esta es una parte del manual que explica el uso del progrma CSI BRIDGE 2017. el mismo esta en traducido al español para ...
Bridge Superstructure Design AASHTO 2014
CSiBridge® Bridge Superstructure Design AASHTO 2014
ISO BRG102816M8 Rev. 0 Proudly developed in the United States of America
October 2016
Copyright
Copyright Computers & Structures, Inc., 1978-2016 All rights reserved.
The CSI Logo® and CSiBridge ® are registered trademarks of Computers & Structures, Inc. Watch & Learn TM is a trademark of Computers & Structures, Inc. Adobe and Acrobat are registered trademarks of Adobe Systems Incorported. AutoCAD is a registered trademark of Autodesk, Inc. The computer program CSiBridge® and all associated documentation are proprietary and copyrighted products. Worldwide rights of ownership rest with Computers & Structures, Inc. Unlicensed use of these programs or reproduction of documentation in any form, without prior written authorization from Computers & Structures, Inc., is explicitly prohibited. No part of this publication publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior explicit written permission of of the publisher. publisher. Further information and copies of this documentation may be obtained from: Computers & Structures, Inc. www.csiamerica.com
[email protected] (for general information) information)
[email protected] (for technical support)
DISCLAIMER
CONSIDERABLE TIME, EFFORT AND EXPENSE HAVE GONE INTO THE DEVELOPMENT AND TESTING OF THIS SOFTWARE. HOWEVER, THE USER ACCEPTS AND UNDERSTANDS THAT NO WARRANTY IS EXPRESSED OR IMPLIED BY THE DEVELOPERS OR THE DISTRIBUTORS ON THE ACCURACY OR THE RELIABILITY OF THIS PRODUCT. THIS PRODUCT IS A PRACTICAL AND POWERFUL TOOL FOR STRUCTURAL DESIGN. HOWEVER, THE USER MUST EXPLICITLY UNDERSTAND THE BASIC ASSUMPTIONS OF THE SOFTWARE MODELING, ANALYSIS, AND DESIGN ALGORITHMS AND COMPENSATE FOR THE ASPECTS THAT ARE NOT ADDRESSED. THE INFORMATION PRODUCED BY THE SOFTWARE MUST BE CHECKED BY A QUALIFIED AND EXPERIENCED ENGINEER. THE ENGINEER MUST INDEPENDENTLY VERIFY THE RESULTS AND TAKE PROFESSIONAL RESPONSIBILITY FOR THE INFORMATION THAT IS USED.
Contents
Bridge Bridg e Superstruc Superstruc ture Design Design 1
2
Introduction 1.1
Organization
1-1
1.2
Recommended Reading/Practice
1-2
Defin Defin e Loads and Load Combi nation s 2.1
Load Pattern Types
2-1
2.2
Design Load Combinations
2-4
2.2.1 AASHTO LRFD Code
2-4
2.2.2 AASHTO LRFD Code Code with Caltrans Amendments
2-4
2.2.3 AASHTO LRFD Code with PennDOT Amendments
2.4
Default Load Combinations
2-9
2.3
i
CSiBri CSiBridge dge Superstr Superstructure ucture Design
3
Live Load Distributi on 3.1
Methods for Determining Live Load Distribution
3-1
3.2
Determine Live Load Distribution Factors
3-2
3.3
Apply LLD Factors
3-3
3.3.1 User Specified 3.3.2 Calculated by CSiBridge CSiBridge in Accordance with AASHTO LFRD 3.3.3 Forces Read Directly from Girders 3.3.4 Uniformly Distribution to Girders
3-4 3-4 3-4 3-4
Generate Virtual Combinations
3-5
3.4.1 Stress Check 3.4.2 Shear or Moment Check
3-5 3-6
Read Forces/Stresses Directly from Girders
3-6
3.5.1 Stress Check 3.5.2 Shear or Moment Check
3-6 3-6
LLD Factor Design Example Using Method 2
3-7
3.4
3.5
3.6
4
ii
Define a Bri dge Desig Desig n Request 4.1
Name and Bridge Object
4-4
4.2
Check Type
4-4
4.3
Station Range
4-6
4.4
Design Parameters
4-6
4.5
Demand Sets
4-18
4.6
Live Load Distribution Factors
4-18
Contents
5
Design Design Concrete Box Girder Bridges 5.1
5.2
Stress Design AASHTO LFRD
5-2
5.1.1 Capacity Parameters 5.1.2 Algorithm 5.1.3 Stress Design Example
5-2 5-2 5-2
Flexure Design AASHTO LRFD
5-5
5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.3
5.4
6
Capacity Parameters Variables Design Process Algorithm Flexure Design Example
5-5 5-5 5-6 5-7 5-10
Shear Design AASHTO LRFD
5-15
5.3.1 5.3.2 5.3.3 5.3.4 5.3.5
5-15 5-15 5-17 5-18 5-24
Capacity Parameters Variables Design Process Algorithm Shear Design Example
Principal Stress Design, AASHTO LRFD
5-31
5.4.1 Capacity Parameters 5.4.2 Demand Parameters
5-31 5-31
Design Design Multi-Cell Multi-Cell Concrete Concrete Box Bridges using AMA AMA 6.1
Stress Design
6-2
6.2
Shear Design
6-3
6.2.1 Variables 6.2.2 Design Process 6.2.3 Algorithms
6-4 6-5 6-6
6.3
Flexure Design
6-10
6.3.1 Variables 6.3.2 Design Process 6.3.3 Algorithms
6-10 6-11 6-12 iii
CSiBri CSiBridge dge Superstr Superstructure ucture Design
7
Design Precast Concrete Girder Bri dges 7.1
Stress Design
7-1
7.2
Shear Design
7-2
7.2.1 7.2.2 7.2.3 7.2.4
7-3 7-5 7-5 7-9
7.3
8
Flexure Design
7-14
7.3.1 7.3.2 7.3.3 7.3.4
7-15 7-16 7-16 7-20
Variables Design Process Algorithms Flexure Capacity Design Example
Design Steel Steel I-Beam I-Beam Bri dge wi th Composi te Slab 8.1
8.2
Section Properties
8-1
8.1.1 Yield Moments 8.1.2 Plastic Moments 8.1.3 Section Classification and Factors
8-1 8-3 8-7
Demand Sets
8-12
8.2.1 Demand Flange Flange Stresses f bu bu and f f f 8.2.2 Demand Flange Lateral Bending Stress f 1 8.2.3 Depth of the Web in Compression 8.2.4 Moment Gradient Modifier Cb
8-13
Strength Design Request
8-16
8.3.1 Flexure 8.3.2 Shear
8-16 8-24
8.4
Service Design Request
8-26
8.5
Web Fatigue Design Request
8-28
8.5.1 Web Fatigue
8-28
8.3
iv
Variables Design Process Algorithms Shear Design Example
8-14 8-15 8-16
Contents
8.5.2 Flange Fatigue
8-29
Constructability Design Request
8-29
8.6.1 Staged (Steel I Comp Construct Stgd) 8.6.2 Non-staged (Steel (Steel I Comp Construct Construct Non-staged) 8.6.3 Slab Status vs Unbraced Length 8.6.4 Flexure 8.6.5 Shear
8-29
8.7
Section Optimization
8-35
8.8
PennDOT Amendments for DM-4
8-36
8.6
9
8-30 8-30 8-31 8-33
Design Steel Steel U-Tub U-Tub Bri dge wit h Compos ite Slab 9.1
9.2
Section Properties
9-1
9.1.1 Yield Moments 9.1.2 Plastic Moments 9.1.3 Section Classification and Factors
9-1 9-2 9-7
Demand Sets
9-9
9.2.1 Demand Flange Stresses fbu and ff 9.2.2 Demand Flange Lateral Bending Stress f1 9.2.3 Depth of the Web in Compression
9-11 9-12
Strength Design Request
9-13
9.3.1 Flexure 9.3.2 Shear
9-13 9-16
9.4
Service Design Request
9-19
9.5
Web Fatigue Design Request
9-20
9.6
Constructability Design Request
9-22
9.6.1 Staged (Steel-U Comp Construct Stgd) 9.6.2 Non-staged (Steel-U Comp Construct NonStgd) 9.6.3 Slab Status vs Unbraced Length
9-22 9-22 9-22
9.3
9-10
v
CSiBri CSiBridge dge Superstr Superstructure ucture Design
9.7
10
11
9.6.4 Flexure 9.6.5 Shear
9-23 9-27
Section Optimization
9-30
Run a Bri dge Design Request Request 10.1 Description of Example Model
10-2
10.2 Design Preferences
10-3
10.3 Load Combinations
10-3
10.4 Bridge Design Request
10-5
10.5 Start Design/Check of the Bridge
10-6
Displ ay Bri dge Desi Desi gn Resul Resul ts 11.1 Display Results as a Plot 11.1.1 Additional Display Examples
11-2
11.2 Display Data Tables
11-7
11.3 Advanced Report Writer
11-8
11.4 Verification
Bibliography
vi
11-1
11-11
Chapter 1 Introduction
As the ultimate versatile, integrated tool for modeling, analysis, and design of bridge structures, CSiBridge CSiBridge can apply appropriate code-specific code-specific design processes to concrete box girder bridge design, design when the superstructure includes Precast Concrete Box bridges with a composite slab and steel I-beam or U-tub bridges with composite slabs. The ease with which these tasks can be accomplished makes CSiBridge the most productive bridge design package in the industry. Design using CSiBridge is based on load patterns, load cases, load combinations and design requests. The design output can then be displayed graphically and printed using a customized reporting format. It should be noted that the design of bridge superstructure is a complex subject and the design codes cover many aspects of this process. CSiBridge is a tool to help the user with that process. Only the aspects of design documented in this manual are automated by the CSiBridge design capabilities. The user must check the results produced and address other aspects not covered by CSiBridge.
1.1
Organization This manual is designed to help you become productive using CSiBridge design in accordance with the available codes when modeling concrete box girder
1-1
CSiBridge Bridge Superstructure Design
bridges and precast concrete girder bridges. Chapter 2 describes code-specific design prerequisites. Chapter 3 describes Live Load Distribution Factors. Chapter 4 describes defining the design request, which includes the design request name, a bridge object name (i.e., the bridge model), check type (i.e., the type of design), station range (i.e., portion of the bridge to be designed), design parameters parameters (i.e., overwrites for default parameters) parameters) and demand sets (i.e., loading combinations). Chapter 5 identifies code-specific algorithms used by CSiBridge in completing concrete box girder bridges. Chapter 6 provides codespecific algorithms used by CSiBridge in completing concrete box and multicell box girder bridges. Chapter 7 describes code-speicifc design parameters for precast I and U girder. Chapter Chapter 8 explains how to design and and optimize a steel steel I beam bridge with composite slab. Chapter 9 describes how to design and optimize a steel U-beam bridge with composite slab. Chapter 10 describes how to run a Design Request using an example that applies the AASHTO LRFD code, and Chapter 11 describes design output for the example in Chapter 10, which can be presented graphically as plots, in data tables, and in reports generated using the Advanced Report Writer feature.
1.2
Recommended Reading/Practice It is strongly recommended that you read this manual and review any applica ble “Watch & Learn” Series™ tutorials, which are found on our web site, http://www.csiamerica.com , before attempting to design a concrete box girder or precast concrete bridge using CSiBridge. Additional information can be found in the on-line Help facility available from within the software’s main menu.
1-2
Recommended Reading/Practice Reading/Practice
Chapter 2 Defin Definee Loads Loads and Load Combinations Combin ations
This chapter describes the steps that are necessary to define the loads and load combinations that the user intends to use in the design of the bridge superstructure. The user may define the load combinations manually or have CSiBridge automatically generate the code generated load combinations. The appropriate design code may be selected using the Design/Rating > Superstructure Design > Preference command. When the code generated load combinations are going to be used, it is important for users to define the load pattern type in accordance with the applicable code. The load pattern type can be defined using the Loads > Load Patterns command. The user options for defining the load pattern types are summarized in the Tables 2-1 and 2-2 for the AASHTO LRFD code.
2.1
Load Pattern Types Tables 2-1 and 2-2 show the permanent and transient load pattern types that can be defined in CSiBridge. CSiBridge. The tables also show the AASHTO abbreviation abbreviation and the load pattern descriptions. Users may choose any name to identify a load pattern type.
Load Pattern Types
2-1
CSiBridge CSiBridge Brid ge Superstructure Design
Table 2-1 PERMANENT Lo ad Pattern Types Used i n th e AASHTO-LRF AASHTO-LRFD D Code CSiBridge Load Pattern Type
AASHTO Reference
Descriptio n of Load Pattern
Creep
CR
Force effects due to creep
Downdrag
DD
Downdrag force
Dead,
DC
Dead load of structural components and nonstructural attachments
Wearing Surface
DW
Superimposed dead load of wearing surfaces and utilities
Hor Eearth Pr,
EH
Horizontal earth pressures
Locked In
EL
Misc. locked-in force effects resulting from the construction process
Earth Surchr
ES
Earth surcharge loads
Ver Earth Pr
EV
Vertical earth pressure
Prestress,
PS
Hyperstatic forces from post-tensioning
SH
Force effects due to shrinkage
Dead Manufacture, Water DL
Hydrostatic, Passive Earth Pr, Active Earth Pr Pr
Hyperstatic Shrinkage
Table 2-2 TRANSIENT Load Pattern Types Used i n the AASHTO LRFD LRFD Design Code CSiBridge Load Pattern Type
AASHTO Reference
Descriptio n of Load Pattern
Braking
BR
Vehicle braking force
Centrifugal
CE
Vehicular centrifugal loads
Vehicle Collision
CT
Vehicular collision force
Vessel Collision
CV
Vessel collision force
Quake
EQ
Earthquake
Friction
FR
Friction effects
Ice
IC
Ice loads
Impact
IM
Vehicle Dynamic Load Allowance
Vehicle Live
LL
Vehicular live load
Permit Veh Live
LL-P
Permit Vehicular live load
Vehicle Fatigue
LL-F
Fatigue Vehicular live load
Vehicle Deflection
LL-D
Deflection Vehicular live load
2-2
Load Pattern Types
Chapter 2 - Define Define Loads and Load Combinations
Table 2-2 TRANSIENT Load Pattern Types Used i n th e AASHTO AASHTO LRFD Design Code CSiBridge Load Pattern Type
AASHTO Reference
Descripti on of Load Pattern
LL Surchr
LS
Live load surcharge
PedestrianLL
PL
Pedestrian live load
Settlement
SE
Force effects due settlement
Temp Grad
TG
Temperature gradient loads
Temperature
TU
Uniform temperature effects
Water Pr,
WA
Water load and stream pressure
Wind - Live Load
WL
Wind on live load
Wind
WS
Wind loads on structure
Stream Flow Bouyancy
2-3
CSiBridge CSiBridge Brid ge Superstructure Design
2.2
Design Design Load Combinations
2.2.1
AASHTO AA SHTO LRFD Code The code generated design load combinations make use of the load pattern types noted in Tables 2-1 and 2-2. Table 2-3 shows the load factors and combinations that are required in accordance with the AASHTO LRFD code. Tables 2-4 and 2-5 shows the maximum and minimum factors for the permanent loads in accordance with the AASHTO LRFD code. Two combinations for each permanent load pattern are required because of the maximum and minimum factors. When the default load combinations are used, CSiBridge automatically creates both load combinations (one for the maximum and one for the minimum factor), and then automatically creates a third combination that represents an enveloped combination of the max/min combos.
2.2.2
AASHTO AA SHTO LRFD Code wit w ithh Caltr Cal trans ans Amen A mendm dment entss Table 2-6 shows the load factors and combinations that are required in accordance with the AASHTO LRFD code with Caltrans amendments.
2.2.3
AASHTO AA SHTO LRFD Code wit w ithh PennDOT Pen nDOT Amend Am endmen ments ts Table 2-7 and 2-8 show the load factors and live load vehicles for steel and concrete girder bridges, respectively, that are required in accordance with the AASHTO LRFD code with PennDOT amendments.
2-4
Design Load Combinations
Chapter 2 - Define Define Loads and Load Combinations
Table 2-3 2-3 Load Combin ations and Load Factors Used in t he AASHTO AASHTO LRFD Code
Load Combo Limit State
DC DD DW EH EV ES EL PS CR SH
LL IM CE BR PL LS
WA
WS
WL
FR
TU
TU
SE
EQ
IC
CT
CV
Str I
γ P
1.75
1.00
-
-
1.00
0.50/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Str II
γ P
1.35
1.00
-
-
1.00
0.50/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Str III
γ P
-
1.00
1.40
-
1.00
0.50/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Str IV
γ P
-
1.00
-
-
1.00
0.50/ 1.20
-
-
-
-
-
-
Str V
γ P
1.35
1.00
0.40
1.00
1.00
0.50/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Ext Ev I
γ P
γ EQ EQ
1.00
-
-
1.00
-
-
-
1.00
-
-
-
Ext Ev II
γ P
0.5
1.00
-
-
1.00
-
-
-
-
1.00
1.00
1.00
1.00
1.00
0.30
1.00
1.00
1.00/
γ TG TG
γ SE SE
-
-
-
-
-
-
-
-
Serv I
1.00
1.20 Serv II
1.00
1.30
1.00
-
-
1.00
1.00/ 1.20
-
Serv III
1.00
0.80
1.00
-
-
1.00
1.00/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Serv IV
1.00
-
1.00
0.70
-
1.00
1.00/ 1.20
-
1.00
-
-
-
-
Fatigue I LL, IM & CE Only
-
1.50
-
-
-
-
-
-
-
-
-
-
-
Fatigue II LL, IM & CE Only
-
0.75
-
-
-
-
-
-
-
-
-
-
-
Design Load Combinations
2-5
CSiBridge CSiBridge Brid ge Superstructure Design
Table 2-4 2-4 Load Factors fo r Permanent Loads,
γ P , AASHTO LRFD Code
Type of Load
Load Factor Maximum Minimum
DC: Components and Attachments
1.25
0.90
DC: DC: Strength IV only
1.50
0.90
Piles, α Tomlinson Tomlinson Method
1.40
0.25
Piles, λ Method Method
1.05
0.30
Drilled Shafts, O’Neill and Reese (1999) Method
1.25
0.35
1.50
0.65
Active
1.50
0.90
At-Rest
1.35
0.90
AEP for Anchored Walls
1.35
N/A
EL: Locked in Construction Stresses
1.00
1.00
Overall Stability
1.00
N/A
Retaining Walls and Abutments
1.35
1.00
Rigid Buried Structure
1.30
0.90
Rigid Frames
1.35
0.90
Flexible Buried Structures other than Metal Box Culverts
1.95
0.90
1.50
0.90
1.50
0.75
DD: Downdrag
DW: Wearing Surfaces and Utilities EH: Horizontal Earth Pressure
EV: Vertical Earth Pressure
Flexible Metal Box Culverts ES: Earth Surcharge
Table 2-5 2-5 Load Factor Factor s for Permanent Loads d ue to Superimpo sed Deformations,
γ P ,
AASHTO L RFD Cod e Bridg e Component Superstructures, Segmental
PS
CR, SH
1.0
See Table 2-5, DC
1.0
1.0
0.5
0.5
1.0
1.0
1.0
1.0
Concrete Substructures supporting Segmental Superstructures Concrete Superstructures, non-segmental Substructures supporting non-segmental Superstructures Using Ig Using Ieffective Steel Substructures
2-6
Design Load Combinations
Chapter 2 - Define Define Loads and Load Combinations
Table 2-6 2-6 Load Combinatio ns and Load Factors Used in the AASHTO LRFD LRFD Code with Caltrans Amendments
Load Combo Limit State
DC DD DW EH EV ES EL PS CR SH
LL IM CE BR PL LS
LL-P IM CE
WA
WS
WL
FR
TU
TU
SE
EQ
IC
CT
CV
Str I
γ P
1.75
-
1.00
-
-
1.00
0.50/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Str II
γ P
-
1.35
1.00
-
-
1.00
0.50/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Str III
γ P
-
-
1.00
1.40
-
1.00
0.50/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Str IV
γ P
-
-
1.00
-
-
1.00
0.50/ 1.20
-
-
-
-
-
-
Str V
γ P
1.35
-
1.00
0.40
1.00
1.00
0.50/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Ext Ev I
1.00
γ EQ EQ
-
1.00
-
-
1.00
-
-
-
1.00
-
-
-
Ext Ev II
1.00
0.5
-
1.00
-
-
1.00
-
-
-
-
1.00
1.00
1.00
Serv I
1.00
1.00
-
1.00
0.30
1.00
1.00
1.00/
γ TG TG
γ SE SE
-
-
-
-
-
-
-
-
1.20 Serv II
1.00
1.30
-
1.00
-
-
1.00
1.00/ 1.20
-
Serv III
1.00
0.80
-
1.00
-
-
1.00
1.00/ 1.20
γ TG TG
γ SE SE
-
-
-
-
Serv IV
1.00
-
-
1.00
0.70
-
1.00
1.00/ 1.20
-
1.00
-
-
-
-
Fatigue I LL, IM & CE Only
-
1.75
-
-
-
-
-
-
-
-
-
-
-
-
Fatigue II LL-P, IM & CE Only
-
-
1.00
-
-
-
-
-
-
-
-
-
-
-
Design Load Combinations
2-7
CSiBridge CSiBridge Brid ge Superstructure Design
Table 2-7 2-7 Load factors and Live L oad Vehicles for Steel Steel Girder Bridge Used in the AASHTO AASHTO LRFD Code Code with PennDOT PennDOT Amendments Load Combination Limit State
DC
DW
LL IM CE BR LS
Str I
1.25/0.90
1.50/0.65
1.75
-
-
PHL-93 (LL)
Str IP
1.25/0.90
1.50/0.65
1.35
1.75
-
PHL-93 (LL)
Str IA
1.25/0.90
1.50/0.65
1.35
-
-
PHL-93 (LL)
Str II
1.25/0.90
1.50/0.65
1.35
-
-
P-82 (LL-P)
Str III
1.25/0.90
1.50/0.65
-
-
1.40
-
Str IV
1.5
1.50/0.65
-
-
-
-
Str V
1.25/0.90
1.50/0.65
1.35
-
0.40
PHL-93 (LL)
Serv II
1.00
1.00
1.30
-
-
PHL-93 (LL)
Serv IIA
1.00
1.00
1.00
-
-
PHL-93 (LL)
Serv IIB
1.00
1.00
1.00
-
-
P-82 (LL-P)
Fatigue I (infinite) LL, IM & CE Only
-
-
1.50
-
-
HS20-30(LL-F)
Fatigue II (finite) LL, IM & CE Only
-
-
0.75
-
-
HS20-30(LL-F)
DEFL LL, IM CE & BR Only
-
-
1.00
-
-
PenDOT Defl Trk (LL-D)
Const/ Uncured Slab
1.25
1.50/0.65
1.50
-
1.25
User Defined (LL)
2-8
Design Load Combinations
PL
WS
Design LL Vehicle (Load Type)
Chapter 2 - Define Define Loads and Load Combinations
Table 2-8 2-8 Load factors and Live Load Vehicl es for Prestressed Concrete Girder Brid ge Used in the AASHTO L RFD Code w it h Penn DOT Amen dm ents Load Combination Limit State
DC
DW
LL IM CE BR LS
Str I
1.25/0.90
1.50/0.65
1.75
-
0.5
PHL-93 (LL)
Str IP
1.25/0.90
1.50/0.65
1.35
1.75
0.5
PHL-93 (LL)
Str IA
1.25/0.90
1.50/0.65
1.35
-
0.5
PHL-93 (LL)
Str II
1.25/0.90
1.50/0.65
1.35
-
0.5
P-82 (LL-P)
Serv I
1.00
1.00
1.00
-
1.00
PHL-93 (LL)
Serv I with PL
1.00
1.00
0.80
1.00
1.00
PHL-93 (LL)
Serv III
1.00
1.00
0.80
-
1.00
PHL-93 (LL)
Serv III with PL
1.00
1.00
0.65
1.00
1.00
PHL-93 (LL)
Serv IIIA
1.00
1.00
1.00
-
-
Controlling PHL-93 (LL) or P-82 (LL-P)
Serv IIIB
1.00
1.00
1.00
-
-
Controlling PHL-93 (LL) or P-82 (LL-P)
Fatigue I (infinite) LL, IM & CE Only
-
-
1.50
-
-
HS20-30(LL-F)
DEFL LL, IM CE & BR Only
-
-
1.00
-
-
PenDOT Defl Trk (LL-D)
2.3
PL
CR SH
Design LL Vehicle (Load Type)
Default Default Load Combination s Default design load combinations can be activated using the Design/Rating > Load Combinations > Add Default command. Users can set the load combinations by selecting the “Bridge Design” option, and then choose the amendments from the dropdown box if needed. Users may select the desir ed limit states and load cases using the Code Generated Load Combinations for Bridge Design form. The forms shown in Figure 2-1 to Figure 2-3 illustrate the options when the AASHTO LRFD code with or without amendments has been selected for design.
Default Default Load Combinations
2-9
CSiBridge CSiBridge Brid ge Superstructure Design
Figure 2-1 Code-Generated Code-Generated Load Combinations Combinations for Bridge Design Design Form – AASHTO LRFD LRFD
2 - 10
Default Default Load Combinations
Chapter 2 - Define Define Loads and Load Combinations
Figure 2-2 Code-Generated Code-Generated Load Combinations Combinations for Bridge Design Design Form – AASHTO LRFD LRFD with PennDOT Amendments Amendments for Steel Girders
Default Default Load Combinations
2 - 11
CSiBridge CSiBridge Brid ge Superstructure Design
Figure 2-3 Code-Generated Code-Generated Load Combinations Combinations for Bridge Design Design Form – AASHTO LRFD LRFD with PennDOT Amendments Amendments for Concrete Girders
After the desired limit states and load cases have been selected, CSiBridge will generate all of the code-required code-requir ed load combinations. These can be viewed using the Home > Display > Show Tables command or by using the Show/Modify button on the Define Combination Combinationss form, which which is shown in Figure 2-4.
2 - 12
Default Default Load Combinations
Chapter 2 - Define Define Loads and Load Combinations
Figure 2-2 Define Load Combinations Combinations Form Form – AASHTO LRFD LRFD
The load combinations denoted as Str-I1, Str-I2, and so forth refer to Strength I load combinations. The load case StrIGroup1 is the name given to enveloped load combination of all of the Strength I combinations. Enveloped load combinations will allow for some efficiency later when the bridge design requests are defined (see Chapter 4).
Default Default Load Combinations
2 - 13