Manual Conductividad Electrica
Short Description
,...
Description
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Mecánica de fuidos 2
1 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Fundamentos de la materia
Den"#o de !a $o#%aci&n '#o$esiona! de !a in(enie#)a %ecánica* es"a %a"e#ia es +ásica* ,a -ue den"#o de su ca%'o se #e-uie#e e! %ane.o , e! #econoci%ien"o adecuados de de !os fuidos en %o/i%ien"o0 A "#a/s "#a/s de es"e cu#so e! a!u%no ad-ui#i#á e! conoci%ien"o so+#e !as !e,es , '#inci'ios -ue #i(en e! co%'o#"a%ien"o de !os fuidos en %o/i%ien"o* a n de a'!ica#!os en !a so!uci&n de '#o+!e%as -ue a! #es'ec"o se '#esen"an den"#o de su ca%'o '#o$esiona!0 Es"a %a"e#ia a+a#ca desde e! es"udio de! '#inci'io de $unciona%ien"o de /e!ocidad , fu.o* 'e#didas de ca#(a* fu.o de ca'a !i%i"e* "eo#e%a de! i%'u!so* can"idad de %o/i%ien"o , as"a !u+#ican"es0
Temario Unidad 1
Medición de velocidad y fujo
4
Ins"#u%en"os de %edici&n Tu+o Tu+o de Pi"o" Tu+o Tu+o de P#and"! Tu+o Tu+o de 3en"u#i 3en"u#i Dia$#a(%as O#icios 3e#"ede#os Medido#es de Cauda!
Unidad 2
Perdidas de Carga
29
Pe#didas de ca#(a Ti'os de '#dida '#dida M"odos de cá!cu!o Cá!cu!os de '#didas '#i%a#ias Cá!cu!os de '#didas secunda#ias Cá!cu!os de '#didas de #educciones , e4'osiciones +ásicas Cá!cu!os de '#didas en "u+e#)as
Unidad 3
Flujo con caa limite
!9
ue#5as* aná!isis , cá!cu!os A##as"#e Sus"en"aci&n !u.o de fuidos so+#e ca'a '!ana
Unida Un idad d4
Teo eorem rema a de im imuls ulso o y cant cantida idad d de mov movimi imient ento o "4
Teo#e%a Teo#e%a de i%'u!so A'!icaciones 2 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Fundamentos de la materia
Den"#o de !a $o#%aci&n '#o$esiona! de !a in(enie#)a %ecánica* es"a %a"e#ia es +ásica* ,a -ue den"#o de su ca%'o se #e-uie#e e! %ane.o , e! #econoci%ien"o adecuados de de !os fuidos en %o/i%ien"o0 A "#a/s "#a/s de es"e cu#so e! a!u%no ad-ui#i#á e! conoci%ien"o so+#e !as !e,es , '#inci'ios -ue #i(en e! co%'o#"a%ien"o de !os fuidos en %o/i%ien"o* a n de a'!ica#!os en !a so!uci&n de '#o+!e%as -ue a! #es'ec"o se '#esen"an den"#o de su ca%'o '#o$esiona!0 Es"a %a"e#ia a+a#ca desde e! es"udio de! '#inci'io de $unciona%ien"o de /e!ocidad , fu.o* 'e#didas de ca#(a* fu.o de ca'a !i%i"e* "eo#e%a de! i%'u!so* can"idad de %o/i%ien"o , as"a !u+#ican"es0
Temario Unidad 1
Medición de velocidad y fujo
4
Ins"#u%en"os de %edici&n Tu+o Tu+o de Pi"o" Tu+o Tu+o de P#and"! Tu+o Tu+o de 3en"u#i 3en"u#i Dia$#a(%as O#icios 3e#"ede#os Medido#es de Cauda!
Unidad 2
Perdidas de Carga
29
Pe#didas de ca#(a Ti'os de '#dida '#dida M"odos de cá!cu!o Cá!cu!os de '#didas '#i%a#ias Cá!cu!os de '#didas secunda#ias Cá!cu!os de '#didas de #educciones , e4'osiciones +ásicas Cá!cu!os de '#didas en "u+e#)as
Unidad 3
Flujo con caa limite
!9
ue#5as* aná!isis , cá!cu!os A##as"#e Sus"en"aci&n !u.o de fuidos so+#e ca'a '!ana
Unida Un idad d4
Teo eorem rema a de im imuls ulso o y cant cantida idad d de mov movimi imient ento o "4
Teo#e%a Teo#e%a de i%'u!so A'!icaciones 2 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN Unidad ! Flujo comresi#le "9 !u.o co%'#esi+!e* ca#ac"e#)s"icas* "i'o , ecuaciones $unda%en"a!es Ondas de c6o-ue en una di%ensi&n
Unidad "
$ole de ariete
3a#iaci&n de !a ! a ca#(a 'ie5o%"#ica o#%u!a de !a /e!ocidad* , ca!cu!o de e! es'eso# de en "u+e#)as
7 Mecánica de !uidos 2
%&
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Unidad '( Medición de velocidad y fujo
Tan"o co%o !os in(enie#os co%o !os in/es"i(ado#es cien")cos a %enudo se encuen"#an en !a '#oe5a de "ene# - %edi# !as dis"in"as '#o'iedades de !os fuidos* "a!es co%o !a densidad* /iscosidad , "enci&n su'e#cia!0 Ta%+in a %enudo es necesa#io ca#ac"e#i5a# !os dis"in"os $en&%enos fuc"uan"es en "#%inos de %edidas de '#esi&n* /e!ocidad , cauda!0
Cantidad de fuido) velocidad media La can"idad de fuido -ue fu,e 'o# can"idad de "ie%'o a "#a/s de cua!-uie# secci&n se deno%ina 8Can"idad de !u.o9 o si%'!e%en"e 8!u.o9 , se 'uede e4'#esa# en: a; T#%inos de fu.o /o!u%"#ico: Q= v∗ A
[ ]
m Q = flujo, gasto o caudal volumetrico s
3
m v =velocidad del fluid [ ] s A = areatransverzal por la cual pasa el fluido
+; T#%inos de fu.o %ásico:
´ = ρ∗Q m 3
´ = flujomasico [ m ] m s ρ = densidad del fluido [
kg m
3
]
[ ]
m Q= flujo, gasto o caudal volumetrico s
c; T#%inos de 'eso: w =γ ∗Q
< Mecánica de !uidos 2
3
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN w = gasto de peso o caudal de peso [
γ = pesoespesifico del fluido [
N m
3
N ] s
]
[ ] 3
m Q= flujo, gas ¿ o caudal volumetrico s
*cuación de continuidad La ecuaci&n de con"inuidad es !a consecuencia de! '#inci'io de conse#/aci&n de !a %asa den"#o de un sis"e%a cons"an"e Q1=Q2 → v 1 A1= v 2 A 2
PROBLEMAS
Ca!cu!a# !a /e!ocidad '#o%edio de! a(ua -ue ci#cu!a 'o# una "u+e#)a de 7=0>c% de diá%e"#o cuando e! cauda! de! %is%o es de 102?741= @7 %7s
=30.5 cm= 0.305 m Q= vA ∴ v =
∅
3
−3 m
πD A= 4 s
Q=1.263 x 10
A Q
2
π ( 0.305 m) π ( 0.093025 m ) 0.2924 m 2 = = = 73.0616 x 10−3 m2 A = 4 4 4 2
2
−3
73.0616 x 10 m v= 3 −3 m 1.263 x 10 s
2
=17.2867 x 10−3 m = 0.0172 m s
s
E.e#cicio 101@ Bue diá%e"#o de+e "ene# una "u+e#)a -ue "#ans'o#"a un cauda! de 2 % 7 s a una /e!ocidad de 7 %s 3
m πD Q =2 Q =v A A = 4 s
2
π D ∴ Q =v 4
2
∴4Q
= vπ D 2
> Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN v =3
√
4Q m 2 4Q D= ∴ D = s vπ vπ
√ √
( ) = ( ) =√ ( ) ( ) 3
D =
√
4Q = vπ
3
m 4 2 s
m 3 π s
m 8 s
2
0.8488 m
m 9.4247 s
= 0.9213 m
E.e#cicio 102@ Ca!cu!a# e! cauda! %ásico si 'o# una "u+e#)a co##e acei"e de una densidad de 0F (% 7 , "iene un cauda! de F % 7 s ρ= 7.87
!g 3
m
(
´ = ρQ m
)(
) 3
´ = ρQ = 7.87 !g3 0.84 m =6.6108 !g m m
s
s
? Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN E.e#cicio 107@ Po# una cae#)a ci#cu!a# de 7 'u!(adas de diá%e"#o se !!ena un es"an-ue de 2= 'ie 7* en %edia 6o#a0 Ca!cu!a# e! cauda! de a!i%en"aci&n , !a /e!ocidad de fu.o en !a cae#ia0 C =
V t
20
=
0,2
=
40
pie
3
h
=
0,667
pie
3
min
Co%o e! diá%e"#o de !a cae#)a es 7 'u!(adas =*2> 'ies; !a secci&n ci#cu!a# es: π ⋅
d 2
4
V f
=
=
C A
π ⋅
=
0,25
2
4
=
0,0491 pie
2
0,667 0,0491
E.e#cicio 10@ Un es"an-ue de a!%acena%ien"o de >== (a!ones de ca'acidad* se !!ena 'o# !as !!a/es 1 , 2* -ue 'e#%i"en cauda!es de 1= , 1> GPM* #es'ec"i/a%en"e* , se /ac)a 'o# una "e#ce#a de 2= GPM0 Es"ando "o"a!%en"e /ac)o e! es"an-ue* se a+#e !a !!a/e 1 1= %inu"os des'us se a+#en !as o"#as dos* , 1= %inu"os des'us se cie##a !a !!a/e 70 JCuán"o de%o#a en !!ena#se e! es"an-ueK Tene%os -ue 3 C " Sea 3 e! /o!u%en -ue se !!ena con s&!o !a 1 !!a/e a+ie#"a0 3 1= 1= (a!ones 1== (a!ones Sea 3 e! /o!u%en -ue se !!ena con !as "#es !!a/es a+ie#"a0 3 1= 1= 1> 1= Q 2= 1= >= (a!ones0 Sea 3 e! /o!u%en -ue se !!ena des'us de ce##a# !a "e#ce#a !!a/e , " e! "ie%'o "#anscu##ido desde en"onces 6as"a -ue se !!ena e! es"an-ue0 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN 3 1=" 1>" Pe#o 3 3 3 3 >== 1== >= 2>" " 1< %inu"os E! "ie%'o de !!enado es* en"onces: 1= 1= 1= 7< %inu"os0 E.e#cicio 10?@ En un sis"e%a de "u+e#)as -ue %ue/en a(ua* !a /e!ocidad es de 7 $"s , e! diá%e"#o en !a secci&n 1 es de 2 $"* encon"#a# e! cauda! , !a /e!ocidad en !a secci&n 2 si es"a %ide 7 $"
DATOS ∅1
=2 ft
∅2
=3 ft
v 1 =3
ft s
Q πD Q= vA ∴ v 2= A= 4 A2
( ) (
πD Q= v 4
2
2
2
ft π ( 2 ft ) =3 s 4
( ) 2
π D Q v= ∴ Q= v 2 4 πD 4
)
3
ft ft =3 ( 3.1416 ft 2 )= 9.4247 s s
3
3
ft 9.4247 s
ft 9.4247 Q s ft = = = 1.3333 v 2= 2 2 2 s 7.0685 ft πD π ( 3 ft ) 4 4
(
)
E.e#cicio 10@ Una "u+e#)a %ue/e acei"e con una densidad #e!a"i/a # =0F? a una /e!ocidad / 12 %s a "#a/s de una "u+e#)a de 2==%% de diá%e"#o* encon"#a# e! fu.o %asico 'a#a a%+as secciones si !a secciones , !a /e!ocidad 2 de es"e "u+o %ide =%%
∅1
=200 mm → 0.2 m ´m= ρQ Q =vA ∴ Q 1=Q2 → v 1 A 1=v 2 A 2
∅2
=70 mm → 0.07 m ∴ v 2=
v 1 A 1 A2
→ v 2=
Q A 2
2
π D1 v1 2 4 m πD v 1= 2 A = ∴ v 2= 2 4 s π D2 4
F Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN kg ρr =0.86 → ρ =860 3 m
( ) (
2
)
2 3 πD m π (0.2 m) m m 2 =3 =3 ( 0.04 ft ) =0.3141 Q= v 4 4 s s s
(
´ = ρQ = 860 kg3 m m 2
v1 v 2=
π D1 4
πD
2 2
)(
) 3
m kg =270.1769 0.3141 s s
(= )(
m π ( 0.2 ) 2 4 s π ( 0.07 ) 4
4
2
2
)=( ) 2
m (0.157 m2) s 0.05498 m
2
=
m3 0.3141 s 0.05498 m
2
=5.7135
m s
E.e#cicio 10F@ De !os '#o+!e%as P , P F "o%ando en cuen"a e! cauda!* ca!cu!e e! (as"o de! fuido en 'eso P 3
ft Q=9.4247 w =γ Q γ = ρg s ρ= 62.428
)(
( =(
)
l" f l" l" ft = = = 62.428 32.15 2007.0602 γ ρg 3 3 3 s ft ft m
ft g= 32.15 w =γ Q s
2007.0602
l"f 3
m
)(
3
)
ft l" =65.9729 9.4247 s s
PF ρ= 860
kg m
3
w=γ Q γ = ρg
(
3
m kg Q=0.3141 γ = ρg= 860 3 s m
(
)( ) )( )= 9.81
m N = 8436.6 2 3 s m
m N m g= 9.81 2 w =γ Q= 8436.6 3 0.3141 s s m
3
2649.936
N s
Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
*cuación de +ernoulli
Cuando !a su'e#cie de un !)-uido su$#e una '#esi&n* es necesa#io con/e#"i# esa '#esi&n en una a!"u#a e-ui/a!en"e0 Po# !o "an"o !a con/e#si&n se 'uede e4'#esa# co%o !a a!"u#a de una co!u%na de a(ua %edian"e !a #e!aci&n: # = $=altura o alturade precion→ esuna constante γ
Cuando !a '#esi&n se e4'#esa de es"a $o#%a se deno%ina 8a!"u#a de '#esi&n90 Cuando un cue#'o de %asa se %ue/e una /e!ocidad "iene una ene#()a cin"ica: 1 2 %c = m v 2
Po# !o "an"o* si un fuido fu,ese con "odas !as 'a#")cu!as en %o/indose a !a %is%a /e!ocidad su ene#()a cin"ica "a%+in se#ia: 2
v %c = 2g
La ene#()a 'o"encia! de una 'a#")cu!a de fuido de'ende de su a!"u#a 'o# enci%a de un '!ano a#+i"#a#io de #e$e#encia* una 'a#")cu!a de fuido de 'es ; si"uada a una dis"ancia 5* si"uada 'o# enci%a de! '!ano de #e$e#encia "iene una ene#()a 'o"encia! 5* 'o# !o "an"o su ene#()a 'o"encia! 'o# unidad de 'eso se#ia: 2
2
#1 v # v + z 1+ 1 = 2 + z2 + 2 2 g γ 2g γ
A !a su%a de es"os "#es "#%inos se !e deno%ina ca#(a o a!"u#a "o"a! La ene#()a in"e#na es !a ene#()a a!%acenada -ue es"a asociado con e! es"ado %o!ecu!a# o in"e#io# de !a %a"e#ia* se 'uede a!%acena# de di$e#en"es $o#%as* inc!u,endo !a "#%ica nuc!ea#* -u)%ica , e!ec"#oes"á"ica
1= Mecánica de !uidos 2
i(u#a 1
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Ade%ás de e! "#a+a.o de fu.o* si 6a, una %a-uina en"#e !a secci&n 1 , 2 de !a (u#a* se deno%ina h -ue es !a ene#()a aadida o a+so#+ida 'o# !a %a-uina a! fu.o 'o# unidad de 'eso de! fuido de %o/i%ien"o0 Si !a %a-uina es una +o%+a 6% se#á 'osi"i/a* , si es una "u#+ina* 6 % se#á ne(a"i/a0 m
Ta%+in se in/o!uc#an !as 'e#didas de ca#(a o ene#()a 6'; Es"as 'e#didas son de#i/adas a !a $#icci&n de! fuido 'o# e! %edio en e! -ue se "#ans'o#"a0 La educaci&n de !a ene#()a se con/ie#"e en 2
2
#1 v # v + z 1+ 1 & $m= 2 + z 2 + 2 +$ p 2g 2g γ γ
Donde:
+¿ ¿ ¿ −¿ ¿ ¿ $ p =so nlas perdidasde carga
Po# !o "an"o 'a#a una +o%+a !a ecuaci&n se#á: 2
2
#1 v # v + z 1+ 1 + $ m− ' $ p 12= 2 + z 2+ 2 2g 2g γ γ
Y !a ecuaci&n 'a#a una "u#+ina se#á: 2
2
#1 v # v + z 1+ 1 −$m − ' $ p 12= 2 + z 2 + 2 2g 2g γ γ
11 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
12 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Tu#o de Pitot La (u#a an"e#io# es un es-ue%a ideado 'o# Pi"o" 'a#a %edi# !a '#esi&n "o"a!* !!a%ada "a%+in '#esi&n de es"anca%ien"o su%a de !a '#esi&n es"á"ica , diná%ica;0 En !a (u#a se a es-ue%a"i5ado "a%+in !a !)nea de co##ien"e0 un"o a !a in/ocado#a de! 'un"o uno se $o#%a un 'un"o de es"anca%ien"o o de #e%anso* !a /e!ocidad en ese 'un"o se #educe a ce#o , !a e4'#esi&n au%en"a as"a e! /a!o#: 2
2
#1 v # v + z 1+ 1 = 2 + z2 + 2 2 g γ 2g γ
En e! 'un"o 1 , 2 se #eVnen condiciones de es"á"ica* , z 1− z 2=l
v 1= v 2= 0
'o# !o "an"o sa+e%os -ue !a '#esi&n "o"a!:
#( =γ$− γl
Po# !o "an"o /o, a "ene# !a ecuaci&n de !a si(uien"e %ane#a
( ) 2
v #( = # 0+ ρ 2g
Donde: # ( = presiontotal , presi)n de estancamiento o presi)nde remanso #0= presi)n de la corrienteinpreturvada ( teoricamneteenel infinito )
17 Mecánica de !uidos 2
,
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Tu#o de Prandtl
ue idea de P#and"! co%+ina# en un %is%o ins"#u%en"o un "u+o de Pi"o" , un "u+o 'ie5o%"#ico* e! "u+o de Pi"o" %ide !a '#esi&n "o"a! , e "u+o 'ie5o%"#ico !a '#esi&n es"á"ica* , e! "u+o de P#and"! %ide !a di$e#encia de es"as 2 '#esiones dando !a '#esi&n diná%ica0 Es %u, usado en !os !a+o#a"o#ios con !)-uidos , (ases siendo e! ins"#u%en"o es"ánda# 'a#a %edi# !a /e!ocidad , e! cauda! en !os /en"i!ado#es E! "u+o de P#and"! co%+ina en Vnico ins"#u%en"o e! "u+o de Pi"o" 1 , un "u+o 'ie5o%"#ico 2 conec"ado a un %an&%e"#o di$e#encia!* %ide !a '#esi&n diná%ica0 Si#/e 'a#a %edi# !a /e!ocidad de !a co##ien"e , e! cauda!0 E! "u+o de P#and"! a! i(ua! - e! "u+o de Pi"o" ! se# in"#oducido en un fu.o '#oduce una 'e#"u#+aci&n -ue se "#aduce en $o#%aci&n 1 de un 'un"o de es"anca%ien"o* de %ane#a -ue #1= #2 , v 1= 0 en e! 'un"o = !a co##ien"e no 'e#"u#+ada "iene !a #0 , !a v 0 -ue es !a /e!ocidad a %edi# , en e! 'un"o 1 se di#i(e a !a en"#ada de e! "u+o de Pi"o" , en e! 'un"o 2 e! "u+o 'ie5o%"#ico con di/e#sas en"#adas !a"e#a!es -ue no 'e#"u#+an !a co##ien"e , -ue %iden 'o# !o "an"o !a '#esi&n es"á"ica , !a '#esi&n en"#e !os 'un"os 1 , 2 Des'us de !a 'e#"u#+aci&n en 1 se "end#á des'#eciando !as 'e#didas v 1= v 2
, #1= #0 donde v 0 ( =¿ /e!ocidad "eica de !a secci&n ce#o
A'!icando !a ecuaci&n de We#nou!!i a !os 'un"os = , 1 z 0= z 1 v 1=0
Po# !o "an"o
( ) 2
( ) 2
v = # ( # 1− #2= ρ v #0= ρ 2g 2g
Po# o"#a 'a#"e !!enando de 1 a 2 'o# e! in"e#io# de! %an&%e"#o* , es"ando "an"o e! fuido '#inci'a! co%o e! !)-uido %ano%"#ico en #e'oso se 'od#á a'!ica# !a ecuaci&n de !a 6id#os"á"ica en"#e 1 , 2 z 1 * z 2
Po# !o "an"o
#1= #2 + ρga + ρgl − ρga #1− #2= gl − ρgl
1< Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN ac"o#i5ando
#1− #2= gl ( ρ − ρ )
Sus"i"u,endo
v #1− #2= ρ 2g
( ) 2
( ) 2
v gl ( ρ − ρ )= ρ 2g
Tene%os: Tene%os:
'#esi&n diná%ica de! "u+o de
P#and"! Des'e.ando
v 0 (
v 0 ( =
√
2 gl ( ρ m− ρ )
ρ
3e!ocidad "eica en e! "u+o de P#and"! En #ea!idad !as fuc"uaciones de /e!ocidad di#ecciona! de#i/adas de !as "u#+u!encias au%en"an !as !ec"u#as o+"enidas 'o# !o -ue a! !ado de#ec6o de !a ecuaci&n de+e %u!"i'!ica#se 'o# un $ac"o# de co##ecci&n -ue /a#)a en"#e ,* sin e%+a#(o si e! "u+o de P#and"! se o#ien"a 'a#a!e!a%en"e con !as !)neas de co##ien"e + =1 * 'o# !o "an"o
v 0 =+
√
2 gl ( ρ m− ρ )
ρ
1> Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN E.e#c E.e#cicio icio 10@ 10@ una "u+e# "u+e#)a )a de 7=c% 7=c% de de diá%e"# diá%e"#o o "#ans' "#ans'o#" o#"a a 11= Ls Ls de un fuido con una densidad de =0F12 , !a '#esi&n %ano%"#ica n A es 2 de # A =¿ =02 (c% * si es"e es"a si"uado a 10F% 'o# en5i%a de! '!ano
de #e$e#encia* ca!cu!a# !a ene#()a "o"a! ca#(a o a!"u#a; en % en e! 'un"o A 2
2 # A v A 4Q πD Q + z 2 + Q = v A A = = 2 ∴ v= % A = 2 2g 4 γ πD πD 4
D =30 cm → 0.3 m
(
4 0.11
3
m s
)
0.44
m s
4Q m m = = = 1.5564 Q=110 → 0.11 v= 2 2 s s s π ( 0.3 m) 0.2827 m πD
ρr =0.812 → 812 # A =0.2
!g 2
m
!g m
3
→ 19612.77
N m
2
(
γ = ρg = 812
!g m
3
)(
9.81
m s
2
)
=7965.72
N m
3
z 1=1.8 m
# A
2
v A
19612.77
N 2
(
m 1.5564 s
) )
2
m + z 2 + = + 1.8 m + = 2.4621 m + 1.8 m+ 0.1234 m % A = 2g γ N m 7965.72 3 2 9.81 2 m s
(
% A =4.3855 m
E.e#cicio E.e#cicio 101=@ 101=@ A "#a/s de de una "u+e#)a "u+e#)a en a! -ue es"a es"a ins"a!ado ins"a!ado un "u+o de P#and"! es"á"ico -ue "iene un coecien"e de /e!ocidad
+ v =0.97
ci#cu!a un fuido cu,a densidad #e!a"i/a es de ρr =0.862 0 E! %an&%e"#o di$e#encia! de %e#cu#io indica una di$e#encia de a!"u#a de 1=c%0 JCuá! JCuá! es !a /e!ocidad en e! cen"#o de !a "u+e#)aK + v =0.97 ρr =0.862 → 862
√
2 gl ( ρ ρ m − ρ ) !g = v + 0 3 ρ m
l =10 cm=0.1 m
1? Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN 2 gl ( ρ ρ m − ρ )
ρ
¿
ρm= 13600
v 0 =0.97
√
√
!g v =+ √ ¿ 3 0 m
(
)
(
m !g !g 2 9.81 2 ( 0.1 m ) 13600 3 − 862 3 s m m
v 0 =0.97 28.9929
862
m
(
2
!g m
3
= 0.97 5.3845 2
s
velocida velocidad d teorica teorica =5.3845
velocidad velocidad real =5.2229
)=
0.97
√
24991.956 862
)
m m =5.2229 s s
m s
m s
1 Mecánica de !uidos 2
m
2
2
s
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN E.e#cicio 1011@ En !a si(uien"e (u#a fu,e a(ua a 20 ℃ a !g 60 s e! diá%e"#o 1 es de 22=%% , e!
diá%e"#o 2 es de F=%%* ca!cu!en !a /e!ocidad de !as secciones 1 , 2 D 1=220 mm → 0.22 m D 2=80 mm → 0.08 m t =20 ℃
´ =60 m
!g s
ρ . /a 20 ℃= 998.22 2
!g 3
m
!g 3 ´m s m ´ = ρ∗Q ∴ Q= = =0.0601 m ρ !g s 998.22 3 m 60
πD Q = vA A = 4
v 1=
v 2=
4Q 2
π D1
4Q 2
π D2
2
∴v
=
( =
π ( 0.22 m)
( =
= 2
4Q
πD
2
3
m 0.2404 s m = =1.5815 2 s 0.152 m
)
3
m 4 0.0601 s π ( 0.08 m )
πD 4
)
3
m 4 0.0601 s
Q
3
m 0.2404 s m = = 11.9601 2 s 0.0201 m
E.e#cicio 1012@ Po# e! "u+o %os"#ado en !a (u#a ci#cu!a ai#e a m 50 ℃ a una /e!ocidad de 18 s 0 Ca!cu!a# !a di$e#encia de !ec"u#as en
e! %an&%e"#o di$e#encia! de a(ua* su'oniendo -ue e! 'eso es'ec)co de! ai#e a '#esi&n a"%os$#ica es cons"an"e
1F Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN v = 18
m s
t =50 ℃ γ m ( . /) a 50 ℃=9689 N / m
3
2
γ (aire ) a 50 ℃= 10.73
v0 =
l=
l=
2 0
v ρ 2 ( γ m−γ )
2 0
√
N m
3
γ = ρg ∴ ρ = γ / g
2 gl ( ρ m − ρ )
ρ
ρ (aire ) a 50℃ =
v ρ
2 ( γ m γ
2 9689
=
2 l ( γ m− γ )
γ ( aire ) a 50 ℃ g
( ) ( = − ) ( )( m 18 s
2
∴ v0
2
1.0937
N 3 m
ρ
10.73
=2 l ( γ m− γ )
N 3
m !g = =1.0937 3 m m 9.81 2 s
!g 3 m
10.73
2
∴ v 0 ρ
)= )
N 3 m
354.3588 =0.0183 m=1.8 cm 19356.6
1 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Tu#o de ,enturi
E! "u+o de 3en"u#i es un e!e%en"o cu,a $unci&n es '#o/oca# una di$e#encia de '#esiones siendo e! cauda! una $unci&n de dic6a #e$e#encia %idiendo es"o se 'uede %edi# e! cauda! e! cua! consis"e en 7 'a#"es* una di/e#(en"e 1* una secci&n %)ni%a 8(a#(an"a9 2* , una di/e#(en"e 70 E! "u+o -ue con/e#(e 6acia !a (a#(an"a (ene#a un au%en"o de /e!ocidad aco%'aado de una #educci&n de '#esi&n* se(uida 'o# o"#o "#a%o de "u+o di/e#(en"e en !a -ue !a /e!ocidad se "#ans$o#%a de nue/o en '#esi&n* con una !i(e#a 'e#dida de ca#(a de $#icci&n0 Co%o e4is"e un #e!aci&n conocida en"#e !as di$e#encias de '#esiones , cauda! e! "u+o se u"i!i5a co%o un deno%inado 3en"u#i Des'#eciando !as 'e#didas de !a (u#a an"e#io# , a'!icando !a ecuaci&n de We#nou!!i 2
#1
2
v # v + z 1+ 1 = 2 + z2 + 2 2 g γ 2g γ
Y de !a ecuaci&n de con"inuidad en"#e !as secciones se#á Q1=Q2 → v 1 A1= v 2 A 2 ∴ v 1=
v 2 A 2 A1
Sus"i"u,endo v 1 en !a ecuaci&n de We#nou!!i
( )
#1 A + z 1+ 2 γ A 1
2
2
2
v 2 #2 v = + z2 + 2 2 g γ 2g
Y des'e.ando v 2 -ue con/e#"i%os en 8/e!ocidad "eica9 v 2 ( 'ues no se a "o%ado en cuen"a e! #o5a%ien"o "ene%os v 2 ( =
√
1
( )
A 2 1− A 1
2
( √ [( 2g
# 1 γ
)(
+ z1 −
#2 γ
+ z 2
)])
2= Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN A6o#a +ien e! cauda! ( Q( ) -ue 'asa 'o# e! 3en"u#i se#á: Q( =+ v A 2 v 2 (
Donde + v es e! coecien"e de /e!ocidad C/ se o+"iene e4'e#i%en"a!%en"e , -ue osci!a de =0> a 'oco %enos de !a unidad 'udiendo "o%a# co%o /a!o# indica"i/o =0F> 'a#a 3en"u#i nue/os , =0F 'a#a !os -ue ,a 6an es"ado en se#/icio Q=
√
+ v A 2
( √ 2 g ( $ −$ ) ) 1
( )
1−
A 2 A1
2
2
Donde $1 , $2 son !as a!"u#as 'ie5o%"#icas en !os 'un"os 1 , 2* + Q
na!%en"e deniendo un coecien"e de cauda!
-ue se ca!cu!a "a%+in
e4'e#i%en"a!%en"e , -ue en(!o+a e! coecien"e + v + Q =
√
+ v
( )
A 2 1− A1
2
Ca!cu!ando e! cauda! #ea! de! 3en"u#i "ene%os Q=+ Q A 2 √ 2 g ( $1−$ 2)
Se de+e "o%a# en cuen"a -ue se conec"a a un %an&%e"#o di$e#encia! con conec"o#es 'ie5o%"#icos en"#e !as secciones 1 , 2* se#á:
(
# 1 γ
)(
+ z 1 −
v 2 ( =
√
# 2 γ
) (
+ z 2 = -m
1
( )
A 2 1− A 1
2
( √ [( 2g
ρm ρfluido
# 1 γ
−1
)
)(
+ z1 −
#2 γ
)])
+ z 2 =
√
1
( )
A 2 1− A1
2
(√ (
21 Mecánica de !uidos 2
2 g -m
ρm ρ fluido
−1
))
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN E.e#cicio 1017@ Ha!!e e! cauda! de! a(ua a 20 ℃ -ue ci#cu!a 'o# e! "u+o de 3en"u#i de !a (u#a* ca!cu!e !a /e!ocidad en !a (a#(an"a e indi-ue si e! fu.o -ue ci#cu!a 'o# !a (a#(an"a es !a%ina# o "u#+u!en"o si e! diá%e"#o un es de F=c% , e! diá%e"#o 2 es de Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN La su'e#cie !i+#e de! de'&si"o se %an"iene a una a!"u#a H cons"an"e a !a #e!aci&n de! '!ano de #e$e#encia z =0 * -ue "o%a#e%os a !a sa!ida de !a "u+e#)a T* (#acias a -ue en e! de'osi"o en"#a un cauda! B i(ua! a! -ue sa!e 'o# !a "u+e#)a* #e(u!ado 'o# !a /á!/u!a E! á#ea de !a su'e#cie !i+#e es sucien"e%en"e (#ande 'a#a conside#a# -ue v 1= 0 0 En e! 'un"o 1 !a ene#()a (eodsica z 1= . , se des'#ecian !as 'e#didas
A'!icando !a ecuaci&n de We#nou!!i en !os 'un"os 1 , 2 su'oniendo un fuido idea! "ene%os 2
2
#1 v # v + z 1+ 1 = 2 + z2 + 2 2 g γ 2g γ
Si z 1=¿ es !a a!"u#a 'ie5o%"#ica 2
v $ = . = 2g
Des'e.ando v 2 v 2= √ 2 g$
Es"a /e!ocidad es i(ua! a !a ad-ui#ida 'o# una 'a#")cu!a a! cae# !i+#e%en"e desde una a!"u#a H Un o#icio es una a+e#"u#a '#ac"icada en !a 'a#ed de un de'osi"o o#icio !a"e#a! o de $ondo; de una $o#%a cua!-uie#a
2? Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
E! o#icio 'uede co%unica# con !a a"%os$e#a o +ien con o"#o fuido +a.o '#esi&n E! c6o##o es una co##ien"e -ue sa!e de un o#icio* una "o+e#a o un "u+o0 No es"a !i%i"ado 'o# una 'a#ed de con"o#no so!ido* es"ando #odeado 'o# un fuido cu,a /e!ocidad es %eno# -ue !a su,a0 Un c6o##o !i+#e consis"e en una co##ien"e de! !)-uido #odeada 'o# un (as 'o# !o -ue su$#e Vnica%en"e e! e$ec"o de !a (#a/edad0 Un c6o##o su%e#(ido consis"e en una co##ien"e de cua!-uie# fuido -ue desca#(a en una %asa de! %is%o fuido E! c6o##o a !a sa!ida de un o#icio se con"#ae0 La secci&n de! c6o##o con"#a)do se !!a%a /ena con"#ac"a* si e! o#icio es ci#cu!a# se de%ues"#a -ue "iene !u(a# a una dis"ancia D2 de !a 'a#ed de! de'osi"o Esc#i+a%os !a ecuaci&n de We#nou!!i en"#e 1 , 2 es"a u!"i%a de !a /ena con"#ac"a donde !a '#esi&n es i(ua! a ce#o; 2
2
#1 v # v + z 1+ 1 = 2 + z2 + 2 2 g γ 2g γ 2
v2 $1= $2+ 2g
Donde v 2= v t es !a /e!ocidad "eo#ica en !a /ena con"#ac"a* 'o# !o -ue des'#ecia%os !as 'e#didas v t =√ 2 g ( $1−$ 2)= √ 2 g 0 $
La /e!ocidad #ea! en una /ena con"#ac"a se#á: v 8=+ v v t
Donde + v es e! coecien"e de /e!ocidad
2 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN v 8= + v √ 2 g 0 $
E! cauda! desa(uado 'o# e! o#icio se#á i(ua! a !a secci&n "#ans/e#sa! de !a /ena %u!"i'!icada 'o# !a /e!ocidad en esa secci&n Q= A c v =+ c + v A √ 2 g 0 $
Donde: + c =¿
Coecien"e de con"#acci&n
A =¿ Z#ea de! o#icio A c =+ c A
Y na!%en"e "ene%os !a $o#%u!a (ene#a! de desa([e 'o# un o#icio* "u+o , "o+e#a Q=+ 4 A √ 2 g 0 $
Donde: + 4 =+ v + c =¿
Coecien"e de cauda!
0 $ =¿ Di$e#encia de a!"u#as 'ie5o%"#icas
Los /a!o#es de + 4 * + v , + c son !os -ue /a#)an de acue#do a! ins"#u%en"o e%'!eado
To#era Una "o+e#a* es en (ene#a! un conduc"o con/e#(en"e en !a di#ecci&n de! fu.o -ue '#oducen un au%en"o de /e!ocidad , una dis%inuci&n de !a '#esi&n La (u#a %ues"#a un es-ue%a de una "o+e#a de %edida en donde se a di+u.ado "a%+in !as !)neas de co##ien"e0 Co%o se /e una "o+e#a no es %as -ue un 3en"u#i a! -ue !e $a!"a !a 'a#"e di/e#(en"e0 Po# !o "an"o es %ás econ&%ica* 'e#o "iene %ás '#didas , es %ás ca#a en $unciona%ien"o0
2F Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
La "o+e#a "a%+in '#o'o#ciona una co##ien"e de a!"a /e!ocidad con"#a incendios o 'a#a (ene#a# 'o"encia en una "u#+ina de /a'o# o en una "u#+ina de i%'u!so0
√
Q= ! A2 2 g
k =
√
[( ) ( )]
√
(
# 1 # ρ + z1 − 2 + z 2 = ! A 2 2 g -m m −1 γ γ ρ fluido
+ 4
( )
A 2 1− A 1
2
k =¿ Coecien"e de fu.o
2 Mecánica de !uidos 2
)
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Un "u+o es una "u+e#)a co#"a cu,a !on(i"ud no e4cede %ás de 2 o 7 diá%e"#os* un "u+o 'uede "ene# un diá%e"#o uni$o#%e o se# di/e#(en"e + 4 =+ d=+ v + c
+ c =
+ v =
vr v ( A vena A orificio
E.e#cicio 101>@
E.e#cicio 101?@ Po# un o#icio ci#cu!a !a"e#a! en !a 'a#ed de!(ada en donde + 4 =0.61 , d =20 mm sa!e a(ua* ca!cu!a# e! cauda! de! a(ua en 3
m s
l , s si e! ni/e! de! a(ua se encuen"#a a una a!"u#a de ?0 Es una #e(!a (#aduada "e#%inada en (anc6o -ue .un"o con un ni/e! de +u#+u.a si#/e 'a#a %edi# !a a!"u#a 6 ca#(a so+#e !a c#es"a; ?0 \ es !a c#es"a de! /e#"ede#o Los /e#"ede#os de 'a#ed de!(ada se(Vn su $o#%a de !a a+e#"u#a* se c!asican en #ec"an(u!a#es* "#a'e5oida!es* "#ian(u!a#es , 'a#a+&!icos
Los /e#"ede#os #ec"an(u!a#es se c!asican en /e#"ede#os sin con"#acci&n !a"e#a!* si e! anc6o de !a a+e#"u#a de! /e#"ede#o es i(ua! a! anc6o de! cana! , e! /e#"ede#o con con"#acci&n !a"e#a! es e! caso con"#a#io* !o -ue si(nica -ue e! anc6o de !a a+e#"u#a es %eno# -ue !a de! cana!0
P#ocediendo de %ane#a aná!o(a a !a e%'!eada en !a deducci&n de! cauda! "eico se#á 3
2 Qt = " $ 2 √ 2 g 3
77 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN Donde: + anc6o de! /e#"ede#o Y o+"eniendo e! cauda! #ea! se#á 3
2 Qt =+ 4 " $ 2 √ 2 g 3
Donde: + 4 =¿
Coecien"e de cauda!
Donde: + anc6o de! /e#"ede#o W anc6o de! cana! H ca#(a so+#e !a c#es"a de! /e#"ede#o \ c#es"a de! /e#"ede#o + 4 =0.605 +
$ 1 + 0.08 en 9 : ; : z 1000 ( $ )
+ 4 =0.605 +
1 $ + 0.08 e n sistema"ritanico z 305 ( $ )
Po# !o "an"o Q=+ w " $
3 2
Donde: 7< Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN + w =¿
Coecien"e de /e#"ede#o
Pa#a ca!cu!a# e! cauda! en un /e#"ede#o #ec"an(u!a# sin con"#acci&n 3 /2
Q=1.83 " $
en 9;
3 2
Q=3.32 " $ en9istema %
3 2
6?2c%=0?2% 3 2
m Q=1.83 ( 1.85 m ) ( 0.62 m ) =1.83 (1.85 ) ( 0.4881 )= 1.662 s
3
Con/e#"i# a (a!ones 'o# 6o#a , a !i"#os 'o# 6o#a 3
1m
=1000 l −3
1 galon= 3.785 l =3.785 x 10 1 $=3600 s
(
3
m Q=1.662 s
)( ) ( )( )=
1 gal
−3
3.785 x 10 3
m Q=1.662 s
1000 l 1m
3
3600 s 1$
=1.571 x 106
3600 s 1$
g $
5947.2 x 10
3
l $
La $o#%a de %edici&n 6as"a a6o#a ana!i5ada "iene sus $unda%en"os 6id#áu!icos "an"o en as'ec"os 6id#os"á"icos co%o 6id#odiná%icos0 Sin e%+a#(o e4is"en o"#os %edido#es de /e!ocidad , de fu.o -ue 'a#"en de !a 7 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN idea 6id#áu!ica co%o e! #o"á%e"#o , o"#os a'a#a"os -ue se u+ican en e! '!ano e!c"#ico co%o e! a"%&%e"#o di(i"a! o e! %edido# de (as"o de u!"#asonido0 Es"os a'a#a"os cuen"an con (#an '#ecisi&n* sin e%+a#(o "ienen sus !)%i"es 'ues 'a#a !as "u+e#)as de (#an "a%ao co%o !as e%'!eadas en (#andes sis"e%as de +o%+eo en !os sis"e%as de a(ua condensada* en !as '!an"as "e#%oe!c"#icas o +ien en !as "u+e#)as de !as cen"#a!es 6id#oe!c"#icas* en"#e o"#os0 !os %edido#es a +ase de u!"#asonido #esu!"an en !a %a,o#)a de !as /eces inca'aces de se# %on"aos en "u+e#)as de (#an diá%e"#o* 'o# !o -ue si(uen u"i!i5ando a'a#a"os co%o e! /en"u#i%e"#o0
7F Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN
Unidad ''( Perdidas de carga
Perdidas de carga en ductos cerrados y a#iertos Los conduc"os -ue se usan 'a#a "#ans'o#"a# fuidos son de dos c!ases 10 Conduc"os ce##ados , "u+e#)as* en !as cua!es e! fuido se encuen"#a +a.o '#esi&n 20 Conduc"o#es a+ie#"os o cana!es acueduc"os* cana!es de #ie(o* #io* e"c0; Las 'e#didas de ca#(a en !as "u+e#)as son de dos c!ases •
•
Pe#didas '#i%a#ias: son !as 'e#didas de !a su'e#cie en e! con"ac"o de! fuido con !a "u+e#)a* #o5a%ien"o de unas ca'as de fuido con o"#as #(i%en !a%ina#; o de !as 'a#")cu!as de fuido en"#e si #(i%en "u#+u!en"o; Pe#didas secunda#ias: son !as 'e#didas de $o#%a -ue "ienen !u(a# en !as "#ans%isiones es"#ec6a%ien"os o e4'ansiones de co##ien"e* codos* /á!/u!as de "oda c!ase , en "odos !os acceso#ios de !a "u+e#)a;
En !a conducci&n -ue une !os #eci'ien"es de 1 , 2 6a, '#didas '#i%a#ias en !os "e#%os #ec"os a@+* d@e* e"c0; , !as '#didas secunda#ias en !as "#ansiciones , acceso#ios: ensanc6a%ien"os +#uscos* codos* e"c0 Conside#a#e%os e! es-ue%a de conducci&n #e'#esen"ado en !a (u#a0 Los "#a%os a+* $(* 6i* ._* !% son "#a%os #ec"os de "u+e#)a de secci&n cons"an"e aun -ue de dis"in"os diá%e"#os En "osas e!!as se o#i(inan 'e#didas '#i%a#ias en !os "#a%os #es"an"es se o#i(inan 'e#didas secunda#ias as): es un !"#o* a desa([e de un de'osi"o* +c un codo* cd un ensanc6a%ien"o +#usco* _! un %edido# de cauda! , %n un desa([e en e! de'osi"o 2
7 Mecánica de !uidos 2
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN En e! cauda!* !as 'e#didas de ca#(a en una "u+e#)a .ue(a en un 'a'e! disc#i%inan"e 2 $ac"o#es: e! -ue !a "u+e#)a sea !isa o #u(osa en e! -ue e! #(i%en de co##ien"e sea !a%ina# o "u#+u!en"o
*cuación general de las rdidas rimarias( ecuación de -arcy 5 6eis#ac7 E4'e#i%en"os con "u+e#)as de a(ua de diá%e"#o cons"an"e de%os"#a#on -ue !a 'e#dida de ca#(a es di#ec"a%en"e '#o'o#ciona! a! cuad#ado de !a /e!ocidad %edia en !a "u+e#)a , !a !on(i"ud de !a "u+e#)a e in/e#sa%en"e '#o'o#ciona! a! diá%e"#o de !a %is%a La $o#%u!a -ue e4'#esa !o an"e#io# es !a ecuaci&n de Da#c,@`eis+ac6: 2
-v . rp= > D 2 g
Donde . rp=¿
Pedida de ca#(a '#i%a#ia %;
Coe$icien"e de 'e#dida '#i%a#ia adi%ensiona!* de'ende de! %a"e#ia!; L Lon(i"ud de !a "u+e#)a %; D Diá%e"#o de !a "u+e#)a %; v =¿ 3e!ocidad '#o%edio de! fuido %s; 2 ( Cons"an"e de (#a/edad m / s ;
En a!(unos !i+#os !o %ane.an co%o $ E! $ac"o# de'ende de !a /e!ocidad v ;* de! diá%e"#o de !a "u+e#)a D ;* de !a densidad ρ ;* de !a /iscosidad b; , de !a #u(osidad ;* !a cua!
se e4'#esa en %e"#os de'ende de
vDρ − N = de 8e@nolds ?
de'ende de
k e o D D
donde e
_ #u(osidad #e!a"i/a En (ene#a! es"a en $unci&n de 2 /a#ia+!es adi%ensiona!es: e! nV%e#o de Re,no!ds , ! #u(osidad #e!a"i/a En !as "u+e#)as se '#esen"an 2 "i'os de fu.o -ue son =
64
ℜ
Bormula de #oiseville
c; Pa#a un nu%e#o de Re,no!ds %as e!e/ados , %a,o# #u(osidad se conside#a una 5ona co%'!e"a%en"e #u(osa* donde e! coecien"e de 'e#didas '#i%a#ias se#á:
( )+
1 D =2log 10 2 ! >
1.74 9egundaecuacion de !arman − #randtl
-iagrama de Moody
a; Resue!/e "odos !os '#o+!e%as de 'e#didas de ca#(a '#i%a#ias con cua!-uie# diá%e"#o* cua!-uie# %a"e#ia! de "u+e#)a , cua!-uie# cauda! +; Puede e%'!ea#se con "u+e#)as de secci&n no ci#cu!a# sus"i"u,endo e! diá%e"#oD; 'o# e! #adio 6id#áu!ico 8$ ¿ c; Se usa 'a#a de"e#%ina# ! coecien"e > e! cua! !ue(o se !!e/a a!a ecuaci&n Da#c,@`eis+ac6
View more...
Comments