z = -2.

, : 21 – 33 + 1(-2) = -λ ( !).

ο1(

), 51 + 13 – 2(-2) ο 12 (

(

),

.

ђ

a 11

a 12

  a 21 a 22 a 31 a 32

a a 23  a11  22 a 32 a 33

(

)

. -

μ

a 13

.

,

)

.

), 1 – 6 + 6

.

,

, (

a 23 a a 23 a a 22  a12  21  a13  21 a 33 a 31 a 33 a 31 a 32

 a11 (a 22a 33  a 23a 32 )  a12 (a 21a 33  a 23a 31 )  a13 (a 21a 32  a 22a 31 ) , ђ ,

16.2.4.

μ

116

:

I

 1 2 1  x y z 8  4 3 5     13 x y z  7  4  5  21. y z x  1 1 1  u ,  v ,  w, x z y u + 2v + w = 8  4u – 3v + 5w = 13  -5u + 7v + 4w = 21. ( ) μ 1 2 1 4 5 3 5 4 3   4  3 5 = 1  2  1 = -116. 7 4 5 4 5 7 5 7 4 ( ) u, v w μ 8 2 1 13  3 8 2 8 2  u  13  3 5 = = 1 = -116,  5  4 21 7 21 7 13  3 21 7 4

:

1

8

1

 v  4 13 5 ο  5 21 4

ο 1

1 w  4

2 8  3 13 ο  5 7 21

u = 1, v = 2, w = 3. 1 2 1   8 ( 1 1/ 2 1/ 3 !).

ο  4

13 5 21 4 2

8

7 21

 4  3

8

21 4 1

2. )

 5

8

 5 21

8

1

13 5

 13 

1

= -232,

2

5 7

= -348.

-116u = -116, -116v = -232, -116w = -348, 1 1 x = 1, y  , z  . μ 2 3 7 4 5 4 3 5 ),  ),    21 (   13 ( 1/ 2 1/ 3 1 1 1/ 2 1/ 3

16.2.5. 1. )

1

. :

 2 x  3 y  12   3x  5 y  1;

)

)

2 x  3 y  17    5 x  y  10.

,

ђ

μ

117

:  3x  7 y  11   9 x  21y  22;

3. )

 4x  6 y  8  6 x  9 y  12.

: )

 x  ay  5  3x  ay  6;

4. )

:

)

2 x  3 y  4 z  3   x y z  4  3x  2 y  z  6; 

5.

I

 x y 1  2  x  a y  a.

 x  y  2z  1   x  2y  z  9 2 x  y  z  6.  ,

μ

4 x  8 y  4 z  2   3x  6 y  3z  1  x  2 y  z  1. 

16.3. ,

,

.

16.3.1.

7.2. (

16.3.2.

7.3. (

16.3.3.

). ).

1 1 a,  x y x y 1 1   b. x y x y

1 1 , v x y x y μ u + v = a  u – v = b. , a b a b u  v , 2 2 :

,

μ

u

ђ

x y 

2 2  x y  . a b a b 2a  x 2 a  b2

118

: y

2b . a  b2

,

a = b.

2

, .

16.3.4.

μ

1.

9  1 )  a   ; 4  2 2 ) x + 4x – 60; ) 2u2 – 31u + 42;

4  1 )  b   ; 9  3 2 ) y – 28y + 180; ђ) 3v2 + 43v – 30.

2

2. )

)

)

ђ)

I

2

y  y 1 x4  2 x2  9 ; ) 4 ; x  4 x3  10 x2  12 x  9 y 4  3 y 2  1  2 y3  2 y 9 4 1 2 1 2 a 3 x2 a x : : ; ) ; 8 15 a  5 1 6 x3 1  2 1  2 a a x x 2  z4  z2  2z  1 z2  1  z2  z2  2z  ;  2 : 2 z 4  2 z 3  z 2  1 z 3  1  z  1  z 2 a 1 b 1 c 1   3abc a b c .  1 1 1 bc  ac  ab   a b c

:

4



2







μ

3.

1 1  1  a 5  5  1; a a x y z )    a  b  c  1  a 2  b 2  c 2  1  xy + xz + yz = 0; a b c

) a

[ . 2,

4.

5.

1/a = b, a 2 + b2 = (a + b)2 – 2ab = -1 a 3 + b3 = (a + b)(a 2 – ab + b2) = 5 2 2 a + b = (a + b )(a 3 + b3) – a 2b2(a + b) = 1. . (a + b + c)2 = a 2 + b2 + c2 + 2ab x y z 1 + 2ac + 2bc,     a  kx , b  ky , c  kz .] a b c k 5

.

35

.

2 1,89

10

6, 10,

.

5

15 6 500

,

5

2

,

10

,

? .

15

.

119

: 84450

ς 6.

3 21 4 ) ;   2 14  2 x 49  x 14  2 x x  x2 ; ) 2 x 1 1 x

) ђ)

10.

x 0

x   m,

11.

7 7 2 ;   2 3x  9 3x  9 x  6 x  9 3 5  5 ) x3 x3  ; 5 3 14  x3 x3

)

2x  b x 2 x a ;  2  2 2 x  3x x  3x x  9 x a xb xc  1 1 1 )    2    . bc ac ab a b c

)

mx  n mx  n 2mx  4  2  2 2 x  mx x  mx x  m2 m n .

m2  x 2 x  2 1 x 1  1  mx x 2 m m  Z , m  0.

5 4   2, x  2 y 2x  y 4 5 41 ;   x  2 y 2 x  y 20 3 2 11  2  , ) 2 2 2 65 x y x y 2 3 49  2  ; 2 2 2 65 x y x y )

μ

x2  4 x  4  x2  1  2 x  4  4 x  x2 .

μ ax bx )   a b; a  x xb x  ab x  ac x  bc )    a bc; a b a c bc

9.

,

x2  4 x  4  x2  6 x  9  x2  2 x  1 ;

7.

8.

I

μ

4 1  1,  x  y 1 x  y 1 18 2,5   1; x  y 1 x  y 1 ) x2  15 4 y 2  5   3. y 2  4 3x2  20 )

μ

120

: )

I

x y a ,  x y b c xc a b ;  yb a c

a b  1,  x y x y

)

a2 b2 a b ;   2 x y x y mZ

12.

2m 1  1,  x  my x  my 10m 3  1,  x  my x  my .

ј

17. 17.1

a 2x + b2,

.

, x a 1x + b1 > a 2x + b2, a 1x + b1 < a 2x + b2, a 1x + b1  a 2x + b2, a 1, b1, a 2 b2 ,

, a 1x + b1  ,

. ,

. 2 x  1 3x  1 x 1 .   1 3 2 6

17.1.1. :

(

,

5+x

a

) 2(2x – 1) – 3(3x + 1)  6 – (x – 1), -5x – 5  7 – x. , -4x  12, -4 ( , x  -3. x  [-3, + ). -x < 3 {, , }.

.

6



x > -3,

121

:

I „

, 17.1.2.

.

mx > 3m.

: (i) (ii) (iii)

“.

μ m>0 m=0 m 30

ν x < 3.

,

.

,

.

,

x2 + x – 2  4.

17.1.3. :

x > 3;

μ

x  x6  0, (x + 3)(x – 2)  0. μ , x + 3  0  x – 2  0, x  -3  x  2, . x x + 3  0  x – 2  0, x  -3  x  2, . x  (-, -3. x  (-, -3  [2, +. 2

,  [2, +; , 17.1.4. :

μ

3  4x  x. x2

( μ 3  4x x 0, x2  x2  2 x  3  0, x2 x2  2 x  3  0, . x2 ( x  1)( x  3)  0, x2 ( x  3)( x  1)( x  2)  0 . ђ ! f(x) = (x + 3)(x – 1)(x – 2) . , x  {-3, 1, 2ж , x = -10 f(-10) = (-7)(-11)(-12) < 0. f(x) < 0 x < -3, f(x) > 0 -3 < x ξ 1, f(x) < 0 1 ξ x ξ 2, f(x) > 0 2 ξ x < +. , (-, -3)  (1, 2). . )

ђ

122

: 17.1.5.

μ

1.

i. 2x + 5  -3; 2. i. 3x – m  -mx + 3;

μ

3. i. |2x – 5| < 7;

ii. 3 

I

1 x  5; 2

iii.

2x  3  3x  1 . 4

μ ii. 5x – a > -ax + 5;

iii. kx + 1 < x + k2.

ii. |3x – 1| > 2;

iii. |x – 1| + |x + 1|  2. μ

4. i.

3x – 5  0 2x – 3  0;

5. i.

ii.

2x – 5  0 3x – 13 < 0;

iii. -x + 7 < 0 5x + 15  0.

:

iv.

2x  3  1; x5

ii.

3  2x  1; 3x  2

iii.

x + x -2x  0;

v.

x + 2x – x  2;

vi.

 mx  y  3   x  my  5; (x, y)

ii.

3

6. i.

2

17.2.     

a a a a a

, b + c;

,

.

ђ .

|a + b|  |a| + |b|.

123

: ,

a

.

I

b a

b

.

. 17.2.2.

a

a

b

|a – b|  ||a| – |b||.

b

|a| = |a – b + b|  |a – b| + |b| |a – b|  |a| - |b|, |b| = |b – a + a|  |b – a| + |a| |b – a|  |b| – |a|. |a – b| = |b – a|, |a| - |b| |b| – |a|.

: |a – b|

.

,

17.2.3. (xR) x2  0. ,

. 17.2.4. i. x  x  1  0 ; ii. x2 – xy + y2  0; iii. x2  y2  z 2  xy  yz  zx  0 .

μ

, y, z

2

1 3  x  x 1   x    , 2 4  2

: (i)

2

1  3  x2  xy  y 2   x  y   y 2 ; (iii) 2  4  2



(ii)



1 x  y2   y  z2  z  x2  0 . 2

17.2.5.

;

x2  y2  z 2  xy  yz  zx =

a, b  0

, .

ab 

ђ :

( a  b)2  0

2 ab  a  b ,

17.2.6. i.

a  2 ab  b  0 , 2

ab 

a 2  b2 , 2

ђ

a b . 2 .

a  b  2 ab , .

a

b.

124

: a

ii.

I

1  2, a

a.

: (i)

b2,

a2 a

ν (ii)

1/a.

17.2.7.

a, b, c  0

, .

3

abc 

ђ :

abc 

b3

.

a bc . 3

17.2.4.iii. a 2  b 2  c 2  ab  bc  ca  0 . a+ b+ c a 3 + b3 + c3 – 3abc  0, .

ђ

a 3  b3  c3 , 3 y, c  3 z

a 3 x,

x = a 3, y = b3, z = c3. ђ

.

17.2.8.

μ

x, y z x  y  z2  x y z. 2

1.

2

2

(w – 1)2.]

[ 2.

μ

x + y > 0,

x  y3  x y .    2  2  [ 3

3.

a, b

c [

4.

[ 5.

3

, ab + bc + ca  3abc. ab  abc

0  ( x  y)( x  y) 2 .] μ ,

a, b c μ ab bc ca    a bc. c a b ab bc 17.2.5. , c a

a, b, c  0 μ (a  b  c)( a  b  c )  9abc . [ ђ ,

.]

,

17.2.7.

a, b, c,

.]

.]

125

:

6.

a, b

7.

2

1 1  a b

I

. .

a 2  b2 . 2

a, b

.

23, 40

8. < 40?

31. [30 < x < 40]

9. Ј km/h.

Ј

20

30

,



ђ

.Ј ς

,

15

.

[25 km/h]

17.3.

(

,

, 1957.) К

, ,

(1λ36.) , 1912 – 1986.) (George Bernard Dantzig, 1914 – 2005.)

. Koopmans, 1910 – 1985.)

17.3.1. 1 2. 2 . :

М1

1 2

1λ55. .

.

1λ47.

(John von Neumann, 1903 – ( (1λ3λ.). (Tjalling Charles

1λ75. .

,

4

), 1λ35.

М1 М2 2 4 М1, 500

300 ђ ђ

М1 М2

М2

.

М2,

.

. .

F(x1,x2) = 300x1 + 500x2.

126

:

 2 x1  4 x2  24  4 x1  2 x2  24,

(1)

(2)

.

(0,6)

(12,0)

.

 x1  0   x2  0. ,

,

.

I

, (0,0)

,

,

(0,12) (6,0), ђ (0,0). (4,4).

, (0,0), (6,0), (4,4), (0,6), μ 0, 1800, 3200, 3000. ,

3200

М1,

.

2

F(x1,x2)

4

1

М2.

ђ 4

,

(4,4).

(



F = ax + by + cz + ... , (

)

μ

Ax + By + Cz + ...  N, ,

Ax + By + Cz + ...  N. ,

F x, y, z, ...

17.3.2. :

.

.

2x – 3y  6. ,

(x, y)

127

:

.

.

,

, ,

I

(

2x – 3y = 6,

(0, 0) 20 – 30  6),

. 17.3.3.

2 x  3 y  6,   x  2 y  3,  x  1. 

:

2x – 3y = 6, x + 2y = 3 . , .

,

x=1

,

.

(

μ

)

(1, -4/3), (3, 0), (1, 1).

17.3.4.

2 x  3 y  6,   x  2 y  3,  x  1. 

:

,

3x + 4y = 6 (0ν 1,5)

(2, 0),

,

. 6 .

, ,

μ

F = 3x + 4y,

-7/3

3x + 4y = -7/3

F F

.

F F (1, -4/3).

, ,

, F = -7/3.

128

: 17.3.5. ђ

1. 1λ20

10

12 .

780 $1,00

I

.

5 ђ

3

, ђ

$1,20

. ,

. / / (

/

10 5 1,20

. )

(

12 3 1,00

F = 1,2x + 1,0y 5x + 3y  780 ( ), ) (

2. ) x < 3;

μ ) 3x – y  2;

3. )

)

 3x  y  2  2 x  y  5;

4. )

5. )

. )

μ

[

μ

1920 789 μ 10x + 12y  1920 )

.] ) 2x + y  5.

μ 2 x  3 y  5  3x  2 y  1;

μ x  2 y  5   x y 1  x  y  4. 

. )

)

 x  2y  3  4 x  3 y  2.

F = 2x + y

F = 100 – 2x – y

0  x  4, 0  y  4  x y  6   x  4 y  8. 

129

:

I

VI , ,

).

,

. ,

(384 – 322. . . . .) (1. ) Њ (Isaac Newton, 1643 – 1727.)

ђ

.

.

,

1818), (Jean Robert Argand, 1768 – 1822), 1855) , 1837. 1843. Hamilton, 1805 – 1865). 1850(Peter Guthrie Tait, 1831 – 1901) . , 1809 – 1877) 1832. „ (Ausdehnungslehre), .

,

(1687.

1λ. . (Caspar Wessel, 1745 – (Carl Friedrich Gauss, 1777 – (William Rowan (Hermann Grassmann, “ 1844.

(James Clerk Maxwell, 1831 – 1879)

. (William Kingdon Clifford, 1845 – 1879) (1878.), (J. Willard Gibbs, 1839 (Oliver Heaviside, 1850 – 1925).

– 1903)

ј

18. 18.1. ђ

.

16.1.

, . 18.1.2. .

, .

, ђ

. AB,

AB

AB CD AB = CD. ,

|AB|

,

, .

EF

GH EF = -GH.

130

:

I

AB ,

AB a,

a.

18.1.3. Ј

V.

: . (a  V) a = a; . (a, b  V) a = b  b = a; . (a, b, c  V) a = b  b = c  a = c,

μ

.

18.1.4.

AB

AC, . AB +

BC

BC = AC. , .

b b:

a b, .

a

a  b  a  (b) . 18.1.5.

ABCD AB, BC, CD



MN 



:

18.1.6.

1. 2. 3. 4.

M, N, P Q MNPQ

.

MN  PQ 

1 1 1 1 AB  BC , QP  CD  DA. 2 2 2 2

1 AB  BC  CD  DA  0 , . MN  QP , 2 . ,

  

.

DA.

MN QP .

MNPQ

(a, b, c  V): : a + b = b + a; : (a + b) + c = a + (a + b) = a + b + c. (k, m  R):

k(ma) = (km)a; (k + m)a = k a + m a; k(a + b) = k a + k b; 1a = a.

18.1.7. ( A A1,

b

) B B1 C μ AB CA CB .   A1 B1 CA1 CB1

p

q a

a b,

131

: :

I

,

AB

(

A1 B1

AB  k  A1 B1 ,

),

AB | k | . A1 B1

ABC

AB  CB  CA



A1B1C

A1 B1  CB1  CA1 .



CB  CA  k  CB1  CA1 ,

CB  k  CB1  CA  k  CA1 . , , AB CA CB μ , | k |  A1 B1 CA1 CB1

CA  k  CA1 , 18.1.8. Ј

1.

,

18.1.9. AB  CD

2. )

AC

AB

.

a . |a|

BD AD

ABCD AB. AD, BC AB, BC CD. Ј

AD . BD .

AB AC AD

60 M, N P

BC CD

3. AB AD a μ AB , BC , AD , AM , AN ,

NM .

CA  u

4. D,

CB  2v . DE E. μ ) AB ; ) AE ; ) CE . [ 2v  u ;

5.

CB  k  CB1

ABCD.

b.

AP , NP , MP

b

AC  BD .

) 3.

a0 

a

a

AB

u

v

1 1 3 1 v u ; u  v] 2 4 4 2

.

132

: 6.

I

.

7.

AB  CD  AD  CB .

A, B, C, D

8.

T

TA TB  TC  0 .

ABC,

18.2. ,

ђ

.

(3,2), (-3,1), (1,5ν-4) ( – ) , ( ),

( – .

3,

.

 3   ,  2

  3   ,  1  , .

1,5    4

(z – ,

).

)

ђ μ

ђ

,

(3,2), (-3,1), (1,5;-4),

.

, A = (3,2), B = (-3,1), C = (1,5;-4), A(3,2), B(-3,1), C(1,5;-4). (

.

) μ OA  3i  2 j ,

OB  3i  j , OC  1,5i  4 j , i, j ( k ) ( .

,

,

). –



ђ

,

133

: ,

I

.

.

( . René Descartes, . Renatus Cartesius, 1596– 1650.) (La Géométrie,

1637.) .

ђ

, . , .

.

18.2.1.

.

:

A(3,2), B(-3,1) 18,25 , .

13 , 10 , P1 ( x1 , y1 )

P2 ( x2 , y2 ) ,

,

x  x2  x1 , y  y2  y1 .

P1 P2T , P1 P2  ( x2  x1 ) 2  ( y2  y1 ) 2 . (0,0),

ђ

C(1,5;-4)

P1 P2  x2  y 2 , .

,

OA  x  y . 2

2

OA  32  2 2 , . OA  13 .

А( , ) ,

A(3,2)

134

:

I

, (

,

). ђ ,

.

(16.1.6.)

18.2.2.

, .

P2 ( x2 , y2 ) ,

P1 ( x1 , y1 ) .

.

OP2

OP1

:

.

OP1

OP2 T ( x1  x2 , y1  y2 ) . OT .

, . ( x1 , y1 )  ( x2 , y2 )  ( x1  x2 , y1  y2 ) . 18.2.3. P0 :

P 1P 2

P1 ( x1 , y1 ) a:b.

P2 ( x2 , y2 ) .

P 1P 0 : P 0P 2 = a : b. ђ ( x0  x1 ) : ( x2  x0 )  a : b ( y0  y1 ) : ( y2  y0 )  a : b . , by  ay2 bx1  ax2 , y0  1 x0  a b a b OP0 . , a : b = 1 : 1, P0 (

x1  x2 y1  y2 , ) 2 2

P 1P 2.

k1, k2, ..., kn ,

18.2.4.

x1, x2, ..., xn k1x1 + k2x2 + ... + knxn, , n = 1, 2, 3, ... . k1, k2, ..., kn k1x1 + k2x2 + ... + knxn = 0, x1, x2, ..., xn k1 = k2 = ... = kn = 0 , .

. x1, x2, ..., xn

135

: 18.2.5. = 3i – 2j, y = j – 3k, z = 3i – 6k

i, j, k

I ,

.

: , 3i – 6k = a(3i – 2j) + b(j – 3k), + (-6 + 3b)k = 0, a = 1, b = 2.

a

x

b

z = ax + by. (3 – 3a)i + (2a – b)j

. х у ax + by ,

V2

2b

OX OY,

3-

x, y z ax + by + cz ,

a

a, b

i

. j. V3

.

c OX, OY OZ

i,

j k. 18.2.6.

v  V3

V3,

x, y, z a, b, c

v = ax

+ by + cz. : a 2, b2, c2 ђ

,

0, c2 – c1 = 0, .

v v = a 1x + b1y + c1z = a 2x + b2y + c2z, (a 2 – a 1)x + (b2 – b1)y + (c2 – c1)z = 0.

a 1, b1, c1 x, y, z a 2 – a 1 = 0, b2 – b1 =

a 2 = a 1, b2 = b1, c2 = c1.

18.2.7. 1. A(3,1) B(-1,3). ) 5  OA 3  OB ; ) i ; ) j ; ) OC , 2. A(-2,3) B(1,2). ) 2:3; ) 3:4; ) 5:1; ) 4:5. 3. ) (7, -5, 1), (4, 2, 3) , 4. ) ) )

OA C(5,4).

AB

OC

μ (-13, -11, -2); ) (-1, 5, 2), 2, 1, -3) .

A(-1, -3), B(5, 1), C(-2, 2). ABC. ABC. OA,

μ

OB

AB,

μ

(3, -2, -4);

t A.

136

:

I

А, B, C, D

5. ) )

AC BD AC BD

.

P n(xn, yn), n = 1, 2, 3, 4. n, n.

6. u(2,-1) v(1,3). ) (4,5); ) (-3,2); ) (7,-1); ) (-2,-5).

18.3. Ј p , P ,  x  x2 y1  y2  , P 1 . 2   2 1 OP  OA1   A1 A2 . 2 P А1А2, OP  OA1    A1 A2 ,   R. . 18.3.1.

r (

,

,   A1 A2 ,

μ 18.3.2. А(a 1, a 2) B(b1, b2) :



А1(x1, y1) А2(x2, y2) , . .

А1А2,

,

r  a   b ,   R,

a  OA .

).

:

.

b

),

(18.3.1.)

b   x   a1          1   y  a 2   b2  (  R)

(

, ,

 x   a1  b1   .      y   a 2  b2 

 x  a1  b1 ,   y  a 2  b2 .

137

:

x y

 18.3.3. ( А(a 1, a 2) B(b1, b2) :

ђ

 x r    .  y y  a2 , .  b2

x  a1 b1

x  a1 y  a 2 .  b1 b2

18.3.4.

 2  3 r     t   ,  1  4

t=0

.

1   0

,

B ο (5, 5), .

 3 AB    .  4

.

b1b2 ax + by = c.

0   1 t

1 .

A = (2, 1),

) x – y = 3;

5

A(2, 1), .

/

A ) A(-1, 2), v = 3i + j;

3. ) ) )

32  4 2 = 5

μ ) 2x + 3y = 5.

2. v: ) A(2, 3), v = 5i – 4j;



 3 AB    =  4

B(5, 5) 18.3.5. 1. ) x + y = 5;

,

)

b2x – b1y = a 1b2 – a 2b1,

:

I

.

ν

) A(2, -3), v = -2i -3j.

 2  3   ,   R. r    1  4  r  a  b ;

138

: 4. )

)

v1 = 2i + 3j + (i + 2j), v2 = 5i – 2j + (2i + j);

I

ђ

v1

v1 = (3, 5) + (-2, 1), v2 = (4, -3) + (-2, -5);

5   3 r         4  2 

5. 6. a) ) ) )

(-35, 23)

7. (

A B

) )

x = 4 – 3t, y = -4 + 2t. ν

.

/

v

μ 10μ00 10μ30

 5  3   , v1    4   3  2   . v2    4  3 

x4 y 2 .  3 5

ν (-47, 30);

t

r

)

v2: )

A B

, rA = 7i + 2j, vA = 3i + 2j, , rB = 8i + 5j, vB = 4i – j. , ς .

, B

19.

18.

1λ.

.

          

.

ν

. ν

ν ν (

(

,

: ν

ν

.

ν

)ν ν

. Leontief model);

19.1. a j1

, , a j2

1

2

. a j3

j (j = 1, 2) : 139

:

Ф1 Ф2

I

a 11 a 21

Ј a 13 a 23.

a 12 a 22

.

a13  . a 23 

a a ο  11 12  a 21 a 22

(

М23, . 3)

М

(

2 М2,3.

.

3

.

3).

,

,

,

19.1.1.

ђ

A = ||a jk|| mn

2  3.

, (

.

,

)

(

.

)

B = ||bjk|| mn, A= B a jk = bjk (j = 1, 2, ..., m; k = 1, 2, ..., n). A B,

 40 35 280   A    50 42 320 

 38 32 175   , B    46 38 316 

μ  40  38 35  32 280  175   78 67 455   =   . A  B    50  46 42  38 320  316   96 80 636 

(

19.1.2. , A = ||a jk|| C = A + B = ||cjk||

B = ||bjk||

)

.

mn, cjk = a jk + bjk (j = 1, 2, ..., m; k = 1, 2, ...,

n). ђ ,

.

,

.

140

:

I ,

, R

.

μ

 a11 a12  a 21 a 22

  

.



,

a13   a11 a12 a13  . = a 23   a 21 a 22 a 23 

19.1.3. . ,

A

  R,

A = ||a jk||

.

||a jk||. ,

,

19.1.4.

.

 2  7    2  9 7   3 1  3  2  1         1  9  =   9  8 . 9  =  5  4 .  5 1    4  0 13    12  6   0  (12) 13  (6)   12 19          А

,

,

. 19.1.5. 1. 2. 3. 4.

μ (A,B,C) A + (B + C) = (A + B) + C ( (A,B) A + B = B + A ( )ν (1О)(А) А + О = О + А = А ( (A)(A’) A + A’ = A’ + A = O (

,

,

A’

)ν )ν ).

М

. , P

,

. p1, p2

p3

,

:

141

:

I

 p1    P =  p2  . p   3 μ

a a M  P =  11 12  a 21 a 22 M2,3  P3,1 = T2,1 .

 p1  a 13     a11 p1  a12 p 2  a13 p3     p2  =   = T. a 23     a 21 p1  a 22 p 2  a 23 p3   p3  ,

.

T2,1 ,

μ

,

 q1    Q =  q2  , q   3 M Q.

 p1  S = || P Q || =  p 2 p  3

 a1 b1   a 2 b2

.

n

 p1 c1      p2 c 2    p3

.

.

,

μ

q1   q2  , q3 

,MS=

q1    a p b p c p q 2  =  1 1 1 2 1 3 a p  b2 p 2  c2 p3 q3   2 1

a1q1  b1 q 2  c1q3  . a 2 q1  b2 q 2  c2 q3 

,

Am,n  Bn,p = Cm,p.

19.1.6. m  n n  p (m, n, p  N) j(j = 1, 2, ..., m) k- (k = 1, 2, ..., p) , n j, k-

n .

142

:

,

A = ||a jk||

I

mn

B = ||bjk||

c jk   a ji bik .

np,

n

C = AB = ||cjk|| ,

Am,n cjk = a jibik (

ђ   

mp,

/

)

i 1

Bn,p

(

Cm,p i = 1, 2, ..., n.

)

.

(

,

).

, .

.

, 19.1.7. A(BC) = (AB)C – A(B + C) = AB + AC – (A + B)C = AC + BC –

,

A, B C

μ

; ; . .

19.1.8. 20%

P1 P2 30%

.

x y

.

.

.

:

, x1 = 0,8x + 0,3y, y1 = 0,2x + 0,7y.  0,8 0,3  x   x1       , μ   0,2 0,7  y   y1 

P1

P2 μ

MX = X1.

,

μ x2 = 0,8x1 + 0,3y1, y2 = 0,2x1 + 0,7y1.  0,8 0,3  x1   x2       , μ  MX1 = X2, M2X = X2, y y 0 , 2 0 , 7  1   2    0,8 0,3   0,8 0,3   .    , M2 = MM =   0,2 0,7   0,2 0,7   0,8  0,8  0,3  0,2 0,8  0,3  0,3  0.7   0,70 0,45   =   . M2 =   0,2  0,8  0,7  0,2 0,2  0,3  0,7  0,7   0,30 0,55  M3 = M2M, M4 = M3M, ..., Mn = Mn-1M, n = 1, 2, 3, ... . ,

n-

(n = 1, 2, 3, ...), xn = 0,8xn-1 + 0,3yn-1,

:

143

:

I

yn = 0,2xn-1 + 0,7yn-1.  0,8 0,3  xn   xn 1   ,     MXn-1 = Xn, μ   0,2 0,7  yn   yn 1  19.1.9. 1.

MnX = Xn.

 11 3    5 3  2  2  5 12   , B    8 17  , C    . A   13 1 4     4 7 6   9  1   2B, A + C, 3A – 2C, A  B, B  A.

2.

.

μ

  a  21 b   4b 5c  .  5 1   a b   c

3   7a 2b   4b  5c  ;   5   9a  3a   0 8   1  2 4   3 3   6  18  .     x 1   2  5    5 6   7 30 

 2 ) x  5 1 ) x2  2

3.

4.

 1 2  A    4 1  32n 0   A2 n   2n   0 3 

A  A = A2, A2  A = A3 .

n

1 0   A   1 1 

5.

A3  A = A4.

 1 0  , An    n 1

.

n 1λ.1.7.

6. 3 7. 3.

P1

a

b

,

,

a

b

2 ?

, 10 4, 5

P2

6

1, 7 2 4 1, 7 .

3

2

3. 8 ,

3. [

4

ђ

1, 2 3. 1, 8 2 10 1, 2 3 ο λ3, 116, λλ]

144

: 8.

A, B C

A B C )

μ

P 2 4 2

,

μ

5, 10

5

Q 3 2 4

P, Q

R.

R 1 5 2 100

ν

) )

I

,

ν

P, Q

R

200

.

[(800, 900, 800); (45, 65, 60); 34000]

19.2. ,

. m=n

A = ||a jk|| ,

An.

a 12  a  , (a 11),  11  a 21 a 22 

 a 12 a 12   a 21 a 22 a  31 a 32

a 13   a 23  , ..., a 33 

 a 11 a 12   a 21 a 22  ... ...  a  n1 a n 2

. (

) mn

... a 1n   ... a 2 n  , ... ...   ... a nn 

1, 2, 3, ... , n. a ii (i = 1, 2, ..., n). AB  BA

A B .

,

. Ј

I

,

.

I = ||jk||,

Ј

jk

 1, 0,

jk = 

j  k. 1 0  . μ I 2   0 1

, A

,

I

145

:

I

AI = IA = A. А

n

X

AX = XA = In A-1.

a b   A   c d 

19.2.1.

А

X A1 

1  d  b .  ad  bc   c a 

0  1  ad  bc 1  a b  d  b     =  = I.  ad  bc  ad  bc  c d   c a  ad  bc  0 0  1  ad  bc 1  d  b  a b   =  = I.    A1 A  ad  bc  ad  bc   c a  c d  ad  bc  0

: AA1 

A (1λ.2.1.) det A = .

(

) det A  0 (1λ.2.1.).

ν

19.2.2.

,

det A.

a

 ad  bc ,

b

c d

.

,

А

A-1

det A = 0

μ

 2x  y  7   5 x  3 y  6.

:  2  1 x   7       .    5 3  y   6  1

B,

,

AX = B, . 2 1 3 1  . det A = = 1, A-1 =  5 3 5 2 A-1 A-1(AX) = A-1B, (A-1A)X = A-1 -1 IX = A B, . X = A B. ,  x   3 1  7   21  6   27   =   .   =  X =   =   y   5 2  6   35  12   47  x = 27, y = 47. μ 227 – 47 = 7 ( ), -527 + 347 ο 6 ( !). 2.

3.

А

3.

2.

.

А.

146

:

I

1 4 7  1 2 3      4 5 6   2 5 8 . 3 6 9 7 8 9     T

, A = ||a jk|| bjk = a kj (j = 1, 2, ..., n; k = 1, 2, ..., m) АT, A’.

a jk j-

19.2.3.

mn,

B = ||bjk||

( 16.2.4.). A = ||a jk|| Ajk = (-1)j+ kDjk, Djk k. ||Ajk||T n А adj A. det A  0,

A1 

nm,

А

n det A

adj A . det A

19.2.4. 1. )

2. )

3. )

 3 1  ;    5 2

)

3  k  ;   2 k  1

)

i. A(a)A(b); 5.

m 5 2   ; m  3

)

)

4x – 5y =2 3x + y = 6;

4.

 4 2   ;    5  3

)

:

ς 1  n  .   1 n 1

:

) 7x + 3y = 10 6x – 5y = 4;

x 1   2 x  , x  R. A( x)    2(1  x) 2 x  1 ii. A2(a);

X

 2 6  .   1 3

-9x + 6y = 15 6x – 4y = -10; :

iii. An(a), n  N.

μ 3 4 1 2 2 1           X     .    5 1  1  3  3 4 

147

:

6.

I

1 2    1 5  X    . μ  1 2    1 5   2a  1  2b  5  , a [  b   a

X

.

7.

8. )

a b  2  , a = -bc] [  c  a

 x  y  z  1   x  y  z  1  x  y  z  1.  [(1, -2, -1);

9. 1. AX = B, 2. XA = B, 1  A 1 2  10.

1, 2

,

(  1)(1,1,1) ] (  1)(  2)

μ 3. AX = BA-1B, 4. XA = BA-1B, 2 1 1 1 1    1 0  , B   0 0 0 .  0 0 0 0  1   1,

3.

.

1 2 1 3

1 2 3

]

:

)

10 x  9 z  19  8 x  y  10  y  12 z  10; 

b

2

2 3 1 2

3 3 4 2 1 2λ, 13

.

μ 2, 3

[

19.3. Ј

( ,

,

. 19.3.1.

A B

mn

16 4]

R), , R.

,   R, 148

:

I

( + )A = A + A, (A + B) = A + B, ()A = (A), 1A = A.

   

A1, A2, ..., Ak

(mn)

(18.2.4.)

 1 A1   2 A2  ...   k Ak   r Ar , k

r 1

1, 2, ..., k  R.

mn.

.

,

ђ

 1 2  3  1  7 1   ,        1 1  2 1   1 2 

,

ν

. A, B, C

In = (jk)n , , (AB)C

 3  1 1 2   4 5   .       2 1   1 1   1 5 

, .

,

A(BC)

19.3.2. A = (a jk)m,n , B = (bjk)n,p , C = (cjk)p,q (AB)C = A(BC). : (AB)C = (djk)m,pC =

 n    a ji bik c kr =  k 1  i 1  p

  p a ji   b jk c kr  = A(ejr )n,q = A(BC).  i 1   k 1

R.

 a ji b jk ckr = p

.

n

k 1 i 1

 a n

p

i 1 k 1

ji

b jk c kr =

n

1λ.3.1. 19.3.3.   

,

ђ

A, B, C, D,

R

mn

  R,

.

C(A + B) = CA + CB, (A + B)C = AC + BC, (AB) = (A)B = A(B).

А AA, A = AA2, A4 = AA3, 3

19.3.4.

n. . (5.1.2.)

s+1

A

s

= AA ,

s

A0 = In, A1 = A, A2 = . . r

s

μ

149

:

I

1. Ar As = Ar+ s, 2. (Ar )s = Ars. 19.3.5.

P(A) = А – I

Q(A) = A2

+ A + I. : P(A)Q(A) = (A – I)(A2 + A + I) = A3 + A2 + A – A2 – A – I = A3 – I. , ђ ,

,

(

.



ђ

. ,

1. ab = ba; 2. ab = 0  a = 0  b = 0; 3. (ab = ac  a  0)  b = c. 19.3.5.

.

1 1 1 1   0 0   .     :    1 1 1 1 0 0     

3.

,

.

1 2 3  1 2 3   1 2 0       A   1 1 0  , B   1 1  1 , C  1 1  1 , 2 2 2   1 4 0 1 1 1        3 4 1    AB  AC   2 3 2  . 3 2  7  

, AB = AC

A 0

B = C.

, 19.3.6.

AB T T

T

BA :

. T T BA

. T T

,

(AB) = B A .

(AB)m,p (AB)T

pm, BT je pm.

,

A = (a jk) B = (bjk) pn, AT nm, T (AB) BTAT

mn

np .

150

:

(AB)j,k , . (k, j)

1.

19.3.7. a b   A   c d 

2.

 f 1 1      n 1 0   f n1

 bik a ji , . n

i 1

a n

i 1

i. AX = XA.

A = 0. f n 1  , fn f n 2  f-1 = 0, f0 = 1, fn = fn-1 + fn-2.

AC = CB. Bn = C-1AnC]

 x y a b   ,  . X   A   u v c d  AX = XA = 0, (A + X)2 = A2 + X2?

ii. AX = XAT. [(ii)

y x c d a X  y x b b 

b .

ji ik

2

4   7 2 1  1 1  , C    ,  , B   A     9  5  3 2  0 1 Bn, n . [ B = C-1AC B2 = C-1A2C,

4.

(AB)T.

(k, j)

A2 = 0.

k

n

6. Ak.

i 1

b

ji ik

A2 – (a + d)A + (ad – bc)I = 0.

A = 0 (k  N)

5.

n

BTAT

i. ii.

3.

a

I

 ; y 

1 0 0   A  1 0 1  0 1 0  

:

AkX = X(AT)k? b = c = 0, a = d

X ν b0 b a d  y  v y c0 ν ad X  c c   y v  b c   v x x  a d . , a d X    c x b v v   a d  a d

.]

An = An-2 + A2 + I, n  N.

I + A + A2 + ... + Ak = 0,

A [

А

Ak+1 = I,

A-1 = .]

151

: 7.

А

I

k , Ak = 0 -1 2 k-1 (I – A) = I + A + A + ... + A . [ (Ak – Ik) = (A – I)(Ak-1 + Ak-2 + ... + A + I).]

152

:

I

VII , x2  3xy 

. 2 x  3xy  y 3 5

2 2 y 5

2

,

.

2

1, 17x3y, 25x – 3y, .

,

,

,

,

(4

.

– 4xy + 3), 3xy-2, ,

)

(

(x + y ), 2

1 , x 2

15.

,

7 xy  ay 2  bxyz , x4 – 2x3y + 3x2y2 – 4xy3, ... 13 , , , .

3

.

(5

),

), ,

(x – 2y + 3),

(5x

x + y, ..., ,

,

.

.

2. . . . (九章算術, . JТǔzСāng SuрnsСù) , 5x + 4y + z = 37.

(Scipione del Ferro, 1465-1526.)





„ 37

(Nicolas Chuquet, 1445 – 1500?) . 1515. ,

“. 1484.

153

: .

I

(Niccolo Fontana Tartaglia, (Girolamo Cardan, 1501-1576.) .

1500?-1557.)

16. (The Whetstone of Witte, 1557.) (Robert Recorde, 1510 – 1558.) „+“ „ –„ integra, 1544.) (La geometric, 1637) , (x, y, z, ...) ,

„ο“

(Arithmetica (Michael Stifel, 1487 – 1567.). , (a, b, c, ...) , ( . 2).

.

,

.

20. А 20.1. Ј

20.1.1.

, fa (x) = a 0 + a 1x + a 2x + ... + a mxm, a = (a 0, a 1, a 2, ..., a m) m ,m ,a m+1- ,

.

a k (k = 0, 1, 2, ..., m) (

,

(

. x

,

)

.

fa (x) = 0

,

ak ο 0

k = 0, 1, 2, ..., m.

a k  0. a n  0. fa (x) = a 0 + a 1x + a 2x + ... + a nxn. ak ak  , k = 0, 1, 2, ..., n-1. nk x x

)

,

2

|xn-k|  |x|, 17.2.1.)

an 

.

.

a kxk

ђ

(

.

.

20.1.2. :

, a 1 , a 2, ..., a m ,

, fa

n

|x|  1,

a0 a a 1  n11  n22  ...  a n   a 0  a1  a 2  ...  a n  . n x x x x 1  a 0  a1  a 2  ...  a n1  , ђ x an

a0 a a  n11  ...  n 1 . n x x x

a a  a f a ( x)  xn  0n  n11  n22  ...  a n  , x x  x

154

:

I

fa (x)  0, .

.

fa ( x)  fb ( x) , . a = b.

20.1.3. :

, b, . a k = bk

k = 0, 1, 2, ..., m. (20.1.2.) c

fc(x) = 0 ,

a=

k. ,

. x – 1.

c = a – b, . ck = a k – bk

,

20.1.4. :

p(x) = x3 – 2x2 + 3x – 4

f(x) = b0 + b1(x – 1) + b2(x – 1)2 + b3(x – 1)3 = b0 + b1(x – 1) + b2(x2 – 2x + 1) + b3(x3 – 3x2 + 3x – 1) = b3x3 + (b2 – 3b3)x2 + (b1 – 2b2 + 3b3)x + (b0 – b1 + b2 – b3). b3 = 1, b2 – 3b3 = -2, b1 – 2b2 + 3b3 = 3, b0 – b1 + b2 – b3 = -4, b3 = 1, b2 = 1, b1 = 2, b0 = -2. , 2 p(x) = -2 + 2(x – 1) + (x – 1) + (x – 1)3.

20.1.5. 1. ) (x – 1)3 + (x – 2)(x2 + 3x + 4);

μ ) (x + 1)3 – (x + 2)(x2 – 2x – 3).

2. ) p(x) = 3x3 – 4x2 – 5x + 2 q(x) = (x – 2)(ax2 + bx + c);

p(x) q(x) μ ) p(x) = -2x3 + 3x2 + 4x + 15 q(x) = (x – 3)(ax2 + bx + c).

3. ) x – 1; 4. r(x)/q(x): ) (6x2 + 13x – 5)/(3x – 1);

p(x) = x3 + 2x2 + 3x + 4 ) x + 1.

μ

r(x) = p(x)q(x), ) (10x2 + 3x – 12)/(2x – 3).

p(x) = q(x)(x – c) + r, q(x) r , μ ) (2x2 – 3x + 1)/(x – 2); ) (3x2 +2x – 1)/(x + 2). 2 [a 2x – 3x + 1 – r = (ax + b)(x – 2) ..., a = 2, b = 1, r = 3;  3, -4, 7]

5.

155

:

I

20.2. (

.

p(x)

r 1(x) ο 0 q(x) , p(x) = x2 – 4, q(x) = x – 2

r 1(x). q(x).

5.2.3.)

q(x)

q1(x) p(x) q1(x) = x + 2

r 1(x) = 0:

(x2 – 4):(x – 2) = x + 2 . x2 – 2x /2x – 4 2x – 4 /0 ђ

,

1

r 1(x)  0 q2(x) 2 q2(x) = x – 4x + 1

. r 2(x). r 2(x) = 2:

q(x) r 1(x) x3 – 3x2 + 5x – 3

,

x–

(x3 – 5x2 + 5x – 3):(x – 1) = x2 – 4x + 1. x3 – x2 /-4x2 + 5x – 3 -4x2 + 4x /x–3 x – 1 /2 ,

k = 1, 2, 3, ... r k-1(x). , p(x) = q(x)q1(x) + r 1(x), q(x) = r 1(x)q2(x) + r 2(x), r 1(x) = r 2(x)q3(x) + r 3(x), ... r k-2(x) = r k-1(x)qk(x) + r k(x), r k-1(x) = r k(x)qk+1(x).

r k(x)

20.2.1.

p(x) r(x)

20.2.1.

1 .

r(x) | q(x),

20.2.3. p(x)

NZD, r(x)

q(x) p(x)

μ

r(x) | p(x) ( . r p(x) q(x).

q(x)

p(x)

D(x) D(x) | p(x) q(x) ђ

p)

q(x), ,

D(x) | q(x) D(x). .

156

: 20.2.4.

(

)

.

I p(x)

q(x)

,

.

NZD.

.

(nzd)

. 299 = 1323 360 = 1320, 23 20 nzd(260, 39) = 13, 299 – 260 = 39. ( m = 7 n = -8)

, nzd(299, 260) = 13 . ђ ( 5.2.5.), m299 + n360. 20.2.5.

:

D(x) p(x)

(NZD) q(x) D(x) = p(x)f(x) + q(x)g(x).

f(x)

13 =

g(x)

r 1(x) = f(x) – q1(x)g(x), r 2(x) = -q2(x)f(x) + (1 + q1(x)q2(x))g(x), r 3(x) = (1 + q2(x)q3(x))f(x) – (q1(x) + q3(x) + q1(x)q2(x)q3(x))g(x), ... D(x) = r k(x) = p(x)f(x) + q(x)g(x). )

20.2.6.

:

2322

2322 = 6543 + 360 654 = 3601 + 294 360 = 2941 + 66 294 = 664 + 30 66 = 302 + 6 30 = 65 , nzd(2322, 654) = 6.

nzd(2322, 654) = nzd(654, 360) nzd(654, 360) = nzd(360, 294) nzd(360, 294) = nzd(294, 66) nzd(294, 66) = nzd(66, 30) nzd(66, 30) = nzd(30, 6) nzd(30, 6) = 6

20.2.7. f(x) = x4 + 3x3 – x2 – 4x – 3 :

3f(x)

nzd (

654.

NZD g(x) = 3x + 10x2 + 2x – 3. 3

g(x):

1 (3x4 + 9x3 – 3x2 – 12x – 9):(3x3 + 10x2 + 2x – 3) = x  , 3 4 3 2 3x + 10x + 2x – 3x /-x3 – 5x2 – 9x – 9 10 2  x3  x2  x  1 /3 3

157

:

I

5 25  x2  x  10 3 3 5 25 5 1 q1(x) = x  r 1(x) =  x2  x  10 =  x2  5 x  6 . 3 3 3 3 ,



.



NZD

g(x) q1(x), . (3x3 + 10x2 + 2x – 3):(x2 + 5x + 6) = 3x – 5. 3x3 + 15x2 + 18x /-5x – 16x – 3 -5x – 25x – 30 /9x + 27 x2 + 5x + 6 9x + 27, x + 3. x+2 , x+3 f(x) g(x).

. – 1)(x + 3), ,

ђ

f(x) g(x) , NZD f(x) g(x) f(x) = (x3 – x – 1)(x + 3) x3 – x – 1 3x2 + x – 1 , x+3

, .

,

.

g(x) = (3x2 + x

(NZD). 20.2.8. 1. μ ) 5x2 + 5y2 + 8xy + 2y – 2x + 2; ) 4x2 + 4y2 – 6xy – 4x + 4y + 4; 2 2 ) 6x + 6y + 8xy – 10x – 10y + 1; ) 6x2 + 6y2 – 8xy + 10x – 10y + 1. [4(x + y)2 + (x – 1)2 + (y + 1)2; 3(x – y)2 + (x – 2)2 + (y + 2)2; 5(x + y – 1)2 + (x – y)2 + 1; 5(x – y + 1)2 + (x + y)2 + 1.] 2. ) x4 + 3x2 + 4; ) x4 +x2y2 + y4;

: ) x4 + 4y4; ) x8 + x4 +1. [(x2 – x + 2)(x2 + x +2); (x2 + 2y2 – 2xy)(x2 + 2y2 + 2xy); 2 2 (x + y – xy)(x2 + y2 + xy); (x2 + 1 – x)(x2 + 1 + x)(x4 + 1 – x2).]

3. ) (x + y + z)3 – x3 – y3 – z3; ) (x – y)3 + (y – z)3 + (z – x)3;

μ

) x2(y – z) + y2(z – x) + z2(x – y); ) (x + y + z)(xy + yz + zx) – xyz.13 [3(x + y)(y + z)(z + x); (y – z)(x – y)(x – z)] μ ) x3 – 6x2 – x + 30 x3 – 19x – 30; ) x3 + 13x2 + 47x + 35

4. NZD ) x3 – 7x + 6 x3 + 2x2 – 5x – 6; ) x3 + 10x2 + 31x + 30 13

ђ

,

1.

, 15.

1980.

158

: 2x3 + 9x2 – 7x – 6; 5. ) 2322

3x3 + 23x2 + 19x – 7. μ

nzd 763ν

) 3λλ7

654ν

I

) 1735

635.

6. ) (3x3 – 4x +5):(x + 2); ) (2x4 + 3x3 – 4x + 5):(x2 + x + 1);

μ ) (4x + x – 1):(x – 2); ) (3x4 – 2x2 + 4x – 5):(x2 – x + 1).

7. NZD ) 2x3 – x2 – 2x + 1 2x2 + 3x + 1; ) x4 – x3 – 2x2 + x – 2 x3 – x2 – x – 2;

μ ) 2x3 – x2 – 2x + 1 2x2 – x – 1; ) x4 + x3 – 2x2 + x + 2 x3 + x2 – x + 2.

8. )

3

NZD )

3x3  10 x2  2 x  3 ; x 4  3 x3  x 2  4 x  3

)

:

3x3  10 x2  4 x  3 ; x 4  3 x3  x 2  2 x  3

)

x  2x  2x  1 ; 4 x  2 x3  3 x 2  2 x  1 3

2

x3  2 x 2  2 x  1 . x 4  2 x3  3 x 2  2 x  1

2

20.3. ( 20.3.1. q(x) r(x) g(x).

ђ 5.2.3.).

,

f(x) g(x) f(x) = g(x)q(x) + r(x),

r(x)

f(x) = a 0 + a 1x + a 2x + ... + a mxm, g(x) = b0 + b1x + b2x + ... + bnxn mn  0. n (&5.1.) m. m < n ђ (q  0, r  f). , ђ f(x) m0  n. m = m0, a f1 ( x)  f ( x)  m xmn g ( x) m, xm . bn q1(x) r(x) f1(x) = g(x)q1(x) + a q( x)  m xmn  q1 ( x) . r(x). ђ , f(x) = g(x)q(x) + r(x), bn :

.

, f(x) = g(x)q(x) + r(x), f(x)

q(x)

r(x) g(x)

159

:

I

, f(x) = x3 + 1 q(x) = x + 1 , . r(x) ο 0,

g(x) = x2 – x + 1 (f)

(g). 20.3.2. (

)

:

f(x) (20.3.1.)

R

x= 

.

20.3.3. x3 + kx2 – 7x + 6

x- 

f(x) = (x - )q(x) + c, f() = c.

k g(x) = x – 2

: f(2). Ј

,

f(2) ο 3 f(x)

a

f(x) = x– 2 k = ¾.

f(a) = 0.

a

.

20.3.4.

) ђ

(

,

1, 2

(j = 0, 1, 2, ..., m)

,

, 3.

f(x)

. f(1) =

.

  f a    0 ,   (20.3.4.)

20.1.1.

ђ

(20.3.2.)

.

ђ

ђ

.

aj

20.3.5. g(x)

f(x)

x  {1, 2, -3}, f(x) ,

,

|a 0 |a m.

,

x3 – 7x + 6.

: f(x) = x3 – 7x + 6 0, f(2) = 0 f(-3) = 0. , x – 1, x – 2 x + 3. f(x) , . f(x) = x3 – 7x + 6 = (x – 1)(x – 2)(x + 3).

ђ

c

3.

f(x) 8 + 4k – 14 + 6 = 3,

a (x – a). f(a) ο 0

f().

,   Z

.

g(x), f(x). (20.3.1.)

.

160

:

I

20.3.6. g(x) = x – 1.

f(x) = 1 + x3 + x10 + x101

2

:

(20.3.1.)

= ax + b = ((+1)2 – 1)0 + a(+1) + b + b, . a = b = 2.

f(x) = (x2 – 1)q(x) + r(x), ξ 2. , x = 1 2 f(-1) = ((-1) – 1)0 + a(-1) + b, , r(x) = 2x + 2. ,

,

ђ

.

.

20.3.7.

r(x) f(+1) 4 ο a + b, 0 = -a

mN

f(x)

f(x) = a(x – x1)(x – x2)...(x – xm), a  0,

, ,

m

μ

1. ) x3 – 2x2 + 3x + 4 x – 2; ) x2 – 3x + 4 2x + 3;

4.

3

a –b ?

x8 + 3x3 + ax + b

x2 – 1

x3 + ax2 + x + b

x2 + x – 2

2

5. + 2,

a

x3 + 2x2 + ax + b 7x + 7,

3.

x,

3x

b.

6.

14

2

f(x) = x4 + ax3 + 3x2 – 3x + 2

g(x) = x – 1. 2

) x3 + 2x2 – 3x – 4 x + 2; ) x2 + 2x – 3 3x – 2. μ ) x + x – 17x + 15; ) x4 + 2x3 – 3x2 – 4x + 4; ђ) 2x4 + 3x3 – 10x2 – 5x – 6.

2. ) x3 + 9x2 + 23x + 15; ) x4 – 2x3 – 3x2 + 4x + 4; ) 2x4 – 3x3 – 10x2 + 5x – 6; 3.14

x1, x2 , ..., xm

x1, x2 , ..., xm, .

m

20.3.8.

.

x2 – x – 2

3a + 3b ?

10.

2001–0λ.

.

161

:

I

7.

x2008 + x1007 + 1

x2 + 1.

8.

x2004 – x2000 + x

x2 – 1.

9. x+1

2

f(x) -1.

x–1

x5 – 3x4 + ax3 + x2 + b

10.

21.

1, f(x)

x2 – 1.

(x – 2)2,

a 2 – b2.

ј

21.1. 21.1.1.

210. ђ

5, 6 7. ..., -3, -2, -1, ..., 4, 5, 6, 7, 8, ...

ς .

210 ο 2357 = 567. .

210, . x3 – x = 210. , 216) – (x – 6) = 0, (x – 6)(x2 + 6x + 36) – (x – 6) = 0, 0. μ x – 6 ο 0, x2 + 6x + 35 ο 0. μ 5, 6 7. x2 + 6x + 35 = 0 26 = 0 . 21.1.2.

x = 6,

, (x + 3)2 + 729 m3.

x + 2. :

,

a = x + 2. x + 2 = 9, x = 7 m.

3

(x + 2) , 21.1.3.

x

.

2

66 m . : ο , x2 + 5x – 66 = 0. x(x + 11) – 6(x + 11) = 0, : μ

ο + 5,

,

ο 66.

(x + 11)(x – 6) = 0. x = -11, ο -6, . x = 6 m, ο 11 m.

21.1.4. 1. ) 156;

,

(x – 1)x(x + 1) = (x3 – 2 (x – 6)(x + 6x + 35) =

) 210.

V = a 3,

x+5

. 729 =

.

x(x + 5) = 66, x2 + 11x – 6x – 66 = 0, ,

μ

162

:

I .

2.

3.

.

7.

3.

.

30.

ς

. 3. ) S = t2 – 15t + 5036; 4. μ ) m = 4, p = 30;

t ) S = t2 – 16t + 5060. 5000?

ς m

.

.

,

p

,

) m = 3, p = 14. [3, 10; 2, 7 m]

5.

.

6.

24

24 m

.

. ђ

ђ

2 cm

. .

70 m2.

107 m2]

[145,

21.2.

. 3 , 5

21.2.1. 7 . 9

ς :

8

3 x 7  . 5 x 9

.

21.2.2.

.

:

Ј ,

/3 + /8 ο 1,

21.2.3.

3 1/3,

24/11

6 ς

4

.

= 4. , ς

1/8.

. ,

2 Ј

.

.

163

: :

6 + x, Ј

4 4   1, 6 x x

I 4

x,

μ

12



.Ј 6

.

21.2.4. 2 . 3

4 , 9

1. ς

[6] 25 . 6

2. ς

[ 3. 12

10

.

ς

1 4

6]

, [5,5 min]

4.

,

,

2

3

.

.

ς [3

5.

,

3

ς

2

.

6

]

[6

]

.

21.3. f(x) = a 0 + a 1x + a 2x + ... + a mxm m = 0, 1, 2, 3, 4, ... . , f3 ( x) 

12.3.1. 1 3 x 2

f 4 ( x) 

,

,

m, ,

,

.

m .

f0(x) = 2, f1(x) = 2x, f2(x) = x2, 1 4 x . 2

: x f0 f1

. -2 2 -4

-1 2 -2

0 2 0

1 2 2

2 2 4

164

: 4 -4 8

f2 f3 f4

1 -0,5 0,5

I 0 0 0

1 0,5 0,5

4 4 8 μ

ђ

f0

(

(

) ) .

12.3.2. x. i.

ς

( ab ,

(0, 0) (1, 2). (0, 0), ) 4. - .

2. f2 (

(

f1 ) -

) ,

a = 50 cm, b = 40 cm.

165

: ii. Ј iii.

I ?

ς :

. (i.) V = (a – 2x)(b – 2x)x = 4x(25 – x)(20 – x) cm2. (ii.)

, 0 ξ < 20 cm.

a, b. (iii.) , 0, b/2

a/2

V

.

.

, , , a < b. , 20

-

25 ( ђ

0,

). , ( 

7,4 cm)

. ( 12.3.3.

m-

)

(m = 0, 1, 2, ...) ђ m+1-

.

.

166

:

I

3

:

(-1, 0), (0, -3), (3, 0). 2.

y = ax2 + bx + c,

.

μ a(-1)2 + b(-1) + c = 0, a02 + b0 + c = -3, a32 + b3 + c = 0. a = 1, b = -2, c = -3. y = x2 – 2x – 3. 12.3.4. 1.

2.

3.

4.

y = -1, y = 3

. . .

1.

(

2.

(

ђ

y = x + 1. )

(-1, -3) )

(2, 3).

(-1, 3), (1, 1), (3, 7)

μ

)

)

)

)

167

:

)

I

ђ)

5. t

1.

,

250

. (

,

100 ML

) .

[

V(t) = -t3 + 30t2 – 131t + .

ς Ж

168

:

6.

64

40

I

.

,

cm cm .

.

. [Vmax(8) = 4608 cm3]

169

:

I

VIII . trТgōnon – ђ

(

,

(

, metron -

(

(

(

(

ђ

1λ00-1600. . . .) . ђ 430. . . .). , 140. . . .) , 100. . ).

1650. . . .),

,

) .

,

,

(

, IV

V

).

БII

, ,

.

(De triangulis omni modis, 1464.) . (De revolutionibus orbium coelestium, (Opus palatinum de trianulis, 1596.) ,

.

1543.)

.

ђ

-

.

22.

ђ

.

,

.

22.1. (C1 = C = 90), (1 = ).

( B

)

A1B1C1

ABC

А

180,

(1 = ).

,

λ0.

,

,

170

: , .

,

.

,

,

I

,

. 22.1.1 sin  

.

ђ

a b a b , cos   , tg  = , ctg  = , c c b a 1 1 , csc   . sec   cos  sin 

sin  

ђ ,

.

.

b b a a , cos   , tg  = , ctg  = . c c a b

,

.

.

,

22.1.2. i. sin 2   cos 2   1 ; ii. 1 + tan2 = sec2  ; iii. 1 + ctg2 = csc2.

a 2  b2 a  b : ) sin   cos          c2 c c 2

2

c2  1 . c2

22.1.3. i. tg  = : tg  =

2

ο

2

cos  sin  ; ii. ctg  = . cos  sin 

a a / c sin  .   b b / c cos 

22.1.4. tg  ctg .= 1. : tg  ctg .= .

a b   1 . b a ,

.

,

.

171

:

I

22.1.5.  +  = 90  sin   cos   tg  = ctg . .

t

22.1.6. sin  

cos  

1 t2

sin  cos  2 2 2 t (1  sin  )  sin  . Ј (1  t 2 ) sin 2   t 2 , t cos   sin  2

2

. 22.1.2.)

(

2

μ ) 7, 24, 25; ђ) 2,8; 4,5; 5,3.

) 5, 12, 13; ) 1,2; 3,5; 3,7; ) cos  = 0,96; 1 ) cos   ; 1 a 2

1  (sin x  cos x) ; cos 2 x 2

(1  t 2 ) cos 2   1

.

2. ) sin  = 0,6; 2a ) sin   2 ; a 1

4.

t = tg  .

,

t 2 cos 2   sin 2  ,

22.1.7. 1. ) 3, 4, 5; ) 2,0; 2,1; 29;

)

1 t 2

t = tg  =

:

3.

1

: )

1  tg 2 ; 1  ctg 2

μ

ђ) ctg  

1 a 2 . a

csc 2   sin 2  ; tg 2  [2tgx; tg2; ctg4]

) ctg2 = cos2 + (ctg   cos )2; 1 ) sec 2   csc 2   . 2 sin   cos 2 

) ctg   sec  = csc  ;

6. ) tg2  sin 2   tg2  sin 2  ;

) tg  = 2,4;

)

μ ) sin215 + cos225 + cos265 + sin275 = 2; ) tg 1  tg 2  tg 3  ...  tg 89 = ctg 45.

5. ) tg  + ctg  = sec   csc  ;

μ

μ )

sin  1  cos   ; 1  cos  sin 

172

)

sin 3 x  cos 3 x  sin x  cos x ; 1  sin x cos x

tg x μ sin x  2 cos x )  5;  3 sin x  4 cos x

:

I

)

1 1  ctg 2 x .  sin 2 x  cos 2 x 1  ctg 2 x

)

 3 sin x  2 cos x  4. 5 sin x  cos x

7.

μ

8. sin x, cos x, tg x ctg x ) 3 sin x + 4 cos x = 5;

) 5 sin x + 12 cos x = 13.

22.2. 30, 45

.

60, 22.2.1.



30

sin  1 2

cos  3 2 2 2 1 2

2 2 3 2

45 60

tg  3 3

:

1

3

:

ABC CD

AC = = h.

ACD,

3a 2 a , h  a   = 4 2 2

2

2

h

a 3 . 2 1 a /2 h = , cos 30  sin 30  a 2 a

=

3 2

tg 30 

1 a/2 = = h 3

3.

ACD

173

:

I

3 a/2 1 h = , cos 60  = a a 2 2 h tg 60 = ,  3. a /2 MNPQ s d, . MNP sin 60 

d  MP =

sin 45 



.

0

s2  s2 = s 2 .

2 2 s s = , cos 45  = d d 2 2

( ,

ђ

1, )

5



tg 45 

s = 1. s

0,001 λ0.

.

22.2.2.



sin  0 1

0 90

cos  1 0

tg  0 

ctg   0

22.2.3.

1. μ 2 2 2 ) cos 30 + sin 45 + ctg 60; sin 60  tg 30 ) ; ctg 45  cos 60

) sin2 60 – cos2 45 + tg2 30; cos 30  ctg 60 ) . tg 45  sin 30 10 cm.

2. 3.

30

. 5

4. 45 5.

6. 7.

60. AC

2 cm.

 +  = 90 sin  + cos  = 1,  < 45,

10 cm.

3, BAC

ABCDE

 .

174

:

I

a) 2sin(45 – ) – 5cos(45 + ) + 1 = 0; ) tg( + 30) = 4 – 3ctg(60 - ).

8.

,     

,



) sin    cos ; 2  2 2

μ

    ) tg     ctg . 2 2 2

22.3. ABCD

a b AD,

P 1 = ab.

1 a P2  ab . 2 CDA a = AD.

, ABC

CDA, a CD = b

ABCD

h

,

P 3 = ah.

DD1C  A1BCD1

,

AA1B,

. ,

AC

ABC  CDA, , ABC ABCD. 1 h P3  ah . 2

, CDA a b

P4 

22.3.1.



a b h. 2

P 

ab sin  . 2

,

h P 4 = mh, a b m 2 . ,

ABCD ABC

.

AC 1 1 ah bh 2 2

ACD

. a

b

C,

175

:

: h = BD CDB.

ђ

 = ACB,

ABC,

22.3.2. (



.

a b c    2r , sin  sin  sin  a, b c :

ABD

, r

P 

: sin  

c 2r

a bc 2

, r

ABC . AD ABD = 90. , ADB = ACB = , c AB , . sin    2r . AD sin  A B P 

22.3.3.

s

b = AC,

)

, 

,

a = BC

, h = asin . ah P  2 ab P  sin  . 2

,

22.3.4.

I

abc , 4r

a, b

,

k(O, r),

.

c .

ab sin  2

(22.3.1.)

(22.3.2.).

P    s ,



.

.

176

: :

k(O, ),

.

P 

I

ABC

ABO, BCO CAO c a  b , 2 2 2

a bc  . 2

22.3.5. ( s

:

a bc 2

)

P  s(s  a )(s  b)(s  c) ,

a, b, c

. ABC

CD p + q = c. h2 = a 2 – q2 = b2 – p2, a 2 – b2 = q2 – p2 = (q – p)(q + p) = (q – p)c. q+ p 2 2 = c, q – p = (a – b )/c, c2  a 2  b2 c2  a 2  b2 , p . q 2c 2c  c 2  a 2  b 2  c2  a 2  b2   =  a  h2 = a 2 – q2 = (a – q)(a + q) =  a  2c 2c   

 2ac  c 2  a 2  b 2 2ac  c 2  a 2  b 2 b 2  (a  c) 2 (a  c) 2  b 2  = =  2c 2c 4c 2 [b  (a  c)][b  (a  c)][(a  c)  b][(a  c)  b] = 4c 2 (b  a  c)(b  a  c)(a  c  b)(a  c  b) 2( s  a )  2( s  c)  2( s  b)  2s = . 2 4c 4c 2 hc 4s( s  a )(s  b)(s  c) hc  2  s(s  a )(s  b)(s  c) . , P  = h2  2 2 c s(s  a )(s  b)(s  c) . 22.3.6.

12

1. 30. 2.

42,

ς

,

ђ 2μ3,

ђ

60.

177

: 3.

12,

ς

4.

.

5. 6.

10

12,

24

10,

7, 24

.

7. )  = 45,  = 60, a = 4;

8.

I 5

3.

45. 13

15.

.

25. μ )  = 30,  = 45, c = 6.

)  = 60, a = 3, b = 2. 3 3 2 [ 2(3  3 ) ; 9( 3  1) ; ] 2

a, b

c

,

.

ς

[2(a 2 + ab + b2)]

a 2  b2 , 4

9. .

[ P 

10.

a

b

a 2  b2 a 2  b2 ab sin  =  sin  =  1, 2ab 4 2 sin  = 1.  = 90 (a – b)2 = 0] ta , tb tc ? 4 [ t (t  t a )(t  t b )(t  t c ) , 2t  t a  t b  t c ] 3

23. ј

њ

,

, .

( i.

,

.

) .

μ

(

). .Ј

. 178

: ii. Ј

(

I .

λ0).

.

. μ i.

,

ђ

ii. iii.

.

.

180,

.

(

).

.

iv.

.

.

. ,

.

,

.

23.1. 1.

ABC.

CD

ABC h ADC :  h = bsin  ( sin   b h  h = asin  . CDB : sin   a a b . bsin  = asin  , .  sin  sin 

ADC

sin(180-) = sin )

ABC

b c .  sin  sin 

А (22.3.2.)

CDB.

:

a b c .   sin  sin  sin 

179

: 2.

,

.

, ABC, BC = 6 cm, A = 44

3.

AC 

C = 45. AB 19 ,  sin 45 sin 25 31,78999 cm, AB  31,8 cm ( ).

sin 59  BC  7,40364 sin 44 .

.

ђ

( ),

(

AC BC ,  sin B sin A

,

AC  7,40 cm (

.

,

sin B 

12  sin 22 9

23.1.7. ABC, BC = 8 cm, A = 46

,

.

B. AB1C

B2, 12 12 9 .   sin B1 sin B2 sin 22

ς

ђ

(&11.).

, ABC, A = 22, BC = 9 cm, AC = 12 cm.

B1

).

AB.

)

,

1.

AC.

B = 25.

A + B + C = 180, , sin 45 AB   19  sin 25 5 , 3

, 6.

B = 59.

, ABC, AC = 19 cm, A = 110

4.

5.

I

,

: B1  30 B = 58.

AB2C, AB1 AB2. ,

B2  150.

AC.

180

:

2.

ABC, AC = 15 cm, A = 105 ABC,

3. 4.

I

B = 31.

AB.

B = 55, BC = 10 cm, AC = 13 cm.

ABC, A = 25, BC = 8 cm, AC = 11 cm.

5. 4742’.

. A =

AC = 26,6 cm .

6.

15,5 cm,

.

ђ

5334’.

23.2. , 1. (

,

.

) a, b, c 2 a = b + c – 2bccos A, b2 = c2 + a 2 – 2cacos B, c2 = a 2 + b2 – 2accos C.

  

2

. ABC,

:

2

. ,

).

(

:

,

ABC,

CD = h – x, x – c.

(

)

AB.

ADC h2 = b2 – x2,

x = AD, , .

DB

c

h2 = a 2 – (x – c)2.

, b2 – x2 = a 2 – (x – c)2  b2 – x2 = a 2 – (x2 – 2cx + c2)  a 2 = b2 + c2 – 2cx.

181

: x = bcos A, . C ο 0, 2.

I

a 2 = b2 + c2 – 2cbcos A. A

B

. .

cos C ο 0,

ABC, BC = 9 cm, AC = 10 cm

.

.

C = 56.

,

,

AB A.

c2 = a 2 + b2 – 2abcos C  c2 = 92 + 102 - 2910cos 56  c = 8,96355 ... . , AB = 8,96 cm 3

c2,

.

b2  c2  a 2 = 0,55416... 2bc A = 56,3, . cos A 

3.

XYZ, Y = 124, XY = 12 cm

YZ = 21,6 cm.

XZ X.

y2 = z2 + x 2 – 2zx cos Y y2 = (12)2 + (21,6)2 -2(12)(21,6)cos 124, y = 30,00742 ... , . XZ = 30,0 cm, 3 .

y 2  z 2  x2 = 0,80242 cos X  2 yz X = 36,6, 0,6 60 X = 3636’.

4.

.

ABC, a = 8, b = 15

.

c = 12, (

10.1.7.).

182

:

I

, cos  

b = 15.

a 2  c2  b2 = -0,08854... . 2ac .

 = 95,

.

5.

4μ5μ6. .

, a, b .

,

c

cos  

, k a = 4k.

4k, 5k 6k

b2  c2  a 2 (5k) 2  (6k) 2  (4k) 2 25  36  16 = = = 0,75. 2bc 60 2(5k)(6k) .  ο 41,40λ62211... , 8 .

Ј 60 , 0,40962211...  60 ο 24,5773266...

60,

. ђ ,1 60 60, . 0,5773266...  60 = 34,639596...  = 41 24’ 35” .

 = 41 24’ 35”

  41 

1. 2.

24 35 = 41,410,  60 60 2

XYZ, Y = 112, XY = 15,4 cm

4.

5. 135.

ABC, a = 9, b = 17

. ,

,

μ

.

23.2.6. ABC, BC = 21 cm, AC = 18 cm

3.

.

C = 62.

AB B.

XZ Z.

YZ = 17 cm.

c = 8,

7μ5μ6. . 32 .

,

ђ

183

:

I [ 16 2  2 , 16 2  2 cm]

ABCD, AB = 6 cm, BC = 7 cm, AD = 12 cm, ABC = 120, ACD = ADC, 3 .

6. 70.

24. Г

ј

24.1. ,

ABC D  AB,

c .

ADC BDC. 1 = ACD c = AB c1 = AD

Њ

 = ACB 2 = DCB, c2 = DB. ђ ,

1 = CDA 2 = BDC. ,

c1 b sin  1  . c2 a sin  2

24.1.1.

a sin  2  . c 2 sin  2

c1 sin  1  b sin  1

: ђ

ђ

sin  1  sin  2 ,

. 24.1.2. T B C.

: A B

C

CD

,

24.1.4.

ACP

C

1 = 2 QBC

sin 1 = sin 2, P

je

c1 = c2 bsin 1 = asin 2, ADC BDC .

, 24.1.3.

:

ABC

Q

. c1 : c2 = b : a. AB

AP  AQ  AC    . BP  BQ  BC 

ABC

2

,

184

:

I

: = , PCQ = .

AP AC  sin   BP BC  sin(   )

ACP = QBC (24.1.1.)

AQ AC  sin(   ) ,  BQ BC  sin 

. 24.1.5.

P 1, P 2, P 3 :

A1A2A3,

A2A3, A3A1, A1A2

P1 A2  P2 A3  P3 A1 sin P1 A1 A2  sin P2 A2 A3  sin P3 A3 A1  . P1 A3  P2 A1  P3 A2 sin P1 A1 A3  sin P2 A2 A1  sin P3 A3 A2 ,

.

:

(24.1.1.) : P1 A2 A1 A2  sin P1 A1 A2  , P1 A3 A1 A3  sin P1 A1 A3 P2 A3 A2 A3  sin P2 A2 A3  P2 A1 A1 A2  sin P2 A2 A1 P3 A1 A A  sin P3 A3 A1  1 3 . P3 A2 A2 A3  sin P3 A3 A2 , . (A1A2A3)

A1)

24.1.6.

, , P1

Q1

A1A2A3.

μ

.

(A2A3) (

A2A3

P1 A2 Q1 A2 sin P1 A1 A2 sin Q1 A1 A2  : : . P1 A3 Q1 A3 sin P1 A1 A3 sin Q1 A1 A3 :

(24.1.1.)

P1 A2 A1 A2  sin   P1 A3 A1 A3  sin(   )

185

:

I

Q1 A2 A1 A2  sin(   ) .  Q1 A3 A1 A3  sin  , P1 A2 Q1 A2 sin(   ) sin  .  : : P1 A3 Q1 A3 sin(   ) sin  . 24.1.7. A, B, C

A’, B’, C’,

AB A' B' OB OB' . : :  AC A' C ' OC OC' : OA'C ' ,

,

(24.1.1.) AB OB  sin   AC OC  sin(   ) A' B' OB' sin  .  A' C ' OC' sin(   ) ђ

OAC

.

24.1.8. A, B, C, D

A’, B’, C’,

D’, A' C ' B' C ' AC BC = . : : A' D' B' D' AD BD

(24.1.6.),

, .

186

: : OB, OA.

BC : BD BC : BD

I

, OAD OBD

(24.1.7.) AC A' C ' OC OC' = = : : AD A' D' OD OD' AC A' C ' B' C ' , = : AD A' D' B' D' A' C ' B' C ' B' C ' AC BC , = . : : A' D' B' D' B' D' AD BD 24.1.9. ,

(

(A, B; C, D) =

. cross-ratio) ( . double ratio), A-B-C-D,

AC BC AC  BD = . : AD BD BC  AD

(24.1.8.)

, 24.1.10.

.

(24.1.8.) .

,

ђ

, .

,

.

A, B, C, D

3, 1 2 . (A, B; C, D) = AC AD 4 6 = = : = 2. ђ , : BC BD 1 3 2 1 CD CB = : = -1. (C, A; D, B) = : 6 3 AD AB (24.1.8.)

,

ς

. 24.1.11.

.

,

ђ

ђ ,

.

, . ,

. ,

.

ђ

187

:

I

! 24.1.12. ђ . 2 3 AC AD 4 = : = . (A, B; C, D) = : 1 2 BC BD 3 , =

ς A, B, C, D,

(A, B; C, D) =

AC AD : BC BD

20 12 5 4 12  8 12  8  4 = =  . , :  8 24 84 4 3 8 12, 8 4 ! , AC AD 12  4 12  4  2 16 6 4 = = = . (A, B; C, D) = : :  4 BC BD 4 18 3 42 , 12, 4 2 !

24.2. .

,

,

.     

,

24.2.1. OAOA’ = r 2. А k(O, r).

А, A’, O .

k(O, r)

A’. k. OA

А.

A’.

, k(O, r) P

Q.

.

.

А PQ 

k OA

A’.

OAOA’ = r , 2

(

) ,

ђ А A’ А

OA’P, PA’A OPA . OP:OA = OA’:OP . ђ

.

24.2.2.

188

: i.

I ,

.

ii.

.

.

,

iii. 24.2.3.

. :

, .

,

B

a B’

O. OA



A,

A’; a A’, OA’B

.

A

OA’B OB’A , r = OA’OA = OB’OB  OA’:OB = OB’:OA A’OB’, A OB’ B’, B. 2

(

,

) .

24.2.4.

ђ ,

,

.

. (A)

(s)

(k). (P Q) (p q). (a)

. , Q, k, a P, Q

B А. ,

24.2.5.

.

P А

s A.

B

!

.

189

: 24.2.5. , .

,

,

15

: XOY R R

, (24.1.9.).

,

.

,P X Y OP R, OXP ORX P, . XYR RP,

I

Q

.

PQ

ARS.

PS

.

, RQ, PRQ

RQ

.

(24.1.3.),

P

,

Q

XY

. 24.2.6.

,

. , QR

Y,

А.

А RP SQ

APQ Z. 24.1.1.

YZ

Y Z

APQ M, ARS N.

MP AP  MQ AQ

NR AR .  NS AS (24.1.1.) MP ZP  sin MZP  MQ ZQ  sin MZQ YQ ZQ  sin YZQ ,  YR ZR  sin YZR ZP SP  sin QSP  ZR SR  sin QSR YR SR  sin PSR .  YQ SQ  sin PSQ

15

ђ

, . (R. Lachlan: An Elementary Treatise on Modern Pure Geometry,1893.).

190

:

MP SP  sin PSR .  MQ SQ  sin QSR M. А.

,

24.1.1.

I

AP SP  sin PSR ,  AQ SQ  sin QSR N.

, MN

24.2.7. . 24.2.8. .

191

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF