Mastering Physics HW 8 Ch 22 - Wave Optics

July 20, 2017 | Author: dreamsmasher | Category: Wavelength, Interference (Wave Propagation), Trigonometric Functions, Diffraction, Waves
Share Embed Donate


Short Description

Mastering Physics HW 8 Ch 22 - Wave Optics: PhET Tutorial: Wave Interference, ± Fringes from Different Interfering Wavel...

Description

HW 8 Ch 22 ­ Wave Optics Due: 11:59pm on Tuesday, November 3, 2015 To understand how points are awarded, read the Grading Policy for this assignment.

A message from your instructor... The answer to Part C is "roughly constant." I am telling you because the graph is hard to see on the simulation.

PhET Tutorial: Wave Interference Learning Goal: To understand the cause of constructive and destructive interference for the double­slit experiment, and to explain how the interference pattern depends on the parameters of the emitted waves. For this tutorial, use the PhET simulation Wave Interference. This simulation allows you to send waves through a variety of barriers and look at the resulting interference patterns.

Start the simulation. When you click the simulation link, you may be asked whether to run, open, or save the file. Choose to run or open it. You can choose between water waves, sound waves, or light. You can adjust the slit width and slit separation using slider bars, and you can put a barrier containing one or two slits in front of the source of the waves. Clicking on Add Detector produces a plot showing the wave amplitude vs. time for the location of the detector, which can be dragged to any location. Feel free to play around with the simulation. When you are done, click Reset All before beginning Part A.

Part A Select the Light tab, with no barrier. Select a wavelength so that the light is red, and adjust the amplitude of the light to the highest setting. Light is a form of electromagnetic wave, containing oscillating electric and magnetic fields. Select Add Detector, which shows how the electric field oscillates in time at the location of the probe. The amplitude of the wave at the location of the probe is equal to the maximum electric field measured.

How does the amplitude of the wave depend on the distance from the source? ANSWER: The amplitude decreases with distance. The amplitude increases with distance. The amplitude is constant.

Correct The amplitude of the electric field decreases with distance from the source. You can also see this by selecting Show Graph. As a result, the intensity of the light, which is proportional to the amplitude squared, also decreases with distance from the source.

Part B Select Show Screen to place a screen on the right edge of the panel. You might also want to select the Plot Intensity graph to see the details more clearly. Which statement best describes how the intensity of the wave depends on position along the screen? ANSWER: The intensity is large near the middle of the screen, then decreases to nearly zero, and then increases again as the distance from thr middle of the screen increases. The intensity is roughly constant. The intensity is a maximum near the middle of the screen (directly to the right of the source) and significantly decreases above and below the middle of the screen.

Correct The light wave spreads out circularly, so the amplitude of the wave simply depends on the distance from the screen to the light source, as we saw in Part A. All locations on the screen are nearly the same distance to the source, so the amplitude is roughly constant. The intensity of the light is proportional to the amplitude squared. Therefore, since the amplitude is nearly constant, so is the intensity.

Part C Now, select a barrier with one slit, and use the Barrier Location slider bar to place it roughly 1295 nm away from the light source (second tick mark on the slider bar). Adjust the slit width (using the slider bar) to roughly 262 nm (first tick mark). Keep the wavelength of the light set to red. Which statement best describes how the intensity of the wave depends on position along the screen? ANSWER:

The intensity is large near the middle of the screen, then decreases to nearly zero, and then increases again as the distance from the middle of the screen increases. The intensity is a maximum near the middle of the screen (directly to the right of the source) and significantly decreases above and below the middle of the screen. The intensity is roughly constant.

Correct Since the slit width is small compared to the wavelength, the light passing through the slit spreads out nearly circularly, so the intensity behaves similarly to when there is no barrier (although the intensity is lower).

Part D Now, select Two Slits and a slit separation of roughly 1750 nm. (Keep the slit widths and barrier location the same as in Part C, and be sure the amplitude is still set to the highest setting). Which statement best describes how the intensity of light on the screen behaves? ANSWER: The intensity is a maximum near the middle of the screen (directly to the right of the source) and significantly decreases above and below the middle of the screen. The intensity is large near the middle of the screen, then decreases to nearly zero, and then increases again as the distance from the middle of the screen increases. The intensity is roughly constant.

Correct Circular waves come out of each of the two slits. However, in contrast to one slit, an interference pattern occurs with two slits, due to the two spherical waves overlapping. This interference pattern has several locations with a high intensity, alternating with locations where the intensity is nearly zero. If you look carefully at the screen, you will see faint red lines, called fringes, where the intensity is relatively large.

Part E In the previous part, you learned about the interference pattern that produces several fringes on the screen. To make the fringes more visible, adjust the wavelength of the light to make the light green. You should see a fringe in the middle of the screen, and several others above and below the middle. Click on Show Graph (near the bottom of the window), and then press the blue pause button (at middle­bottom of the screen). Use the measuring tape to measure the wavelength of the green light (you can measure from crest to crest in the Electric field vs. Position plot). Make a note of this wavelength measurement to use as a reference when we compare two other distances next. Now, measure the distance from the first bright fringe above the middle of the screen to the upper slit. Call this distance r 1 . Next, measure the corresponding distance to the lower slit, r 2 . The distances r 1  and r 2  are shown in the figure for clarity.

How do the distances r 1  and r 2  compare? ANSWER: The difference in the distances is equal to half the wavelength of the wave. The distances are the same. The difference in the distances is equal to a quarter of the wavelength of the wave. The difference in the distances is equal to the wavelength of the wave.

Correct Since the extra distance the wave travels from one of the slits is exactly equal to the wavelength, the crests of one of the waves still meet up with the crests of the other wave, causing constructive interference. As you can confirm, for every location where the amplitude is relatively very large, the difference in the distances is equal to some integer times the wavelength, so that the two waves meet up exactly in phase.

Part F Compare the distances from the first location nearest the middle of the screen where the intensity is nearly zero (dark fringe) to each of the two slits. How do the distances compare?

ANSWER: The distances are the same. The difference in the distances is equal to a quarter of the wavelength of the wave. The difference in the distances is equal to half the wavelength of the wave. The difference in the distances is equal to the wavelength of the wave.

Correct With the difference in the distances equal to half the wavelength, the two waves are exactly out of phase, so a crest of one wave meets up with the trough of the other wave, causing the two waves to add up to nearly zero. This is destructive interference.

Part G How does the distance between consecutive bright fringes depend on the wavelength of the light? ANSWER: The fringes get closer together as the wavelength increases. The spacing of the fringes does not change when the wavelength changes. The fringes get farther apart as wavelength increases.

Correct As you found in Part C, a bright fringe occurs when the difference in the distances to the slits is equal to an integer times the wavelength. If the wavelength increases, this distance must increase, which causes the fringes to move further apart.

Part H

How does the distance between consecutive bright fringes depend on the slit separation? ANSWER: The fringes get closer together as the slit separation increases. The fringes get farther apart as the slit separation increases. The spacing of the fringes does not change when the slit separation changes (just the brightness changes).

Correct For any location except the midpoint on the screen, the difference in the distances to the slits increases as the slit separation increases. Therefore, as the slit separation increases, all fringes move toward the center of the screen in order for the difference in the distances to the two slits to remain constant.

Part I How does the distance between the bright fringes depend on the slit width (for slit widths less than the wavelength of the light)? ANSWER: The spacing of the fringes does not change when the slit width changes. The fringes get closer together as the slit width increases. The fringes get farther apart as the slit width increases.

Correct For slit widths that are small compared to the wavelength, the light wave diffracts through the slit and comes out as a circular wave. Decreasing the slit width simply blocks more light from going through the slit, but doesn’t change the interference pattern.

Part J How does the distance between the bright fringes depend on the amplitude of the wave?

Hint 1. How to approach the problem Does the amplitude of the wave affect the path lengths from the fringes to the slits? Does the amplitude affect the phase of the light or its wavelength? ANSWER:

The fringes get farther apart as the amplitude increases. The spacing of the fringes does not change when the amplitude changes (just the brightness changes). The fringes get closer together as the amplitude increases.

Correct The interference pattern of fringes depends only on the wavelength, the slit separation, and the distance from the slits to the screen. Increasing the amplitude simply makes the fringes brighter. An equation that summarizes the results of the last several questions is Δy = λL/d , where Δy  is the distance between consecutive bright fringes, λ  is the wavelength, L is the distance between the slits, and d  is the distance between the screen and the slits.

Part K Does interference occur when water or sound waves encounter a barrier with two slits? ANSWER: Yes, interference also occurs for both of these types of waves. No, it only occurs for light. Interference also occurs for water waves, but not for sound waves. Interference also occurs for sound waves, but not for water waves.

Correct Interference is a very common phenomenon that can occur with any type of wave.

PhET Interactive Simulations  University of Colorado  http://phet.colorado.edu 

± Fringes from Different Interfering Wavelengths Coherent light with wavelength 608 nm passes through two very narrow slits, and the interference pattern is observed on a screen a distance of 3.00 m from the slits. The first­order bright fringe is a distance of 4.84 mm from the center of the central bright fringe.

Part A For what wavelength of light will the first­order dark fringe (the first dark fringe next to a central maximum) be observed at this same point on the screen? Express your answer in micrometers (not in nanometers).

Hint 1. How to approach the problem

For this problem we can use the wavelength of the first beam of light, as well as the dimensions of the interference pattern that it creates, to determine the separation d  of the two slits. Using this information and the dimensions of the interference pattern of the second beam of light, we can then determine the second beam's wavelength.

Hint 2. Interference pattern equation The equation for the constructive interference fringes from two slits projected on a screen is d sin(θ m ) = mλ

,

where d  is the distance between the two slits, λ is the wavelength of light, and θ m  is the angle between the mth  constructive peak and the centerline. Note that m = 0, ±1, ±2, . . . . For the destructive interference pattern, one can use the equation d sin(θm ) = (m +

1 2

)λ ,

where all the variables are the same as for the case of constructive interference. Using the approximation sin(θ)

≈ tan(θ)

, which is valid for small θ , will be helpful.

Hint 3. Correct order to use for destructive interference You might have some confusion about whether to use m = 0 or m = ±1 for the "first­order" destructive interference fringe. The correct way to look at the situation is to use the main equation for destructive interference, d sin(θ) = (m +

and note that if we use m

= −1

1 2

)λ ,

, we get the same answer as if we use m

= 0

This is due to the fact that we have arbitrarily defined the equation with (m +

 (just with a minus sign). 1 2

)  instead of  (m −

which would also have worked just fine. Since we are looking for the first dark fringe, we can use m and m = −1. Both give the same answer for the magnitude of the angle off the centerline.

1 2

),

= 0

ANSWER: 1.22   μm   

Correct Notice that the answer is twice the first wavelength. This makes sense, because we are dealing with the same point on the screen, so the path difference, given by d sin(θ), is the same for each wavelength. Since the first wavelength λ  experiences constructive interference, the path difference must equal λ . Therefore, for light of wavelength 2λ, this same path difference is exactly half of its wavelength, giving destructive interference.

Double Slit 1 Two lasers are shining on a double slit, with slit separation d . Laser 1 has a wavelength of d/20 , whereas laser 2 has a wavelength of d/15 . The lasers produce separate interference patterns on a screen a distance 5.10 m away from the slits.

Part A Which laser has its first maximum closer to the central maximum?

Hint 1. Path difference The first maximum comes when the path difference between the two slits is equal to one full wavelength. Think about which laser has a smaller wavelength, and recall that the distance from the central maximum is proportional to the path difference. ANSWER: laser 1 laser 2

Correct

Part B What is the distance Δymax−max  between the first maxima (on the same side of the central maximum) of the two patterns? Express your answer in meters.

Hint 1. Find the location of the first maximum for laser 1 The first maximum corresponds to constructive interference, with m = 1 (since the central maximum corresponds to m = 0). Using the small­angle approximation, what is the distance y1  of this maximum from the central maximum for laser 1? Express your answer in meters.

Hint 1. Angle to maxima The angle to the mth maximum is given by d sin(θ) = mλ, where θ  is the angle, d  is the separation between the slits, and λ  is the wavelength of the light.

Hint 2. Distance on screen For a screen that is far from the slits, as in this problem, the distance y on the screen from the central maximum is y = R sin(θ) , where θ  is the angle from the slits to the point on the screen and  R is the distance from the slits to the screen.

ANSWER: y1

 = 

  m  

Hint 2. Find the location of the first maximum for laser 2 Now that you have found the first maximum for laser 1, what is the location y2  of the first maximum for laser 2? Express your answer in meters.

Hint 1. Angle to maxima The angle to the mth maximum is given by d sin(θ) = mλ, where θ  is the angle, d  is the separation between the slits, and λ  is the wavelength of the light.

Hint 2. Distance on screen For a screen that is far from the slits, as in this problem, the distance y on the screen from the central maximum is y = R sin(θ) , where θ  is the angle from the slits to the point on the screen and  R is the distance from the slits to the screen. ANSWER: y

2

 = 

  m  

ANSWER: Δy

max−max

 =  8.54×10−2   m  

Correct

Part C What is the distance Δymax−min  between the second maximum of laser 1 and the third minimum of laser 2, on the same side of the central maximum? Express your answer in meters.

Hint 1. Find the location of the second maximum If the central maximum corresponds to m = 0, then you should be able to figure out what the second maximum corresponds to. Using that, what is the distance y1  to the second maximum of laser 1 from the central maximum? Express your answer in meters.

Hint 1. Angle to maxima The angle to the mth maximum is given by d sin(θ) = mλ, where θ  is the angle, d  is the separation between the slits, and λ  is the wavelength of the light.

Hint 2. Distance on screen For a screen that is far from the slits, as in this problem, the distance y on the screen from the central maximum is y = R sin(θ) , where θ  is the angle from the slits to the point on the screen and  R is the distance from the slits to the screen. ANSWER: y

1

 = 

  m  

Hint 2. Find the m  value of the third minimum The first minimum corresponds to m = 0 (since there is no central minimum). What, then, is the value of  m  for the third minimum? Recall that  m  is always an integer. Express your answer as a whole number. ANSWER: m third minimum

 = 

Hint 3. Find the location of the third minimum Given that m

= 2

, what is the location of the third minimum?

Express your answer in meters.

Hint 1. Difference between the angle to a maximum and a minimum Once you have the value of m, the equation for the angle to a minimum is almost identical to the equation for the angle to a maximum. The only difference is that you use m + 1/2  in place of m if you want to find the location of a minimum instead of a maximum. ANSWER: y third

minimum

 = 

  m  

ANSWER: Δy max−min

 =  0.349   m  

Correct

Double Slit with Reflections A radar tower sends out a signal of wavelength λ . It is x meters tall, and it stands on the edge of the ocean. A weather balloon is released from a boat that is a distance d  out to sea. The balloon floats up to an altitude h. In this problem, assume that the boat and balloon are so far away from the radar tower that the small angle approximation holds.

Part A Due to interference with reflections off the water, certain wavelengths will be weak when they reach the balloon. What is the maximum wavelength λ  that will interfere destructively? Express your answer in terms of h, d , and x.

Hint 1. Small­angle approximation For small angles, sin(θ) ≈ tan(θ) ≈ θ , with θ  measured in radians. Thus, you can find a simple relationship between h and d  and the double­slit equations.

Hint 2. Interference with reflections When light reflects off a surface with a higher index of refraction, the reflected beam gets an extra half­ wavelength phase shift (that is, a phase shift of π). This causes expressions that used to yield interference maxima to yield interference minima!

Hint 3. Double slit approximation Notice that due to the reflection, this problem looks almost like a double slit problem with slit width 2x. Thus, the double slit equations should apply. Note, however, that the red (reflected) beam is in fact reflected off the water (and only appears to come from a second "slit").

ANSWER:

λ

 = 

2hx d

Correct

Part B What is the maximum wavelength λ  that will interfere constructively? Express your answer in terms of h, d , and x. ANSWER:

λ

 = 

4hx d

Correct

Two­Slit Interference As Richard Feynman stated in his book on quantum mechanics, Interference contains the heart and soul of quantum mechanics. In fact, interference is a phenomenon of classical waves, easily perceived with sound or light waves. (It contains the soul of quantum mechanics only after you swallow the preposterous notion that particles in motion are described by a wave equation rather than the laws of Newtonian mechanics.) In this problem, you will look at a classic wave interference problem involving electromagnetic waves. Young's double­ slit experiment provided an irrefutable demonstration of the wave nature of light and is certainly one of the most elegant experiments in physics (because it demonstrates the important concept of interference so simply). For the purposes of this problem, we assume that two long parallel slits extending along the z axis (out of the plane shown in the figure) are separted by a distance d . They are illuminated coherently, that is, in phase, by light with a wavelength λ , for example by a laser beam polarized in the z direction. (Lacking a laser, Young used an intense source diffracted by a slit to produce coherent illumination of his double slits.) The key point is that the electric field far downstream from the slit (e.g., at a large positive x value) is the sum of the electric fields emanating from each of the two slits. Hence, the relative phase of these electric fields at some observation point O determines whether they add in phase (constructively) or out or phase (destructively). To refresh your memory about traveling waves, the electric field E(x, t) that is incident on the double slits from the left is a function of x and t. Let us assume that it has amplitude Elef t . We will also assume a cosine trigonometric function with the arbitrary phase set equal to zero (i.e., at the point x = 0, t = 0  you find that E = Elef t ). Then E(x, t) = E lef t cos [

2π λ

(x − ct)] .

The argument of the cosine function is the phase Φ(x, t) . It can be written as Φ(x, t) = kx − ωt, where ω is the angular frequency (ω = 2πf ) and k  is the wave number defined by k = 2π/λ. The phase increases by 2π each time the distance increases by λ . Moreover, the phase is constant for an observer moving in the positive x direction at the

speed of light, i.e., for whom x

= ct

.

Part A Now consider the electric field observed at a point O that is far from the two slits, say at a distance r  from the midpoint of the segment connecting the slits, at an angle θ  from the x axis. Here, far means that  r ≫ d , a regime sometimes called Fraunhofer diffraction. The critical point is that the distances from the slits to point O are not equal; hence the waves will be out of phase due to the longer distance traveled by the wave from one slit relative to the other. Calculate the phase  Φ lower (O, t)  of the wave from the lower slit that arrives at point O. Express your answer in terms of d , θ , λ , c, r , t, and constants like π.

Hint 1. Definition of phase Recall that the phase Φ(x, t)  of an electromagnetic wave (in air) is given by Φ(x, t) =

2π λ

(x − ct) ,

where λ  is the wavelength and c is the speed of light in air. Note that x is the total distance between the reference point and the point of interest, not just the x component of this distance.

Hint 2. Calculate the extra distance The distance from the lower slit to point O is slightly longer than r . That is, xlower = r + δr . Find this extra distance δr . Be sure to exploit the fact that r ≫ d, which means that the path from the lower slit to point O is essentially parallel to the path from the middle of the slits to point O. Hence all the path difference occurs in the vicinity of the slits. Express your answer in terms of d  and θ .

ANSWER: δr

 = 

Hint 3. Find the phase of the lower wave Find the phase Φ lower (O, t)  of the oscillating electric field that arrives at point O from the lower slit. Express your answer in terms of r , δr , λ , c, t, and constants such as π. ANSWER: Φ lower (O, t)

 = 

ANSWER:

Φ lower (O, t)

 = 

2π λ

(r +

d 2

sin(θ) − ct)

Correct

Part B Now calculate the phase Φ upper (O, t)  of the wave from the upper slit that arrives at point O. Express your answer in terms of d , θ , λ , c, r , t, and constants such as π.

Hint 1. Find the difference in distances The distance from the upper slit to point O is slightly shorter than r . Find the distance δr  by which the path is shorter. Be sure to exploit the fact that r ≫ d. This means that the path from the upper slit to point O is essentially parallel to the path from the middle of the slits to point O. Hence all the path difference occurs in

the vicinity of the slits. Express your answer in terms of d  and θ . ANSWER: δr

 = 

ANSWER:

Φ upper (O, t)

 = 

2π λ

(r −

d 2

sin(θ) − ct)

Correct

In order to make the math as simple as possible, we will define two phases: ϕ=

and δϕ =

Then

2π λ

π λ

(r − ct)

d sin(θ) .

Φ lower = ϕ + δϕ

and Φ upper = ϕ − δϕ

.

Part C Assuming that the maximum amplitude of the field at point O for a wave originating from a single slit positioned midway between the slits is E(r) , now find the magnitude of the combined field E  at O due to the two slits shown in . You may ignore variations in the maximum amplitude and consider only variations in phase of the waves emerging from the slits. Express your answer in terms of E(r) , ϕ , and δϕ .

Hint 1. Find the magnitude of the electric field due to the lower slit What is Elower , the magnitude of the electric field due to the lower slit? Recall that the general form of the magnitude of the electric field is the product of the amplitude and the cosine of the phase. Express your answer in terms of E(r) , ϕ , and δϕ . ANSWER: Elower

 = 

ANSWER: E

 = 

E(r)(cos(ϕ + δϕ) + cos(ϕ − δϕ))

Correct Two equivalent ways of expressing this answer are E = E(r)[cos (ϕ + δϕ) + cos (ϕ − δϕ)]

and E = 2E(r) cos ϕ cos δϕ

.

The reason for this is the identity cos(A + B) + cos(A − B) = 2 cos(A) cos(B)

.

This formula can be obtained by twice applying the standard formula  cos(X + Y ) = cos(X) cos(Y ) − sin(X) sin(Y )  for the cosine of a sum.

Part D The key aspect of two­slit interference is the dependence of the total intensity at point O on the angle θ . Find this intensity I (θ) . The formula for intensity is I =

ϵ 0 c (amplitude of E) 2

Express your answer in terms of Imax , θ , d , and λ , where Imax coded as cos(x)^2.

2

.

= 2ϵ 0 cE(r)

2

. Note: cos2 x  should be

Hint 1. Amplitude of the electric field Recall that E  can be written as the product of the amplitude and the cosine of the phase, where the phase depends on time. In the above expression for E , the cos(ϕ)  term is a function of time, whereas the rest of the variables/functions are not. Therefore, the amplitude of E  is 2E(r) cos(δϕ) . Substitute for δϕ  to find the dependence of I  on θ . ANSWER:

I (θ)

2

 = 

I max (cos((

π λ

)dsin(θ)))

Correct

Part E Two­slit interference is usually observed at small angles, and thus sin(θ)  can be replaced by just θ . In this limit, the important observable is the spacing between successive minima (or maxima) of the interference pattern. Find the angular spacing Δθ  of the interference pattern. Express your answer in terms of d , λ , and any needed constants.

Hint 1. How to approach the problem The intensity has the form I max (cos(

π sin(θ)d λ

2

))

.

Since this depends on a cosine squared, the phase difference between two maxima or minima is π, not 2π, as it would be for a simple cosine function. Thus, to find the angular separation, you must set the difference in phase between two different directions equal to π: (

π sin(θ 2 )d λ

)− (

Note that once you make the substitution sin(θ) expression involving Δθ , where Δθ = θ 2 − θ 1 .

= θ

π sin(θ 1 )d λ

) = π.

 for both phases, you will have a relatively simple

ANSWER: Δθ

 = 

λ d

Correct This is a famous formula: Δθ =

λ d

.

The angular spacing of the interference pattern (in radians) is simply the ratio of the wavelength to the slit separation.

A message from your instructor... The answer to Part D is "1&3 only." It doesn't make a lot of sense. Incandescent bulbs are also going to be mutually incoherent, meaning the phase of each will not be coordinated with the other. But maybe ­ I could see it this way ­

"incoherent" doesn't apply because they are sources that are not making light of a single wavelength, and so comparing the phases doesn't even make sense.

± Understanding Two­Source Interference Learning Goal: To understand the assumptions made by the standard two­source interference equations and to be able to use them in a standard problem. For solving two­source interference problems, there exists a standard set of equations that give the conditions for constructive and destructive interference. These equations are usually derived in the context of Young's double slit experiment, though they may actually be applied to a large number of other situations. The underlying assumptions upon which these equations are based are that two sources of coherent, nearly monochromatic light are available, and that their interference pattern is observed at a distance very large in comparison to the separation of the sources. Monochromatic means that the wavelengths of the waves, which determine color for visible light, are nearly identical. Coherent means that the waves are in phase when they leave the two sources. In Young's experiment, these two sources corresponded to the two slits (hence such phenomena are often called two­ slit interference). Under these assumptions, the conditions for constructive and destructive interference are as follows: for constructive interference d sin θ = mλ

(m = 0, ±1, ±2, …)

,

and for destructive interference d sin θ = (m +

1 2



(m = 0, ±1, ±2, …) ,

where d  is the separation between the two sources, λ  is the wavelength of the light, m is an arbitrary integer, and θ  is the angle between a line perpendicular to the line segment connecting the sources and the line from the midpoint of that segment to the point where the interference is being observed. These equations are often spoken of in terms of visible light, but they are, in fact, valid for any sort of waves, as long as the two sources fit the other criteria given.

Part A Which of the following scenerios fits all of the criteria for the two­source interference equations to be valid? ANSWER:

An observer is standing far away from two red LED signal lights. Light from an incandescent bulb shines onto a screen with a single slit; then the light shines onto a screen with two slits in it and the light from the two slits finally shines onto a far­away screen. An observer stands on a road far away from two neighboring radio towers for different radio stations. Light from an incandescent bulb shines onto a screen with a single slit; then the light shines onto a screen with two slits in it and the light from the two slits finally shines onto a nearby screen. An observer stands on a road that runs five kilometers away from the two synchronized transmitting towers for a radio station.

Correct

Part B Which of the following statements explain why the two­source interference equations are not valid for an observer far away from two red LED signal lights? 1.  not monochromatic sources 2.  incoherent sources 3.  observed from a distance similar to or smaller than the separation between the sources ANSWER: 1 only 2 only 3 only 1 and 2 only 1 and 3 only 2 and 3 only all three

Correct

Part C Why are the two­source interference equations not valid for an observer on a road far away from two neighboring radio towers for different radio stations? 1.  sources emit at different frequencies (i.e., not monochromatic sources) 2.  incoherent sources 3.  observed from a distance similar to or smaller than the separation between the sources ANSWER:

1 only 2 only 3 only 1 and 2 only 1 and 3 only 2 and 3 only all three

Correct

Part D Why are the two­source interference equations not valid for light from an incandescent bulb that shines onto a screen with a single slit, and then the light shines onto a screen with two slits in it and the light from the two slits finally shines onto a nearby screen? 1.  not monochromatic sources 2.  incoherent sources 3.  observed from a distance similar to or smaller than the separation between the sources ANSWER: 1 only 2 only 3 only 1 and 2 only 1 and 3 only 2 and 3 only all three

Correct

Part E Consider a road that runs parallel to the line connecting a pair of radio towers that transmit the same station (assume that their transmissions are synchronized), which has an AM frequency of 1000  kilohertz. If the road is 5 kilometers from the towers and the towers are separated by 400  meters, find the angle θ  to the first point of minimum signal (m = 0). Hint: A frequency of 1000  kilohertz corresponds to a wavelength of 300  meters for radio waves. Express your answer in radians, to two significant figures. ANSWER:

θ

 =  0.38  radians 

Correct Recall that the small­angle approximations only hold for very small angles. This angle is almost too big. If greater than two significant figures of accuracy were needed in this problem, then it would no longer be valid to use the small­angle approximations.

Part F If the angle θ  in the two­source interference equations is small, then using small­angle approximations yields the equation y m

=R

(m+1/2)λ d

, where R is the distance from the sources to the points where they are being

detected (in Young's experiment the screen, in this example the road), and ym  is the distance from the central maximum to the minimum of order m. Use this equation to find the distance from the central maximum to the minimum in the previous part. Express your answer in meters to two significant figures. ANSWER: y

0

 =  1900   m  

Correct

Problem 22.32 Light from a helium­neon laser (λ  = 633 nm) is used to illuminate two narrow slits. The interference pattern is observed on a screen 2.8 m behind the slits. Twelve bright fringes are seen, spanning a distance of 52 mm .

Part A What is the spacing (in mm) between the slits? Express your answer using two significant figures. ANSWER: d

 = 

.409

  mm  

All attempts used; correct answer withheld by instructor

Problem 22.38 A diffraction grating having 520 lines/mm  diffracts visible light at 34.0 ∘ .

Part A What is the light's wavelength? Express your answer with the appropriate units. ANSWER: λ

 =  538 nm

Correct

Problem 22.40 A triple­slit experiment consists of three narrow slits, equally spaced by distance d  and illuminated by light of wavelength λ . Each slit alone produces intensity I1  on the viewing screen at distance L.  Consider a point on the distant viewing screen such that the path­length difference between any two adjacent slits is λ .

Part A What is the intensity at this point? Express your answer in terms of I1 . ANSWER: I

 = 

9I1

Correct

Part B What is the intensity at a point where the path­length difference between any two adjacent slits is λ/2? Express your answer in terms of I1 . ANSWER: I

 = 

I1

Correct

Problem 22.70 The intensity at the central maximum of a double­slit interference pattern is 4I1 . The intensity at the first minimum is zero.

Part A At what fraction of the distance from the central maximum to the first minimum is the intensity I1 ? ANSWER: y/y

1

 =  0.667

Correct

Problem 22.71 Light consisting of two nearly equal wavelengths λ + Δλ  and λ , where Δλ The slit separation of the grating is d .

≪ λ

, is incident on a diffraction grating.

Part A Find the angular separation of these two wavelengths in the mth order.  Express your answer in terms of the given quantities. ANSWER: Δλ

Δθ

 = 

2

√(

d m

) −λ

2

Correct

Part B Sodium atoms emit light at 589.0 nm and 589.6 nm. What is the first­order angular separations (in degrees) of these two wavelengths for a 600 lines/mm  grating? Express your answer using two significant figures. ANSWER: Δθ

 =  2.2×10−2   ∘   

Correct

Part C What is the second­order angular separations (in degrees) of these two wavelengths for a 600 lines/mm  grating? Express your answer using two significant figures.

ANSWER: Δθ

 =  5.8×10−2   ∘   

Correct Score Summary: Your score on this assignment is 102%. You received 7.17 out of a possible total of 9 points, plus 2 points of extra credit.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF