Masinski Elementi I
January 20, 2017 | Author: Rijad Spiljak | Category: N/A
Short Description
Masinski elemnti...
Description
10/13/2014
MAŠINSKI ELEMENTI I R. prof. dr. Adil Muminović
1.MAŠINE I MAŠINSKI ELEMENTI • Mašinstvo je grana tehnike čiji je cilj da što racionalnije iskorištava prirodna sredstva, materije, energije, na osnovu prirodnih zakona, posredstvom mašina omogući čovjeku što bolji život u materijalnom i duhovnom (pogledu) smislu. • Pod mašinom u najširem smislu podrazumijevamo, svaku kombinaciju, posebno oblikovanih, čvrstih tijela, koja igra odredjenu ulogu u procesu iskorištavanja energije. Razlikujemo dva osnovna tipa mašina: • pogonske mašine i • radne mašine. • P Pogonske k mašine ši – imaju i j zadatak d t k da d druge d vidove id energije ij (mehaničku ( h ičk energiju vode, toplotnu energiju pare, kinetičku energiju gasa, električnu, nuklearnu) neprekidno transformišu u mehaničku energiju sposobnu za vršenje mehaničkog rada (motori sa unutrašnjim sagorijevanjem, parne mašine, pneumatski i elektomotori, itd.), uz što manje energetske gubitke.
1
10/13/2014
• Radne mašine – imaju zadatak da obavljaju koristan mehanički rad, koristeći mehaničku energiju dobivenu od pogonske mašine, ili da pretvaraju mehaničku energiju u neki drugi vid energije (mašine, alatke, dizalice, transporteri, pumpe, itd.). • U posebnu grupu spadaju prenosnici, tj. mašine koje služe kao posrednici izmedju pogonskih i radnih mašina, sa zadatkom da mehaničku energiju pogonske mašine prilagode potrebama njenog korištenja u radnoj mašini, promjenom brzine, sile, momenta, smjera, karaktera kretanja i sl. • Pogonske, radne mašine i prenosnici često su uključeni u jednu složenu mašinu, npr. motorno vozilo, alatnu mašinu, itd. • Mašinski dio je elementarni dio mašine koji vrši tačno odredjenu funkciju, zajedno sa drugim osnovnim dijelovima u sastavu jednog podsklopa, sklopa, grupe, podgrupe ili cijele mašine. Mašinski dio se nemože bez razaranja materijala razložti na prostije dijelove (npr. vijak, zakovica, vratilo, itd.).
• Mašinski podsklop je skup dva ili više mašinskih dijelova u jednu cjelinu (npr. kotljajući ležaj, ...) • Mašinska podrupa (grupa) je skup više sklopova (podsklopova) sjedinjenih zajedničkom funkcijom, npr. motor, ... • Ovakvi dijelovi, podsklopovi i sklopovi, a ponekad i mašinske podgrupe i grupe, koje u sastavu niza različitih mašina, vrše odredjene elementarne funkcije nazivaju se mašinski elementi. • Mašinski element može biti predstavljen i samo jednim mašinskim dijelom, npr. opruga, vratilo, ... ali i cijelom mašinskom grupom, npr ležište, npr. ležište spojnica, spojnica itd. itd • U zavisnosti od namjene i funkcije pojedinih mašinskih elemenata proučavaju se najpovoljniji konstruktivni oblici, dimenzije, materijal, način proračuna, stepen tačnosti izrade, kvalitet površine, vodeći računa o mogućnosti izrade i cijeni koštanja.
2
10/13/2014
• Prema principu rada i primjeni za izvršavanje elementarnih funkcija mašinski elementi se mogu razvrstati u sljedeće grupe: 1.
Opšti mašinski elementi sa mehaničkim principom rada: a) elementi za vezu – razdvojiva, razdvojiva nerazdvojiva veza (zakovice, (zakovice klinovi, vijci), b) elementi za akumulaciju energije (opruge), c) elementi za prenos snage (zupčasti parovi, remeni parovi, frikcioni zupčasti navojni prenosnici), d) elementi obrtnih kretanja (vratila, osovine, ležaji i sl.), e) kočnice, kočnice f) postolja, kućice, stubovi i sl., g) elemetni za podmazivanje, h) cijevi, sudovi, ventili, zatvarači, i) elementi za kontrolu i upravljanje.
2. Opšti mašinski elementi sa drugim principima rada: a) pneumatske komponente mašinskog sistema (klipni mehanizmi sa pneumatskim dejstvom, razvodnici, ventili, itd.), b) hidrauličke komponente mašinskog sistema (mehanizam, razvodnici, ventili, spojnice, priključci, pumpe, ), c) električne komponente mašinskog sistema (elektromotori, prekidači, releji, itd.), d) elektronske komponente (elektronska kola, procesori, itd.). 3. Posebni mašinski elementi koji se ugradjuju samo u nekim mašinama: a) klipni mehanizmi (klip, klipnjača, ventil), p , električnogg napona, p , vibracija, j , b)) izolacioni elementi ((od toplote, buke, itd.), c) elementi za kontrolu i regulaciju, d) elementi za oslanjanje mašina. Predmet Mašinski elementi će se baviti najviše problematikom pod tačkom 1.
3
10/13/2014
2. METODIČKO KONSTRUISANJE • Konstruisanje tehničkih sistema, razvilo se iz procesa izrade, u zasebnu i zaokruženu cjelinu, a veze sa proizvodnjom i eksploatacijom novostvorenog proizvoda čini projekat u kome je dat prikaz načina rada i strukture i oblika dijelova izrade, rukovanja, održavanja, itd.
• Konstruisanje mašinskog sistema i danas predstavlja kompleksan proces i odvija se primjenom odgovarajuće metodike, definisanim redosljedom i strukturom operacija. Operacije se izvode na osnovu definisanih tokova, informacija (znanja, podataka) na osnovu donesenih odluka, itd.
• Proces konstuisanja se odvija u IV osnovne faze. 1. Prva faza je koncipiranja idejnog rješenja. Tu se razrješavaju osnovni principi rada buduće konstrukcije, optimizira se princip izvršavanja elementarnih, parcijalnih i opštih funkcija sa konačnim ciljem da se dodje do optimalnog principskog rješenja. 2. Druga faza konstrukcije čini konkretizacija oblika i dimenzija sklopova i dijelova zamišljenih u prvoj fazi. Odabere se materijal, način izrade dijelova, i na bazi proračuna odredjuju se polazne dimenzije, odnosno parametri za definisanje oblika dijelova. 3. U trećoj fazi pristupa se provjeri svih aspekata pravilnog rjašavanja funkcija i to analizom uslova rada, rada sigurnosti, sigurnosti pouzdanosti, pouzdanosti kapaciteta, vibracija, buke, geometrijskih karakteristika dijelova, itd., analiziraju se i uslovi održavanja, izrade i montaže, a sve to ima za cilj verifikaciju datog konstruktivnog rješenja. 4. Četvrta faza obuhvata izradu crteža dijelova.
4
10/13/2014
• Zahtjevi i ograničenja pri konstruisanju obuhvataju: a) Funkciju, koju treba da izvršava buduće konstruktivno rješenje. Definiše se na osnovu izučavanja potreba tržišta, izučenih postojećih konstrukcija za istu svrhu, b) Radna svojstva mašine detektuje se prema potrebnom kvalitetu izvršavanja funkcije, funkcije načinom rukovanja, rukovanja održavanja, održavanja sigurnosti, sigurnosti itd., itd c) Ergonomska svojstva od velikog su značaja ako čovjek rukuje mašinom u toku velikog vremenskog intervala, radi zamora, povreda, itd., d) Spoljni izgled (ovom pitanju se pridaje značaj zbog konkurencije na tržištu) e) Tehnološka svojstva veoma su bitna jer dijelovi mašina se moraju raditi što brže, uz što manje napore i upotrebu specijalne opreme, f) Ekonomska ograničenja se ogledaju u tome da je cilj dobiti proizvod sa što manjim troškovima proizvodnje, g) Uslovi isporuke, transporta, montaže, h) Sklapanje i rasklapanje vrlo su značajni kod onih konstrukcija koje zahtijevaju česte intervencije u toku eksploatacije, npr. zamjene dijelova kod auta, kućanskih aparata.
3. RADNA SPOSOBNOST MAŠINSKIH DIJELOVA • Pri razmatranju radne sposobnosti mašinskih dijelova moraju se uvijek imati u vidu dva stanja mašinskog dijela: a) radno stanje – odgovara predvidjenim radnim uslovima, b) kritično stanje – odgovara granici na kojoj nastaju kritične pojave, koje onesposobljavaju mašinski š dio za ispravan i bezbjedan rad. • Poznavanje fizičkih veličina koje karakterišu oba ova stanja, mašinskog dijela, omogućava uspostavljanje opšteg kriterija radne sposobnosti. Radne karakteristike nikad ne smiju dostići kritične. • Radna sposobnost mašinskih dijelova obuhvata niz pojmova razvrstanih prema odgovarajućim kritičnim pojavama kojima se mašinski dio mora uspješno suprostaviti. Ovdje na prvom mjestu spadaju: čvrstoća, krutost, elastičnost, statička i dinamička stabilnost kao i otpornost prema štetnom zagrijavanju, vibracijama, itd.
5
10/13/2014
3.1 Čvrstoća • Čvrstoća mašinskih dijelova je sposobnost suprostavljanja razaranju, pod dejstvom opterećenja. Pojam razaranja, pored svog osnovnog značenja, obuhvata i sve pojave pukotina, prskotina kao i pojave trajnih promjena oblika i dimenzija mašinskog djela nastalih pod uticajem opterećenja, u radu, bilo naglo ili postepeno. • Prema tome da li postoji opasnost od razaranja mašinskog dijela kao cjeline ili su u opasnosti pojedine njegove konturne površine razlikuje se: a) zapreminska, b) površinska čvrstoća. • Primarni uzrok razaranja mašinskih dijelova je opterećenje definirano intenzitetom pravcem, intenzitetom, pravcem smjerom, smjerom raspodjelom i vremenskim tokom promjene. • Najoštriji kriterijum čvrstoće mašinskih dijelova deformisanjem je stepenom sigurnosti (ν) protiv odredjene kritične pojave, odnosom kritičnog opterećnja prema radnom.
ν= kritično opterećenje / radno opterećenje > 1
3.2 Krutost • Krutost mašinskog dijela je sposobnost suprostavljanja elastičnom deformisanju, pod dejstvom radnog opterećenja. • Krutost igra bitnu ulogu kod vratila i osovine, jer suviše veliki ugibi i nagibi mogu biti štetni kako za dijelove učvršćene na vratilu tako i za dijelove na koje se vratilo oslanja. oslanja • Drugi primjer je alat na mašinama, jer tačnost obrade i kvalitet, direktno zavisi od krutosti dijelova mašine. Kod elektromotora i elektrogeneratora, elastične deformacije vratila mogu smanjiti ili poništiti propisane zazore izmedju pokretnih i nepokrenih dijelova. • Razlikujemo: a)) zapreminsku, i k b) površinsku krutost mašinskog dijela. • Većina dijelova zavisi od zapreminske krutosti (nekad se zahtijeva što manja krutost, odnosno što veća elastičnost, npr. kod elastičnih elemenata kao što su opruge).
6
10/13/2014
3.3 Vibracije i oscilacije • Vibracije mašinskih dijelova su uvijek štetne i smanjuju njihovu radnu sposobnost. Osim toga dovode do pojave buke i do zamora materijala. • Najveća opasnost, od vibracija mašinskih dijelova nastaje, ako se frekvencija promjene spoljašnjih periodično promjenjivih opterećenja, koja izazivaju vibracije, poklopi sa frekvencijom sopstvenih oscilacija cijele mašine ili nekog njenog dijela. Tada dolazi do rezonance, odnosno naglog porasta amplitude deformacija, što dovodi do lomova i razaranja.
3.4 Zagrijavanje • Zagrijavanje može poticati od izvora toplote koji je u vezi sa radnim procesom mašine (toplotne mašine) ili je posljedica trenja mašinskih dijelova u procesu rada. • Prekoračenje j odredjenih j maksimalnih temperatura p mašinskih dijelova j u radu,, može prouzrokovati suviše velike dilatacije i deformacije, koje mogu dovesti do dopunskih opterećenja, do promjene medjusobnih odnosa dijelova u sklopovima, a osim toga mijenjaju se karakteristike čvrstoće i elastičnosti materijala. U cilju odredjivanja temperature mašinskog dijela, u radu, vrše se toplotni proračuni po principu: količina proizvedene toplote mora biti jadnaka količini odvedene topote, u toku rada mašine.
4. RADNO OPTEREĆENJE MAŠINA I MAŠINSKIH DIJELOVA • Za razmatranje radne sposobnosti mašinskih dijelova potrebno je na prvom mjestu, odrediti opterećenja, kojima su oni izloženi u toku rada mašine. Tu se podrazumijeva odredjivanje intenziteta, pravca i smjera radnog opterećenja i njegove promjene u toku vremena kao i raspodjele opterećenja pojedinih mašinskih dijelova. • Opterećenja mašinskih dijelova, predstavljaju u opštem slučaju, prostorne sisteme spoljnih sila i spregova. Ova opterećenja prouzrokovana su: – otporima, koje mašine savladjuju vršeći koristan rad (otpori trenja, otpori vazduha kod vozila, vozila otpori rezanja kod alatnih mašina), mašina) – težinama pojedinih dijelova i korisnim teretima, – pritiscima tečnosti i gasova, – deformacijama, – inercijalnim silama.
7
10/13/2014
• Prema karakteru raspodjele, opterećenja mašinskih dijelova, mogu biti: – zapreminska, – površinska, – linijska, – tačkasta. • Zapreminsko opterećenje, napada sve tačke tijela i u svakoj tački proporcionalno je njegovoj masi, odnosno zapremini (tu spada sopstvena težina, inercijalne sile, magnetne sile, itd.). • Površinsko opterećenje napada sve tačke odredjene konačne površine (ovdje spada pritisak tečnosti ili gasa na zidove suda, kao i uzajamni pritisak dva tijela, na dodirnoj površini). • Linijsko opterećenje napada sve tačke odredjene linije. Praktično, sva se tijela pod uticajem opterećenja deformišu tako da linijsko opterećenje odgovara čisto teoretskom slučaju pri dodirivanju dvaju apsolutno krutih tijela, duž neke linije. • Tačkasto (koncentrisano) opterećenje, djeluje u jednoj tačci, a i ono odgovara čisto teoretskom slučaju, kao i linijsko.
Vrste opterećenja prema karakteru raspodjele: a) zapreminska, b) površinska, c) linijska, d) tačkasta
8
10/13/2014
•
Raspodjela opterećenja može se predstaviti kao stvarna ili uproštena.
• Od aktivnih opterećenja z1 i z2 imamo reaktivna opterećenja u L1 i L2. L1
z1
z2
L2
•
Raspodjela opterećenja (stvarni prikaz)
•
Uprošteno prikazivanje opterećenja
• Pored intenziteta opterećenja, važno je odrediti i njegov pravac i smjer. U tom cilju treba nacrtati i šemu opterećenja odgovarajućeg mašinskog dijela. U šemi opterećenja mašinski dio se predstavlja što je moguće praktičnije, svodeći ga na neki od osnovnih statičkih ili kinematskih elemenata (prosta greda, konzola, štap, klipni mehanizam). • Odredjivanje intenziteta, pravca i smjera, kao i raspodjele opterećenja, predstavlja prvi korak proračunu čvrstoće mašinskog dijela. Sljedeći korak je odredjivanje napadnog opterećenja. Pod napadnim opterećenjem presjeka mašinskog dijela, podrazumijeva se opterećenje, koje posmatrani presjek mašinskog dijela prenosi zahvaljujući čvrstoći materijala. • Napadno opterećenje predstavlja sumu svih spoljašnjih opterećenja, koja djeluju sa jedne strane presjeka redukovanog na težište presjeka. • Najbolji pregled napadnih opterećenja svih presjeka jednog mašinskog dijela dobije se iz statičkog dijagrama (dijagrami momenata savijanja, uvijanja, transferzalnih i aksijalnih sila).
9
10/13/2014
4.1 Promjenjivost radnog opterećenja u zavisnosti od vremena • Razlikujemo principijelno, dva karakteristična slučaja: o statičko (mirno) opterećenje, o dinamičko (promjenljivo) opterećenje. • Statičko opterećenje je opterećenje stalnog pravca i smjera, čiji intenzitet, u toku konačnog vremenskog intervala, raste od nule do konačne veličine, a po tom ostaje konstantno (ovo je sasvim idealan slučaj koji se u praksi ne pojavljuje). • Dinamičko opterećenje je opterećenje koje se u toku vremena mijenja po pravcu, smjeru i intenzitetu. Razlikujemo udarno i bezudarno. • Kod bezudarnog, dinamičkog periodičnog promjenljivog opterećenja, razlikuju se sljedeći slučajevi: o jednosmjerno promjenljivo, o naizmjenično promjenljivo opterećenja.
Vrste opterećenja: a) statičko (mirno) opterećenje, b) jednosmjerno promjenljivo opterećenje, c) čisto jednosmjerno promjenljivo opterećenje, d) naizmjenično promjenljivo opterećenja, e) čisto naizmjenično promjenljivo opterećenja, f) udarno opterećenje
10
10/13/2014
• Dinamičko opterećenje karakterišu sljedeće veličine: o o
Fmax – maksimalna vrijednost promjenljivog opterećenja, Fmin – minimalna veličina promjenljivog opterećenja,
o
Fa – amplitudno opterećenje
o
Fsr – srednje opterećenje
Fa =
Fmax − Fmin 2
Fsr =
Fmax + Fmin 2
• Opterećenja za koja su pojedine mašine a samim tim i njihovi dijelovi predvidjeni da rade normalno, predstavljaju nominalna opterećenja.
• Stvarno opterećenje mašine i njenih dijelova, nije uvijek jednako nominalnom, zato se kao osnova za proračun čvrstoće mašinskih dijelova, uzima mjerodavno opterećenje koje se u većini slučajeva razlikuje od nominalnog opterećenja. • Veličina napona σ, koji izaziva prelom, zavisi od vrste opterećenja ( zatezanje , savijanje , uvijanje , itd. ), od tipa i stepena σ min promjenjivosti naprezanja γ = i od drugih faktora σ max (temperature, trajanja opterećenja, itd.).
11
10/13/2014
5. PONAŠANJE MAŠINSKIH DIJELOVA POD DEJSTVOM STATIČKIH OPTEREĆENJA • Naprezanje je stanje mašinskog dijela koje nastaje dejstvom spoljašnjeg opterećenja, a karakterisano je pojavom deformacija i unutrašnjeg otpora. • Radno opterećenje, koje djeluje na mašinski dio, teži da promjeni njegov oblik i dimenzije, a materijal mašinskog dijela suprostavlja se deformisanju dejstvom unutrašnjih medjumolekularnih sila. • Prema deformacijama koje opterećenje izaziva na mašinskim dijelovima, razlikujemo: o zapreminska k naprezanja: aksijalno k l naprezanje (zatezanje ( ilil pritisak), k) savijanje, smicanje, uvijanje, o kontaktna naprezanja. • Mašinski dijelovi su najčešće izloženi složenim naprezanjima, tj. rijedak je slučaj da opterećenje mašinskog dijela, u njemu izaziva samo jedan vid naprezanja.
• Deformacije mašinskih dijelova mogu biti: o elastične (povratne), o plastične (nepovratne, trajne).
• Najčešće nastaju oba vida deformisanja istovremeno, pa se stoga uvijek računa sa onim vidom deformacija koji u datom slučaju preovladjuje. • Osnovni pojmovi koji karakterišu ponašanje mašinskog dijela, u radu su pored opterećenja i deformacija, deformacija još i krutost, krutost deformacioni rad i napon.
12
10/13/2014
5.1 Deformacioni rad i napon • Deformacioni rad je rad spoljašnjeg opterećenja koji se utroši, da bi se izazvala odredjena deformacija.
Dijagram zatezanja i pritiskivanja
• Napon je veličina koja karakteriše intenzitet unutrašnjih sila, u nekoj tački zamišljenog presjeka mašinskog dijela, kojima se materijal suprostavlja deformisanju. U opštem slučaju napon ima proizvoljan pravac u odnosu na posmatrani presjek. Projekcija napona, na normalu površine presjeka, u posmatranoj tački, prestavlja normalni napon (σ), a j k ij napona na ravan presjeka, j k u iistojj tački čki tangentnii napon ((τ). ) projekcija • Napon na zatezanje: • E – modul elastičnosti, karakteriše ponašanje materijala u oblasti elastičnosti i proporcionalnosti (npr. svi čelici imaju približno isti modul ); elastičnosti); • σT, σV – granica razvlačenja, u praktičnoj primjeni, služi kao mjerilo nazivnog napona, na prelasku elastičnih u plastične doformacije; • σM – najveći nazivni napon, koji nastaje u materijalu, u toku ispitivanja zatezanja i odgovara početku kidanja epruvete – zatezna čvrstoća;
13
10/13/2014
•
‐ u sklopu napona na pritisak veže se i pojam napona na izvijanje.
• Kritični napon izvijanja (σK) odredjuje se analitički i to ako izvijanje dolazi prije granice proporcionalnosti po Ojleru (Euler), (Euler) a ako dolazi poslije granice po Tetmajeru, u zavisnosti od vitkosti štapa λ, prema obrascima iz otpornosti materijala. • Savijanje
– MS – moment savijanja – Wx,y – aksijalni otporni moment
• Smicanje: – F – sila – A – površina smicanja • Uvijanje: – Mu – moment uvijanja – W0 – polarni, otporni moment • Složeni napon se dobija iz relacije: Složeni napon se dobija iz relacije:
– σ i τ ‐ su karakteristične vrijednosti napona, a najčešće se uzimaju dozvoljeni naponi (npr. dozvoljeni naponi na istezanje i smicanje).
14
10/13/2014
• Kontaktna naprezanja nastaju na dodirnim površinama, dvaju mašinskih dijelova, koja su pritisnuta nekom silom. Razlikujemo dva vida kontaktnih naprezanja: a) dva mašinska dijela, dodiruju se po konačnim površinama u neopterećenom kao i opterećenom stanju;
b) dva mašinska dijela, dodiruju se u jednoj tački (a) ili duž jedne linije (b) u neopterećenom stanju, stanju a u opterećenom stanju dodiruju se u jednoj maloj površini.
a) dodir dvije kugle u tački
b) dodir dva cilindra po liniji
• U idealnom slučaju, površinski pritisak ravnomjerno je rasporedjen po dodirnoj površini „A“, pa je : • Ako se dva tijela dodiruju po cilindričnim, koničnim ili drugim krivim površinama, o rasporedu površinskog pritiska postoji nekoliko hipoteza. U praksi se najčešće primjenjuje hipoteza po kojoj je: • I hipoteza ‐ površinski pritisak ravnomjerno rasporedjen po djelu dodirne površine nasuprot spoljašnjoj sili.
• površinski pritisak Srednji površinski pritisak j p p
15
10/13/2014
• II hipoteza ‐ pretpostavlja, raspodjelu površinskog pritiska prema sinusnom zakonu.
Maksimalna vrijednost površinskog pritiska
• Primjer 1. ‐ slučaj kontakta između dvije elastične kugle Na osnovu teorije elastičnosti izračunava se: ‐ Poluprečnik dodirnog kruga p g g
‐ Ekvivalentni poluprečnik zakrivljenja
‐ Ekvivalentni modul elastičnosti
a) Bez opterećenja , b) pod opterećenjem
16
10/13/2014
• Srednj površinski pritisak na dodirnim površinama
• Površinski pritisak u nekoj tački • Ukupna sila pritiska
• Najveći površinski pritisak
• Primjer 2. ‐ slučaj kontakta između dva cilindra
a) Bez opterećenja
b) pod opterećenjem 2e – širina kontaktne površine
17
10/13/2014
• Srednji površinski pritisak na dodirnim površinama
• Površinski pritisak u nekoj tački
• Ukupna sila pritiska
• Najveći površinski pritisak
6. PONAŠANJE MAŠINSKIH DIJELOVA POD DEJSTVOM DINAMIČKIH OPTEREĆENJA • Naponi i deformacije odredjuju se na isti način kao i u slučaju dejstva statičkog opterećenja, s tim da se mora voditi računa o karakterističnim vrijednostima u toku jednog ciklusa: najveći (gornji) napon σmax(τmax), najmanji (donji) napon σmin(τmin), srednji napon σsr(τsr) i amplitudni napon σa(τa), analogno odgovarajućim vrijednostima opterećenja. • Osnovne karakteristike promjenljivog naprezanja su ekstremni naponi σmax i σmin, odnosno τmax i τmin, pomoću kojih se mogu odrediti ostale značajne karakteristike promjenljivog naprezanja:
18
10/13/2014
• Uslovi razaranja mašinskih dijelova usljed dejstva dinamičkih opterećenja bitno se razlikuju od uslova razaranja usljed statičkih opterećenja. • Pojava postepenog razaranja materijala mašinskog dijela, usljed dugotrajnog dejstva periodično promjenjivih opterećenja, naziva se j usljed j zamora ili zamaranje j materijala. j razaranje • Statička analiza različitih lomova, mašinskih dijelova pokazuje da oko 80% svih lomova nastaje kao posljedica zamaranja materijala. • Za razliku od razaranja pri statičkim opterećenjima, sva razaranja usljed zamora materijala nastaju bez prethodnog plastičnog deformisanja. Proces zamaranja počinje uvijek malom prskotinom, koju je veoma prskotine naročito opasne p na mjestima j promjene p j teško otkriti. Ove su p presjeka, a pogotovo ako na istom mjestu gdje imamo najveće nazivne napone. • Pod uticajem periodično promjenjivog opterećenja, ova prskotina pokazuje tendenciju širenja, tako da ona postaje veoma veliki izvor koncentracije napona što ubrzava proces postepenog razaranja. Postoji više hipoteza o mehanizmu širenja prskotina.
• Prema jednoj širenje prskotine nastaje usljed rastresanja kristala, čime se kohezija izmedju pojedinih kristalnih djelića smanjuje. • Na prelomnoj površini mogu se uočiti tri zone: I ‐ početak preloma, II ‐ širenje preloma u toku zamora i III ‐ završna prelomna površina. • Tipičan izgled površine preloma, po kojoj je nastalo zapreminsko razaranje, j usljed lj d zamora pokazuje k j dvije d ij jasno j dif diferencirane i zone: o zone razaranja usljed zamora (II), sitnozrnaste strukture sa skoro glatkom površinom; o zone statičkog preloma (III).
Dinamički prelom: a) izgled preloma epruvete, b) izgled prelomne površine pri jednosmjerno promjenljivom opterećenju, c) izgled prelomne površine pri naizmjenično promjenljivom opterećenju
19
10/13/2014
6.1 Kriva zamaranja WOHLER (Velerova) • S obzirom na pojave u materijalu, koje prethode razaranju usljed zamaranja, kriva je zavisnost broja promjena opterećenja do trenutka razaranja, od odgovarjaućih najvećih vrijednosti periodično promjenjivog napona. Ova se zavisnost odredjuje eksperimentalno, dinamičkim ispitivanjem epruveta ili mašinskih dijelova na posebnim mašinama, pulzatorima. Epruvete konstrukcije presjeka, prečnika 7‐10 mm, fino obradjene površine, izlažu se periodično promjenjivim opterećenjima do pojave vidljivog loma ili pukotine. • Za jednu seriju ispitivanja, zadržava se srednje opterećenje konstantno, a amplitudno opterećenje se smanjuje stepenasto, od jedne epruvete do druge i registruje broj ciklusa (N) pri kome je došlo do loma svake epruvete. Sve ovo se nanosi na dijagram N ‐ σ (slika a). • Velerova kriva može se prikazati i u logaritamskoj skali (slika b). Iz eksperimentalno odredjene krive zamaranja može se dobiti jednačina lijeve grane u opštem slučaju.
b) Logaritamska skala
a) Dijagram N ‐ σ
Slika: Kriva zamaranja
σD(τD) – dinamička čvrstoća ili dinamička izdržljivost ND – granični broj ciklusa. Ovaj broj ciklusa zavisi od vrste materijala, pa je za konstrukcione čelike ND = 10 ∙ 106, a za ostale čelike i obojene materijale ND = 100 ∙ 106.
20
10/13/2014
6.2 Dijagram izdržljivosti • Izdržljivost materijala σD (τD), za svaku vrstu naprezanja i za svaki tip promjenjivosti naprezanja, može se izraziti kao:
σD = σsr ± σA odn. τD = τsr ± τA gdje je: σsr (τsr) – srednji napon, σA (τA) – amplituda izdržljivosti materijala • Sa σA(τA) obilježava se amplituda izdržljivosti materijala, kao izraz izdržljivosti materijala, a sa σa(τa) amplituda napona, kojem je epruveta izložena, i koji ne može biti veći od amplitude koju materijal može izdržati: σA ≥ σa, odnosno τA ≥ τa. • Za praktičnu primjenu, pregledni su različiti dijagrami izdržljivosti, od kojih su se udomaćili Smitov i Haigh‐ov (Hejgov) dijagram. Kao podloge za izradu dijagrama izdržljivosti služe Velerove krive, do kojih se dolazi ispitivanjem izdržljivosti materijala, na odredjenom broju epruveta (6‐10). Velerove krive, odredjuju se za različite vrste naprezanja (zatezni pritisak, savijanje, uvijanje) i različite tipove promjenjivosti naprezanja.
Smitov dijagram
21
10/13/2014
• ABCDE – granica najvećih napona zatezanja, koje materijal može trajno izdržati, pri odredjenom srednjem naponu zatezanja; • A1, B1, C1, D1, E 1 – granična linija najmanjeg napona; • σW – dinamička izdržljivost pri čisto naizmjeničnom promjenljivom opterećenju; p j • CC1 = σJ– dinamička izdržljivost, pri čisto jednosmjerno promjenjivom opterećenju . • Linija CC1 dijeli Smitov dijagram na dva dijela: – lijevi dio dijagrama je dijagram naizmjenično promjenjivog opterećenja, – desni dio je dijagram jednosmjerno promjenjivog opterećenja. opterećenja • Smitov dijagram se čita samo za oblasti zatezanja, a za oblast pritiska uzima se kao i za oblasti istezanja, i to samo za čelike. Materijali bolje podnose pritisak nego istezanje, pa je tačka E u oblasti pritiska nešto udaljenija, nego za oblast istezanja.
• Smitov dijagram se crta i uprošteno tako da se linije ACDF i A1, C1, D1 crtaju kao prave linije.
• Materijal najbolje podnosi naprezanje na savijanje, zatim zatezanje, pa uvijanje.
22
10/13/2014
Hejgov dijagram dinamičke izdržljivosti
Uprošteni Hejgov dijagram dinamičke izdržljivosti
I – područje naizmjenično promjenjivog naprezanja i II – područje jednosmjerno promjenjivog naprezanja.
23
10/13/2014
7. KONCENTRACIJA NAPONA
• Nominalni napon, zategnutog pljosnatog štapa, sa otvorom u sredini, iznosi: o
u presjeku I
o
u presjeku II
• I teoretska i eksperimentalna istraživanja su pokazala, da se nominalni naponi razlikuju od stvarnih napona, na mjestima na kojima se presjek mijenja, i to utoliko više ukoliko su promjene presjeka jače. Na takvim mjestima dolazi do nagomilavanja, odnosno zgušnjavanja naponskih linija. Ova pojava je poznata pod nazivom „koncentracija napona“. • Izvor najjače koncentracije napona, napona leži na mjestu koje najviše remeti pravilnost kontinualnog oblika elementa. To se mjesto nalazi na ivicama otvora, u najslabijem presjeku II štapa, koji je prikazan na slici. • Na tom je mjestu stvarni naponi najveći, a obilježava se sa σmax . Od tog mjesta naponi se u poprečnom presjeku naglo smanjuju u vlaknima koja se nalaze u blizini otvora pa, zatim blago, da bi na ivici štapa napon postao čak manji od nominalnog napona σn . • Količnik, najvećeg stvarnog napona (σmax) i nominalnog napona (σn) zove se geometrijski faktor koncentracije napona αK i iznosi:
24
10/13/2014
• Faktor koncentracije napona, αK zavisi od geometrije mašinskog dijela, a vrijednosti za αK se daju analitički, tabelarno, dijagramski, itd. Najčešće se daju dijagramski. • Elementi mašina gotovo uvijek imaju geometrijski oblik, promjenjivog presjeka. To su oblici sa stepenastim prelazima, sa otvorima, sa spoljašnjim žljebovima i za njih, njih u literaturi, literaturi ima najviše podataka o koncentraciji napona. a) Oblici sa stepenastim prelazima • Elementi mašina često imaju ovaj oblik, npr. vratilo, osovine, osovinice, vretena, zavrtnji, itd. Oblik štapa može biti prizmatičan ili kružni. Stvarni napon
Geometrijski faktor koncentracije napona αK≥1 (teoretski =1) i funkcija je geometrijskih veličina.
Raspodjela stvarnih napona za različite vrste naprezanja
25
10/13/2014
a) Oblici sa spoljašnjim žljebovima
Zatezanje
Savijanje
Okrugao element
Pljosnat element
Raspodjela stvarnih napona za različite vrste naprezanja
Zatezanje
Savijanje
Uvijanje
26
10/13/2014
a) Oblici sa otvorima
Zatezanje
Raspodjela napona
7.1 Višestruka koncentracija napona • Elementi mašina, mogu imati dva ili više izvora koncentracija napona. Poremećaji u naponskom stanju, koje izaziva jedan izvor koncentracije napona, mogu uticati na poremećaje u naponskom stanju, koje izaziva susjedni izvor, kada su izvori koncentracije napona relativno malo udaljeni jedan od drugog. U slučaju da su znatno medjusobno udaljeni nema medjusobnog uticaja. uticaja • To znači da, veći broj izvora koncentracije napona neće prouzrokovati promjenu najvećeg stvarnog napona, kada je poremećeno naponsko polje izvan domašaja drugog poremećenog naponskog polja. • Kada je jedan izvor koncentarcije napona blizu drugog, ukupna rezultanta koncentracije napona, može biti jača ili slabija od koncentracije napona koja bi poticala samo od jednog izvora. izvora
• U prvom slučaju, posljedice istovremenog uticaja dvaju izvora koncentracije napona su štetne i tada se govori o izvorima ili zarezima preopterećenja. U drugom slučaju su posljedice korisne po naponskom stanju i tada je riječ o izvorima ili zarezima rasterećenja.
27
10/13/2014
Zarezi rasterećenja j
σmaxM > σmaxN Dijagram nominalnih i stvarnih napona i skretanje naponskih linija u zategnutom štapu sa jednim zarezom (gornja varijanta M) i sa tri zareza (donja varijanta N)
7.2 Uticaji na dinamičku izdržljivost • Na dinamičku izdržljivost elemenata, utiče više faktora: o o o o o o o
uticaj kvaliteta površine, uticaj veličine presjeka, uticaj koncentracije napona, uticaj temperature, uticaj frekvencije, uticaj pravca vlakana, uticaj mehaničke i termičke obrade.
• Svi ovi uticaji obuhvaćeni su jednim faktorom ξ koji je: ξ = ξ1 . ξ2 . ξ3 . ξ4 . ....
• ξ1 – uticaj kvaliteta površine. Ukoliko je površina elemenata hrapavija, utoliko mu je izdržljviost manja, a to je zbog toga što neravnine čine niz sitnih spoljašnjih izvora koncentracije napona. Uobičajeno je da je ξ1 ≤ 1, a može se desiti da kod izuzetno kvalitetnih površina ξ bude > 1. Vrijednosti za ξ1, date su tabelarno ili dijagramski.
28
10/13/2014
• ξ2 – faktor veličine presjeka. Došlo se do saznanja, da su elementi većeg presjeka, izloženi savijanju ili uvijanju imaju relativno manju izdržljivost od elemenata manjeg presjeka. To se objašnjava na sljedeći način. Najjače napregnuta vlakna pružaju izvjesnu zaštitu susjednim, manje napregnutim vlaknima, kočeći deformisanje utoliko efikasnije ukoliko je element tanji: o tanji elementi imaju homogeniji sastav materijala, pa su procesi zamaranja usporeniji, o tanji elementi, imaju relativno manje neispravnih mjesta (šupljina, grumenja, itd.). • Vrijednosti za ξ2 daju se dijagramski. dijagramski Uticaj faktora ξ2, kod zatezanja, zatezanja nije definisan, pa se podaci odnose uglavnom za savijanje i uvijanje. To znači da je ξ2 za zatezanje = 1.
• ξ3 – faktor uticaja koncentracije napona. Pri promjenjivom naprezanju, uticaj koncentracije napona ne dolazi do punog izražaja, tj. posljedice uticaja koncentracije napona, najčešće nisu toliko teške, koliko bi to odgovaralo stvarnom naponu, već su nešto blaže. Ovaj uticaj, se obuhvata sa βK koji se zove efektivni faktor koncentracije napona βK < αK. • O Ova pojava j se objašnjava bj š j strukturom k materijala, ij l jer j svaki ki materijal, ij l ne reaguje jednako na koncenatraciju napona (npr. liveno gvoždje je vrlo malo osjetljivo na koncentraciju napona, dok je sasvim druga situacija kada je u pitanju čelik). Prema tome, osjetljivost materijala na koncentraciju uglavnom zavisi od njegove strukture, ali i od oblika elementa.
• Kao mjerilo osjetljivosti materijala uveden je pojam osjetljivosti materijala na koncentraciju napona ηK koji se računa po izrazu:
29
10/13/2014
• Veličina stepena ηK nalazi se uglavnom u granicama 0 ≤ ηK d. Za nazivni (nominalni) prečnik uzima se spoljni prečnik D(d).
12.1 Vrste navija Metrički navoj • Metrički profilom ši mašinstvu spojeve. metričkog trougao.
navoj sa trouglastim ISO ima najširu primjenu u k j za nepokretne navojne Oblik teoretskog profila navoja je jednakostranični
• Ugao profila naovja je α=60°. • Teoretska dubina navoja H:
• h1= 0,6134∙P – dubina spoja navoja • H1= 0,5412∙P – dubina nošenja navojnog spoja
Metrički navoj
79
10/13/2014
• d2 – srednji prečnik navoja,
• Standardom su obuhvaćene tri prioritete označavanja navoja. U l Uglavnom se koristi k i ti prvii prioritet. i it t Postoje P t j odgovarajuće d j ć tabele t b l iz i kojih k jih možemo odrediti sve potrebne veličine metričkog navoja. Metrički navoj se obilježava oznakom “M” (npr M64) gdje je 64 nazivni prečnik ili nominalni korak i on je načešće u primjeni. • Navoj sitnog koraka upotrebljava se u slučaju kada je potrebno što manje slabljenje elemenata navojnog spoja, kada se traži veća sigurnost od samoodvrtanja navoja, kada je mala dužina dodira navojnog spoja, itd. Za nazivne prečnike 70mm i veće izrađuju se samo navoji sitnog koraka.
Vitvortov navoj • Vitvortovi navoji imaju trouglast profil, sa uglom profila od α=55°, a dimenzije su izrađene u colovnom sistemu mjera. Stvarni profil je zaobljen pri vrhu i pri dnu. • Poluprečnik zaobljenja je R=0,13733∙P. • Dubina nošenja vanjiskog spoja je
• Postoji Virtvortova normalna zavojnica, j navoj.j Vitvortov sitni navojj i Vitvortov cijevni • Primjena Virtvortovog navoja je ograničena i treba uvijek preferirati metrički navoj. Vitvortov cijevni navoj iskljucivo se upotrebljava u vodovodnim instalacijama.
80
10/13/2014
Trapezni navoj • Trapezni navoj ima teoretski profil, ravnokraki trougao sa uglom od α=30°. • St Stvarnii profil fil navoja j ima i oblik blik trapeza t sa zaobljenjem pri dnu navoja. Trapezni navoji mogu biti normalnog, sitnog i krupnog koraka, a primjenjuju se za pokretljive navojne spojeve, naručito za one koji su dvojsmejrno opterećeni.
Kosi navoj • Teoretski profil mu je u obliku pravouglog trougla sa uglom profila od α=30°. Stvarni profil je nesimetričan tako da je jedan bočni α=30° a drugi α=3 α=3°. Kod kosog navoja ugao α=30 mora postojati na više nagnutoj strani aksijalni zazor od 0,2 mm. • Kosi navoj može biti normalnog, sitnog i krupnog koraka, s tim što za normalni kosi navoj nisu predviđeni koraci manji od 5 mm, zazor Z1 iznosi 0 a zazor Z2 zavisi od prečnika navoja. Kosi navoji upotrebljavaju se za pokretne navojne spojeve u onim slučajevima kada opterećenje djeluje samo u jednom smjeru.
81
10/13/2014
Obli navoj • Obli navoj je dvostruki navoj, čiji teoretski profil ima oblik ravnokrakog trougla. Teoretski ugao profila je α=30°. • Stvarni profil je zaobljen i skraćen tako da zaobljenje spoljašnjeg i unutrašnjeg navoja kontinuirano prelaze jedan u drugi. • Zbog male dubine nošenja navojnog spoja obli navoji se ne mogu upotrijebiti za veće opterećenje. Pogodan je za neporektne veze, izložene prašini i prljavštini. Kao i u onim slučajevima kada način izrade ne dozvoljava primjenu metričkog navoja (livenje, presovanje itd.) • Pored navedenih primjenjuju se i druge vrste (oblici) navoja i zavojnica kao što su npr.: Edisonov navoj, obli navoj krupnog koraka za željeznička vozila, itd.
12.2 Označavanje navoja • Metrički navoj:
M80
• Metrički fini navoj: M24x1,5 • Vitvortov navoj:
2’’
• Vitvortov fini navoj: j 2 1/2’’ / x 1/6 / ‘’ (nazivni prečnik 2 1/2’’, korak 1/6’’). • Vitvortov cijevni navoj: R2’’ • Trapezni navoj: Tr 48x8 (48 je nazivni prečnik a 8 korak navoja). • Kosi navoj:
S70x10
• Obli navoj: j
Rd 44x7 44 7
• Ako su navoji viševojni onda se to mora naznačiti u zagradi pored oznake za navoj, npr. Tr 48x16 (2‐vojni).
82
10/13/2014
Primjeri označavanja navoja na crtežima a) Metrički krupni i fini navoj
b) Metrički lijevi navoj
c) Metrički navoj u rupi
c) Metrički navoj u otvoru
a) Trapezni navoj
b) Vitvortov navoj
d) Obli navoj
c) Cijevni navoj
83
10/13/2014
12.3 Sile u navojnom spoju • Posmatrajmo kretanje navrtke po vijku, koja je opterećena uzdužnom silom Fa. Ovo kretanje možemo uopšteno prikazati kao kretanje po strmoj ravni nagiba ϕ.
Kretanje navrtke po vijku
Slika kretanja po strmoj ravni
• Teoretski, kada ne bi bilo trenja, sila potrebna za podizanje tereta, uz ravan, može se izračuanti iz jednačine za rad, koji istovremeno vrše sile Fo i Fa.
• U stvarnosti, pri kretanju navrtke po vijku između navoja stvara se trenje. Otpor koji potiče od trenja iznosi • Ugao trenja ϕ, koji odgovara sili trenja Fμ iznosi:
• Sile
i
možemo složiti u rezultantnu silu:
84
10/13/2014
•
Ugao rezultujuće sile je (ϕ+ρ), zato možemo postaviti jednačine ravnoteže između aktivnih sila Fo i Fa i rezultujućeg otpora :
•
U slučaju odvrtanja navrtke (spuštanje tereta po strmoj ravni), rezultirajući otpor djelovat će pod uglom (ϕ ‐ρ), pa će obimna sila Fo biti: biti
• Da bi se onemogućilo odvrtanje navrtke, pod dejstvom sile Fa mora ugao zavojnice biti manji ili najviše isti uglu trenja. • Vijci kod kojih je ϕ ≤ ρ zovu se samokočivi vijci.
• Prethodna izlaganja vezana za proračun navoja su se odnosila na navoj sa prvouglim profilom. Za trouglasti profil čija je aktivna strana nagnuta prema uzdužnoj osi, za polovinom ugla profila (α) tj. za α/2 nominalna sila na truglastom navoju iznosi:
‐ izaziva otpor protiv klizanja
Normalne sile u navoju
85
10/13/2014
•
Za trouglaste navoje µ’>µ pa je ugao trenja ρ’>ρ, a obimna sila, pri pritezanju navrtke:
• Za različite uglove profila navoja biće različiti koeficjenti trenja: o
o o o
za metrički navoj: za Vitvortov navoj: za trapezni navoj: za kosi navoj:
µ’=1,13*µ, µ’=1,035*µ, µ’≈µ,
• Vidi se da su kosi i trapezni navoji pogodni za pokretljive veze, dok je metrički i Vitvortov navoj pogodan za čvrste veze.
•
Moment sile potreban za kretanje navrtke iznosi: o pravougli navoj:
o
trouglasti navoj:
• Pri pritezanju navrtke moramo još savladati i moment otpora trenja između navrtke i podloge, koji iznosi:
gdje je: o dsr ‐ srednji dodirni prečnik navrtke o µ ‐ koeficjent j trenja j između navrtke i p podloge. g • Ukupni moment, prema gore navedenom iznosi:
• U praksi se obično ukupni moment pritezanja dobije na način da se Mu1 poveća za 50% a za koeficjent trenja uzima se µ=0,2.
86
10/13/2014
12.3 Stepen iskorištenja navojnog spoja • Stepen iskorištenja predstavlja odnos rada koji bi bio potreban za pritezanje navrtke kada između navoja navrtke i vijka nema trenja i rada potrebnog za pritezanje navrtke sa trenjem. • Rad je proizvod sile i puta a pošto je pređeni put u oba slučaja isti imamo: o
stepen iskorištenja navojnog spoja za kvadratni navoj:
o
za trouglasti navoj stepen iskorištenja iznosi:
12.3 Opterećenje navoja • Navojni spoj opterećen je uzdužnom silom Fa pa je navoj vijka i navrtke izložen savijanju, smicanju i površinskom pritisku.
• Ako se uzme u obzir da je presjek na 0,9*P (prema slici), najviše izložen smicanju, onda je mjerodavan moment savijanja:
87
10/13/2014
• Otporni moment presjeka je: pa je • Naprezanje na savijanje:
gdje je z – broj aktivnih zavojaka navoja. •
Naprezanje na smicanje iznosi:
• Naprezanje navoja navrtke manje je od naprezanja navoja vijka, jer je kod navrtke veći otporni moment presjeka navoja.
• Složeno naprezanje u navoju vijka iznosi:
o
korektivni faktor α iznosi:
o
Obično se uzima da je
• Napon u jezgru vijka pod dejstvom uzdužne sile iznosi:
88
10/13/2014
• Ako želimo da nam naprezanja u jezgru i navoju vijka budu jednaka pišemo da je:
• Zbog neravnomjernog nalijeganja pojedinih navoja i radi sigurnosti, usvaja se visina čelične navrtke:
• Kada vijak i navrtka nisu od istog materijala visinu navrtke treba odrediti iz uslova da njeni navoji treba da prime istu uzdužnu silu kao i navoji vijka, iz jednačina za savijanje u navojima vijka i navojima navrtke možemo odrediti visinu navrtke:
• Osim gore navedenog navojni spoj se obavezno provjerava i na površinski pritisak. Kod metričkog navoja ovaj pritisak iznosi:
• pdoz – određuje se iz tablica površinskog pritiska za dati materijal.
89
10/13/2014
• Pojedini navoji nisu podjednako opterećeni tj. prvi navoji u pravcu opterećenja najviše su opterećeni, iz toga razloga potrebno je poduzeti odgovarajuće korake za rasterećenje prvih navoja.
N Neravnomjernog opterećenja navoja j t ć j j • Jedno od rješenja za rasterećenje prvih navoja je da se na prvim navojima napravi nešto veći konus.
12. 4 Materijal za vijke i navrtke • Materijal vijaka i navrtki je uglavnom čelik sa raznim svojstvima čvrstoće i zatezanja. Kvalitet čelika za vijke označava se sa dva broja (npr. 5.8, 6.8, 8.8). Prvi broj u oznaci pomnožen sa sto daje nam jačinu materijala na kidanje σM, dok brojevi pomnoženi između sebe i pomnoženi sa 10 daju nam granicu razvlačenja materijala σv. • Za manja opterećenja korsite se vijci od mesinga, a rjeđe od legure aluminijuma, s tim da postoji opasnost od korozije kod vijaka od mesinga. • Navrtke se mogu, izuzetno, izrađivati i od sivog liva, a najbolje je kada se vijak i navrtka izrađuju od istog materijala ili kada je navrtka izrađena od j g materijala. j nešto slabijeg MPa
Fo/Fr
3,6
4,6
4,8
5,6
5,8
6,6
6,8
6,9
8,8
10,9
12,9
180
240
320
300
400
360
480
540
640
900
1080
27,5
27,5
27,5
30
30
30
30
40
45
50
70
2,75
2,75
2,75
3
3
3
3
4,2
4,4
4,5
5
σv ‐ granica razvlačenja, σA ‐ idealni amplitudni napon, Fo ‐ prednaponska sila, Fr ‐ radna sila.
90
10/13/2014
12.5 Izrada vijaka i navrtki • Izrada vijaka vrši se ručno ili mašinski. Za ručnu izradu koristi se nareznica odnosno ureznica ukoliko se radi o navrki. • Najbolje je koristiti mašinsku obradu jer je tačnija, bolja i jeftinija. Izrada vijaka se vrši na strugovima, glodalicama ili brusilicama, kao i na mašinama ši za valjanje lj j navoja. j • Izrada navoja na stugovima vrši se pri pojedinačnoj proizvodnji, a navoj se radi profilisanim nožem. Za masovniju proizvodnju vijaka i navrtki koriste se automatske mašine i revolver strugovi, na njima se radi cijeli vijak, odnosno navrtka, najčešće od šetougaonih šipki. • Izrada navoja na glodalicama vrši se profilisanim glodalima i obično se j vretena. rade navojna • Izrada navoja valjanjem vrši se između dvije ploče na čijim su površinama izrađeni odgovarajući profili. Vijci izrađeni valjanjem su izdržljiviji od vijaka izrađenih drugim metodama. • Izrada navoja vrši se u tri klase izrade: gruba, fina i srednja izrada.
12.6 Konstruktivni oblici vijka • Najčešće se upotrebljavaju vijci sa šestougaonom glavom kao što je vijak na donjoj slici koji je predviđen za opštu opotrebu. Navedene mjere na crtežu daju se putem tabela na osnovu nazivnog prečnika d. • Sve S ove mjere j su standardizovane t d di preko k ISO sistema it mjera. j
Vijci sa šestostranom glavom: a) vijak za opštu primjenu, b) glava sa izbočinom
91
10/13/2014
• Također postoje vijci za tačno nalijeganje sa šestougaonom glavom fine klase izrade. Ovi vijci su također standardizovani tako da postoje tabele za geometrijske podatke na crtežu. Tolerancija otvora je H7.
Vijak za tačno nalijeganje
D2 – prečnik stabla, odnosi se na neobrađeno stanje, a dodatak za obradu iznosi 0,1 mm, sa tolerancijama k6 i n6.
• Standardi predviđaju i druge konstruktivne oblike vijka kao što su: o vijci za fiksiranje položaja dijelova, o vijak sa šestostranom rupom u glavi, o vijci sa upuštenom glavom, o goli vijci, o uvrtni t i vijci, ij i o vijak sa prstenastom glavom, o vijak sa četvrtastom glavom i vjencem, o vijak sa sočivastom glavom, o vijak sa upuštenom glavom sa nosom, o vijak sa poluokruglom glavom, o vijak sa poluokruglom glavom i nosom, o vijak sa poluokruglom glavom i četvrtastim zaglavkom, o vijak sa oblikom glave “T”, o fundamentni vijci i itd.
92
10/13/2014
Vijci za fiksiranje položaja dijelova
Vijak sa šestostranom rupom u glavu
Vijak sa upuštenom glavom
Goli vijak
93
10/13/2014
Uvrtni vijci
Vijak sa prstenastom glavom
Vijak sa prstenastom glavom
Konstruktivni oblici vijaka koji se rijeđe koriste: a) vijak sa četvrtastom glavom i vjencem, b) vijak sa sočivastom glavom, c) vijak sa upuštenom glavom sa nosom, d) vijak sa poluokruglom glavom, e) vijak sa poluokruglom glavom i nosom, f) vijak sa poluokruglom glavom i četvrtastim zaglavkom, g) vijak sa oblikom glave “T”
94
10/13/2014
Fundamentni vijci
• Završetci vijaka mogu biti različiti, kao npr.: o ravan završetak, (a), o koničan završetak, (b), o zaobljen završetak, (c), o cilindričan završetak (d),.
Završeci vijka
95
10/13/2014
12.7. Konstruktivni oblici navrtki • Standardizovane navrtke su šestostranog oblika, što im omogućava lako rukovanje ključem. Izgled šestostrane navrtke dat je slikom. Dimenzije šestostrane navrtke daju se tabelarno.
Šestostrana navrtka
Niska navrtka
• Razlikujemo i druge konstruktivne oblike navrtki kao što su: slijepe, četvrtaste, navrtke sa uškama, visoke navrtke sa vijencem, krunaste navrtke, navrtke sa urezima na obodu itd. • Navrtke se označavaju nazivnim prečnikom, materijalom i standardom, npr.: M16 – ĆV2 – standard
“Slijepe” navrtka
Četvorostrana navrtka
Navrtka sa uškama
96
10/13/2014
Visoka navrtka sa vijncem
Krunasta navrtka
Navrtka sa urezima na obodu
97
10/13/2014
12.9 Navojne veze • Navojne veze su nepokretne, razdvojive veze mašinskih dijelova, koje se ostvaruju pomoću navoja. Neposredne navojne veze, ostvaruju se spoljnim navojem na jednom dijelu i unutarnjim na drugom dijelu.
Neposredne navojne veze: a) veze cijevi, b) veza vijka sa prstenastom glavom sa tijelom mašine, c) veza vijka sa šestostranom glavom bez navrtke
Posredne navojne veze navojne veze se ostvaruju pomoću vijaka i navrtki.
Posredne navojne veze: a) veza dviju cijevi, b) pričvršćivanje ležišta za vratilo, c) veza podešenim vijkom, d) veza nepodešenim vijkom, e) veza golim vijkom
• Kod veze pomoću podešenih vijaka, stablo vijka i otvor obično se rade u toleranciji H7/k6 ili H7/n6. Navojni spoj kod ovih vijaka služi jedino za osiguranje vijka protiv ispadanja iz veze. Podešeni vijci pogodni su za velike poprečne sile i u slučaju promjenjivih i udarnih opterećenja. Nedostatak veze pomoću podešenih vijaka je u tome što zahtijeva veliku tačnost međusobnog položaja broja otvora na jednom i drugom dijelu.
98
10/13/2014
• Nepodešeni vijci su pogodni za izradu i montažu ali su nepogodni za velike poprečne sile promjenjivog i udarnog karaktera. Ovaj nedostatak se može otkloniti rasterećenjem vijaka, a načini rasterećenja od poprečnih sila su: cilindrični prsten, čaura i konstruktivnim riješenjem dijelova. a
b
c
Načini za rasterećenje vijaka od poprečnih sila: a) cilindričnim prstenom, b)čaurom, c) konstruktivnim riješenjem dijelova
• Vijak sa navrtkom se zove normalni vijak. • Vijak bez navrtke treba primjenjivati kada je veza stalna ili se rijetko rastavlja. Ako je materijal konstrukcionog elementa od sivog liva ili od mekog metala, a veza se često rastavlja treba u konstrukcioni element uvrnuti čeličnu ili bronzanu čauru pa preko nje izvršiti vezu sa vijkom. Vijke bez navrtke treba upotrebljavati kao nepodešene. • Veze sa golim vijcima, smije se opteretiti sa uzdužnim silama. Rastavljanje veze vrši se pomoću navrtke.
12.10 Navojni prenosnici
5
• Navojni prenosnici, služe za pretvaranje obrtnog kretanja jednog elementa u translatorno kretanje drugog elementa. ( b (obrnuti i slučajevi l č j i su rjeđi). j đi) Navojni prijenosnici se odlikuju prostom konstrukcijom, malim gabaritnim mjerama (širina, dužina i visina). Omogućuju ostvarivanje velikih uzdužnih sila malim obrtnim momentom ali im je stepen iskorištenja mali. • Za navojne prijenosnike se najčešće koristi trapezni i kosi navoji. Primjeri primjene su dati na narednim slikama:
4
3 2 1
a) Ručna dizalica: 1‐tijelo dizalice, 2‐navojno vreteno, 3‐navrtka, 4‐ručica, 5‐nosač tereta
99
10/13/2014
b) ručni stezač, c) ručna presa, d) uređaj za demontažu točkova i ležaja, e) zatega
12. 11 Podložne pločice • Stavljaju se između navrtke i podloge. Primjenjuju se kada je potrebno povećati dodirnu površinu nalijeganja navrtke i podloge zbog velikog površinskog pritiska ili kada je podloga od mekog materijala (npr. Al i sl.). Označavaju se nazivnim prečnikom, materijalom i standardom
Podložna pločica
100
10/13/2014
12. 12 Osiguranje navojnih spojeva • Navojni spojevi moraju biti samokočivi tj. ugao zavojnice mora biti manji od ugla trenja. Ukoliko je jače naprezanje odnosno pritezanje navrtke stvara se veća uzdužna sila u navojnom spoju pa se stvara i veći otpor t t j odnosno trenja d otpor t protiv ti odvrtanja. d t j • Kada je vijak izložen promjenjivim silama. Udarima ili vibracijama može nastupiti takvo stanje da sila u vijku bude jednaka nuli. Tada dolazi do odvrtanja navrtke pa treba osigurati navojnu vezu od odvrtanja. Labavljenje veze, vrlo efikasno sprijećava elastična podložna podloška koja se ubacuje između navrtke i podloge ili glave vijka i podloge. Ona se prilikom pritezanja elastično deformiše vršeći istovremeni pritisak na navrtku i podlogu, a time vrši osiguranje veze od odvrtanja. Standarndni materijal za elastične podložne pločice je Č.2130. Oznaka elastične podložne pločice je isti kao i kod obične podložne pločice.
Elastične podložne pločice: a) glatke, b) zupčaste, c) lepezaste
101
10/13/2014
• Prost ali efikasan osigurač čine i dvije navrtke. Donja navrtka igra ulogu osigurača, a gornja je glavna navrtka koja prima opterećenje. • Najprostiji osigurač je rascjepka. rascjepka Navrtka i vijak probuše se poslije montaže, pa se u rupu stavlaj rascjepka kojoj se krajevi rastavljaju, da ne bi ispala. Nedostatak ovakvog načina osiguranja navojne veze je u tome što ne dozvoljava kasnije podešavanje navrtke. Rascjepke su standardizovane i označavaju č j se dxl d l standard t d d
• Postoje i drugi načini za osiguranje navojne veze od rastavljanja npr. osiguranje pomoću podložne pločice sa produžetkom (pomoću pločice u obliku ključa)
12.13 Ključevi • Služe za uvrtanje i pritezanje navrtki i vijaka. Oblici su im prilagođeni obliku navrtki i glavama vijaka kao i raspoloživom prostoru za prilaz navrtki ki odnosno d glavi l i vijka. ijk • Pri serijskoj montaži, upotrebljavaju se dinamometarski ključevi koji se mogu podesiti tako da daju tačno određen moment pritezanja. • Dužina ključa treba da iznosi L=(15 ‐ 21)d pri čemu je d – nazivni prečnik č ik vijka. ijk Ključevi Klj č i mogu biti bi i različitih liči ih konstrukcionih k k i ih rješenja j š j kao k npr. otvoreni, zatvoreni ključevi, ključ za imbus vijak, gedora ključ itd.
102
10/13/2014
Ključevi: a) jednostrani otvoreni ključ, b) dostrani otvoreni kjuč, c) šestostrani zatvoreni ključ, d) nasadni ključevi, e) usadni četvrtasti ključ, f) okasti dvostrani ključ, g) usadni šestostrani savijeni ključ, j) moment ključ sa mjernim satom
12.14 Proračun vijaka • Svodi se na dimenzionisanje tj. određivanje nazivnog prečnika vijka. Prema načinu djelovanja sila na vijke može se izvesti na više načina: o vijci opterećeni uzdužnim silama (I grupa), o vijci opterećeni uzdužnim silama i uvijanjem (II grupa), grupa) o vijci izloženi dinamičkim opterećenjima (III grupa) i o poprečne opterećene veze (IV grupa).
Vijci opterećeni uzdužnim silama (I grupa) • U I grupu ulaze vijci koji se pritežu neopterećeno, a radna opterećenja su mirna ili neznatno promjenjiva. Smatra se da je opterećenje vijka usljed pritezanja za ovakve slučajeve vijka malo, pa se zanemaruje.
103
10/13/2014
• Karakteristični primjeri uzdužno opterećenih navojnih veza sa malim prethodnim pritezanjem navrtke, imamo kod vijaka sa prstenastom glavom, kod vijaka za vezu poklopca i kućišta (npr. kod reduktora), za vezu postolja. kada sila p pritezanja • U svim slučajevima j j nije j posebno propisana, naprezanje od zatezanja jezgre vijka iznosi.
σ=
Fa 4Fa = ≤ σ zdoz A d12π
Fa
d1 =
4 Fa
πσ zdoz
d1 – prečnik jezgre vijka, za proračunati prečnik iz tablica usvajamo
o
odgovorajuću standardnu vrijednost. Dozvoljeni napon u vijku dat je izrazom:
o
σ zdoz = ξ1 ⋅σ doz
o o
σdoz ‐ dozvoljeni napon osnovnog materijala (iz tablica) ξ1 ‐ faktor kvaliteta izrade ξ1 = 0,9 – za preciznu izradu zavojnice ξ1 = 0,8 – za prosječnu, dobru izradu (najčešći slučaj) ξ1 = 0,7 – za ručno ili uopšte površno izrađene zavojnice
• Potrebno je izvršiti provjeru površinskog pritiska između zavojaka.
p= o o
0 ,588Fa ≤ pdoz d2 ⋅ H
d2 ‐ srednji prečnik zavojnice H ‐ visina navrtke ili , kada nema navrtke, visina “zamišljene navrtke” u konstruktivnom elementu.
104
10/13/2014
Vijci opterećeni uzdužnim silama i uvijanjem (II grupa) • Karakteristika ovih vijaka je da se uvrću pod opterećenjem. Momentom uvijanja je u ovom slučaju znatan pa se ne može zanemariti. Aksijalno naprezanje može biti ili pritisak σp ili zatezanje σz. • Primjeri upotrebe jeste navojno vreteno, ručne dizalice koja je p na p pritisak i uvijanje. j j opterećena • Ručna sila na krajevima ručice (2) obrazuje moment Mo, koji se posredstvom navojnog vretena transformiše u aksijalnu silu te F i tako podiže teret, a osim toga savlađuje otpore trenja na dodirnim površinama navojnog spoja (moment navojnog dijela vretena Mv) , kao i na dodirnoj površini glave vretena i nosača tereta (moment trenja oslonaca Mn). Obrtni moment na ručici je: Mo=Mv+Mn • Na primjeru ručne dizalice možemo pokazati proceduru proračuna za ovu grupu vijaka. Na narednoj slici dat je pregled opterećenja pojedinih elemenata dizalice, odnosno dijagrami momenta uvijanja i aksijalne sile. Ovu analizu je potrebno sprovesti prije nego što se pristupi proračunu ove grupe vijaka.
Fa
1 1 2 3 3 4 4
Ručna dizalica sa navojnim vretenom – dijagrami momenata uvijanja i dijagrami aksijalne sile
105
10/13/2014
• Vijci druge grupe opterećeni su istovremeno zatezanju (pritisku) i uvijanju. F 4F o Naprezanje jezgre vijka od aksijalne sile iznosi σ = a = a A d12π
Fa ‐ Aksijalno opterećenje vijka d1 – prečnik jezgre vijka
o
Naprezanje od momenta uvijanja
τu =
M v Fa d2tg(ϕ + ρ' ) = Wo d 3π 2 1 16
• Svođenjem naprezanja od uvijanja τu na aksijalno naprezanje σ, dobije se složeno naprezanje σi. Ispitivanja su pokazala da je složeno naprezanje veće od aksijalnog, u ovisnosti od veličine i vrste navoja za 11 – 18 % tj. σi=(1,11 ‐ 1,18)σ • Uobičajeno bč je da d se proračun č vijaka k II grupe vrši š uzimajući ć u obzir b samo aksijalno naprezanje, pri čemu se umanjuje dozvoljeno aksijalno naprezanje koeficijentom ξ2 te se na taj način dolazi do većih dimenzija vijaka tj.
A1 =
Fa
σ dozξ1ξ 2
σdoz – dozvoljeno aksijalno naprezanje materijala ξ1 – koeficijent kvaliteta izrade ξ2 – koeficijent zamjene složenog sa normalnim naprezanjem
• Poslije usvajanja nazivnog prečnika d (iz tabela) potrebno je provjeriti složeni napon u jezgru vijka odnosno vretena.
σ i = σ + (ατ )2 ≤ σ doz σ σ α 0 = doz = V τ doz τ V σ doz = σ doz ⋅ ξ1 • Provjerava se i površinski pritisak između navoja
p=
Fa ≤ pdoz πd 2 zH 1
pdoz – za pokretljive navojne veze iznosi 10 do 15 Mpa (za vijke koji se rijetko nalaze u pokretu ili služe za podešavanje dozvoljeni napon se dobije množenjem navedenih veličina sa 2,5
106
10/13/2014
• Provjerava samokočivosti, mora biti zadovljen uslov da je ugao zavojnice ϕ manji od ugla trenja ρ’.
ϕ < ρ’ • Provjerava navojnog vretena na izvijanje vrši se na osnovu vitkosti λ
λ=
lr I min A1
lr – slobodna dužina u zavisnosti od oslanjanja vretena: lr=2l; lr=l; lr=0,7l i lr=0,5l . Imin‐ minimalni moment inercije
I min =
d14π 64
• Ukoliko je λ < 95, provjera na izvijanje se vrši po Tetmajeru, a ako je λ > 95 onda po Euler‐u na osnovu obrazaca iz elastostatike. Stepen sigurnosti na izvijanje υ=Fu/Fa
• Broj zavojaka navrtke određuje se iz uslova površinskog pritiska između navoja.
z=
Fa pdozπd 2 H1
F – aksijalna sila Pdoz –površinski pritisak na navoje navrtke d2 – srednji prečnik navoja navrtke H1 ‐ korisna širina navoja navrtke
• Visina navrtke H=z∙P P – korak navoja navrtke z – broj zavojaka
107
10/13/2014
Vijci izloženi dinamičkim opterećenjima (III grupa) • U ovu grupu spadaju vijci, vrlo odgovornih vijčanih veza, koje su izložene periodično promjenjivim opterećenjima. • Od vijaka se zahtijeva održavanje, određene minimalne sile pritiska na dodirnim površinama ploča u radu u cilju smanjenja promjenjivog dijela sile u vijku kao i za obezbjeđenje hermetičnosti. • U ovu grupu spadaju vijci, poklopaca posuda pod pritiskom, vijci za veze prirubnica cijevnih vodova, vijci sa klipnjačom i sl. • Ovi vijci se pritežu dinamometarskim ključevima do vrijednosti sile prethodnog pritezanja, koja se za datu vezu mora posebno proračunati i na osnovu nje propisati potreban moment pritezanja. pritezanja • Vijci za ovakve veze se izvode većinom kao elastični vijci posebnog oblika i od kvalitetnog materijala. Ovi vijci moraju biti izrađeni veoma pažljivo sa uskim tolerancijama.
Razne konstrukcije elastičnih vijaka
108
10/13/2014
Sklop cilindra i poklopca
• Veza kao cjelina mora biti dovoljno kruta da bi se spriječilo deformisanje vijaka usljed savijanja ploča, koje može dovesti do loma, inače ispravno dimenzionisanog vijka. • Proračun vijčanih veza ove grupe, obuhvata na prvom mjestu određivanje krutosti vijaka i krutosti ploča, zatim određivanje sile prethodnog pritezanja odnosno momenta pritezanja kao i određivanja sile karakterističnih veličina na osnovu deformacionog dijagrama. • U toku ostvarivanja vijčane veze, zavrtanjem navrtke, njeno rastojanje od glave vijka se smanjuje sve dok navrtka svojim podnožjem na dodirne površine poklopca. Daljim zatezanjem navrtke ključem nastaje pritezanje i vijčani par čvrsto pritiskuje ploče jedane uz druge. • Aksijalno pomjeranje navrtke u odnosu na navojni dio vijka, omogućuje se elastičnim deformisanjem tj. tj izduženjem stabla vijka i sabijanjem ploča. Ukupno aksijalno pomjeranje navrtke nakon pritezanja λ, sastoji se od elastičnog izduženja vijka λv i elastičnog sabijanja ploča λp tj.
λ= λv+λp
109
10/13/2014
• Proporcionalno porastu elastičnih deformacija u toku pritezanja raste sila u vijku odnosno pločama. Na kraju pritezanja, stablo vijka opterećuje ploče silom pritezanja Fpr i ova sila napreže ploče na pritiskivanje, a stablo vijka na zatezanje. • Za deformacije stabla vijka i ploče u oblasti proporcionalnosti mogu se napisati sljedeći izrazi:
Fpr=cv·λv=cp·λp cv i cp – krutost vijka i ploče
• Obrtni moment potreban da bi se ostvarila sila pritezanja Fpr određuje se na isti način kao i kod navojnih prenosnika tj.
Mo=Mv+Mn=Fpr·d2/2· [tg(ϕ+ρ’)+dsr/d2·μ] o o o
Mv – moment uvijanja j j kojij se p pojavljuje j j j u navojnom j spoju, p j , Mn – moment uvijanja koji se javlja između navrtke i podloge i dsr = 1,33 d – srednji prečnik kod metričkog navoja. Kjuč za pridržavanje navrtke
vijak
navrtka
vijak
Kjuč za pridržavanje vijka Dio momenta koji se prenosi ključem
Dio momenta koji se prenosi prijanjanjem
Dijagram napadnog opterećenja vijka i navrtke pri pritezanju
110
10/13/2014
• Vijčana veza se može izložiti djelovanju radnog opterećenja tek po završenom pritezanju i ono teži da odvoji poklopac od cilindra odnosno jednu ploču od druge. Može se smatrati da radna sila djeluje na vezu centrično i položaj tačaka u kojima djeluje zavisi od konstrukcije dijelova koji se vezuju. • Napadna tačke radne sile može biti: o
na kontaktu dvije ploče (slika a)
o
ispod navrtke (slika b)
a može djelovati i na bilo kom drugom mjestu između ova dva ekstremna slučaja.
a)
b)
• Analizirat ćemo slučaj kada radna sila djeluje na vijke. U ovom slučaju, vijci čiji je zadatak da spriječe odvajanje poklopca od cilindra, odnosno jedne ploče od druge biti će dopunski opterećeni na zatezanje djelovanjem radne sile Fr. Usljed toga se dopunski izdužuju za veličinu Δλ.
ΔFr Fv
Fp
ΔFp Δ
ΔFv
• Prvobitno sabijene ploče će se djelimično rasteretiti za istu vrijednost Δλ. Prema tome, za vrijeme djelovanja radne sile, ukupno izduženje vijka je λv+Δλ a sabijanje ploča je λp‐Δλ. Ovo se prikazuje na deformacionom dijagramu.
o o
Fp
o o o
λv
Δλ
o
λp
ΔFv – priraštaj sile u vijku od radne sile Fr ΔFp – priraštaj sile u pločama od radne sile Fr Fv – sila u vijku nakon dejstva radne sile Fp – sila u pločama nakon dejstva radne sile Fa – amplitudna sila u vijku Fsr – srednja sila u vijku
111
10/13/2014
• Sa deformacionog dijagrama, možemo očitati neke zakonitosti:
Fr = Fv – Fp Fr= ΔFv + ΔFp ΔFv = Fr · 1 /( 1+cp/cv ) ΔFp = Fr · 1 /( 1+cv/cp ) tgΨv=Fpr/λv=cv – krutost vijka tgΨp=Fpr/λp=cp – krutost ploča • Povećanje radne sile ima za posljedicu smanjivanje sile u pločama tako da za određenu vrijednost radne sile nastaje potpuno rasterećenje ploča U tom slučaju je Δλ=λp pa sila u pločama postaje jednaka nuli tj. ploča. tj Fp=0 pa je ΔFp=Fpr • Iz ovog uslova se dobije izraz za zadanu silu koja dovodi do rasterećivanja ploča koja predstavlja kritičnu silu vijčane veze:
Fkr=Fpr(1+cv/cp)
• U vezi sa ovim, može se definisati i stepen sigurnosti protiv razdvajanja ploča.
ν = Fkr/Fr = Fpr· (1+cv/cp)/Fr • Da bi se spriječilo razdvajanje ploče mora biti ν >1
112
10/13/2014
Računanje krutosti vijaka i ploča • Opšti izraz za krutost mašinskih dijelova konstantnog poprečnog presjeka ima oblik:
C = E · A/l E – modul elastičnosti A – površina poprečnog presjeka l – dužine izložene istezanju • Krutost mašinskog dijela stepenasto promjenjivog presjeka iznosi: n 1 1 1 1 1 n li = + + ... = ∑ = ∑ c c1 c2 E i =1 Ai i =1 ci
c1, c2 ... – krutosti pojedinih dionica
Primjeri za određivanje krutosti vijka
113
10/13/2014
• Krutost ploča određuje se na sličan način tj:
cp=Ep Ap / lp • Poteškoću kod računanja krutosti ploča predstavlja određivanje mjerodavne površine poprečnog presjeka Ap. Pretpostavlja se da se elastično l tič sabijanje bij j ploča l č izazvano i silom il u vijku, ijk rasprostire ti po uticajnim konusima
• Ako se ovi konusi zamjene srednjim cilindrom dobija se mjerodavna površina Ap kao:
π ⎡⎛
2 ⎤ ⎞ Ap = ⎢⎜⎜ s + tgδ ⎟⎟ − Do2 ⎥ 4 ⎢⎝ 2 ⎥⎦ ⎠ ⎣
lp
Do – prečnik otvora za vijak S – otvor ključa δ – ugao uticajnog konusa, i za odnos lp/d ≥ 3 vrijedi da je tg δ=0,2 za čelik =0,25 za sivi liv =0,33 za lahke metale • Prednaponska sila Fpr=(1,5 do 4) Fr. Nekada se uzima da je Fpr=(4 do 12) Fr npr. kod pesnica klipnjača motora SUS .
114
10/13/2014
Stepen sigurnosti vijaka vijčane veze • Stepen sigurnosti na kraju pritezanja vijka
ν=σV/σi
mora biti ν ≥ 1,1 ... 1,4 pri čemu je
o
σV – granica razvlačenja
o
σi – idealni složeni napon
σ i = σ 2 + (ατ u )2 τu – napon uvijanja od momenta Mv
o
• Stepen sigurnosti vijka od maksimalne sile u vijku Fv = Fpr + ΔFv
ν =σV/σz o
mora biti ν ≥ 1,1 ... 1,4 pri čemu je
σz – najveći nominalni napon usljed zatezanja vijka σz=Fv/As
o
As – površina poprečnog presjeka ds = (0,9 ‐ 0,95) d1
o
AS =
d s2π 4
d1 – prečnik jezgre vijka
• Ako su vijci izloženi periodično promjenjivim opterećenjima, mora se provjeriti i stepen sigurnosti protiv loma, usljed zamora.
ν=σA/σa o o
mora biti ν ≥ 1,1 ... 1,4 pri čemu je
σA – amplituda dinamičke čvrstoće σa – amplitudni lit d i napon u radu d σa=Fa/As= ΔFv /2As
115
10/13/2014
Poprečno opterećene veze (IV grupa) Prema načinu prenošenja sile u ovoj grupi razlikujemo dva slučaja: • Nepodešeni • Podešeni N d š i vijci, ij i prenose silu il na taj t j način či što št se pritezanjem it j tk Nepodešeni navrtke postiže tolika uzdužna sila Fa u vijku, a preko nje i sila trenja na dodirnim površinama Fμ=μ∙Fa, koja omogućuje prenošenje poprečne sile Fs bez klizanja.
• Ako želimo da nema klizanja na dodirnim površinama mora biti zadovoljen uslov
Fs< Fμ
tj. Fs< μ∙Fa , stoga slijedi
Fa ≥ Fs / μ • Potrebne površine jezgre vijka će biti:
A1 =
Fa
σ zdoz
σzdoz = σdoz∙ξ1 – dozvoljeni napon za istezanje vijka, vijka pri čemu je: je σdoz ‐ dozvoljeni napon materijala prema tabelarnim vrijednostima ξ1 ‐ faktor popravke s obzirom na izradu
116
10/13/2014
• Kod veze, kod podešavanja vijaka, stablo vijka i otvora u konstrukciji elemenata naliježe čvrsto. Površina poprečnog presjeka stabla vijka je izložena smicanju, a površina omotača površinskom pritisku.
• Površina P ši poprečnog č presjeka j k stabla t bl vijka ijk potrebna t b da d primi i i poprečnu č silu Fs iznosi:
A=
Fs x ⋅τ sdoz
x ‐ broj presjeka izloženih smicanju, τsdoz–dozvoljeni napon pri smicanju
• Odnosno prečnik stabla vijka, d iznosi
d=
4 Fs x ⋅ π ⋅τ sdoz
• Provjera podešenog vijka se vrši preko površinskog pritiska na montažu stabla i otvora:
p=
Fs ≤ pdoz d ⋅b
b – najmanja dužina stabla vijka izloženih sili Fs , pdoz – dozvoljeni površinski pritisak
117
10/13/2014
12.15 Tolerancije navoja • Poseban uticaj na mogućnosti lakog sprezanja dijelova navojnog para imaju odstupanja vijka od osnovne geometrije navoja: o srednji prečnik navoja d2, D2 o korak navoja P o ugao profila navoja α odnosno bočni uglovi profila α1 i α2 • Odstupanje srednjeg prečnika navoja nastaje kao posljedica odstupanja dimenzija i njegovog položaja u odnosu na radni predmet pri izradi navoja.
• Odstupanje koraka navoja se pojavljuje kao pojedinačno odstupanje i kao zbirni odnos nagomilanog odstupanja. Pojedinačno odstupanje je algebarska razlika stvarne i nazivne mjere koraka, a nagomilano odstupanje nastaje sabiranjem pojedinačnih odstupanja koraka.
118
10/13/2014
• Odstupanje bočnog ugla profila navoja je algebarska razlika stvarne i nazivne mjere ovog ugla, a nastaje usljed odstupanja njegovog položaja u odnosu na radni predmet. Ovo zadiranje, koje nastaje usljed odstupanja bočnog ugla profila može se izbjeći smanjivanjem srednjeg prečnika spoljašnjeg navoja odnosno povećanjem srednjeg prečnika š j navoja. j unutrašnjeg
• ISO sistem toelrancija metričkih navoja sa trouglastim ISO profilom obuhvata tolerancije sljedećih mjera: o srednji prečnik d2 i D2 o veliki prečnik spoljašnjeg navoja d o mali prečnici tj. tj prečnici jezgra vijka d1 i D1 • Položaji tolerancijskih polja u odnosu na nultu liniju su: o za spoljni navoj e, g, h, m, p o za unutrašnji navoj G i H
• Primjer oznake: spoljni navoj M24 7g unutarnji navoj M24 7H Za naljeganje navojnog spoja oznaka je M24 – 7H/7g
119
View more...
Comments