Mary B. Hesse Models and Analogies in Science
October 9, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Mary B. Hesse Models and Analogies in Science...
Description
Library o f Congress Catalog C a r d N um u m be b e r 66-14364 Copyright
© 1966
Notre Dame
University o f Notre Dame Press
Indiana
T h e introduction a n d first
three chapters w e r e first published i n England i n
1963 b y S h e e d a n d \Tard Ltd same title © :Mary B. Hesse.
in a volume of the
Manufactured i n t h e United States o f America
ntrodu tion
a scientific the the o r y s to give a n explanation of experimental data, s i t necessary f o r t h e t h e o r y to b e understood i n t e r m s o f s ome model o r som e anal analog ogy y
with events o r o b j e c t s al alrr ea ead d y f a m i l i a r ? Does
ex expl plaa-
nation
imply a n account of t h e n e w a n d unfamiliar
i n t e r m s of t h e f a m i l i a r a n d intelligible, o r does i t
i n v o l v e o n l y a correlation of data a c c o r d i n g t o some other criteria, such s mathematical economy o r elegance? Q uest uestio ion n s o f t h i s s o r t h a v e fo r ced th ems elv es upon scientists a n d philosophers a t va vari riou ouss stages o f t h e development of scientific t h e o r y , a n d particularly since t h e latter half of t h e nineteenth century when
physicists found themselves obliged to abandon t h e s e a r c h f o r m e c h a n i c a l m o d e l s o f t h e ether s explan a t i o n s o f t h e phenomena o f light a n d e,lectromag:netism. I n 1914, i n hi hiss book a heorie physiqu
t he French physicist a n d philosopher Pierre Duhem contrasted two k ind ind s o f sci ent ific mind i n which h e also saw a contrast between t h e Continental a n d English temperaments: o n t h e o n e hand t h e abstra st ract ct,, logi logica cal, l, sy syst stem emat atiz izin ing, g, geometric mind typical of Continental physicists, o n t he other the visualizi n g, i m a g i n a t i v e , incoherent mind t y p i c a l o f t h e English-in Pa Pasc scal al s wor ord ds, t h e strong a n d narrow brr o a d a n d against t h e b
weak.
Correspondingly
2
MODELS A N D A TALOGIES I N SCIENCE
D u h e m distinguished t w o kinds o f theory i n physics; the
a ~ s t r a c
a n d
_systematic o n t h e o n e hand a n d o n
t h e other theories using familiar mechanical models
H e explains t he h e d iiss ttii n nc c ttii o on n i n t e r m s o f electrostatics: This w h o l e t he heor ory y o f e l e ct r os t a t i cs c o ns nsti titt ut utee s
a group of a b s t r a c t ideas a n d general propositions f o r m u l a t e d i n t h e c l e a r a n d pr eci se lang u a g e o f g e o m e t r y a n d algebra a n d connected w i t h o n e another by t h e r u l e s o f s t r i c t logic
This w h o l e fully satisfies t h e r e a s o n f o r a French physicist a n d his taste f or cl a r i t y s i m p l i c i t y a n d order Here is a book [b [by y Oliver Lodge] intended to expound t h e modern t he heor orii e s of e l e c t r i c i t y a n d
to expound a n e w t h e o r y
I n i t a re nothing b u t
strings which move around pulleys wh whic ich h ro roll ll around d r u m s w wh h i c h go through pearl beads toothed whe e l s w h i c h a r e geared t o o n e another a n d en enga gage ge hooks W e thought we w er e entering t h e tranquil a n d neatly ordered abode of reas on b u t we find o u r s el ve s i n a factory 1
D u h e m admits that s u c h m o d e l s drawn from familiar mechanical gadgets m a y b e useful psychologi c a l a i d s i n sug sugge gest stin ing g the th e or o r ie i e s although h e thinks this happens less often than is generally supposed
B u t this admission implies n ot o t h iin ng ab bo ou utt t h e t r ut h
o r significance o f t h e models f o r many t h i n g s m a y
TllI o orrie jJhy jJhysiqu sique, e, ch 4 5
INl RODUCTION
3
b e psycho log ical aids to discovery including astro logi lo gica call beli belief efss dreams dreams o r e v e n tea leaves without implying that t h e y a r e o f a n y permanent significance ob i n relation t o scientific t h e o r y . Duhem s main ob jection to m e c h a n i c a l m o d e l s s that t h e y a r e
~ n c ? -
herent a n d superficial a n d tend to di dist stra ract ct t h e mind from t h e s e a r c h f o r lo gi ca l order. H e s n o t much
concerned s other w r i t e r s h a v e b e e n with t h e pos sibility that m o d e l s may m i s l e a d b y being t a ~ e n t ~ o the e ph phen enom omen ena a a n d so h e literally s explanations of th
does n o t object t o fundamental mec mechan hanica icall th theo eori ries es where t h e attempt such s that of Desc escarteS teS s made to reduce al alll phenomena to a few mechanical princi ples i n a sy sysste tem matic way. B u t f o r Duhem t h e essence o f s u c h a t h e o r y lies n o t so m u c h i n its an anal alog ogie iess with familiar mec mechan hanica icall obje object ctss a n d processes b u t rather i n i ts e con con o m ic a n d sy syst stem emat atic ic charac character ter.. T h e ideal p h ys ic al t h e o r y w o u l d b e a mathematical system with deductive structure similar t o E u c l i d s unencumbered by extraneous analogies o r imaginative representations. These a n d similar views w e r e d ire ire c tly tly challenged by t h e E n g l i s h p h ys i ci st N . R . C a m p b e l l i n hi hiss book
hysics t he he
l em e m en e n ts ts
published i n 1920. A f ootn ootno o te
i n which Campbell r e f e r s t o national te tend nden enci cies es.. to theo eory ry suggests prefer mechanical o r mathematical th that h e has Duhem among others i n mind i n mounti n g his at atta tack ck although h e does n o t mention Duhem
b y n a m e . Campbell s main target models a r e
r
w r ~
s
t h e view that
aid s to the the o ryry- c o n str str u ct ctii o n which
MODELS A N D ANALOGIES I N SCIENCE
c a n b e thrown away when t h e theory h a s been devel oped a n d hi hiss attack s based o n t wo main arguments.
irst h e that require considers we to b e i n t e l l e c tually satisfied b y a theory if i t s t o b e a n explanation o f phenomena a n d th this is sati satisf sfac acti tion on implies that t h e theory ha hass a n intelligible interpretation i n terms o f a v iin ng m e err e m a att h e em ma att i c a l intela model s w e l l as h av ligibility a n d perhaps t h e formal ch char arac actt eri eriss ti ti cs cs o f simplicity a n d economy. T h e second a n d more tell i n g argument presupposes t h e d n _ a m i ~ character o f
t h e o r i e s . A theory i n its s c ie ien n tif tif i c context is n o t a static museum piece b u t is always being extended
a n d modified to account f o r n e w phenomena. Campbell shows i n terms o f t h e development o f t h e kinetic theory o f gases h o w t h e billiard ball model o f this
theory played a n essential p a r t i n its it s extension a n d
h e argues perceptively that without t h e analogy with a model a n y such extensions will b e merely arbitrary. Moreover without a model i t will b e i m
p o s s i b l e to use a t h e o r y f o r o n e o f t h e essential purposes we demand o f it namely t o make predictions i n n e w d o m a i n s o f phenomena. So h e concludes:
analog anal ogie iess ar aree n o t ai aids ds to th thee es esta tabl blis ishm hmen entt of theories; they are a n u t t e r l y essential p a r t of
theories wi with thou outt which theories w o u l d be com pletely plet ely va valu luel eles esss a n d u n w o r t h y of the name. s o ft elati ntio sounggoefsttehde th tha nat ltohgayt loenacdes tthoetht heefoorry mu mula thaetorth ye bau s f o r m u l a t e d t h e a nalogy has se rved its p u r p o s e a n d may be r e m o v e d o r forgotte n. Such a sug-
I N TRO D U CTI O N
gestion
s
absol ab solute utely ly false a n d perniciously mis-
leading. Enough ha hass been s a i d t o indicate tIle general tenor
of t h e debate. TIle actual standpoints o f D uh uh e m a n d Campbell a r e a f f e ct e d b y t h e s t a t e o f their o w n contemporary physics, a n d there s n o need t o i n s i s t o n t h e d e t a i l s o f their a r g u m e l l t s . S o m e o f t h e s e certainly cannot survive actual e v i d e n c e o f t h e ,vork-
a bility o f n e , v kind kindss o f th theo eorr y i n modern physics, a n d i n particular th the e r est estrr ic i c tio tion n o f t h e d i s c u s s i o n t o me me-chan ical m o d e l s of which Duhem s more guilty than Campbell requires to b e modified. B u t many physicists , v ou ou ld ld n ow ow hold i n essentials ,vith Duhem
a n d would claim tllat Campbell s po poss i tion tion ha s been
decisively refuted b y t h e a bs e ll c e o f intelligible models i n quantulll physics; indeed, many vvould claim that something like Duhem s position lllust necessarily b e t h e accepted philosophy underlying modern phys hys i ca call theo theory ry.. the e c onv onvic icti tion on tllat e en ,vri ,v ritt ten t en i n th Th This is essay llas b een hass n o t been s de deci cisi sive vely ly clos oseed, all alld d that t he he d eb eb at at e ha a n element o f truth remains i n Campbell s insistence
t h a t w i t h o u t m o d e l s t h e o r i e s cannot f ulf i l a l l t h e functions traditionally required o f t h e m , a n d i n particular that they cannot b e g e n u i n e l y predictive.
T h e chapter which follows ha hass been cast i n t h e form
o f a debate between modern disciples o f Duhem protagon agonist istss fin final ally ly a n d Campbell, respectively. T h e prot
Physics t h e lements p. 129.
MODELS A N D ANALOGIES I N SCIENCE
a g r e e f a i r l y a l n i c a b l y t o di f f er b u t during t h e think succeeded course o f t h e argument they have i n clarifying a n d settling s o m e o f t h e issues vhich
often befog t h i s t o p i c TIle Campbell i a n h a s also made SOllie sort o f a case f o r greater attention to b e paid i n t h e philosophy o f sc scie ienc ncee to logi logica call questioI1S
about tIle nature alld validity of anal analog ogic ical al argument fronl lliodels T h e subsecluent chapters a t t e l l 1 p t t o pursue some o f t h e s e l o g i c a l questions
albeit i n a
preliminary a n d elelnentary fashion should like t o e x p re ress s m y grateful thanks t o ProBraithwaite a n d r G Buclldahl f o r fessor R discussioI1s whicll have inspired some o f t h e points Inade here although probably neither o f them viII he a rrg gu um me en n ttss p u t illto t h e mouths o f In recognize t he Iny y disputants as being po posi siti tion onss whic whicll ll they would ever
have defended
T o avoid
great bulk o f
a footnotes have ha ve co coll llec ecte ted d i n t h e suggestions f o r further read-
i n g most o f t h e re refe fere ren n c es t o published vork that have found valuable t h e logic o f analogy
t h iin nk kii n g a b bo ou utt models a n d
T h e Function o f Models:
A D ia lo gu e
ampbellian I imagine that along with m o s t c on-
temporary ph phil ilos osop ophe hers rs o f science y o u would wish
to say that the use o f m o d e l s o r analogues is n o t e s s e n t i a l to scien tific theorizing a n d that theoret-
ical explanation c a n b e d e s c r i b e d i n t e r m s o f a purely formal deductive system so so m e o f w h o s e c o n sequences c a n b e interpreted into observables a n d hence em empi piri rica call lly y t es ted b u t that t h e t h e o r y as a w h o l e does n o t r e q u i r e to b e interpreted by m e a n s of a n y m o d e l.
/ Dllhemist es I d o n o t deny of c o u r s e that models m a y b e u sefu sefull g uide uidess i n su sugg ggest esting ing th theo eori ries es b u t I d o n o t think they a r e essential even as psychological ic al aids ids a n d they a r e certainly n o t logi lly essential f o r a t h e o r y to b e accepted as scientific. When we have f o u n d a n a cc ccep epta tab b le t h e o r y a n y model that m a y h a v e l e d us to i t c a n b e thrown away. Ke Keku kule le is
s a i d to h a v e arrived a t t h e structure of t h e b e n z e n e ring after dreaming o f a s n a k e with its t a i l i n its it s mouth b u t n o account of t h e snake appears i n t h e textbooks o f o r g a n i c chemistry. ampbellian I o n t h e other hand want to argue that models i n s o m e sense re e s s e n t i a l to t h e logic o f scientific t h e o r i e s . B u t first l e t us a g r e e o n t h e sense i n which we a r e using t h e w o r d m o od de ell when
7
8
MODELS A ND N D A NA NA LO LO G GII ES ES I N SCIENCE
we assert o r deny that m o d e l s a r e essential. I should l i k e to explain lny sense o f t h e v o r d b y taking Camp b e l l s w ell- wo rn e x a n l p l e of t h e d y n a m i c a l t h e o r y o f gases. When ve t a ke a c o l l e c t i o n o f billiard balls i n random motion as a model f o r a gas we a r e n o t asserting t h a t b i l l i a r d bal ls a r e i n al l re spec ts l i k e gas pa part rtic icle less for for billiard b al l s a r e r e d o r vllite a n d hard a n d shiny a n d we a r e n o t intellding to suggest that gas n10lecules h a v e these prop proper erti ties es.. W e a r e i n fact act sayirlg that gas m o l e c u l e s a r e analog llS to bil
liard balls a n d t h e relation o f a n a l o g y m e a n s t l l a t there a r e S lne properties of billiard balls which a r e
n o t f o u n d i n molecules. L e t us cal l those properties
we k n o w b e l o n g to billiard balls a n d n o t t o mole neg g tive tive n logy of t h e mo cules t h e ne model del.. l\tlo tlotion a n d impact o n t h e other hand a r e just th the e pr prop oper erti ties es o f billiard balls that we d o want t o a s c r i b e to m o l e c u l e s posit sitiv ivee n li n o u r model a n d t hes e we c a n call t h e po
ogy N o w t h e i m p o r t a n t t h i n g a b o u t this kind o f model thinking i n science is that there Till generally b e some properties of t h e m o d e l about which we d o n o t y e t know whether t h e y a r e p o s i t i v e o r negative
a nalog ies; t hese a r e t h e interesting properties be cause as I sha l l a r g u e t h e y a l l o w us t o make n e w predictions. L e t us ca ll t h i s third set o f properties etltrr l n logy I f gases a r e r e a l l y l i k e collec t h e n etlt t i o n s o f billiard balls except i n regard t o t h e known negati nega tive ve analog logy then from o u r k n o w l e d g e o f t h e m echa echani nics cs o f billiard b al l s we m a y b e a b l e t o make n e w predictions about t h e e x p e c t e d b e h a v i o r o f
T H E FUNCTION O F l\10DELS
9
gases. O f course t h e predictions m a y b e , v r o n g , b u t then ,ve s h a l l b e l e d to conclude that ve have t h e wrong n10del. Dllhemist Your te tern rnli lill llol olog ogy y of po posi siti tiv ve, ne nega gati tive ve,, a n d neutral analogies s useful b u t s there n o t still about t h e sense o f model ? aY opuos shiabvl ee ambiguity mentioned gas n l 0 l e c u l e s a n d billiard balls. When y o u s p e a k o f t h e model fo forr gases, d o
y o u mean t h e billiard balls, p o s i t i v e a n d negative analogy a n d all, o r d o y o u m e a n w h a t we i l n a g i n e when we t r y t o picture gas In Inol olec ecul ules es s gl10stly little
objects having some b u t n o t al alll t h e properties of bi lliard balls? should say that both senses a r e ,videly used among many others), b u t i t distinguish them. ampbellian
s
important t o
a g r e e t h e y sl1 0 u ld b e d i s t i n -
conv nven enii e ent ntll y by guished, a n d think we c a n d o so co Ine ans o f m y terminology. L e t us a g r e e tha,t ,vhen we s p e a k o f a model i n it itss prilnary sense i n t h i s discussion l e t us c a l l i t model we a r e n o t speaking o f objj e ect ct w h hii c ch h can, s i t were, b e built o r im im-another ob
agined alongside t h e phenomena we a r e investigatpe e rrff e c t c o p y t h e billiard ing. T h e model s t h e i m p
balls) mintlS t h e known negative analogy
so that
y co on n ssii d e err iin n g t h e known po we a r e o n lly posi sitiv tivee anal analog ogy, y, prop oper ertt iies es ab abol olll t a n d t h e p r o b a b l y o p e n ) class o f pr which i t is n o t y e t known whether t h e y a r e p o s i t i v e o r ne nega gati tive ve ana analogi logies es.. W he n we consider a theory based o n a model s a n explanation f o r a s e t o f
phenomena, we a r e c o n s i d e r i n g t h e positive a n d
10
lVIODELS A N D i\NALOGIES I N SCIENCE
neutral analogies v
n o t t h e negative analog analogy y
\vhich
already kno \v vve call disc discar ard. d.
A r e y o u n o t confusing model with tIle tl tlle leor ory y itself? The re is n o difference between t h e D uhemist
theory a l l d tIle l l l o d e l as y o u n o w explain it so \vhy
use tIle \ v o r d model at all? Calnpbellian Partly because there is a t e n d e n c y particularly arllollg people o f your school o f thought to use tIle word tI tIle leor ory y to cove coverr only \vllat I \vould c al l tIle k n o v n p o s i t i v e a nal og y neglecting t h e features o f t h e model \v \vhich a r e its growing points namely its neutral analogy. My whole argument is
going to d e p e n d o n t h e se f e a t u r e s
a n d so I want
to make i t clear that I a m n o t dealing with static a n d fo form rmal aliz ized ed t h eori eoriee s corresponding only t o t h e known po posi siti tive ve a na l og y b u t w i t l l t h e o r i e s i n the process o f gro growt wtll ll.. Also sinc sincee y o u disagree with m e that models a r e e s s e n t i a l t o t h e o rie rie s y o u wi will ll necesi n a wider sense than s a r i l y use t h e word theory m y model t cover formal deductive systems which have only a partial interpretation into ob ob--
servables. My models o n t h e other hand a r e t o t a l interpretations o f a deductive system depending o n t h e positive a n d neutral ana analog logies ies vvith t h e copy.
S i n c e I s h a l l also want t o t a l k about t h e second object o r copy that includes t h e ne nega gati tive ve a na l o g y l e t us a g r e e as a shorthand e x p r e s s i o n t o c a l l t h i s modeI 2 I f i t is indifferent which sellse is meant
I s h a l l s i m p l y use model. L e t us ll W t r y to produce a reconstruction o f t h e
T H E FU N CTI O N O F lVIODELS
usee o f lllodels a n d analogies i n a familiar example us
vave m o d e l s f o r sound a n d f o r ligllt. A t a n elementary l e v e l we c a n se t u p t h e f o l l o v vii n g cor th
respondences: OUND
LIGHT
Produced mo tion o f vater par-
Produced motion o f gongs
Produced mov i n g flame etc.
ticles
strings etc.
Properties o f re-
Ec h oe s etc.
R e f l e c t i o n i n mirrors etc.
Properties o f dif-
Hearing round
Diffraction
fraction
corners
through small
WATER
WAVES
flection
slits etc.
Amplitude
Loudness
Brightness
Frequency Medium: Water
Pitch Medium: A i r
Color Medium: Ether
indicate
T h e f i rst t l l r e e r o w s some re spe cts i n which these three processes appear to b e a l i k e t o
fairly fai rly supe superf rfic icia iall obse observ rvat ation ion.. T hey are f o r example t h e kind o f properties that vould go i ll B a c o n s Tables o f Presence o r M i l l s A g r e e m e n t s . I n a l l
three cases there a r e p r e s e n t m o t i o n
sOlnething
indi dire rec c ttly ly fr from om o n e p l a c e t o another b y transmitted in hitting a n obstacle a n d a bending round obstacles.
T h is suggests that t h e three processes a r e perhaps alike i n more fundamental respects a n d i n o r d e r t o
investigate th this is poss possib ibil ilit ity y
we look IIlore cl clo osel ely y at
t h e o n e o f t h e three about which ve know most namely water waves. W e postulate with Huygens
that a disturbance o f o n e particle communicates
2
MODELS A N D ANALOGIES I N SCIENCE
i t s e l f to neigllboring particles i n such a vay that r i p p l e s s p r e a d f r o m t h e center o f disturballce i n concelltric ci circ rcle less a n d b y means of t h e elementary ath-
able
ar m mo on nii c m o ott i o on n we a r e erepresent ll1atics oft hsi sinl nlpl plee h ar to e amplitude a n d frequellcy o f t h e \Taves a n d to derive t h e la vs o f r e f l e c t i o n a n d diffractiol1.
W e ave t i l e n a theory o f water ripples consisting o f equations o f t h e type
y where
s i n Tfx
y is t h e height o f t h e v a t e r a t t h e point
measured horizontally
is t h e 11laxilllUm height o r
amplitude o f t h e ripples a n d is their frequellcy. From this mathematical theory s o m e laws o f t h e
process such as t h e equality o f t h e angles o f incialld ld refl reflec ecti tion on c a n b e d e d u c e d . dence al
So f a r we h a v e
t\
sources o f information to a i d
o u r construction o f th theo eori ries es fo forr sound a n d fo forr l i g l l t namely their observed properties a n d their observed
analogies with water waves a n d i t is inlportant to notice that both o f them a p p e a l o n l y t o descriptions o f observable events. W e m a y define o serv tion st tements as
those descriptive statements
whose t r u t h o r falsity i n t h e face o f given empirical circumstances would b e agreed upon b y a l l u s e r s o f English with o r without scientific training. L e t us also introduce t h e term expli ndllm f o r t h e se sett o f obser obs ervat vation ion statem statement entss connected with t h e phellom-
e n a we a r e attempting t o explain b y meallS o f a t h e -
o r y - t h a t is i n th this is case t h e observed properties o f
T H E F UNC T I ON O F MODELS
3
sound o r o f l i g h t . A l l u s e r s o f English might not t h e ana analog logie iess bet\Veell t h e t h r e e processes until they a r e poillted out a n d u p t o t h i s
o f COllrse
noti
point they
l 1 1 ay
have n o ll lllo lore re si sign gnif ific ican ance ce than t h e
fact that t h e class of fingers o n a halld a n d petals o n a buttercup a r e similar i n that botll h a v e five Inem-
bers. B u t when t h e analogies have beell pointed speci cific fical ally ly sci scient entifi ificc out n o esoteric insight a n d n o spe k no no w wll e ed dg ge e a r e required to reco recogn gniz izee that tIley ex exis ist. t. I t is n o t quite t h e same v i t h t h e m a t h e l n a t i c a l knowll ed edg ge of theory o f water waves, f o r here s o m e know trigonometry is required b u t there is n o difficulty i n understanding tIle tern l height o f vater frequency o f waves, etc. into which t h e mathematical
symbols a r e interpreted. I n t h i s sense tIle mathematical s y s t e m is about nt e err p prr et et a att iio on in has its i nt terms of) obse observ rvab able le e v e n t s .
o vconsider w ha ha t h a p p e n s w h he e n we make u se o f
t h e known theory o f water vvaves a n d t h e a11alogies
between them a n d sound i n o r d e r t o construct a theory o f sound. T h e an anal alog ogii es sugg sugges estt that sound is produced by t h e motion o f a i r particles propagated i n concentric spherical waves from a center o f disturbance. S i n c e w e know that t h e greater t h e disturbance o f water t h e greater t h e amplitude o f t h e waves, a n d t h e greater t h e disturbance o f gongs,
strings, hammers etc., t h e g r e a t e r t h e n o i s e p r o duced i t is easy t o i d e n t i f y l o u d n e s s o f sound with amplitude o f sound waves, and similarly, experiences with s tr trii ngs ngs o f va vary ryin ing g le leng ngth thss pe pers rsua uade de us that
14
l\10DELS A N D ANALOGIES I N SCIENCE
pitch o r sound is t o b e identified \vith frequency o f sound Naves. I n S O l n e such \vay \ve c011struct aIl Ilee-t -to o o n e correspondences betvveell t h e observable prop-
e r tie tie s o f sound the th e ex expl plic ica1 a11c 1clu luln ln)) a n d tllose o f \vater the e 111odel: ), al v vaves th alld ld \ve a r e tllen i n a position t o test t h e ma math thel ell1 l1at atic ical al ,vave theory as a theory o f sound. Further tests o f t11is kind, o f c o u r s e , n l a y
o r 111ay n o t sho\v t h e theory t o b e satisfactory. l a I n n o t clainlillg that t h e us usee o f a l l a l o g y l e a d s u s t o a n infallible theory, only that i t is used i l l t h i s \vay t o suggest a t h e o r y . d o 110t suppose y o u \vill ,vant
to dispute t h i s so far. Dllhemist N o , have n o o bje jecctio tiol1 to your recon struction o f t h e wa y t h i s particular 1110del nlight b e
used. B u t a m u n h a p p y a b o u t tI1e sellse i n \vhich yOll say t lla lla t t h e initial analogies a n d t h e illterpretat i o n s o f t h e Inathelnatical wave theory i n terlllS o f water c a n b e s a i d t o be ob obse serv rva ab ble le,, as contrasted, suppose, with t h e a i r particles ,vhicl1 a r e n o t observ
able.
cannot
see that there is a n i l n p o r t a n t differ
ence here. StIrely, to observe a silnilarity between t h e behavior o f ripples a t t h e e d g e o f t h e S\Vimlning b a t h a n d t h e behavior o f sound i n a mountain valley is a f a r from superficial observation. I t requires a very sophisticated framework o f p h y s i c a l i d e a s i n which, f o r e x a m p l e , t h e phenomena o f echoes a r e described i n terms o f a train o f p h y s ic icaa l cau ses initiated b y a shout, rather than i n terms o f a n imitative spirit o f t h e mountains. ampbellian Yes, agree \vith this, a n d your ex-
T H E F UNC T I ON O F lVIODELS
15
alnple illdicates that contrary t o \ v l l a t SOl11e elnpir- ~
icist philosophers
to have held observation descriptions a r e n o t \vritten 01 1 t h e face o f e v e n t s t o s ~
l n
b e transferred directly into language b u t a r e already
interpretations
o f events
a n d tIle kind o f illter-
pretation depends o n t h e frallle\Vork o f aSSUll1ptions
o f a language COlll111Ullity I t c a n plallsibly b e ar ar-gued that there is n o descriptive stateillellt n o t even
tIle blue-here-no\v
beloved o f se sens nsee da data ta tl tlle leor oris ists ts
1vhich do does es n o t go beyond \Vllat is given il illl t h e a c t o f o bs bs erv ervii ng ng . B u t I d o n o t vvisIl t o pursue tl1is argu ment here. Would y o u b e prepared t o a g r e e that scie sc ient ntif ific ic tl tlle leor orie iess bring something n e w into o u r descriptiollS o f evellts a n d that i t is t11erefore po poss ssib ible le t o l l l a k e a d is i s ttii n nc c ttii o on n be ett w we ee en n t h e observation statelllents o f a given language conll11Ullity sl slla lari rill llg g a
fralnework of assump ass umptio tions ns alld alld t h e statemellts going
beyond this shared frame\vork \vhich a r e illtroduced i n s c ie l l ti f i c th theo eori ries es?? I t is i n c o n t r a s t v i t h these
novelties 1vhich 111ay b e c a l llee d containing
theor eti
l t
r m s ~
theoreti
l s t
t
m
n t s ~
that certain a t present
descri cripti ption on m a y b e called observable. agreed kinds of des
T h i s is t o m a k e t h e distinctioll a pragmatic one relua g e COlna t i v e t o t h e assumptions o f a g i v e n l a n g ua munity
b u t i t does 11 t m e a n t h a t t h e traditional
empiricist problem o f t h e relation betweell theory a n d observation disappears. T o realize that every
h e n wa wass once a chicken is n o t t o absolve oneself from t h e task o f f i n d i n g o u t h o w a h e n gives birth t o a chicken.
16
MODELS A ND N D A NA NA L LO O GI GI E ES S I N SCIENCE
Dllhem ist O u r dispute does n o t turl1 o n t h e prehe o bs bs er er va va t iio o n la11guage a n d cise nature o f t he
viII
accept your pragmatic description o f i t . B u t have anotl ano tller ler obje ob ject ctio ion n to your account o f t h e g enes i s o f a
theory o f SOU d Y o u s e e m t o ilnply tllat t
ere a r e t\ sorts of theory construction going o n here. First there is t h e theory of vater vave vavess vIlic}l is arrived a t b y making a h y po poth thes esis is about t h e propagation of disturbances expressing this i n Il1 l1aath them emaatic ical al lanlan-
nd d e ed du uc ci n ng g from i t th guage a nd the e obse obserr ve ve d properties
o f water vaves. There is n o l11ention o f a n y analogies o r m o d e l s h e r e . B u t i n t h e case o f sound i t is said that one to one correspondences betwec11 properties of vater a n d properties o f sound a r e se sett u p first a n d then t h e mathematical wave theory is transferred t o sound. This m a y vvell b e t h e vay w l l i c h th theo eori ries es a r e o f t e n arrived a t i n practice b u t y o u h a v e s a i d nothing to s h o w that reference t o tIle vater model
is essential o r that there is a n y differellce i n principle bet veen t h e r e l a t i o n s o f theory a n d observation i n
t h e t vo cases. Both t h e o r i e s c o n s i s t o f a deductive
system together with a n i n ntt e err p prr e ett a att iio o n o f t h e terms occurring i n i t i n t o observables a n d from both systems c a n b e deduced relations vhich vhen so interpreted correspond to observed relations such as t h e l a w of r ef efle lect ctio ion. n. This is a l l that is required o f a n explanatory t h e o r y . Y o u h a v e implicitly acknowl
edged i t t o b e sufficient i n t h e case o f water waves a n d i t is also also su suff ffic icien ientt i n t h e case o f sound waves. I f
T H E FUNC T ION O F MODELS
17
,ve 11ad never heard o f vater \Taves ,ve shoulcl s t i l l b e a b l e t o use t h e san1e information about sound t o obtain t h e sarrle resu result. lt. T h e information consists o f t h e observed production o f sound b y certain motions he r e ell a att iio on nss b e ett v e ee e n t h e lnagnitudes soli lid d bo bodi dies es,, t he o f so o f these motions an.d t h e louclness o f tIle sound a n d bet\veen lengths o f stri strin n gs a n d pitch o f note, a n d t h e
p11enon1ena o f echoes a n d bending. A l l o f these c a n b e deduced from a nlathematical it h a p pp p rro op prr iia a tte e i n tte e rrp p re re tta a ttii o n with wave theory w it
o u t me11tioning t h e water-wave model and
v11at is
more important vithout sllpposing t11at there is anything connected v vii t h t h e t ran ranss mi m i ss ss io io n o f sound
o r light which is analogous to vater that is without supposing there a r e SaIne
11 11id idde den n motions o f particles having t h e same relation t o t h e s e observed prope r t i e s o f sound o r light that t h e m o t i o n s o f water
particles have t o t h e properties o f water waves. I n fact, i t w o u l d b e very misleading t o suppose a n y s u c h t h i n g b e c a u s e s o m e o f t h e further conse quences derived from a theory o f water waves turn
o u t n o t to b e true i f t rra an nss ffe e rr rr e ed d
b y t h e one-to-one
correspondence t o sound a n d light transmission. ampbellian N o b u t t h e r e a s o n f o r this i n t h e
case o f sound a t l e a s t is n o t t h a t tl1ere is n o ,vave model b u t that r i p p l e s a r e t h e wrong ,vave model. T h e oscillation o f particles cons constit tituti uting ng sou sound nd ,vaves lo n ng g t h e direction o f tr trans ansmis missi sion on of t h e tak es pl plac acee a lo sound like t h e motion o f a piston a n d n o t a t r i g h t
ND A NA NA L LO O GI GI E S I N SCIENCE MODELS A ND
a n g l e s t o that direction,
as with
ripples. B u t what I
have just described is i t s e l f a m o d e l o f t h e m o t i o n s of a i r particles d e r i v e d b y analogy with observable
events such as t h e action o f b u f f e r s o n t h e t r u c k s o f a train o r t to o t a k e Huygens example th thee t r a n s m i s s i o n o f p r e s s u r e along a line of billiard balls when t h e b a l l a t o n e e n d is struck i n t h e direction of t h e line a n d t h e ball a t t h e other e n d mo v e s off b y i t s e l f i n t h e same direction. uhemist
I d i d n o t intend to say that i n many cases an alte al tern rnat ativ ive e model cannot b e f ou o u n d w he he n t h e first b r ea eak k s do down wn b u t only that mention o f a model logical structure o f a n explanatory theory a n d that i t is n o t even always a u s e f u l device f o r f i n d i n g such a t h e o r y f o r i t ma may y p os osit itii ve vell y is n o t part o f t h e
suggest t h e wrong theory. I t is a question o f l o g i c I should like your react i o n s to. I a m impressed y o u see by t h e situation throughout a l a r g e part o f modern physics where i t is i m p o s s i b l e to find a n y model like t h e model o f a i r motions f o r sound, a n d where nevertheless t h e criteria f o r a deductive theory which I h a v e outlined a r e st stil illl sa sattisfied a n d theory construction a n d testas
i n g go o n much before. I t m ay b e less s a t i s f a c t o r y to t h e imagination t o h a v e n o p ic ic tu t u ra ra bl b l e model a n d more d if f i cu lt t o construct theories without it
but
t h e continuance of phys ics i n t h e sa sam m e l o g i ca call shape as before shows that t h e model is n o t logically
n ecessary t o t h e process.
ampbellian I a m n o t convinced that there is
T H E F U N CTIO N O F wIODELS
such a n a b s e n c e o f m o d e l s i n moderll physics as y o u
suggest a d I m a y come back t o that later. Also i t is a lit little tle misle mis leadi ading ng to s p e a k o f pictures as if they vere synonymous vith 11lodels f o r I vould say f o r exan1ple that a tl tl1r 1ree ee dirr dirrle lell llsi sion onal al sp spac acee curved i n a
fourth dimension is a p e r f e c t l y g o o d m o d el i n rela-
t i v i t y t h e o r y b u t i t is certainly n o t pictur ble A model for Ine is allY system vllether buildable picturable imaginable o r Ilone o f these vhich has ha s t h e il
characteristic o f making a theory predictive a s ense I s h a l l d e s c r i b e later w I l e n I t r y t o substantiate
gic a l l y e s s e nt ntii a l f o r m y claim that models a r e l o gic theories.
B u t l e t u s s t i c k f o r t h e moment t o
ample because i t s
s ilup iluple le exe a s i e r to bring o u t t h e difference O lr
between us there. I f I llnderstand you y o u a r e sayi n g that i n t h e case o f sound vaves there is n o point even i n speaking about motions o f a i r particles be-
c a u s e t h e s e a r e n o t part o f t h e observed data y o u list a n d ve c a n explain these data equally well b y means o f a Iuathematical theory some o f v ho s e c o n sequences c a n b e interpreted t o g i v e relations bet w e e n t h e observables. Y o u viII a t least a d m i t t h a t here there is a di diff ffer eren ence ce b e t w e e n t h e t w o t h e o r i e s I described those f o r ripples a n d f o r sound i n that t h e m o t i o n s o f water particles
r
observable i n t h e
pragmatic sense we h a v e a g r e e d o n a n d so a l l t h e symbols i n t h he e e qu q u at a t io i o ns n s o f t h e ripple t h eo eo r y a r e i n terpretable as observables. I n t h e case o f sound
ho vever we cannot observe
i n t h i s s ense t h e am
20
MODELS A N D ANALOGIES I N SCIENCE
plitude a n d frequency o f t h e vaves
indeed ve c a n -
110t o b s er erv v e v a v e s a t all ve c a n DIlly infer theIll froll1 data such as ill1pact of ha l l l 1 ne r g011g alld vibration of stri strin n gs gs.. D o y o u v vii sh to say t11at a t l l e o r y o f s o u n d n e e d n o t Inention vaves a t all since
tllese a r e n o t observable?
llhemist
am
that convenient
a n d u l l i v e r s al l l l o d e s o f speecl1 such as tllis s h o u l cl
necessarily b e dropped b u t l e t us see what exactly ve lllearl b y talking about sound waves. W e d o n o t lllean just t h e same as we d o when talking about vater vaves vaves bec because ause as w e h a v e see n s o u r l d vaves a r e longitudinal a n d n o t transverse. TIle vord persists beca becaus usee both theories us usee t h e same Inathemat
i c a l fO fln alism
which v vee c a l l
t h e vave equation
differently applied i n t h e tvvo cases. vVllat ripples
a n d sound vaves have i n COlllIllon is completely contained i n t h e mathematical formalism a n d i t is t h i s \ve \ve POillt t o b y continuing to u s e t h e w o r d wave.
O f course
a m n o t denying that i t is legitinlate t o
thillk o f t h e propagation o f sound i n terms of p u l sa satti n g spheres o f a i r particles so long as v l l a t we mean
b y t h i s is controlled b y what we k n o w f r o m observation about sound other
a n d n o t b y reference t o s o m e
process. suppose this c a n b e expressed i n
your terminology b y s a y i n g that i f t h e po posi siti tive ve anal anal-ogy og y between sound a n d a model o f pulsating spheres
is believed t o b e c o m p pll e t e then this model is iden tical with o u r theory o f sound a n d there is n o harm i n using t h e l a n g u a g e o f t h e Inodel as a n interpre-
T H E FUNCTION O F MODELS
tation o f tIle n 1 a t h e m a t i c s o f tIle tI1eory. B u t I a m
d e n y i n g t h a t we c a n always g e t t h i s s o r t o f m o d e l
a n d t h a t w h e n we can t we s o m e h o \ v h a v e less o f alll explanation. al ampbellian I a m surprised y o u a r e prepared to
allo\v as ll1uch as t h i s f o r cornmon m o d e s o f s p e e c h a n d I a m n o t sure y o u ar are e cons consis iste tent nt i n doing so so.. I f
y o u Ilad regarded a l l ta talk lk o f
oscillatio11s o f a i r par ticles as ll1isleading a n d dispensable I should have respected your C011sistency b u t I should tilen I ave a t t a c k e d y o u o n t h e grounds that y o u d o n o t give a plausible account of tI e meaning of theoretical terms. O n w at I t a k e to b e t h e co con nsist iste1 e11 1t for formal malist ist the theory
only
i n thi view thiss case corlsists nla1 opula f alate fted od rn1aacl a11i 1ipu deductive systeln-rtlarks o n paper nl cording t o certain rules-together with t h e i n te te rp rp rre e
tations i n terms of o b s e r v a b l es so that t h e only meaning that call b e given to f o r instance t h e pa pa rameter i n t h e wave equation is ill il l teril S of inten s it y o f sound a t t h e point where that is re recc o r d e d . There is nothing to say about during t h e t i m e
\vll \v llic ich h el elap apse sess between t h e banging o f t h e g o n g a n d t h e reception of t h e sound a t some distant point. I c a n say o n t h e other hand, that ha hass a n interpreta
tion a t a l l t i m e s durillg t h e passage o f t h e
SOU11d
namely i t is t h e alnplitude o f o s c i l l a t i o n s o f a i r par ticles even though these a r e llnobservable. T h u s I h a v e a solution to t h e so-called problem o f t h e meaarli1 me i11 1g of theoretical terms. cou u r s e all kinds of defi defini niti tion onss Dtlhemist Well, o f co
22
lVIODELS A N D ANALOGIES I N SCIENCE
o f t l l e o r e t i c a l t e rI n s h a v e b e e l l s l l g g es t e d to cover cases like this, a n d i n t h e case o f SOUlld \vaves a c o n ditional definition i n ternlS o f observables rnight b e given i n t h e forrl1:
F o r al alll x y t
\vave a t x y
the th e a IInp npli litl tlld lde e o f a sound
i f a rnicrophone placed a t x y a t time t records sound o f intensity proportional to a2 • is a
Bllt i t is n o t al,vays p o s s i b l e t o g i v e d e f illi illitt io ion n s even
o f t h i s conditional kind arld when i t is not
am
content to say that t h e lneaning o f anlplitude o f sound wave
is given indirectly b y t h e position o f
i n tIle deductive system, a n d tIle f a c t that some a consequences of t h e system, vhen irlterpreted have ordinary er ern n pirical meaning.
Campbellian: So when y o u spoke o f pulsating s p h er eres es o f a i r particles, y o u were t silluggling i n a reference to a n y model: , b u t only intended these w o r d s t o b e a way o f speaking about tIle mathemat ical ic al symbols? According to y o u i t would b e vrong t o look u p tlleir meaning i n a dictio11ary o n this occasion-what is required is t o look u p t h e position o f t h e correspondillg symbols i n t h e d e d u c t i v e
systelll. T hi s is surely a v e r y s t r a n g e account of meaning ? I t irllplies t h a t i n d dii r e c t meaning c a n b e given to a n y word like to coin b y i l l s e r t i n g i t i n a deductive system,
~
r
exarllple i n t h e syllogisrll:
A l l toves a r e hite
T H E F U N C T I O N O F I\10DELS
c a r is a t o v e therefore M y c a r is 1vhite,
23
tIle conclusioll o f 1vllich is observable. 1- oves no no,v ,v llas indirect meaning il illl your sense. Du h e mist Tllis account o f illdirect lllealling must
b e regarded as necessary bllt n o t sllfficiellt. 1. 0 nlake i t sufficient should l1ave t o adcl that f o r a theoreti-
c al ternl t o have scientific meallillg i ll this ay, i t l11USt occur i n a deductive syste tell ll1 1 1vhi 1vhich ch is seriously considered i n science, that is is,, o n e 1vllich Ilas many obser obs erva vabl ble e co cons nseq eque uenc nces es i n different cirCulllstances, a l l o f vvhich a r e c o n f i r m e d b y o b s e r v a t i o n a l l d none
refuted. T hi s is entirely a question f o r sc scie ient ntif ific ic re
s e a r c h , all empirical n o t a l o g i c a l question a n d so t he he c o on n d iitt i o on n s f o r a theoretical terlll t o l l a v e s c i e n tific meaning carlnot b e lo logi gica call lly y fo forma rmaliz lized ed.. B u t i t is clear t h a t y o u r syllogislll about toves would n o t qualify. Campbellian This s t i l l seeIns t o I ne very strange t h e more so b e c a u s e y o u h a v e agreed t o accept a n aCCOullt o
observational a l l d t l l e o r e t i c a l terms i n
ti o n bet1veen theIn is n o t logical whicll t h e d i s t i n c ti
b u t pragmatic. I f y o u a c c e p t t h i s y o u IllUSt allow
f o r t h e frontier between them t o s l l i f t as s c i e n c e pro-
gresses. This is done i n m y
aCCOll11t
by saying that
we discover that sound waves a r e pulsating spheres t h e ordinary sense o f these words o f a i r particles a n d i f t h i s is accepted y everybody i n t he he l a an ng gu ua g ge e
cOlnmunity (as I suppose i t is i n ours
i t does n o t
MODELS A N D ANALOGIES I N SCIENCE
much lnatter where t h e line o f observability
is
d r a , v n . A d n 1 i t t e d l y i t would b e o d d i n o r d i n a r y
speec
t o talk about observing
a i r pulses, b u t a
statelnent about thell1 Inig t well function as a n ob ob servation staten1ent i n a particular scientific experi
ment, that is t o say, e v e r y o n e would a c c e p t it s truth
o r falsity as t e final Ollrt o f appeal without deduc i n g further observab observable le cons conseque equences nces from it. O n your account I d o n o t see h o w p pu ulsati11g sph spheres eres o f a i r particles
ever gets i n t o o r d i n a r y la11guage,
because y o u have spec specif ific ical ally ly denied that t ese ,vords a r e used i n t h e i r o r d i n a r y sense. llhemist l\tIy account is n o t i n t h e l e a s t i n c o n
sistent with what we h a v e p r e v i o u s l y agreed-ill fact,
I h a v e g i v e n a n account o f h o w t h e frontier o f ob serv se rvab abil ilit ity y s h if t s w h i l e y o u h a v e n o t . TI1e essence o f t h i s s h i f t is surely t h a t o r d i n a r y la11guage itsel itselff changes-when we talk about a i r p u l s e s we a r e f l t u s i n g t h e words i n exactly t h e se se they previously had, a n d what I h a v e done is p r e c i s e l y t o explain h o w ordinary language is extended t o t a k e i n n e w
senses o f t h ese w o r d s, depending o n t h e structure o f t h e scientific theory i n which they o c c u r . Y o u , o n t h e contrary, have n o t e x p pll a i n e d h o ow w t h e ordinary
senses o f w o r d s c h a n g e . M o r e o v e r , I think y o u have smuggled i n a quite different issue here, namely, t h e
question o f t h e reality
of t h e a i r pul se s. Y o u s e e m
to imply that I a m comlnitted to a 110nrealistic view, t o s a y i n g that they a r e fictional entities o r heuristic devices o r what-110t, b u t this is n o t t h e case. F o r m e ,
T H E FU N CT I O N O F MODELS
t o say t l l a t a i r p u l se sess ex exis istt means just ,vhat I h a v e explained-they a r e entities referred t o b y th thee v a l u e s o f v a r i a b l e s i n ) a deductive syst em h a v i I l g all all
charac char acte teri rist stic icss of a n acc accep epted ted sci cien entt i fi c tlle tlleor ory y that I h a v e d e s c r i b e d . I d o hold that models a r e heuristic o l d in in g t ha ha t the devices, b u t I a m n o t committed to h ol oretical entities understood wholly as interpretations o f a n accepted Il Il1a 1ath them emat atic ical al theory ar aree also. I f y o u like, lik e, In Iny y t11eoretical e nt n t iiti tie e s a re re related to your mod els i n having t h e known positive n logy only Campbellian Y o u h a v e certainly made your posi tion clearer, a n d I a g r e e that v e need l l o t d i f f e r o n eo r et et iic c a l entities. W e t h e subject o f existence o f t h eo differ o n what i t is that is a s s e r t e d t o exi st . I say that
t o a ss e rt a theory is to a s se r t a modell positive a n d neutral analogy; y o u say i t is t o a s se r t t h e positive
analog anal ogy y o nl nly, y, a n d according t o y o u t h e neutral anal ogy is merely a heuristic device. Dllhemist O f course, t h e theory illay n o t b e de scribable i n terillS o f models a t all, i n cases ,v-here I deny tl14t there a r e models. T h e n i n order t o a s s e r t t h e e x i s t e n c e o f a th theo eore reti tica call enti en tity ty,, ,ve Inust either coin n e w words o r give o l d vords a n e w sigllificance b y t h e method o f indirect m ea e a n i n g i n deductive syst e l n s I h a v e d e s c r i b e d . T o go back to your origillal
examples, t h e word ether,
,vhich you have p u t i n
quotes i n t h e third column o f your t ab abll e , was surely a word .adopted a n d gi give vell ll sign signif ific ican ance ce i n just this
way,
that is t o say, there were s o m e t h e o r i e s seri
ously considered a t o n e stage i n physics i n w h i c h t h e
M O D E L S A ND ND A N A AL LO G GII ES ES I N SCIENCE
ether h a d a we l l - d e f i n e d pl plaa c e i n a deductive system a n d t h e o b s e r v a b l e c o n s e q u e n c e s o f its properties could b e empirically tested. ampbellian I a m n o t satisfied that this is suffi
c i e n t . I want sa say y that t h e we well ll-d -def efin ined ed pla place ce i t h a d was d u e to its being understood i n t e r m s o f wave
models a n d t h a t its meaning was g i v e n b y a series o f analogies of t h e f o r m: water waves water p a r t i c l e s ..
sound waves a i r particles
light waves
..
ether particles
I d o n o t really understand h o w meani n g s a r e g i v e n b y a n a l o g i e s i n t hi s way a t all. A r e y o u s a y i n g s i m p l y that when there is a modeL f o r a theory as i n t h e case of t hi s theory o f l i g h t then Dllhemist
air
and
ether
interpretations
the
a re s a m easnedt of symbo ymbolls i n th thee t h e o r y a i r i n t h e caso e fof sound ether i n t h e case o f l i g h t ? so I a gr gree e that we m a y a cq cq ui u i re r e a n int intuit uitive ive understanding understanding o f ether
in this
indirect way
by an anal alog ogy y with t h e a i r modeL. B u t s i nc e I d o n o t regard models as part of t h e logi c o f a n no n o t r eg eg ar ar d t h i s sense o f meaning as theories I c an interesting f o r t h e logician. ampbellian I d o mean by m y analogical relations
what you sugg ggeest b u t I also mean something more conv nvin ince ce y o u part o f t h e logic o f which I hope to co
theories. L e t us go back to t h e example a n d t r y t o fill o u t m y a c c o u n t o f t h e way t h e t h e o r y o f sound is arrived a t . I a m prepared t o c o n c e d e your objection t h a t g i v e n a l l t h e observational information I h a v e
T H E F U N CT I O N O F J\;IODELS
27
allo ved l11yself, could have gone straight t o a math-
ematical ,v ,vav avee tl1eory frOlll ,vhic11 t h e observations
could b e decluced, vithout going through t h e proc ess o f finding one to one cor corres respon ponde1 de11ce 1cess Nith vater
,vaves. T h e r e ,viII generally b e a n indefinite llumb e r o f s u c h mathell1atical theories b l l t agree ,vitl1 y o u that there is n o g u a r a n t e e that tI1e ,vater-,vave
model: ,viII lead t o t he he c o rr r r ec e c t theory so y o u rightly a s k vhether c a n h a v e a n y reasons f o r using this
analogy e x c e p t t h e c o m ffo o r t a b l e feeling that have
seen t h e Inathematics before. Well
tllink 11ave
a reason a n d c a n explain i t b y taking a slightly different situation. Suppose ,v ,vee a r e no tV atten1pting t o construct a
theory o f l i g h t . Your procedure ,viII b e t o find, n o
matter how a mathematical system from w h i c h t h e observed properties o f t h e explicandum say reflec tion a nd n d r ef e f ra r a ct c t io i o ll l l c an a n b e deduced a n d f o r this
y o u will only demand interpretations o f t h e formul a e which yield t h e observable relatio11s y o u w i s h t o explain. Suppose b y whatever method o r l a c k o f
method y o u use, y o u d o choose t h e n1atherrlatical
,vave theory o u t o f t h e in.definite nun1ber o f possi
bilities. s11all arrive a t t11e san1e theory b y noticing
t h e analogies between light a n d sound
a n d setting
u p a model o f light transmission i n t e r m s o f oscil lation o f particles i n a medium. No tV w e must
d is i s ti t i ng n g ui u i sh s h b et e t we w e en e n t h e v a r i o u s results
v
c a n ob-
t a i n . Y o u tV ill b e able t o deduce trle simple laws
o f reflection a n d refraction b y using space coordinate
MODELS A N D ANALOGIES I N SCIENCE
a n d intensity observables b u t t ese viII b e t h e only terlllS i n t h e t h e o r y w h i c h y o u viII interpret as
obss e r vab ob vab le less . So f a r y o u viII h a v e deduced geometr i c a l o p t i c s fr or n a mathematical v vaave th theo eory ry.. I f y o u vant to d o lllore than t hi s y o u w i l l h a v e t o interpret s i n 7Tfx s veIl t h e syrnbol f i n y o u r equation s t h e sYlnbols a n d x N o w y o u m a y h a v e observational information that w i l l a l l o v y o u to d o t his his dire direct ctly ly.. F o r example y o u m a y derive frOlll your theory equations relating t o t h e passage of l i g h t t h rro ou ug g h a p r i s m iilll w h i c h y o u notice that t h e a n g l e o f refraction depellds o n t h e value o f I f y o u also h a v e exp experi eriln lnent ental al data da ta o n t h e
production o f a spectrurn o f c o l o r s b y t h e prism
it
will b e r e a s o n a b l e t o s e t u p a o n e t o o n e c o r r e s p o n d e n c e b et et w e e n values o f a n d colors i n t h e spectrum. T h e theory will then have shown itself capable o f explaining t h e laws o f dispersion as w e l l as t h o s e o f geometrical optics. B u t suppose y o u d o
n o t know t h e prism experiment o r a n y other relating
t o colors. H o w is to b e interpreted? You Yo u m a y o f course make a guess that since there a r e lights o f is
different colors a n d there a n available parameter i n t h e theory i t would b e vorth investigating
whether th the e iden id enti tifi fica cati tion on o f v a l u e s o f with differ-
corr rres espo pond nden ence ce bet bet veen ve en thee n t c o l o r s w i l l y i e l d a co o r y a n d experiment. O r y o u m a y d e c i d e t l l a t is
uninterpretable; i t is part o f t h e m a c h i n e r y o f t h e d e d u ct ct i ve ve t h e o r y b u t h as n o observable correlate. I n t hi hiss case y o u will n o t b e able t o include disper
T H E F U N CTIO N O F ~
sian i n your theory. Have procedures correctly?
D E L S
described your possible
llhemist
Yes
viII accep acceptt that i n principle
should h a v e t h e s e three possibilities i n tIle case o f a hitherto uninterpreted term i n t h e theory. O f
course t h e example y o u a r e using hardly brillgs o u t t h e p o i n t s i n a re real alis isti ticc way be beca caus usee t h e v vaave equ equ a tion was n o t i n t r o d u c e d i n t o op opti tics cs Ulltil after t h e
facts o f color dispersion were already kn kno o vn alld alld so there was little difficulty about this particular iden tification. B u t c a n see that i n other cases there I n i g h t b e n o obvious identification o f a theoretical decide de to term; a n d then o n e might s y o u sug gest deci leave i t uninterpreted s i n t h e case o f a Schrodinger in
quantum
or
lJI-function
s o m e scho o ls o f physics; o n e might make what y o u c a l l a guess b u t should prefer t o c a l l a h y p o t h e s i s about its it s illterpretation
a n d investigate t h e experilnental consequences o f t h e hypothesis. What cannot see s that y o u a r e a n y bet t e r off when i t c o m e s t o interpreting a feature o f your m o d e l . Y o u w i l l o f c o u r s e know that s what corr co rres espo pond ndss t o t h e frequency of waves i n t h e model
b u t i n t h e absence o f a n y observations connecting color with t h e laws o f geometrical optics which y o u
have already explained b y t h e theory h o w does that ident entif ify y freq fr eque uenc ncy y o f waves with color? help y o u t o id Y o u h a v e t h e s am amee ch choi oice ce that have either t o l e a v e
uninterpreted a n d hence frequency o f waves u n correlated with anything i n your t h e o r y o f l i g h t o r t o resort to guess v vo ork.
MODELS A ND N D A NA NA LO L O GI GI E S I N SCIENCE
I used t h e vvord guess ratller tllan llypothesis t o bring t t h e fact that o n your ac he o r i e s y o u c a ~ n o t giv ny C O U I l t o f tIle l 1 a t u r e o f t he a ~ n p b e l l i a n
r
ne illterpretation sons f o r choosing t o e x a n l i n e o ne
ratiler t l l a n a n y other. A n d I notice tllat y o u d i d n o t
give allY actual exanlple o f a theoretical terlll being interpreted 1vithout t h e help o f a model. I t is n o accidellt that i t is d i f f i c u l t t o tllink o f al l exalnple i n practice r because there suggest al,vays reasons f o r exal11illing a h y p o t l 1 e t i c a l irlterpretatioll aIld these r e a S O l l S a r e dra1vn fronl lllodeis. give allY reasons before havillg carried o u t experinlental tests? cannot give a n y reasons f o r c l l o o s i n g aIl e t l l e o r y rather than a n llhenlist
WIlY sI sI10 10ul uld d
other llntil have t e s t e d i t , a n d tIle illt illter erpr pret etat atio io11 11 o f a particular tlleoretical term is only a n elenlellt
i ll a t i l e o r y , t o b e considered as part o f tIle w h o l e.
B u t y o u llave n o t answered illy questioll about your 1Vl1 procedure. l-Io\v
does YOllr rn rnod odel el h.elp y o u t o
give gi ve re reas ason onss f o r your interpretation? C a n ~ p b e l l i a r L This is , v l le lerr e appeal to t h e anal ogy bet \veen t h e 111 del a n d tIle phell0111ena to b e l I S f i r s t s ee h V explained. c a n interpret t h e paranleter o f t h e t h e o r y , 1vllich is already corre·
lated i n IllY model with t h e amplitude o f t h e vvaves.
suggest t11at tIle lllodel: imnlediately makes i t rea sonable t o suppose that nlagnitude o f t h e ,vaves corresponds vith lllagnitude o f t h e light alld i n lnagIlitude means brightness. t h e case o f light
J u ~ t
as a greater ,vave disturbance meallS a louder
T H E F l J N C T I O N O F lVI0DEI-JS
sound, so d o e s a greater vvave disturballce meall a
brigl1ter light, althoug11 this this cannot b e illvestigatecl directly since vve cannot make a greater \vave dis turbance b y lnovillg a body as \ve c a n \vitl1 soul soulld. ld. T h e hypothesis that tllis is t h e case cOllles frOlll a n a n a l o g y o f tI le f o l l o \ v i n g k i l l d :
loudness properties sound
.. ..
brig11tness
properties o f light
s ll gg e st tl1at th this is analogy is fOUIld i n t h e language before a n y ,vave theory is thought of. I t is indepelld e n t t h e particular theory o f light we a r e consider
i n g a n d so c a n b e u s e d t o develop this theory. Duhernist O n e ll llli ligl gllt lt,, surely surely,, just as plausibly sug
gest that br brig ight htll lles esss is correlated vvith shrilllless, o r loudness with purple o r scarlet calleel, b e i t noted, loud colors . anlpbellian Adrnittedly there lnay b e s o m e a m
biguities this
b u t if w e c on. sid er t h e p o i n t s o f
s i l n i l a r i t y o f lOlldness an.d brightness-tIle scale o f
intensities from absence o f sound o r light t o i n d e f i nitely large degrees o f i t , t h e analogies betweell their
effects o n o u r sense organs deafening
a n d blind
ing ), a n d so o n , t h e suggested correspondence seelns t h e mo most st pl plau ausi sibl ble. e. Dehtlmist
A l l r i g h t , b u t ,vhat about t h e cor
respondence between pitch, frequency, a n d color which y o u must claim if y o u r m e t h o d is t o ,vork f o r interpreting t h e symbol is,, admittedly, more difficult. ampbellian This is
MODELS A ND N D A NA NA L LO O GI GI E ES S I N SCIENCE
I d o no nott ffor or exam exampl plee sseee h o w t h e correspo11dence o f f r e q u e n c y of waves with p i t c h c o u l d have been arrived a t without o b s e r v e d cor cor re rela lati tio o n s in inv v ol olvi vin ng s u c h t h i n g s as vibrating strings. I n t h e case o f sound
used
a model f o r light there is some pl plau ausi sibi bili lity ty i n claiming a pre re--scie ien nti tiffic ana analo logy gy:: as
pitch properties o f sound
color properties o f light
i f we think o f t h e v a r i o u s met me t ap ap ho ho rs rs fro fro m sound to light-Locke s blind man s scarlet sound of trum pets a n d t h e use o f s u c h t e r m s as harmony and appealing to a n a l o gi e s of p l e a s u r e a n d pain clash i n their effects o n o u r sense org rgal alls ls.. Dllhemist I a m n o t a t a l l c o n v i n c e d that this roundabout way o f r e c o g n i z i n g a n a l o g i e s c a n b e enti tire rely ly arbi ar bitr trar ary, y, b u t even s h o w n to b e other than en
if i t can y o u seem t o m e o n l y t o h a v e g i v e n m e o n e way of making m y guess
ntt e err p prr e ett a att iio o n of a at an in
t h e o r e t i c a l t e r m . You h a v e n o t shown that i t consti t u t e s a n y r son f or expecting a guess made by t h i s method t o b e a right o r even fruitful one. ampbellian I hope y o u w i l l wa ive f o r t h e fil0 ment t h e question of whether a n y o b j e c t i v e a n a l ogies o f t h e kind I d e s c r i b e a c t u a l l y exist b beecau s e I hope t o go into this i n more d e t a i l l a t e r . M e a n while I should l i k e t o examine t h e o b j e c t i o n y o u have just made. There a r e two t h i n g s I should like to say about it. Fi r s t I claim that t o assert a n anal
T H E FUNCTION O F MODELS
ogy between amplitude o f waves a n d loudness o f light ht even even be befo fore re a n y experisound o r brightness o f lig mental correlation is k n o w n t o give a r e a s o n f o r t h e interpretation o f t h e symbol a o f a kind which c a n never b e g i v e n o n y o u r account of t h e matter. uhemist L e t m e interrupt y o u b e f o r e y o u go a n y
further. O f course
i t is p o s si b l e t o find a m o d e L
this th is case a n interpretation derived from t h e m o d e L c a n b e s a i d to h a v e t h e reason that i t is s i t is i n
from the
derived modeL a n d t h i s dist distin ingu guis ish h es i t from a n y interpretation I might d e c i d e to m a k e B u t
this
is pure
evasion I cannot a c c e p t a r e a s o n i n t e r m s
a m o d e l f o r I claim t h a t n o model is required. I a m a s k i n g f o r a r e a s o n f o r a s s u m i n g that t h e model required o r even that i t is l i k e l y to l e a d to a better interpretation than o n e I m a y m a k e ampbellian O f c o u r s e I cannot expect y o u to b u t what a c c e p t a r e a s o n appealing to cie a en mtis want to point o u t is that s sci tiosdtse l use t h e wordI reason
i n this context they will a c c e p t r e a so n s ap-
pealing to m o d e l s This c a n b e se e n i n t h e way t h e y
m a k e p r e d i c t i o n s f r o m models a n d use them s tests o f theories A prediction w i l l b e thought t o b e rea-
s o n a b l e i f i t follows from a n obvious interpretation g i v e n to a theoretical term b y appeal to a t h e prediction c o me s off t h e theory a n d model its m o del del 1 will b e regarded s strengthened whereas i f i t fails to c o m e off t h i s m a y b e r e g a r d e d s suffi-
c i e n t l y s e r i o u s t o refute t h e t h e o r y a n d t h e m o d e l 1 together F o r example the c o r p u s c u l a r m o d e l o f
34
MODELS A ND ND A NA NA LO LO G GII ES ES I N SCIENCE
light ,vas regarded as refuted when t h e obvious i n t er er p prr e ett at a t iio on th ha a t t\
,corpuscles falling o n o n e spot
,vould produce tvvice t he he i n ntt e en n si s i t y o f l i g l l t produced b y o n e ,vas s h o \ v n t o b e contrary t o diffraction
experiments. T h a t t h e model l e d t o t h e , v r o n g in in
terpretation ,vas i n this instance a reason abandoning t h e ,vhole theory. Dllhemist
for
a m n o t clear \vhy o n your account i t
should be be,, f o r y o u h a v e already allo,ved f o r t h e pos sibility tllat a model; m a y n o t correspond t o t h e
phenomena il illl
respects. W h y call1 ll1lo lott tIle feature \vhich fails i n this instance b e rell 10 ved t o t h e llega tive analogy a n d t h e rest o f t h e corpuscular model l retained? ampbellian T o answer this ,,,auld certaillly re re
Iuire fllrther analysis. Roughly, i t ,voulel turn a l l l s ~ a r e luore t h e fact that some properties o f n l o essential than others, tllat is t o say a r e causally
more closely connected o r
t o c o - o c c u r more
frequently. F o r e x a m p l e , c o l o r is n o t a n essential property o f a billiard b a l l f r o m t h e point o f view o f mechanics, b u t momentulu is.
a prediction de rived f r o m c o l o r fails, this does n o t ess essent entiall ially y af afffec ectt
a me mech chan anii cal c al mo del delll b u t i f something elerived from momentum fails, t h e m o d e l is refuted. Duhemist B u t such refutation still depends o n
t h e a s s u m p t i o n tllat a theory must have a model, \vhich a m denying. A n d your example plays into m y hands, f o r we know that t h e essential property
y o u have appealed t o i n t h e case o f t he he c o orr p pu u ssc cu ull a arr
T H E FU N CT I O N O F MODELS
35
t h e o r y o f light s ~ t n o v a l l o v vee d t o r e f i t t e that theory. T h e quantulll t h e o r y o f radiation accommo-
dates both diffraction experiments a n d model talk about light particles. B u t t h e \vay part particl icles es alld other models a r e used i n quantuln theory s quite consiste n t with m y account. T h e theory s regarded s satisfactory i f i t s p o s s i b l e to deduce o bs bs e r ve ve d r e s u l ttss from t h e mathematical formalisln plus interpretam o
l s ~
tion o f some o f its a r e u s e d as its terillS alld only mnemonic a n d heuristic devices vhen convenient. I n this theory models
need n o t even b e con-
sistent vith o n e another to b e useful. want t o c o m e b ac Campbellian ac k t o t h i s question
of l l l od odeeis i n quantum theory later b u t b e f o r e t h a t l e t us look a t this question o f prediction more carefully f o r this s m y second point i n a n s \ v e r t o your challenge to m e t o produce reasons f o r using models. have suggested that m y m o d e l enables lile t o m ak ak e p re r e di d i ct ct io io ns n s because i t l e a d s t o Ile v a n d obvi
o u s interpretations o f some theoretical terms vhich m a y then b e used t o derive n e v relations bet veen obse ob serv rvab able les. s. Yo You u reply that a ny assigllment o f a n e v interpretation with o r \vitll0ut t h e us usee o f a model viII enable y o u to ma mak k e p re re dic dicti tio o ns ns a n d that there s n o reason to have more confidence my predictions than i n yours. agree that have n o t y e t g i v e n
a n y reason b u t still want f o r a moment to pursue m y point that t h e kin
o f pre i tion req lired c a n
o n l y b e obtained b y using models. take i t that we both agree that a criterion f o r a
36
MODELS A N D ANALOGIES I N SCIENCE
theory is that i t should b e falsifiable b y empirical tests. Fa Fals lsif ifia iabi bili lity ty is closely c on on n ne e ct c t e d v i t h predic
t iv ivee p o ve ve r although they cannot quite b e identified without further analysis. I vant to point o u t tl1at us a ge o f t h e cr crit iter erio iorl rl o f f a l s i f i a b i l i t y cover s a t least three requirements o n theories only t h e strongest o f which is s u f f ic ien t t o esta establ blis ish h t h e superiority o f m y
theory-plus-model over your f o r I n a l t h e o r y . L e t us c on on ssii d de er th hrr e ee e types o f falsifiability a n d three corre eory ry sponding typ es o f t h eo and TY
stat atem emen entt ha hardl rdly y ever I n s c i e n c e a s i n g l e observation st
descri ribe be only o n e unique event b u t t h e purports to desc of
that would b e observed under
set
events
suffi
cien ci entl tly y s iimi mila larr circumstances a t a n y time. Hence a n
may y always b e s a i d t o b e falsi observation statement ma fiable i n t h e sense that t h e circumstances i t describes o r sufficiently similar circumstances m a y al vays be e r e p e a t e d ; h e n c e i t is c o n c e i v a b l e i n principle b hass been confirtned i n t h e that a statement which ha
past m a y b e falsified i n t h e future Questions about what vould constitute sufficiently similar circumstances a n d w h a t we should b e disposecl t o say
about a n unexpected falsification o f this kind need
n o t detain us o f falsifiable
because i t is clear that such a sense is f a r to too o weak t o satisfy t h o s e w h o
w i s h t o say that a condition fo forr s c i e n t i f i c t l l e o r i e s is hey ar aree falsifiable. A theory must d o more than that t hey predict that t h e same ob obss e erv rvat atio ion n s ttat atem emen ents ts that
T H E FUNCTION O F l\10DELS
have been confirmed i n t h e pas pastt ,viII, i n sufficiently similar circumstances, b e c o n f i r m e d i ll t h e future A sci en ti fic th theo eory ry is required to b e falsifiable i n t h e sense that i t l e a d s to new ob obse serv rvat atio ion n statements
w h i c h c a n b e te st ed , that is is,, that i t l e ad s t o n e w a n d perhaps unexpected a n d interesting predictions. u t is
here there a n ambiguity T h e weaker sense o f such a requirement is that n e w co corr rrel elat atio ions ns ca can n be
found between t h e same ob obser servat vation ion pr pred edic icat ates es;; t h e stronger sense is that n e w correlations c a n also b e found which i n v o lve lve n e , v obse observ rvat atio ion n predicates. I t
will b e convenient t o introduce some notation here. I want t o argue o n t h e basis o f your o w n account, b e c a u s e I think i t does provide some necessary con ditions that theories must satisfy; what I deny is that they a r e Sllfficient. L e t us c o n s i d e r a n obser vation language containing observation predicates
l
~
is
O Suppose there a set o f o bs er vation s t a t e m e n t s e a c h o f which is accepted that is 1
t o say, e a c h member o f t h e se sett expr expres esse sess a n empirical correlation between some o f t h e O s a n d p s which, a t a g i v e n stage o f use o f t h e l a n g u a g e , is a c c e p t e d
as true
I f t h e se t also e x h a u s t s a l l such accepted
statements i t will b e called t h e accepted set. I t represents then a science o f these particular observables a t t h e stage o f empirical generalizations, before explanatory th thee o r i e s h a v e been introduced I t m a y n o t , o f co u rs e , exhaust all t h e true statements con and
there m a y b e
taining O s whichPre because s,main correlations rema in un unno noti tice ced d a t th this is stagsome e.
38
lVIODELS A ND N D A NA N A LO LO GI G I E S I N SCIENCE
N V consider a s e t o f tlleoretical p r e d i c a t e s ( t h e T s a n d a theory cont.ainillg theln \vhich h a s as c o n sequences a l l those observation staternellts o f t11e accepted s e t which cOlltain O s a n d only O s . Tllat xp p lla an na a ti ti o on n is t o say t h e theory is i n your sense a n e x o f t h e accepted statemeIlts containing only D s . This
tlleory m a y o r m a y n o t , i n addition, contain stateInents with observation predicates ot11er thall t h e D s namely t h e P s. Falsifiability i n senses A a n d B
can
ov
b e explained as £ 11 1vs TY
A
S u p p o s e t h e t h e o r y does o t contain a n y P s. T l l en i t c a n have n o consequences relating t o predicates
o t h e r t h a n t h e O s. T h u s i t c a n l l o t b e used t o ex ex-plain tIle remainillg statements o f t h e accepted s e t containing a n y o f t h e P s, n o r c a n i t b e u s e d t o predict correlations between them \vhich a r e true bllt
n o t yet a c cc cept e ed d . T h a t is t o say i t is n o t falsifiable
i l l t h e strollger se11se I t may however, b e possible t o u s e i t t o predict correlations bet1veen t h e O s which a r e true b u t n o t y et et a c cc ce ep p tte ed d.. Such a theory will b e s a i d t o b e lve veak akly ly falsifiable o r w e a k l y p r e d i c t i v e a n d 1vill b e called a f o r m a l t h e o r y . l\ Iany o f t h e socalled mathematical models o f modern COSlllOlogical economic, a n d psychological theory a r e o f t h i s
kind; they a r e mathematical hypotheses d e s i g n e d t o
fit experimental data, i n whicll either there a r e n o t he h e or or e ett ic i c al al t e err m mss o r i f t.here a r e such terms, t h e y a r e n ot o t f u rrtt h e err i11terpreted i n a m o e l ~
T H E F UNC T I ON O F l\;fODELS
39
TY
Sllppos Sll ppose, e, h01vever, t h e tlleory cloes contain SaIne o f t h e P s. W e m a y dismiss t h e case i n 1vllicll i t contai S theIn o n l y
s t a t e m e n t s wllich c o n t a i n n o T s ,
f o r then th.ese statements cannot properly b e said t o b e part o f tIle t l l e o r y , altll011gh t i l e y I n a y b e part
o f a s c h e m e o f empirical ge gene nera rali liza zatt io ioll lS 1 vh i c h re re
main , vh vh ol ol ly l y , vi v i tth h il i l l t h e observatioll lallguage. 1- he tlleory may, however, contain some o f t h e P s i n sonle
statemellts vvhich a l s o c O l l t a i n SOllle T s . Such a theory lllay then yield as consequellces observation
statements containing a n y o f these P s
a n d l1en.ce
Inay explain members o f tIle accepted s e t COlltain i n g theIn a n d ay predict l e V correlations bet1veerl strong ongly ly falsifiable them. I t w i l l t h e l l b e said t o b e str o r st stro rong ngly ly pred predic icti tive ve.. N o w consider h o v statements containing T s a n d
P s call them P-statements
could Oille t o b e i n -
trodllced into t h e tlleory. TIley a r e n o t illtro luced b y considering t h e o bs bs er e r va v a bl b l e r el e l at a t io i o ns n s b et e t ,,v v ee ee n t h e
wass P s because w e have supposed that t h e t h e o r y wa designed i n t h e first place as a n explanation o f t h e O s n o t the
T h e y a r e n o t introduced arbitrar-
P s.they were there woulel b e n o reason ily, because if w h y a n y particular s ta t a tte em me en ntt s h o ou u lld d b e introduced
rather than a n y other, a n d sllch a theory could n o t b e t a k e n seriously as a predictive theory. Also, i t would not, as a whole, b e falsifiable, because falsi
fication o f o n e a r b i t r a r i l y introduced P-statement
40
lVI0DELS A N D ANAI-lOGIES I N SCIENCE
could b e dealt with by replacing i t vith anotller, leaving t h e r e s t o f t h e theory unaffected. T h e only
other possibility is that P-statements a r e introduced f o r reasons internal to t h e theory rrhese reasons,
Inoreover, cannot b e c o n c e r n e d m e r e l y with t h e formal properties of t h e theory for e x a m p l e , its f orInal symm symmet etry ry o r simplicity because they must b e r ea so ns f o r a s s e r t i n g particular tllings i n t h e the oreticallanguage about particular observation pred
icates ( t h e P s , a n d though t h e theoretical predicates m a y b e seen from t h e formalist point o f v i e v s u n interpreted symbols, e v e n f r o m this point o f view th e o b bss e r v a att i o n p r e d i c a t e s m a y n o t . Hence t h e se sett o f P-statements must b e interpreted i n terms o f t h e theory I t is this interpretation w h i c h , I maintain is given y t h e model, a n d ,vhich requires t h e whole theory t o h a v e a model interpretation. Duhemist I a m n o t sure I h a v e f o l l o w e d your sy mbol i sm. Sure Surely ly t h e P s a r e a l r e a d y interpreted since t h e y a r e observation predicates?
Campbellian Yes, b u t I a m concerlled ,vith h o w they g e t into t h e theory. y t h e c o n d i t i o n s o f my
problem they a r e n o t introduced i n virtue o f their
correlations with other observation predicates, hence they must have a n i n ntt e err pr pr e ett a att iio o n i n a model 2 which also p r o v i d e s a n interpretation o f t h e theoretical predicates. Consider m y example o f sound a n d light orr y waves, where sound ,vaves a r e a model f o r t h e t h e o o f l i g h t. Here t h e O s might b e position coordinates a n d in inte tens nsit itie iess of light a n d t h e P s color predicates.
T H E FU N CTI O N O F MODELS
41
T h e theory of re refl flec ecti tion on a n d refractio11 e x p l a i n s t h e accepted O-statements b u t says n o t h i n g a b o u t t h e
is,, 11 V d o t h e P s g e t into t h e the P s T h e question is o r y to enable i t t o 111ake predictions about color? They have t o g e t i n i n t h e f o r m o f PP-st stat atel eln n ent ent s correlating t h e P s with v a l u e s o f t h e parameter a n d is a theoretical predicate. N o w t h e n o e t ~ comes i n as a n interpretation o f a l l t h e T s into predicates referring to sound waves. is t h e frequency o f
sound waves, o r pitch. This model: , together with m y su sugg gges este ted d an anal alog ogy y pitch cor res esp pol1ds to color give.s t h e interpretation / i n t h e theory o f light corresponds t o color
a n d t h e theory n o w yields
predictions about color. This c a n b e represented
schematically: schematicall y: THEORY
INTERPRETATIONS
con c on taining etc. as theoretical predicates)
i n sound model2
I N T E R P R E TATIONS
in li
t
observables
a
t
loudness pitch ~
brightness color ~
O statements
Observation
P statements
geometrical
statements
colo co lorr dis dispers persion ion,,
opti op tics cs,, etc. etc.))
f o r sound
etc.)
42
lVIODELS A N D .A.NALOGIES I N SCIENCE
Here signs o f equality indicate interpretatio11s \vit11i n a theory o f theoretical predicates into observation predicates; double arrows indicate t h e d i r e c t i o n o f deduction; a n d double arr 1VS indicate observable
relations o f analogy. Duhe mist cal1 see that y o u a r e asking f o r a dou b l e i11terpretation o f t h e P s, once into observables
a n d once into t h e mode1 2 a n d this is because y o u vant t o predict t h e observable P-statements b y u s i n g the
r r l o d e L ~
B u t l e t m e returl1 t o your argument i n f a v o r o f t h e step involving t h e analogies between light a n d sound.
c a n see from your diagram that t h e analogies as ve Il as t h e interpretations a r e o f tvvo ki11ds TIle first kind a r e t h e one to one co corr rres espo po11 11de denc nces es bet\veen tl1eoretical predicates a n d predicates o f tIle I n o d e l : ~ o n t h e one hand
a n d bet\veen t he he o orr e ett iic ca all p rre ed dii c ca a tte es and
light observables o n t h e o t h e r giving one-ta-one cor-
respo11dences between predicates referring t o light a n d t o sound i n virtue o f t h e saIne formal theory. This take it is t h e conventional us usee o f a n a l o g y i n mathematical physics as when Kelvin exhibited analogies between fluid flow heat flow electric i n -
duction
electric current
a n d magnetic field
by
showing that a l l a r e describable b y t h e sarne equa tions vith a p p ro r o p rrii a tte e in ntt e err p prr e ett a att iio o n s i n each case.
B u t y o u a r e asking f o r something i n addition t o this namely a s e n s e o f analogy i n terms o f w h i c h y o u c a n make these one-to-one correspondences before y o u
have g ot t h e theory
y some kind o f prescientific
T H E F U N CTI O N O F IVIODELS
43
recognition o f a nalo nalogi gies es such such as pitch: c o l o r . Is t h i s correct?
C e r t a i n l y . M y h o l e point is that i t is n e c e s s a r y to h a v e t h e s e correspondences before t h e theory other1vise t h e theory is n o t predictive o r falsi a n ~ p b e l l i a r l
fiable i n t h e strong sense. Duhernist I think t h e weakest part o f your argum e n t is where y o u d i st st i n g u i s h your senses a n d falsifiability. Even i f admit f o r a m O i l l e n t that cannot accept that strong falsifiability is required n t rro od du uc ce ed in ntt o theories b y P-st Pstat ateme ement ntss can ca n only b e i nt of
m e a n s o f y o u r d u b i o u s analogies. There a r e other vays o f extending theories which d o n o t deserve
y o u r e p i t h e t arbitrary. guarantee o f success
They give
o f course
no
b u t neit11er do does es your model
method. ampbellian If y o u think there a r e other n1ethods
1vhich w i l l d o al alll that m y m o d e l s do I think i t is u p to y o u t o exhibit them. I h a v e already s a i d I d o n o t think merely formal considerations o f simplicity suff ffic icie ient nt because they d o n o t b y them a n d so o n a r e su
selves s u p p l y a n interpretation o f t h e theory as u p pl p l y p re re d ic i c t iio o ns ns i n extended a n d hence d o n o t s up a n e w field o f observables. I f silnplicity were ex-
tended t o apply also t o interpretation
then I think
y o u would find y o u were after a l l U il g a m o d e l . Duhemist I think I c a n d o better than to appeal t o a vaguely defined sense o f simplicity.
W e might
realize strong falsifiability i n t h e f o l l o w i n g way. Suppose w e a r e g i v e n a number o f a c c e p t e d state
44
NIODELS A N D N
I ~ O G I
S
I N SCIENCE
ments correlating so me o f t h e P s ,vith sorlle o f t h e
O s. I f tIle c o n s e q u e n c e s of t h e fornlal t h e o r y a r e developed, i t m a y b e tIle case that t h e structure of
lne
o f thenl appear fo forn rnla lall lly y sirrlilar to that of tIle
acce ac cept pted ed stat statem emen ents ts,, i n t h e sense that a o n e- t o- o n e correspondence between s y mbo ls o f t h e theory a n d t e r m s o f t h e o b s e r v a t i o n s t a t e m e n t s c a n b e found. I t ,viII then b e p os s i b l e to i d e l l t i f y some o f t h e P s with s y mb o ls o f t h e theory. T h e theory c a n then b e s a i d to explain t h e ac acce cept pted ed corr correl elat atio ions ns c O ll llta tain inin ing g thes th esee P-pred P-predica icates tes,, a n d i t m a y also b e c a p a b l e of gen erating ne,v a n d as ye yett unaccepted s e n t e n c e s con taining t h e P s a n d t h e r e f o r e o f making gerluinely n e w predictions. I t ,vas s u r e l y i n lne s u c h ,vay equa uatio tions ns,, de deve velo lope ped d f o r explanation that Maxwell s eq
of el elec ectr trom omag agne neti ticc phenomena, w e r e s e e n t o explain also t h e t r a n s m i s s i o n of l i g h t , b e c a u s e their solutions w e r e wave equations formally similar t o equations of t h e wave t h e o r y o f l i g h t . ampbellian I c a n see s on le o b j e c t i o n s to this . First, i t is n o t clear ,vhat is meant b y t h e structure o f some o f t h e co cons nseq eque uenc nces es of t h e t h e o r y being for similar
that
the
mally of acce ac cept pted ed st stat atem emen ents ts.. I n a case s u c h to as that o f M a x w e l l s equations i t was clear that there was such a similarity o r isomor he i ssom omor orph phii ssm m consisted in. B u t phism, a n d what t he i t is n o t easy t o say i n general h o w o n e ,v ,vol ollid lid recog
n i z e a situation o f i s o m o r p h i s m , f o r e x a m p l e , h o w much formal manipulation o f t h e t h e o r y would b e admitted before t h e id iden entif tific icat atio ions ns were were found t o b e
T H E FUNCTION O F MODELS
45
possible? I t might even b e p os s ib l e t o s h o w that t h e occurrence o f isomorphism is trivial i n t h e sense that y sufficiently rich theory could b e made isomor
phic vi v i t h a n y gi give ven n ac acce cept pted ed st stat atem emen ents ts espe especi cial ally ly
if these were simple a n d few i n number.
You Yo u might of course b e a b l e t o e v a d e t h i s o b je c tion b y tightening u p t h e formal criteria of i s o m o r phism i n so some me way b u t even then i t is n o t clear that
success i n finding a n isomorphism would b e suffi cient i n i t s e l f t o c o n f i r m t h e v i de de r a pp pp l i c ab ab i l it it y o f t h e theory. Mere f o r m a l a p p e a r a n c e o f t h e wave
equation i n t w o different systems would n o t suffice
t o s h o w a correlation i n o n e theory unless s with Maxwell s equations there we werr e som e interpretation which made i t plau·sible t o a s s u m e that o n e s e t o f phenomena the optical was produced b y t h e other t h e electromagnetic-the interpretation i n t h i s case
being that o f wave propagation i n t h e material ether.
Whittaker gives the the example o f Mathieu s Equation which appears i n both t h e theory o f elliptic mem branes a n d t h e theory o f equilibrium o f a n acrobat i n a balancing act. I t would n o t b e suggested that any unific unificati ation on o f theory is accomplished b y noticing
this th is fact. Again f o r your program t o work significantly there must already b e a f ai airr ly well well-d -dee ve velo lope ped d sy stem o f relations i n t h e observation language. T h e less developed this is t h e more difficult i t will b e t o en sure that a n a p p pa ar e en n t isomorphism is n o t accidental o r arbitrary. This means that t h e program will n o t
l\10DELS A N D ANALOGIES I N SCIENCE
b e universally applicable arId n o t applicable a t a l l t o
alreacly part o f s u e l l a systern i n t h e observatioll language. I t a lIllost s e e m s as though f o r t h e forillalist prograln t o vark a t all a
observation predicates
previous s t a g e
t
theories s c i e n c e lllaking us usee dels is necessary ill order t l l a t a s u f f i c i e nt l y c o m plex observatioll language sllall h a v e b e e l l bllilt u p .
Tllat tllis is t h e case 1voulel b e a d i l l i t t e d b y tll0se w h o regard clas asssical ph phys ysic icss as a n observation lallg u a g e f o r whicll n o further theoretical rnodels a r e
possible even though c la ssica l p hy s ic s itse itself lf COIISists o f theories with models f r o m t h e POillt o f view o f t h e observation language o f commOl1 disco discollrse llrse.. T h e d e sc sc r ip ip t i o l l y ou ou n o v g i v e o f t h e forll1alist program do does es l10t i n a n y case provide ne nece cess ssar ary y cr criiteria f o r a t h e o ry fo r o n t he he f or or ma ma li li s t vie v i t c a n never b e more than a that a satisfactory isomorphisnl is found. Whenever i t is found there is a spectacular unificatio11 o f t w o o r l l l o r e p re re--
disco11 disc o11ne necte cted d fi fiel elds ds as i n optics a n d electroInagnetisln b u t s u c h t h e o r e t i c a l d e v e l o p l n e n t s a r e
ViOllSly
exceptions 1vhich cannot b e systematically sought for. llhemisl B u t o f course a l l know tl1at t h e
progress o f s c i e n c e is n o t a mechanically systematic affair b u t depends partly o n hunches intuitions ancl guesswork lucky accidents i f y o u like a n d I d o n o t think m y account i n v o l v e s a greater proportion o f these than anybody else s. I a m i n fact prepared t o accept that much o f t h e progress o f s c i e n c e d o e s d epend o n these things a n d t o say that t h e requirement
T H E FUNCTION O F lVIODELS
47
o f falsifiability i n sense is t o o strol1g i f i t is taken
t o Inean that theories o f this kind c a n b e SOllght f o r systen1atically. After all
spec sp ecta tacu cula larr predi pr edict ctio ions ns
i n ob obsserva ervati tio o11 11al al dOll1ains ou outs tsic icle le tI tIlle o ri r i gi g i na na l r an an ge ge o f a t l l e o r y a r e i n fact rare i n sc scie ierl rlce ce aIlcl callnot b e
regarded as Ilec Ileces essa sary ry logica logicall conditions f o r a t h e o r y .
suggest that whet11er a theory is recluired t o b e falsifiable i n this strong sense wi will ll depend 11 t h e i11itiall cOln tia cOlnpl plex exit ity y o f th the e corr co rrel elat atio ions ns i n t h e observatio11
he p re r e di di ca ca te te s o f ordi language. I f this C 11tains only t he ar1d
nary language, prescientific correlations betvveen them, i t is likely th.at weak falsifiability viII n o t b e
sufficient f o r a genuine t11eory. F o r if correlations between only a f e w O s a r e k n o w n , 1 10 theory o f type will b e a b l e t o predict a n y more, a n d a theory ex-
plaining tile correlations b e t w e e n t h e O s remaills imprisoned within t h e same limited observational situations. I f however t h e o b bss e err va v a ti t i on on l a an n gu gu a ag g e is already co mp l ex -i f i t is f o r exan1ple t h e language o f classical p hy h y si s i cs c s -t - t h en e n i t is p o s s i b l e that t h e form a l theory m a y go O I l f o r a long time pro rovi vid di1 i11g 1g in-
t er er es es ti t i n g c or or re re la la ti ti o ns ns b e t w e e n
n e w observational
situations w hi h i c h a r e still still de desc scri ri·b ·bed ed b y tIle sa same me pred icates b e t w e e n , f o r e x a m p l e , v a r i o u s k i n d s o f par
ticles described charge,
tum
t h e classical predicates lnass
and spin.
IJ:? echaniC>s
Parts o f t h e theory o f quan
m a y well b e purely formal, a n d y e t
falsifiable i n th this is sense. ampbellian T h i s is a n interesting suggestion
a n d i t w o u l d n e e d a f a r more detailed investigation
48
MODELS N D N
IJOGIESI N SCIENCE
than we c a n undertake now. B u t I should like t o introduce s o me exam examp p le less from quantum physics to there
of
indicate that may be more model thinking i n i t than a r e r e c o g n i z e delemel1ts b y your school of thought
I t s usually claimed that a t least o n t h e
so-called Copenhagen view qualltunl tlleory s a n exam pIe o f a n accepted a n d useful theory i n which m o d e l s h a v e been abandoned a n d vhich therefore proves that models a r e n o t e s s en t i al to t h e progress of theo theorr ie ies. s. nd n d i t s certainly t r u e t h a t t h e Copen hagen view c a n b e regarded s a f o r m a l i s t v i e w o f
quantum theory i n that i t re refr frai ains ns fro fro nl making a n y interpretations of t h e fo form rmal alis ism m of t h e t h e o r y e x c e p t s
can be made
such directlyus i nthat t e rwhat m s o fstands classicianl physics. I t need n o t trouble p l ac e o f t h e observation language here s n o t ordi nary descriptive language b u t t h e l a n g u a g e o f clas siccal physics which s from a n o t h e r p o i n t o f v i e v si lr e ea ad dy y a g rre e e d that highly t h e o r e t i c a l f o r we h a v e a lr
what counts s a n observation language s pragmatically re rela lati tive ve.. B u t i t does n o t follo v that because t h e adheren ts o f t h e Copenhagen view refrain from
maki ma king ng in inte terp rpre reta tati tion onss when talking
ollt
quan-
impli licit cit int interp erpret retati ations ons t u m t h e o r y they they also avo avo id imp
when actually using i t i n t h e process o f research. Many examples could b e g i v e n from t ec ech h n i cal cal pa
p e r s to s h o w that they d o n o t i n fact a v o id interpretations. L e t m e d e scr scr ib ibee a comparatively si sim m p le o n e which is t y p i c a l o f t h e kind o f argument that can n o t b e avoided when developments o f t h e t h e o r y a r e suggested.
T H E FU N CTI O N O F MODELS
49
I n t e r m s o f classical physics acting cre as t h e observation language i t is s o m e t i m e s po s s i bl e t o
describe certain phenomena as effects of charged particles for for exa exalnp lnple le elec electr tron ons. s. I t is never possible h o v ev e r to spea speak k i n classical terIllS of identifying a n i n d i v i d u a l electron 11 di diff ffer eren entt occasiolls o r i n particular o f di dist stin ingu guis ishi hill llg g t h e s t a t e o f a sys te m containing two elect electro rons ns i n gi give ven n positio11s from that i n w h i c h t h e el elec ectr tron onss h av avee changed places. Ac Acco cord rd-in.g to t h e Copenhagen vie v t en v Inust n o t
Inake a n y interpretation implying anythiIlg about t h e identity of individual el elec ectro trons. ns. If ho howe weve verr w wee d o n o t adhere t o t h i s view there a r e tw o p os si bl e
interpretations o f a situation i n which a n object can-
n o t b e re identified o n e ex exem empl plif ifie ied d by th e model 2
of identical billiard balls a n d t h e o t I l e r b y t h e model 2 of pounds shillings a n d pence i n a bank balance. I n t h e case of identical billiard balls iiff we a r e n o t i n a p o s i t i o n to o b s e r v e thenl continuously we cannot i n practice distinguish a situation i n which two b all s 4re i n t w o g iv iven en p o c k e t s from a situation a t a later time i n which t h e y h a v e changed places. B u t t h e t w o s i t u a t i o n s a r e i n f a c t d i f f e r e n t a n d i f we were concerned vith t h e number of arrangements
o f t wo b al ls i n t h e two p ock ets we we should h a v e t o
differ diff eren entt arra arrang ngel elne nent nts. s. With pounds shillings a n d pence i n a bank balance how-
count them as
is
t\
the
vve
n o t nlerely that cannot i n it ever p r a c t i c e r e iid d e n t i f y a g i v e n case pound appearing i n t h e credit column b u t that there is n o sense i n speaking
o f t h e s e l f iid d e n t i t y o f t h i s pound
a n d of asking
N D A NA N A LO LO GI GI ES E S I N SCIENCE MODELS A ND
vhere i t reappears i n another column o r vhetller
i t is t h e pound paid over t h e counter yesterday. I n
t hi hiss case t h e n U l n b e r o f vays o f ar arra rall llgi girl rlg g t vo Llnit pounds i n different places i n a column ·is just one a n d there is n o sense i n sp spea eaki kill llg g of anotller arra11ge Inent i n vhich tIl tIley ey h.ave changed places. Units vhich behave i n t h i s w a y conform to t h e so-called FermiDirac statistics alld n o t t o t h e s t a t i s t i c s o f o b j e c t s
h a Villg self-iden tity. I f tIle Copenhagen v i e w w i t l l regard t o electrons were adhered to we should b e unable t o say vhich
o f t h e s e t vo models o f indistinguishability v vaas atpo cau s e w e should n o t e i n a position propriate b e cau ~
a n y models a t all. B u t i n f a c t w e f i n d t h e follo v
i n g argument very frequelltly used. W e a r e unable t o identify individual electrons hence i t is meaning-
less t o s p e a k o f t h e s el elff-id iden enti tity ty of elec electr tron onss hence shillings a n d pence i n a balance a n d n o t like indistinguishable billiard balls a n d hence they conform t o Fermi Dirac statistics. T h e last step o f t h i s argument c a n b e m a d e t o yield observable predictions since there a r e v a r i o u s waxs electrons a r e like pounds
i n which t h e behavior o f e n t i t i e s satisfying Fermiati s t i cs is different i n classically observable Dirac s t ati
ways from t hose hose sa sati tisf sfyi ying ng t h e statistics o f ordinary objects. B u t t h e argument ill il l spite of i t s a gn gno o s t i ci ciss m about w ha ha t c a an n no n o t b e observed does i n fact involve
a n interpretation a n d a c h o i c e between t w o different
models a nd n d w iitt h o u t th this is c l l 0 i c e t h e observable pre dictions cannot b e derived. T h e crucial step from
T H E F U N C T I O N O F MODELS
51
interpretation i n t h e argument occurs / \Then for ma l v}1at i sm t otIle o bs bs e err v ve er ca all l n no o t do-narllely nlake cert ce rtai ain n dis distir tirlct lction ion-is -is taken to b e a property o f tIle
interpreted system namely tl1at there is 1 1 0 su suel elll distinction. Such a r g gu u l n e llll t s a rre e very COIll111 nly used i n quantuln theory t o derive observable resu results lts alld. a r e sufficient t o sho v tl1at t h e theory is n o t as a
vh v h o l e a counter-exaluple to t h e vie\v that interpre tations are
f o r predictions.
Another essential exanlple c a n b e g i v e n t o indicate t h e
inadecluacy o f tIle Copenhagen vie\v \vhi \vhich ch was developed to deal \vitl1 t h e paradoxes of elenlelltary quantum theory a n d ha hass never been consistently ad ad--
hered t o i n t h e later developments o f quantum field
theory. I n t h e case o f Dirac s predictiorl o f t h e posi-
tron
n o t Drlly 1vas a n i n ntt e err p prr e ett a att iiv v e t11eory success-
ful b u t also tIle s a m e theory treated formally would ee n r e eff u utt e ed d a n d discarded. TIle su have b ee succ cces essf sful ul preprediction arose as f01101VS. T h e equations o f motions o f both classical a n d q u a n t u l l l charged particles admit o f s o oll u utt iio on nss representing particles with either
positive o r negative energy. I n clas classical sical pl plly lysi sics cs ho vthe e oc occu curr rren ence ce o f negative energy solutions c a n ever th b e ignored since i n class assical ph phys ysic icss energy values chang ch ange e co cont ntin inuo uous usly ly a n d if a particle is once taken t o h a v e p o s i t i v e energy i t c a n never reach a neg neg at ativ ivee energy state. I n qllantum physics 11owever energy
c ha hang nges es t a k e p l a c e discontinuously. T h u s a n electron m a y j ump from o n e energy state t o another a n d negative states a r e as ac ce s s i b l e as p o s i tiv tiv e . Now i f
52
MODELS A N D ANALOGIES I N SCIENCE
t h e theory o f these equations o f motion is takerl
i n a f o r m a l s e n se
t h e nonappearance o f negative
energy particles i n a:qy known experiment would
theo eory ry.. Dirac Dirac ho veve veverr count as a refutation o f t h e th nlade a n interpretation o f t h e theory which depended o n t h e idea that e a c h o f t h e pos possibl siblee n.eg .egativ ativee states is already filled b y a n electron wllich is n o t
observable as long as i t r e l l l a i n s ill t h i s s t a t e b u t vh v h i c h b e c o m e s o b s e r v a b l e i f i t is knocked o u t o f t h e state leaving a hole i n t h e n e g a t i v e sta tes which is also obse observ rvab able le.. By conlbining t h e t w o neg atives provided b y n ega ega tiv tiv e energy a n d t h e 110tion o f
hole,
the hole carl b e expected to b e l l a v e like a
parr ttii cl pa cle e of positive energy a n d i t w i l l also h a v e posit i v e c h a r g e . This predicted particle t h e positron,
vas il
f act o b s e r v e d a n d hence tIle i 11ter pret ed theory both made a s u c ce s s f ul predictioll a n d explained t h e previous nonappearance o f negative energy particles which threatened theory regarded formally.
to r e f u t e t h e
D Llhemist: I t m a y b e true that there a r e s t i l l s o m e preformalist argulnents used i n quantu m theory b u t you cannot m a aii n ntt a aii n that i n gelleral quantum theory supports your case that m o d e l s a r e e s s e n t i a l . T h e fact that h e r e t h e m a t h e m a t i c a l f o r m a l i s m m a ay y
sometimes b e usefully interpreted i n terlllS o f aves a n d sometimes in terms o f p a rtic rticle less a n d t I l a t t h e s e
models contradict each otller althougll t h e formali sm is self consistent sho vs that t h e models cannot b e e s s e n t i a l t o t h e logic o f t h e theory. ~ h e theory
T H E F UNC T I ON O F MODELS
is here t h e formalism, n o t t h e partial interpretations, such as those i n you{ examples, although t h e s e m a y b e useful f o r special a n d l i m i t e d problems.
ampbellian I h a v e t o a g r e e that t h e situation i n quantum theory is peculiar frOln nlY point o f view.
Perhaps I c a n p u t i t t h i s way i n t h e t e r m i n o l o g y I
introduced earlier. T h e particle nlodel m o d e l ~ hass ha s o m e p o s i t i v e a n a l o g y with atomic phenomena a n d
s o m e neg neg ativ ativee a na l og y, a n d t h e s a m e a p p l i e s t o t h e wave model 2 • Much of t h e p ar ar ttii c cll e m o od de ell s positive a n a l o g y is t h e wave model s negative a11alogy a n d vice versa, a n d this is w h y t h e t wo m o d e l s appear to b e contradictory. I f t h a t w e r e a l l there were t o say, we could simply e x t r a c t t h e t w o sets o f p o s i t i v e a n a l o g i e s a n d drop a l l talk about particles a n d waves, b u t that is n o t a l l there is t o
say, b e c a u s e i n both cases there a r e s t i l l f e a t u r e s about which we d o n o t know whether t h e y a r e positive o r ne nega gati tive ve anal nal ogi giees. A n d i t is i n arguing i n t e r m s o f t he s e f e a t u r e s that t h e particle a n d 1vave models a r e s t i l l e s s ent i a l , supplemented b y t h e hunches p hy sic i sts ha have ve acquired about wheTl to argue i n t e r m s o f o n e a n d when t h e o t h e r . A n d , as yOll h a v e s u g g e s t e d e a r l i e r , developments i n quan-
t u m theory ,vhich appear t o b e novel i n t h e sense o f falsifiability
m a y actually b e r e s u l t s o f 11 vel
deductions within parts o f t h e t h e o r y already inter-
preted, a n d hence b e only what I h a v e c a l l e d e xte n s i ons o f t y p e These a r e surely going t o y i e l d
diminishing returns, a n d a n y quantum theorist w h o
54
lVI0DELS A N D ANi\LOGIES I N SCIENCE
adopts lIlY POillt o f vie\N o n 111 dels v viiII pres presuI uI1l 1lab ably ly
b e di dissa ssatis tisfi fied ed vitI vitIll t h e state o f tIle tlleory until a n e w nI0del is found illcorporatil1g t h e positive allalogies
o f bo bott llll pa parr ttii cl cl e ess a n d vvaves b u t 11 t involving tlleir contradictions. B u t d o n t slIppase either o f u s
vishes t o rest h i s argulnents o n Cllrrent displItes i n qualltulll theory o r o n speculatiollS about it itss future. llhemist I t sOInetimes seell1S that o u r v vll llol olee dis
difference opinioll about vhat pute reduces t o kind o f tIl tIleor eory y viII pred0111i11ate il illl t h e future arld this is rather unprofitable t o speculate lIpOll
think
ho\vever
that y o u have been f o r c e d t o adnlit that ilnportant e xt xt e n nss iio on nss o f tlleory n y t a k e p l a c e \vith-
o u t t h e u s e o f models
a n d so
YOll
have effectively
a dm d m iitt t e ed d th a att models a r e n o t logically esselltial Y o u
could only continue t o nlaintain tllat t h e y a r e b y sho ving that a l l m y exalnples o f forll1al Inetllods a r e eit11er ullacceptable o r n o t purely farInal arld tllis
y o u llave n o t done. F o r m y p a r t I c a n see that i t m a y b e possible alld useful t o analyze
rnore detail vhat
is involved il illl using models whel1 tIley a r e useel alld t o enquire whether there is allY justification f o r expectillg more systematic theory-construction with
tlleir a i d than without. T h i s would b e a n extension o f inductive logic i n application t o t h e hypothetico
deductive structure o f theories. I must confess that
inco concl nclus usiv ive e re resu sult ltss o f inductive logic i n view o f t h e in i n t h e simpler case o f empirical generalizations I a m
n o t very optilnistic a bout t h e success o f s u c h a n investigation.
T H E FUNCTION O F MODELS
Cam pbellian I think two sor ts of problems have he g e n ne e r a l probt o b e distinguished here. The re is t he l e m o f t h e j ust ust ific ificat atii on o f induction o f which t h e just stif ifyi ying ng th the e inference to h y p o t h e s e s by problem o f ju means o f m o d e l s would b e a s p e c i a l case a n d I a g r e e
that t h e history o f in ind d uc u c ttiv ive e l og i c does n o t make t h e
p r o s p e c t s f o r t h i s v e r y bright B u t there a r e subsidia r y problems to this n a m e l y to to f i n d t h e conditions f o r t h e a s s e r t i o n o f a n analogy to e l u c i d a t e t h e nature o f arguments using models a n d analogies a n d to compare these arguments with t h os e us usua uall lly y called inductive i n a m or or e g e n e r a l sense. These problems
arise o n your view o f t h e nature o f t h e o r i e s s well s o n mine because even i f m o d e l s a r e merely disis
pensable ai ds t o d i s c ov e r y i t s t i l l p r o f i t a b l e to a s k h o w t h e y w o r k a n d i f t h i s is t o b e c a l l e d a p s y c h o -
logical
investigation i t m a y b e none t h e worse f o r
er tta a iin n lly y th the e use o f m o d e l s is n o t psychological that. C er i n t h e sense o f being wholly a n individual a n d subjective matter since communication a n d argument often go o n between scientists i n terms of m o d e l s a n d i f t hi s shows n o more than a uniformity i n t h e is
scientific temperament i t still worth investigating. course se foll follow ow that such a n inves does not of cour tigation will provide anything like a n infallible method f o r t h e construction o f t h e o r i e s a any ny more than i t is t h e intention o f accounts o f m e t h o d s o f induction to p r o v i d e i n f a l l i b l e induction ma ma--
c h i n e s . A l l that
is being attempted is a n
analysis o f
what assumptions a r e made when analogies a r e used
56
lVIODELS N D
i n science
N
LO OG G IE IE S I N SCIENCE
a n d h o w i t s
that certain hypotheses
rather than others su sugg gges estt th them emse selv lves es b y analogy. Whether t h e hypotheses thus suggested turn o u t t o be
t
u
is
s
always a matter f o r empirical inves-
tigation. T h e lo logi gicc of anal analo ogy lik likee t h e logic o f il1duction may b e descriptive without bei eill1g justi justificato ficatory. ry.
Mate Ma teri rial al Analogy TlVO
questions raised i n o u r dialogue m or o r e d e tta ac ch h e d investigation:
I What 2
is a n
nOlV
requIre
analogy?
anal alog ogy y valid? When is a n argument from an
I t is characteristic o f modern as opposed t o clas-
sical a n d n1ed n1edie ieva vall logi logicc that t h e a swer t o t h e first question is taken to b e either obvious o r unanalyzable
while t h e s e c o n d is taken to b e a question involving induction a n d therefore highly proble-
matic I n classical a n d medieval logic o n t h e other hand there is a certain amount o f allalysis o f types of anal analog ogy y b u t practically n o attempt a t justification o f t h e validity o f a n a l o g i c a l arguments although such arguments a r e frequently used A n d s i n c e n e i typ pes o f analogy n o r t h e sketchily ther t h e classical ty
defin de fined ed anal analog ogie iess o f Il Illo lode dern rn log log ic bear much resemblance to a n a l o g y as used i n reasoning froITI scientific m o d els els l we need to examine t h e relation o f t h i s problem t o t h e traditional di disc scus ussi sio ons I shall shall then p u t forward a definition o f t h e analogy r l tion il illl this chapter a n d go o n to consider tIle just ju stif ific icat atio ion n of anal analo o gica gicall rgtlm nt i n t h e next. I t is as w e l l t o b e g i n b y c o n s i d e r i n g v e r y b r i e f l y I. I n this chapter t h e sense o f model first chapter unless otherwise stated.
will always b e mode12 o f t h e
lVI0DELS A N D ANALOGIES I N SCIENCE
examples o f various types o f an anal alog ogy y fr fron onll t h e l i t e r a -
ture i n o r d e r to bring o u t t h e rnain issues. Example
t\veen
t V
A n analogy l lay b e s a i d t o e x i s t b e-
objects i n v i r t u e o f their COlllrnon proper-
ties. Take, f o r e x a m p l e , tIle earth a n d t h e Uloail. Botll a r e l a r g e , so l i d , op aclue, spherical b o d i e s , receiving heat arId light frorn t h e s u n , revolving o n
their axes, a l l d gravitating t01vard otiler bodies. Tllese properties m a y b e s a i d to constitute their
positi posi tive ve allalogy. O n t h e other hand, t h e moon is srnaller than t h e earth, more volcanic, a n d ha hass n o atlnosphere a n d n o 1vater. I n th thes esee re resp spec ects ts there is negative analogy between them. T h u s t h e question o f what t h e analogy is i n t h i s case is fully answered
b y pointing t o t h e positive a n d negative allalogies,
a n d t h e dis discus cussio sion n passes inlInediately to t h e second question. Under what circul1lstances c a n we argue
from, f o r e xa xa mp m p le le , t h e p r e s enc enc e o f human beings o n t h e earth to their presence o n t h e moon? rIle valid-
i t y o f such a n a r g u m e n t will depend, first, o n t h e extent o f t h e p o s i t i v e a n a l o g y compared \v \vith tIle negative fo forr example, i t is stronger f o r Venus than f o r t h e mOOll since Venus is more similar t o tIle earth and, second, o n t h e r e l a t i o n b e t w e e n t h e n e w property a n d t h e p r o p e r t i e s already known t o b e parts o f t h e positive o r negative a n a l o g y , r e s p e c -
tively. I f we h a v e reason t o think that t h e p r o p e r ties i n t h e p osit ositiv ivee anal analog ogy y a r e causally related, i n a f a v o r a b l e sense, t o t h e p r e s e n c e o f humans o n t h e e a r t h , t h e argument ,viII b e strollg. I f , o n t h e other
MATERIAL ANALOGY
59
hand t he h e p rro op pe e r ttii es e s o f t h e moon \vhicl1 a r e parts o f t h e negative analogy tend c a u s a l l y t o prevent t h e
presence o f hUlnans
t h e moon t h e argument \vill
b e \veak o r invalid I s h a l l return t o t h i s t y p e o f argument later
but
meanwhile tw two o features o f t h e analogy should b e noted First there s a o n e to to o n e relation o f iclentity
o r differe11ce bet\veen a property o f o n e o f t h e ana-
logues a n d a corresponding property of t h e other and second t h e relation b et e t we w e en e n p rro op pe e rrtt iie e s of the same analogue s that being properties o f t h e same og e ett he h e r v iitt h causal relations between these object t og properties Schematically: EARTH
spherical · . causal
relations
atmosphere
1 1
humans
MOON
. spherical . . n o atmosphere ?
~
relations o f identity
o r difference
s h a l l f i n d that a common feature o f a l l t h e a n a l o g i e s w e disc uss will b e t h e a p p e a r a n c e o f t \ sorts o f dyadic relation a n d I s h a l l c a l l t h e s e horizont l a n d verti l rel tions respectively. Thus hor
izontal relations will b e c o on n ce c e rn rn e ed d with identity a n d
difference ity
this th is case o r i n general with simil ra n d vertical relations will i n most cases b e
c lls l
s in
lVIODELS A ND ND A N NA A LO LO G GII E ES S I N SCIENCE
Example
Consider next t h e s c ie ien ntifi tificc anal analog ogy y
chap aptt er er b bet etw w een e en t he he already referred t o i n t h e last ch properties of light a n d of so soun und d Here a g a i n we h a v e t\\ lists of properties with s o m e I n e n l b e r s o f o n e
liss t c o r r e s p o l 1 d i n g to s om e members of tIle other: li
PROPERTIES
PROPERTIES
OF
OF
SOUND
echoes
loudness
LIGHT
reflection
brightness
causal relations
1
pitch
color
detected b y e a r
detected b y eye
p ro r o pa pa g ga a te te d i n a i r
propagated i n e th t h er er
similar sim ilarity ity rela relation tionss
I n thi s e xa xam m p le
unlike y there s n o clear divi-
si on of t h e t \ lists into identities a n d differences since t h e p a i r s o f corresponding terms a r e never identical b u t only simil r There are o f course some terms o n both sides that have no corre corresp spond ondin ing g term o n t h e other b u t I s h a l l regard these s special s
he re re t h e s im im i l a r i t y relation cases o f s i m i l a r s w he defined so s to include identities a n d differences T h e vertical relations between lllembers o f t h e same
list list a re s i n example ca caus usal al rel relati ations ons I t ha hass been suggested i n t h e previous chapter that thiss an thi anal alog ogy y lik likee c a n b e used i n arguments from y
similarities i n s om e r e s p e c t s t o similarity i n respect o f a p ro r o pe p e rt rt y k no n o wn w n to belong t o o n e analogue b u t
iVIATERIAL ANALOGY
61
n o t y e t kno,vn t o belong to t h e otI1er. F o r example,
known similarities i n properties of ref l ecti oI l, re refr frac ac-tiOl1 a n d intensity m a y l e a d t o a p r e c l i c t i o n r e g a r d -
i n g color from properties involving pitch o r frorn t h e properties o f a i r t o t h o s e o f ether.
Here, ho v-
or e c o om mp pll i c a att e d than i n exever, t h e situation is m or ample i n that i t m a y n o t b e i n i t i a l l y obvious which property o f light corresponds witll ,vhich property o f sound why wh y d o we m a k e c o l o r correspond with pitch?), o r i t m a y b e that a particular
property o f sound h a s n o correlate among t h e properties o f light, i n which case o n e m a y b e invented ether
is initially n o t observed as t h e obvious cor-
relate o f air, i t is rather postul ted t o fill t h e place o f a m i s s i n g correlate among t h e p rro op pe e rrtt i e ess of l ight ight)) .
T h u s i n this example, unlike t h e first, tIle question of d e eff iin n iin n g t h e analogy relation a n d hence identify-
itss terms must c o m e b e f o r e t h e question of i n g it justification o f t h e analogical argument. x mple C Consider n e x t a n analogy
a classifi si ficat cation ion syst ystem, em, o f a kind first statecl explicitly b y Aristotle: ener
BIRD
FISH
wing
n
lungs feathers
gills scales
Here t he he h o orr i z o on n tta a l relation filay b e o n e o r more
o r several similarities o f structure o r o f function,
1\10DELS A ND N D A NA N A LO L O GI G I E S I N SCIENCE
a n d each list m a y contain sonle items v11icll h a v e n o
o r n o obvious
correspondent i n t h e other list; f o r
example without anatomical investigatioll i t is llot clear that birds legs correspo11d to anything il illl t h e
structure o f fish T h e vertical relatiorls m a y b e con-
ceived as n o m o r e than that o f w h o l e t o its p a r t s o r t h e y m a y b e regarded as c a u s a l relations clepending o n some theory o r interrelation o f parts determined b y evolutionary origin o r adaptation t o environ
ment. I n tllis latter case
t he analogy lnay b e u s ed
predictively as i n t h e previous ex amp l e- t o argue f o r instance frolll t h e kno vn structure o f a bird s
skeleton t o missing p a r t s o f a fish s k e l e t o n B u t again
t h e nature o f t h e analogy relation itself requires elucidation before c o n s i d e r i n g t h e validity o f t h e
argument.
Finally a n example o f a kind used a n d nlisused i n political rhetoric brings o u t b y con x mple
trast some importallt characteristics o f t h e three previous examples:
state citizens
father children
An
analogy
of
this
kind
is
apparently a n
assertion
that t h e relation between father a n d child is t h e
same i n many re resp spec ects ts as tl tlla latt be bet\ t\ve veen en state a n d citizens f o r e x a m p l e i n that t h e father is responsible f o r t h e m a i n t e n a n c e welfare alld d e f e n s e o f t h e child; a n d i t is further implied t h a t i t follows from this that other relations should also b e t h e same f o r
l\ fA TERIA L ANALOGY
63
exalnple tllat t h e citizen o ves respect antl obedience to t h e state. There a r e s ev ever eral al diff differ eren ence cess between
this example a n d tIle previous ones. First o f all, its purpose is persuasive rather tI1all predictive. I t is n o t arguing from three k n o , v n t e r m s to o n e Ullkno\vn, as
is t h e case i n t h e first three exaillples; i t
is rather
I ointing o u t t h e c o n s e q u e ll llcc e s , o f a moral o r norrl1a tive character, \ v h i c h f o l l o v from t h e relations of
four ternlS a lr lr ea ea dy dy know known. n. Second, t h e vertical rela tion is n o t sp spec eciifi fica call lly y ca caus usal al.. 1- h heere a r e i n f ac t sev eral vertical re rela lati tion ons, s, pr prov ovid ider er-f -for or,, prot protec ecto torr-of of,, a n d as-
o n ; a n d t h e argument implicitly passes from so suc c h r ela elati tion onss ,vhicll a r e already recog serting some su nized to persuading t h e hearer that other relations
( o b e d i e n t - t o , etc.) f o l l o w f r o n l these. Third, there does n o t s e e m t o b e a n y h o r i z o n t a l relation o f s im i larity between t h e terms, except i n v i r t u e of t e fact that t h e t vo pairs a r e related b y t h e same vertical relation. T h a t is t o say, t ere is n o horizontal rela tion independent of t h e vert.ical relations relations,, a n d here
this example differs from al alll t h e other three types, ,vhere t h e h o r i z o n t a l r e l a t i o n s o f similarity ,vere independent o f t h e vertical a n d could b e recognized before t h e vertical relations were known. I t seerns t o b e e x c l u s i v e l y a n a l o g i e s o f t h i s kind that Richard Robinson is thinking o f when h e asserts that allalogy
mathem hemati atical cal propo pr oporti rtiona onalli n a n y sense other than mat ity
i s m er er e l y t h e fact that some relations have more
than o n e example, 2 that is that
is t o as c is t o
e v Metaphysics V, 1952, 466.
64
~ f O
L S
A ND N D A NA NA LO LO G GII ES ES I N SCIENCE
d is merely equivalent t o asserting t e e x i st st en en ce ce o f a relation R such that a R b a n d cRd B u t Robinson overlooks analogies o f t h e otl1er kinds v e have men JJ
tioned, w h e r e t h e r e a re re s i m il i l a r it it y r e la la ti ti o ns ns aS aScc a n d bS d independent o f t h e vertical relations. A N A L O G Y AND
MATHEMATICAL
PROPORTION
A t this point w e c a n usually draw a distinctio11 b e t,veen t h e types o f analogy w e a r e concerned with a n d t h e relation o f m at at h he em ma a ttii ca c a l p rro op po o rrtt iio on na a llii tty y.
T h e t vo kinds o f relation have often been thought t o b e closely connected, as is indicated b y t h e fact that t h e Greek word f o r proportion is analogia
A n d t h e r e l a t i o n s d o indeed have some formal r e -
semblances ,vhich have been presupposed i n t h e
110
tation f o r t h e four-term relation already adopted i n
th e previous chapter. L e t u s represent t h e relation a is t o b as c is t o
d
by
c
a
b
where a a n d b a r e a n y t vo terms
taken from a list representing o n e analogue i n ex ex-amples A B o r C including t h e heading, a n d c a n d he c o orr rre e ssp po on nd dii n ng g terms taken f r o m t h e other d a r e t he
list. F o r example, pitch is t o SOU d as color is t o light, wing is t o bird as fin is t o fish o r wing is t o feather as fin is t o scales :
pitch . . color light sound
fin
,vIng
:: fish
bird
fin feathers :: scales· wIng
MATERIAL ANALOGY
This gen gener eral aliz ized ed anal analog ogy y relation ha hass t h e follo \ving
form fo rmal al char charac actt eri eri s t ics ics i n common vith numerical proportionality:
W e wi sh to say that t h e a n a l o g y relation is
reflexzve
t at
S
a
to say b
a :: b
although this is a
t r i v i a l case o f t h e g e n e r a l r e l a t i o n . 2 W e w i s h t o say that t h e a n a l o g y relation
S
. . e a symmetrzcal f o r If b :: d then d :: b · 3 W e w i s h t o say that t h e analogy relation c a n c b e inverted f o r if i :: d 4
a
then b
d
W e c a n c o m p a r e t h e additive property o f n u -
merical p r o p o r t i o n w i t h t h e r e s u l t s o f taking t h e logical S t l m of t e r m s o f a n analogy. Just as we h a v e ro p po o rt rt i o n t h a att i n numerical p ro
then
View more...
Comments