Calculux
Indoor Version 5.0
Calculux
Indoor
Calculux
Indoor
Contents
Calculux
Indoor
Calculux
Indoor
Contents
1
Introduction 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15
2
Getting Started 2.1 2.2 2.3 2.4 2.5 2.6
3
Philips - your partner in lighting What Calculux does What you can do with Calculux Indoor Tailor make your indoor design Choose from a wide range of luminaires Easy luminaire positioning individually or as a group Symmetry lighting installation Graphical manipulation of generated luminaires and/or aiming positions Calculation Grids Switching Modes Light Regulation Factor (LRF) Save money by optimising cost-effectiveness See your lighting design develop on screen Impress your customers with attractive reports Installation and operating platform
Installing the program Installing the database What is new in Calculux Indoor 5.0 Installing other report languages File structure Environment settings and preferences
Background Information 3.1
Project Info and Vignette file 3.1.1 3.1.2
3.2
3.3
3.4
Calculux
2.1 2.1 2.2 2.2 2.3 2.3
3.1 3.1
3.2
3.6
General ............................................................................................................................................................3.6 Connections with calculation Grids..................................................................................................3.7
Luminaire Photometric Data 3.4.1 3.4.2
2.1
Surfaces: dimensions and reflectance...............................................................................................3.2 Interreflection accuracy ...........................................................................................................................3.2 Quick Estimate.............................................................................................................................................3.3 UF Method.....................................................................................................................................................3.3 Zones................................................................................................................................................................3.4 Room Grids ...................................................................................................................................................3.5
Application Fields 3.3.1 3.3.2
1.1 1.1 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.5
Project Info.....................................................................................................................................................3.1 Vignette file....................................................................................................................................................3.1
Room Characteristics 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6
1.1
3.8
Luminaire Database...................................................................................................................................3.8 ASCII data file...............................................................................................................................................3.8
Indoor
Contents 3.5
Luminaire Positioning and Orientation 3.5.1
3.5.2
3.5.3
3.6
Individual Luminaires 3.6.1 3.6.2 3.6.3
3.7
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7 3.7.8
3.8
3.9
Grids 3.9.1 3.9.2
Calculux
3.19
General ......................................................................................................................................................... 3.19 Arrangement Definition....................................................................................................................... 3.19 Luminaire Definition............................................................................................................................... 3.20 Luminaire List............................................................................................................................................. 3.20 View................................................................................................................................................................ 3.20 Room Block Arrangement.................................................................................................................. 3.20 Arrangement Definition....................................................................................................................... 3.20 Luminaire Definition............................................................................................................................... 3.22 Block Arrangement................................................................................................................................. 3.23 Arrangement Definition....................................................................................................................... 3.23 Luminaire Definition............................................................................................................................... 3.25 Polar Arrangement ................................................................................................................................. 3.26 Arrangement Definition....................................................................................................................... 3.26 Luminaire Definition............................................................................................................................... 3.28 Line Arrangement ................................................................................................................................... 3.30 Arrangement Definition....................................................................................................................... 3.30 Luminaire Definition............................................................................................................................... 3.33 Free Arrangement................................................................................................................................... 3.34 Arrangement Definition....................................................................................................................... 3.34 Luminaire Definition............................................................................................................................... 3.34 Ungrouping a luminaire arrangement........................................................................................... 3.35 Convert into a Free Arrangement ................................................................................................. 3.35
Symmetry 3.8.1 3.8.2 3.8.3 3.8.4
3.17
General ......................................................................................................................................................... 3.17 Luminaire Definition............................................................................................................................... 3.17 Luminaire List............................................................................................................................................. 3.17 View................................................................................................................................................................ 3.18
Luminaire Arrangements 3.7.1
3.9
Luminaire Positioning ...............................................................................................................................3.9 XYZ-coordinates........................................................................................................................................3.9 C-γ coordinate system.............................................................................................................................3.9 Luminaire Orientation........................................................................................................................... 3.10 Aiming types............................................................................................................................................... 3.10 Luminaire orientation order .............................................................................................................. 3.12 Conversion of Aiming types .............................................................................................................. 3.13 Selecting Aiming Presentation types ............................................................................................. 3.14 Aiming offset (Floodlights).................................................................................................................. 3.15 Number of luminaires per position (Luminaire Quantity) ................................................ 3.16
3.36
General ......................................................................................................................................................... 3.36 X-Symmetry ............................................................................................................................................... 3.38 Y-Symmetry................................................................................................................................................ 3.38 XY-Symmetry ............................................................................................................................................ 3.39
3.40 General ......................................................................................................................................................... 3.40 Generated grids........................................................................................................................................ 3.40 Calculux standard grids ........................................................................................................................ 3.40 Room Surfaces.......................................................................................................................................... 3.41 NEN standard grids................................................................................................................................ 3.41 DIN standard grids ................................................................................................................................. 3.42 CIBSE standard grids.............................................................................................................................. 3.42
Indoor
Contents 3.9.3
3.10
Shapes 3.10.1 3.10.2
3.10.3
3.11
3.13.3 3.13.4
3.13.5
3.16
Calculux
3.68 3.69
Total Investment ...................................................................................................................................... 3.69 Annual costs............................................................................................................................................... 3.70
Maintenance Factor/New Value Factor 3.16.1 3.16.2 3.16.3
3.58 3.59
Plane Illuminance...................................................................................................................................... 3.59 Glare............................................................................................................................................................... 3.62 UGR................................................................................................................................................................ 3.63 Indirect contribution .............................................................................................................................. 3.65 Calculating the numbers of luminaires needed ....................................................................... 3.65 Quick Estimation...................................................................................................................................... 3.65 Utilisation Factor (UF)........................................................................................................................... 3.66 Uniformity Check .................................................................................................................................... 3.67 Quality Figures .......................................................................................................................................... 3.67 Minimum ...................................................................................................................................................... 3.67 Maximum ..................................................................................................................................................... 3.67 Minimum/maximum ............................................................................................................................... 3.67 Minimum/average .................................................................................................................................... 3.67
Report Setup Cost Calculations 3.15.1 3.15.2
3.57
Switching Modes...................................................................................................................................... 3.57 Light Regulation Factor (LRF) ........................................................................................................... 3.57
Drawings Light-technical Calculations 3.13.1 3.13.2
3.14 3.15
3.52 Pre-defined shapes.................................................................................................................................. 3.52 User-defined shapes............................................................................................................................... 3.52 Set of points ............................................................................................................................................... 3.53 Rectangle...................................................................................................................................................... 3.53 Polygon ......................................................................................................................................................... 3.54 Arc................................................................................................................................................................... 3.55 Symmetry..................................................................................................................................................... 3.56
Lighting control (Switching Modes / Light Regulation Factor) 3.11.1 3.11.2
3.12 3.13
User defined (Free added) grids ..................................................................................................... 3.43 Size and position of a grid: points A, B and C ......................................................................... 3.43 Calculation points in a grid................................................................................................................. 3.45 Default side................................................................................................................................................. 3.46 Grid coupling ............................................................................................................................................. 3.46 Normal vector of a grid ....................................................................................................................... 3.50 Presentation of results .......................................................................................................................... 3.50
3.72
General Project Maintenance Factor ............................................................................................ 3.72 Luminaire Type Maintenance Factor............................................................................................. 3.72 Lamp Maintenance Factor .................................................................................................................. 3.72
Indoor
Contents
Appendix A1
My First Project Contains a step-by-step tutorial that takes you through the process of creating an Indoor field lighting project.
A2
My Second Project Contains a step-by-step tutorial that takes you through the process of adding furniture and additional lighting to the indoor lighting installation.
A3
My Third Project Contains a step-by-step tutorial that takes you through the process of creating a director room, with furniture and additional lighting.
A4
My First Project printed report Contains a printed report of your first project. When you complete and print out My First Project this is what you should get.
A5
My Second Project printed report Contains a printed report of your second project. When you complete and print out My Second Project this is what you should get.
A6
My Third Project printed report Contains a printed report of your third project. When you com-plete and print out My Third Project this is what you should get.
A7
Calculux
Index
Indoor
Chapter 1
Introduction
Calculux
Indoor
Calculux
Indoor
Chapter 1
1
Introduction
Introduction This chapter describes the main features of Calculux Indoor and explains what you can expect from the package. Calculux Indoor is a software tool which can help lighting designers select and evaluate lighting systems for office and industrial applications. Speed, ease of use and versatility are features of the package from Philips Lighting, the world's leading supplier of lighting systems. Running under the Microsoft Windows operating system, Calculux Indoor includes even more options than its popular predecessor, Calculux for DOS. Calculux Indoor is part of the Philips Calculux line, covering indoor, area and road applications.
1.1
Philips - your partner in lighting Philips Lighting, established over a century ago, has vast experience in helping customers to select the optimum solutions for their lighting applications, in terms of quality, performance and economy. Our customer partnership philosophy means that we can support you from the planning, design and commissioning of projects, right through to realisation and aftersales support. This philosophy maximises cost-efficiency by ensuring the ability to choose the most suitable equipment for your application. Philips Lighting Design and Application Centres situated throughout the world offer extensive consultancy, training and demonstration services. Our lighting specialists can recommend existing solutions or develop new tailor made solutions for your application. Because Philips Lighting is the leading supplier, you're assured of getting the best support available. Calculux is part of that support. For consultants, wholesalers and installers wishing to develop lighting designs, it's the ideal tool; saving time and effort, providing the most advanced lighting solutions available and guaranteeing satisfied customers.
1.2
What Calculux does Calculux is a very flexible system which offers lighting designers a wide range of options: • You can use the package to simulate real lighting situations and analyse different lighting installations until you find the solutions which suits your technical as well as your financial and aesthetic requirements best. • Calculux uses luminaires from an extensive Philips database and photometric data which is stored in the Philips Phillum external formats. Additionally other luminaire data formats can be imported (CIBSE/TM14, IES, EULUMDAT and LTLI). • Simple menus, logical dialogue boxes and a step by step approach help you to find the most efficient and cost-effective solutions for your lighting applications.
Calculux
Indoor - 1.1 -
Chapter 1
1.3
Introduction
What you can do with Calculux Indoor • Perform lighting calculations (including direct, indirect, total and average illuminance) within orthogonal rooms; • Predict financial implications including energy, investment, lamp and maintenance costs for different luminaire arrangements; • Select luminaires from an extensive Philips database or from specially formatted files for luminaires from other suppliers; • Specify room dimensions, luminaire types, maintenance factors, interreflection accuracy, calculation grids and calculation types; • Compile reports displaying results in text and graphical formats; • Support Switching modes and Light regulation factors; • Support multiple languages. The logical steps used for project specification save you time and effort, while the report facility gives you the opportunity to keep permanent records of the results.
1.4
Tailor make your indoor design Calculux Indoor is designed for use with six-sided orthogonal rooms. The dimensions of the room and the reflectance of each surface are entered by the user. Calculation grids can be defined anywhere in the room. You can also enter the maintenance factor and the required interreflection accuracy. These values will be used in all subsequent calculations.
1.5
Choose from a wide range of luminaires Calculux is supplied with an extensive Philips database which includes the most advanced luminaires. For each luminaire you can view luminaire data, including the type of distributor, lamp type, output flux efficiency factors and power consumption. The light distribution can be shown in a Polar, Cartesian or Isocandela diagram, together with the luminaire quality figures.
• • • •
Apart from the Philips database, the following other well known luminaire data formats from other suppliers can be used in Calculux: CIBSE/TM14; EULUMDAT; IES; LTLI.
Calculux
Indoor - 1.2 -
Chapter 1
1.6
Introduction
Easy luminaire positioning individually or as a group After you've made your luminaire selection, you can position and orientate luminaires individually or in groups, anywhere in a room. Luminaire data, including the type of distributor, lamp type, output flux and power consumption can be viewed at any time. In many lighting designs luminaires are often grouped in arrangements such as blocks, lines or circles. Calculux Indoor contains an option to define a number of arrangements. The position of the luminaires in such an arrangement is controlled by the arrangement rule but the orientation of each luminaire within an arrangement can be altered. It's even possible to free the luminaires positions so that they're no longer connected via the arrangement rule. This feature proves very useful e.g. when in a preliminary design a number of luminaires are placed on a line, but in the final stage one of the luminaires in the line doesn't entirely fulfil the line arrangement rule.
1.7
Symmetry lighting installation Many designs contain a symmetric lighting installation. This simplifies luminaire arrangement entries where one or more of the luminaires have the same orientation. Calculux offers the possibility to include symmetry in the installation or a part of the installation.
1.8
Graphical manipulation of generated luminaires and/or aiming positions Having defined luminaires as individuals or in arrangements, Calculux enables graphical manipulation (with a mouse) of the position and orientation of the luminaires. Graphical manipulation operates with the same arrangement rules.
1.9
Calculation Grids After setting the luminaire arrangement, you're able to choose a preset grid or define your own for which the lighting calculations will be carried out. For example you wish to know if a particular combination of luminaires provides a sufficient level of light for a secretary's desk. By defining the desktop as a grid, the illuminance can be calculated and the results viewed on screen or printed. There's even a possibility to specify the number of points on the desktop at which the illuminance is calculated. On the other hand, if you don't want to define your own grid, frequently used grids corresponding to the room's six surfaces and the working plane are predefined to save you time. In many situations the indirect illuminance can be calculated by considering the room surfaces as diffuse sources which reflect the same amount of light at every point. When more accuracy is required, Calculux Indoor allows you to divide the room surfaces into cells which may reflect varying amounts of light. Up to 800 cells can be defined to give an extremely high level of accuracy. Calculux Indoor also provides a quick estimate of the number of luminaires of a particular type needed to provide a certain level of illuminance using the Utilisation Factor method.
Calculux
Indoor - 1.3 -
Chapter 1
1.10
Introduction
Switching Modes Calculux Indoor enables you to develop a lighting design in different switching modes. You can first generate a design for a conference room for video presentation and then by adding luminaires go on to generate a design for a conference situation.
1.11
Light Regulation Factor (LRF) This Calculux option enables you to dim luminaires or luminaire arrangements
1.12
Save money by optimising cost-effectiveness Cost is a major consideration when specifying a lighting installation. Calculux provides a breakdown of the costs you can expect to incur with a particular installation, both in terms of initial investment and annual running costs. Thus it's possible to support you in the decision making process by comparing the cost-effectiveness of different lighting arrangements.
1.13
See your lighting design develop on screen A special view menu is provided to enable you to monitor the development of your project on screen. A 3-D as well as a number of 2-D project overviews can be displayed on screen. All overviews allow graphical manipulation of the luminaires (position and orientation). The view facility can also be used to study the calculated results in text and graphic format. Tables listing the calculated values are displayed. The view facility can also provide isotropic contours, mountain plots and graphic tables of the results.
1.14
Impress your customers with attractive reports
• • • • • •
When you've finished a project you're able to generate attractive reports giving the results of the calculations. All you have to do is use the menu to select the elements which you wish to include in your report and they will be added automatically. For example, you can incorporate: A table of contents; 2-D and 3-D project overviews; Summary; Luminaire information (including Polar or Cartesian diagram); Detailed information about the calculation results (in textual table, graphical presentation and/or Iso contour); Financial data. It's also possible to add supplementary text. A convenient feature if you wish to comment on or draw conclusions from the results presented in the report.
Calculux
Indoor - 1.4 -
Chapter 1
1.15
Introduction
Installation and operating platform
• • • • •
Calculux for indoor, area and road applications are supplied with the installation program and database. The following target operating platform is recommended: CPU: Pentium 350; RAM: 128 Mb; Hard disk: 100 Mb free disk space; Operating system: Windows 98 or later; Other: SVGA monitor, mouse, Windows supported graphics printer or plotter.
Calculux
Indoor - 1.5 -
Chapter 1
Introduction
Calculux
Indoor - 1.6 -
Chapter 2
Getting Started
Calculux
Indoor
Calculux
Indoor
Chapter 2
2
Getting Started
Getting Started This section tells you which steps you should follow to install Calculux on your personal computer. The installation procedure of Calculux consists of two steps:
2.1
Installing the program In order to install Calculux correctly, please stop all other applications before starting the installation.
• • • • • • •
To install the program: Start Windows. Insert the CD in the CD-ROM drive of your computer. From the Windows Start menu, select Run. When the Run dialogue box appears, click Browse. On your CD-ROM drive, select setup. Click OK. Follow the instructions on screen.
(You can also use Windows Write to read the Readme file, which is stored in the Calculux directory.
Uninstalling the package: • From the Windows Start menu, select Settings > Control Panel. • Double click the Add/Remove Programs icon. • Select Calculux Indoor, click on the Add/Remove button and follow the instructions.
2.2
Installing the database • • • • • • •
To install the database, you need the CD labeled 'Database'. Start Windows. Insert the CD in the CD-ROM drive of your computer. From the Windows Start menu, select Run. When the Run dialogue box appears, click Browse. On your CD-ROM drive, select setup. Click OK. Follow the instructions on screen.
Calculux
Indoor - 2.1 -
Chapter 2
2.3
Getting Started
What is new in Calculux Indoor 5.0
• • • • • • • •
Calculux Indoor 5.0 is an upgrade of Calculux Indoor 4.0. Major new and enhanced features are: Import luminaire data formats from other suppliers (CIBSE/TM14, EULUMDAT, IES and LTLI); Copy and paste feature for table input data; Copy graphical output to the clipboard to be used in other programs; Generate shapes for the Ice-hockey field; In/outbound polygon shapes; Shape definition in xy coordinates; Draw luminaire object with geometrical or optical luminaire dimensions; Use preferred lamp colour from luminaire database.
(Project files (*.CIN) are upwards compatible. They can be used in the new releases. However, after saving, they cannot be used anymore in previous releases.
2.4
Installing other report languages Calculux supports run-time selection of the report language. To do so, each language requires an additional language file to be installed in the application folder of Calculux Indoor. All available report languages are installed automatically during installation. When an extra language must be installed, the required file (named CIN_*.RPT) must be copied into this folder (e.g. C:\Program Files\Calculux\Indoor).
(In Windows 98 it can be necessary to enable Multilanguage Support: • Choose Add/Remove Programs in the Control Panel. • Go to Windows Setup and enable Multilanguage Support.
Calculux
Indoor - 2.2 -
Chapter 2
2.5
Getting Started
File structure During the installation procedure a number of directories will be created. The default directory structure, which should be created during the installation of the program and the database, is described below. C: \PROGRAM FILES\CALCULUX \INDOOR \DB \MULTLANG \PHILLUM \PROJECT \VIGNETTE • In the INDOOR directory, the program and its necessary files are stored. • In the DB directory, the database is installed. • In the MULTLANG directory, the different language versions of the package (if available) are stored. • In the PHILLUM directory, the individual photometric data files, not available in the database, (i.e. Phillum) are stored. The program is supplied with a few test Phillum files. • In the PROJECT directory, the projects can be stored. • In the VIGNETTE directory, the files (Vignette files) containing the company names and addresses are stored. The program is supplied with a few test vignettes. For more detailed information relating to each of the above directories, use the Readme icon.
2.6
Environment settings and preferences When the program and database are installed successfully, you can start the application and use the Environment Options in the Option menu to set the environment directories and database settings. The environment directories and database settings can be checked at any time. You are now ready to start developing your first lighting project.
Calculux
Indoor - 2.3 -
Chapter 2
Getting Started
Calculux
Indoor - 2.4 -
Chapter 3
Background Information
Calculux
Indoor
Calculux
Indoor
Chapter 3
3
Background Information
Background Information This chapter describes in detail the background principles used in Calculux.
3.1
Project Info and Vignette file
3.1.1
Project Info When you start a new project in Calculux, it can be beneficial to enter summary information. This can include remarks and statistics about the project, e.g. name, date and designer, as well as customer details.
3.1.2
Vignette file Calculux enables you to include details about yourself and your company in your reports. The information will be printed on the cover page of the reports and can be used for reference at any time. This provides the customer with contact details, should they need to consult you over the contents of the report. If you create what is called a Vignette file you can save the information to a disk. This eliminates the need to enter the same company information every time you open a new project. You can simply select the Vignette file to be included in your next project.
Calculux
Indoor - 3.1 -
Chapter 3
Background Information
3.2
Room Characteristics
3.2.1
Surfaces: dimensions and reflectance Calculux Indoor assumes that the room in which the luminaires are to be positioned is rectangular. Rooms are defined by using an XYZ-coordinate system in which the width is parallel to the x-axis, the length is parallel to the y-axis and the height is parallel to the zaxis. For positioning of the room the X and Y coordinates of the front bottom left corner of the room can be entered (P) you can press the 'Centre' button to place the centre of the room in the origin of the coordinate system O (0, 0, 0). This last option can be usefull, for example, when you want to apply symmetry.
O (o,o,o)
Y
Z
Pre
C
f
B
A
X
A B C
3.2.2
= width = length = height
Interreflection accuracy Each of the room's six surfaces is considered to have a uniform reflectance. The interreflection accuracy you set obviously depends on how important interreflection is to your lighting design. If you choose a higher level of accuracy each room surface is divided into a number of subsurfaces (cells; max. 800) at which the lighting calculations will be performed. This requires longer calculation times.
Calculux
Indoor - 3.2 -
Chapter 3 3.2.3
Background Information
Quick Estimate If you wish you can enter a value for the Required Illuminance Level of the room in the Quick Estimate field of the Room dialogue box, e.g. enter "500lux." Later when you select a luminaire for your lighting design using the Add Room Block Arrangement dialogue box, an estimation of the number of this luminaires needed is provided. This estimation is done according to the CIE UF method.
(More detailed information about 'Quick estimate' can be found in chapter 'Lighttechnical Calculations', section 'Quick Estimation'.
3.2.4
UF Method When you add a luminaire from a database or PHILLUM file, the number of luminaires needed to provide the required illuminance level as entered in the Room dialogue box is automatically entered and displayed. The calculation is performed using the so called Utilisation Factor (UF) method described in CIE reports 40 and 52. If you click on the Generate button and you have entered a value for the 'number of luminaires needed' which is lower then the requested one, the program once more positions them according to the UF method. If no solution can be found, Calculux Indoor informs you, i.e. you'll receive a warning that the number of luminaires doesn't fit in the room. In some cases the database contains information about the maximum advisable spacing to height ratios of luminaires, in order to provide uniformity. If the number of luminaires calculated using the UF method doesn't comply with this ratio, then Calculux Indoor adds extra luminaires until it does. For example, suppose that by accident you've chosen a powerful industrial luminaire for use in an office. The UF method tells you that the number of luminaires needed to provide the required average illuminance level is 1. When you choose generate the view panel will display 4 luminaires necessary to comply with the spacing to height ratio. This would be very inefficient, so another luminaire should be chosen.
Calculux
Indoor - 3.3 -
Chapter 3 3.2.5
Background Information
Zones By using the Zones option and entering a value for the Border Zones you're able to define a working plane smaller than the room floor. Entering a value for a zone (left, right, front or back) will specify the distance between one of the walls and the working plane. The previous generated working plane calculations are now automatically spread over the reduced working plane.
D
A
W
B
C
A B C D W
= border zone left = border zone right = border zone front = border zone back = working plane
Calculux
Indoor - 3.4 -
Chapter 3 3.2.6
Background Information
Room Grids
• • • •
To perform lighting calculations Calculux uses grids. A grid is a set of points in a 2 dimensional plane, at which the lighting calculations will be carried out. A grid must always be rectangular in shape and can be in any plane in space (horizontal, vertical or sloping). The size, position and the number of grid points can be specified by the user. Some special plane grids on walls and working planes (= Room Grids) will automatically be generated according to a standard. A standard defines the minimum number of grid points that is used for the lighting calculations. It also defines how these grid points are divided over the application area. The following standards are available: Calculux; NEN; DIN; CIBSE.
(More detailed information about (Room) grids and the grid standards can be found in chapter 'Grids'.
Calculux
Indoor - 3.5 -
Chapter 3
3.3
Application Fields
3.3.1
General
Background Information
In Calculux an application field is represented by a 2-Dimensional rectangular shape. Application fields can be used to graphically mark the area of interest for lighting calculations. Calculux includes a number of different applications.
• • • • • • • • • • • •
To differentiate between the types, they contain zero or more predefined lines and/or markings that are associated with the different applications. The outlines of the built-in sports fields have already been drawn, requiring only the name, dimensions and centre position to be entered. You can choose from: Tennis Court; Basketball Ground; Volleyball Ground; Indoor hockey Field; Ice hockey Field; Five-a-side football Pitch; Handball Court; Korfball Court; Badminton Court; Squash Court; Table Tennis Table; General Field. In Calculux, for each type of application field the default dimensions and grid settings can be entered. This allows local standards to be set, limiting the input requirements of the designer. Upon selection, Calculux automatically draws the application field using the default values. Calculux also generates a grid and a surface illuminance calculation on this grid. You are then free to change the dimensions, if necessary, to suit your personal design requirements. The general application field is an empty rectangular field. It can be used when you wish to perform calculations for an application not included in the above list. A general field operates like any other application field. You can connect a grid to a general field, ensuring that any changes made to the field parameters automatically change the grid parameters.
Calculux
Indoor - 3.6 -
Chapter 3
Background Information
The following figure shows a basketball ground (dimensions 15 x 28 m.) with a calculation grid (grid spacing is 2m.) connected to it. Y
0 X 0
3.3.2
Connections with calculation Grids A calculation grid usually lies within an application field. Calculux enables you to connect a grid to an application field, ensuring that any changes made to the field parameters automatically change the grid parameters. You can set a calculation grid for each application field. For an example demonstrating this feature see chapter 'Grids', section 'Grid Coupling'.
Calculux
Indoor - 3.7 -
Chapter 3
3.4
Background Information
Luminaire Photometric Data Calculux can retrieve luminaire photometric data from two different sources: • A luminaire database; • A specially formatted ASCII data file.
3.4.1
Luminaire Database The luminaire database is supplied with Calculux and contains a wide range of luminaires from your supplier. The luminaire database, of which you want to select your project luminaires, can be selected in the Select Database dialogue box. When a database is selected, luminaire types for a particular application area can be selected in the Application Area dialogue box. For each luminaire, details about housing, light distributors, colour, lamps and luminous flux intensity are presented on screen in a logical, step-by-step way so that choosing a suitable luminaire for an application is easy. The default luminaire database and directory in which the luminaire database is stored is set in the Database tab of the Environment Options dialogue box (Options menu). If you wish to extend the range of luminaires you can save more than one database in this directory.
3.4.2
ASCII data file Calculux is supplied with an extensive Philips luminaire database. New Philips luminaires that are not yet available in the database are sometimes supplied in specially formatted ASCII data file, the PHILips LUMinaires data format (PHILLUM).
• • • •
Apart from the Philips database and the PHILLUM format, Calculux allows you to use photometric data from other suppliers. The following other well known formats can be used in Calculux: CIBSE/TM14; EULUMDAT; IES; LTLI. Luminaire files are stored in the default directory. You can set the location of the default directory in the Directories tab of the Environment Options dialogue box (Options menu).
(The interpretation of the above luminaire formats can differ. You should pay attention when using them.
Calculux
Indoor - 3.8 -
Chapter 3
Background Information
3.5
Luminaire Positioning and Orientation
3.5.1
Luminaire Positioning XYZ-coordinates To position a luminaire, Calculux requires the use of the (three dimensional) coordinate system XYZ. The XLYLZL coordinates position the centre of the luminaire in relation to the origin of the coordinate system. The arrow in the following illustration indicates the centre of the light emitting area of the luminaire and represents the main axis of that particular luminaire.
Z
27
0˚
0˚
Y
18
ZL
90
˚
L
Y
0˚
XL
X C-γ coordinate system Each luminaire is given its own luminous intensity coordinate system, in order to provide information on its luminous flux distribution. In general, the C-γ coordinate system is used. To create the required luminous flux distribution in your design you'll need to define a new orientation for the luminaire. This is done by rotating and/or tilting the luminaire in relation to its (local) coordinate system. For indoor fluorescent luminaires the longitudinal axis of the lamp is called the C=90°/C=270° axis. The lateral axis of the lamp (perpendicular to the longitudinal axis) is called the C=0°/C=180° axis. For luminaires with an unusual shape, such as those used in outdoor applications, the mounting bracket is usually regarded as a reference which corresponds to the C=270° axis. The vertical axis of the lamp is normally called the γ=0°/γ=180° axis. The following illustrations display the C-γ coordinate system for the three main luminaire types, being street, indoor and floodlighting. C= 18 0˚
˚ 70
γ=1 80 ˚
2
C=
˚
90
C=
C=60
˚
C= 18 0˚
C=30˚ C= 0˚
˚ 70
γ=1 80 ˚
2
C=
γ=0 ˚
˚
90
C=
C=60
˚
C=30˚ C= 0˚
γ=0 ˚
Street
Indoor
Calculux
Indoor - 3.9 -
Chapter 3
Background Information
C= 18 0˚ γ=1 80 ˚
˚ 70
2
C=
˚
90
C=
C=60
˚
C=30˚ C= 0˚
γ=0 ˚
Flood
3.5.2
Luminaire Orientation Aiming types To determine the orientation of a luminaire you can use either: • Aiming by defining a fixed point (XYZ); • Aiming by defining fixed angles (RBA). Calculux enables you to aim the luminaires with RBA aiming type and view the generated aiming point by switching from RBA aiming to XYZ aiming (and vice versa). XYZ aiming If XYZ aiming is used, the luminaire orientation is determined by defining its aiming point. This is the point (P) towards which the main axis (γ=0°) is directed, see figure below. The position of the aiming point P (Xp, Yp, Zp) is related to the global coordinate system. • α = Rot • β = Tilt90
P
Y
0˚
L
Y
27 0˚
0˚
ZL
Y
18
90 ˚
Z
β
ZP
P α
XL
XP
X
Calculux
Indoor - 3.10 -
Chapter 3
Background Information
RBA aiming The luminaire is aimed (orientated) by defining fixed angles for Rot (around the vertical axis), Tilt90 (around the C=0°/C=180° axis) and Tilt0 (around the C=90°/C=270° axis). Rotation (Rot) If you wish to change the angle of rotation of the luminaire about its vertical axis, you need to enter a value in degrees for the variable 'Rot'. This value can be positive or negative. For example Rot = 45°:
Z ˚
γ=180˚
C=27
0˚
C= C=90
˚ Y
˚
0 C=
0 18
γ=0˚ 45˚
X
Calculux
Indoor - 3.11 -
Chapter 3
Background Information
Tilt90 If you wish to change the angle of rotation of a luminaire about its C=0°/C=180° axis, you need to enter a value in degrees for the variable Tilt90. This value can be positive or negative. For example Tilt90 = 30°:
Z ˚ 90
80˚
30˚
˚
C==180
γ=1
C
Y
0˚ 0˚ C= 27
C=
γ=0
˚
X Tilt0 If you wish to change the angle of rotation of a luminaire about its C=90°/C=270° axis, you need to enter a value in degrees for the variable Tilt0. This value can be positive or negative. For example Tilt0 = 30°:
Z γ=1
C=
80˚
27
0˚
γ=0
C= 90 ˚ ˚
Y
C=180˚
C=0˚
30 ˚
X Luminaire orientation order When specifying values for RBA aiming Calculux uses the following specification order: • Rot; • Tilt90; • Tilt0. Extra attention must be paid, because the order in which the variables will be processed is of great influence on the resulting orientation.
Calculux
Indoor - 3.12 -
Chapter 3
Background Information
For example if the following sequence of processing is executed for a luminaire: • 90° rotation about the vertical axis (Rot=90°); • 90° rotation about the C=0°/C=180° axis (Tilt90=90°); • 90° rotation about the C=90°/C=270° axis (Tilt0=90°). The result of the above order of processing gives the following orientation:
˚
γ=0˚
27
γ=180˚
90
0˚
˚
0˚ γ=0˚
X
18
0˚
γ=
18
0˚
γ=
0˚
γ=
90˚
0˚
18
0˚
0˚
18
0˚
0˚
γ=
0˚
Y
90
0˚
18
270˚
0˚
Z
Y
18
90˚
γ=180˚
270˚
0˚
Y
27
Z
Z
Y
Z
X
X
X
Consider this against the following order of processing: • 90° rotation about the vertical axis (Rot=90°); • 90° rotation about the C=90°/C=270° axis (Tilt0=90°); • 90° rotation about the C=0°/C=180° axis (Tilt90=90°). This will result in the following orientation:
˚
γ=0˚
X
27
γ=180˚
˚
90
0˚
0˚ γ=0˚
γ=
18
0˚
27
0˚
90
˚
γ=
0˚
90
0˚
0˚
˚
γ=
18
0˚
γ=
0˚
27
0˚
Y
90
0˚
18
180˚
0˚
Z
Y
18
0˚
γ=180˚
180˚
0˚
Y
27
Z
Z
Y
Z
X
X
X
Conversion of Aiming types Conversion from RBA aiming to XYZ aiming The XYZ coordinates of the aiming points are locked on the aiming plane. Conversion from RBA-aiming to XYZ-aiming is only possible when the Tilt0 of the luminaire is 0°. This restriction is included to prevent the loss of orientation information. The XYZ coordinates are blanked out in case the luminaire has to be displayed in XYZ-aiming, and there is no intersection with the aiming plane. In the case of a modification in the aiming type when there's no intersection with the aiming plane, the point on the aiming vector, one meter from the luminaire, is chosen as the aiming point. Conversion from XYZ aiming to RBA aiming The direction from the location of the luminaire to the aiming-point is determined. This direction is expressed in a Rotation, Tilt90 and Tilt0 (Tilt0 is always 0°).
Calculux
Indoor - 3.13 -
Chapter 3
Background Information
Selecting Aiming Presentation types Calculux allows you to select either RBA aiming presentation to display the Rot, Tilt90 and Tilt0 aiming angles, or XYZ aiming presentation to display the aiming points. If the selected aiming presentation is different from the used aiming type, Calculux will convert the unit for aiming into the unit as selected for the aiming presentation. In this way it is possible to view the value of the aiming angles while the used aiming type is XYZ aiming or aiming points while the used aiming type is RBA aiming. The aiming presentation of luminaires can be set in the luminaires list. Conversion from RBA aiming presentation to XYZ aiming presentation for a luminaire is only possible when Tilt0=0°. This restriction is included to prevent the loss of orientation information. When a luminaire, aimed with RBA aiming, has to be displayed in XYZ aiming and there's no intersection with the aiming plane, the XYZ coordinate values are blanked out.
(Conversion of the aiming presentation type does not change the aiming type!
Calculux
Indoor - 3.14 -
Chapter 3
Background Information
Aiming offset (Floodlights) For some asymmetric flood lighting luminaires an aiming offset is given and stored in the database. It can be viewed in the project luminaire details dimensions tab. The aiming offset is usually equal to the angle of the maximum intensity in the C=90° plane. α
For a luminaire with an aiming offset the photometric data is treated with respect to the aiming of the luminaire as if the maximum intensity is at C=0° and γ=0°. Aiming the above luminaire with an aiming offset of α degrees at Rot=0° and Tilt90=0° gives the orientation displayed next.
α
α
To ensure that the front glass of the luminaire is horizontal, the aiming should be Rot=0° and Tilt90=α°.
α
Calculux
Indoor - 3.15 -
Chapter 3 3.5.3
Background Information
Number of luminaires per position (Luminaire Quantity) Normally there will be one luminaire at each luminaire position. In some special cases it can be very useful to use a different number of luminaires, for instance; • When a group of 5 luminaires (floodlights) with the same aiming point is situated on a pole, these luminaires can technically be regarded as one luminaire. In this case you can enter a luminaire quantity of 5. • When in a block arrangement at one particular luminaire position no luminaire can be installed. E xample: Luminaire Quantity of position (20,5)=0.
Y
Z
5
10
0˚ 0˚
0˚ 0˚
0˚
0˚
0˚
5
0˚ 0˚ 0˚
0˚
10 15 20
X
Calculux
Indoor - 3.16 -
Chapter 3
3.6
Individual Luminaires
3.6.1
General
Background Information
Calculux allows you to position luminaires individually as well as in groups. The definition of individual luminaires is done in the 'Individual Luminaires' dialogue box. This dialogue box contains two tab pages. In the Luminaires tab you can select the project luminaires which have been defined in the Project Luminaires dialogue box and set or change luminaire parameters. In the View tab you can view the luminaires graphically.
3.6.2
Luminaire Definition In the Luminaires tab you can define and position individual luminaires. For the definition of a new luminaire the following parameters, if applicable, have to be set: • Project Luminaire Type; • Aiming Presentation; • Switching Modes. When the above parameters have been set the luminaire(s) can be added to the luminaire list by clicking on the 'New' button. Project Luminaire Type If a project contains two or more luminaire types you will need to select the required luminaire type. For details about a project luminaire you can click on the 'Details' button. Aiming Presentation With this parameter you can set the aiming presentation of all luminaires in the luminaire list. Choose from either RBA or XYZ, aiming angles or aiming points. Switching Modes If switching modes are used, you can select which switching mode(s) will be appied to all new created luminaires in the luminaire list. Luminaire List The luminaire list contains information about the individually placed luminaires used in the project. You can view, set, edit, copy or delete information of project luminaires. In the luminaire list the following luminaire information, if applicable, can be set: Luminaire Type If a project contains more luminaires, and afterwards a different luminaire type is required, you can click on the down arrow in the project luminaire type box and make your selection. Luminaire Quantity With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity').
Calculux
Indoor - 3.17 -
Chapter 3
Background Information
Luminaire Position (POS X, POS Y and POS Z) Use these parameters to enter the XYZ coordinates of the centre of the luminaire in relation to the origin of the coordinate system. Luminaire Orientation (Aiming Type) Depending on the defined Aiming Type and selected Aiming Presentation you can set and/or view the RBA angles (Rot / Tilt90 / Tilt0) or the XYZ coordinates Aim. Pnt. X / Aim. Pnt. Y / Aim. Pnt. Z.
(By pressing on the 'To XYZ' or 'To RBA' button you can convert the aiming type of selected luminaires from RBA aiming to XYZ aiming or vice versa.
Symmetry (Sym.) If you want to apply symmetry, you can set the symmetry type for the luminaires. The Sym. column shows which type of Symmetry is used ('NONE', 'X', 'Y' or 'XY'). If X- or XY symmetry is used, for the X-origin the X coordinate of the YZ plane has to be entered. If Y- or XY symmetry is used, for the Y-origin column the Y coordinate of the XZ plane has to be entered. For more information about symmetry, see chapter 'Symmetry'. Switching Modes (1, 2, ...) If switching modes are applied, you can view or set which of the available switching modes are activated for each luminaire. Each column number is identical to the switching mode sequence number in the 'Switching Mode' list box. The switching modes columns will only be displayed if more then one switching mode(s) exist. Light Regulation Factors (%) If light regulation factors are applied, you can set and/or view the value of the light regulation factor (0 - 100%) for each luminaire.
3.6.3
View The View tab displays the luminaires in the arrangement graphically.
Calculux
Indoor - 3.18 -
Chapter 3
Background Information
3.7
Luminaire Arrangements
3.7.1
General Calculux allows you to position luminaires individually as well as in groups. A number of luminaires defined as a group is called an luminaire arrangement. To simplify the definition of an arrangement, Calculux contains the 'Arranged Luminaires' option. The luminaires in an arrangement are positioned and aimed according to the arrangement rule and are stored under the 'arrangement name'.
• • • • •
The arrangement generation rules relate to all arrangements (where applicable) and are explained here for the following arrangements: Room Block; Block; Polar; Line; Free.
(When you define an arrangement, the arrangement must fit in the room.
• • • • • •
A Free arrangement is a special kind of arrangement allowing the luminaires to be positioned individually. The only thing they share is a common arrangement name. In the case of a Block, Line, Polar or Room Block arrangement, the luminaire positions are controlled by the arrangement rule. The other attributes can be set individually. In general, for each arrangement the following luminaire attributes (if applicable) must be set: Project luminaire Type; Position of the arrangement; Orientation of the arrangement (Aiming); Symmetry type and relevant symmetry origin; Number of Same (luminaires per position); Switching mode(s). To simplify the definition of the attributes, the arrangements dialogue box is split into the following four tab pages. Arrangement Definition In the Arrangement Definition tab you can define the name and position of the arrangement in relation to the XYZ coordinate system. Where applicable you can set the orientation (= aiming) of the arrangement.
(For a 'Room Block arrangement' only the orientation of the luminaires can be set.
Calculux
Indoor - 3.19 -
Chapter 3
Background Information
Luminaire Definition In the Luminaire Definition tab you can define the default settings for all luminaires in the arrangement. The settings are used for the generation of the luminaires at the position as set in the Arrangement Definition tab and determine the initial generation of the luminaire list. The default settings can be changed at any time by making changes to the luminaire definitions. By using the Apply buttons you ensure the setting changes are carried out for all luminaires in the luminaire list. Warning: Take care when you have created an arrangement with a unique aiming pattern. When you click on the Aiming Apply button the settings will be applied to all the luminaires in the luminaire list and the unique aiming pattern will be lost. If you don't want this and it does happen, click on the Cancel button and the action will be undone. Note that the Cancel facility is effective in any of the tabs of the arrangement dialogue box. Luminaire List In the Luminaire List tab you can view the attributes of each luminaire in the arrangement. All attributes, except the luminaire positions can be changed. For a Free arrangement, it's possible to change the position of the luminaires as well. View The View tab displays the luminaires in the arrangement graphically.
3.7.2
Room Block Arrangement A Room Block arrangement is a special type of Block arrangement where the luminaires are arranged in a rectangular room. Arrangement Definition There are two ways to define a Room Block arrangement: a) You can create a Room Block arrangement using the UF Method (see also chapter 'Room'; section 'UF Method'). The following parameters have to be set: • Luminaire Type; • Orientation of the luminaires; • Name of the arrangement. If you press the Generate button a regular luminaire pattern will automatically be generated at the ceiling of the room. The number of generated luminaires depends on the value you've entered in the 'Required Illuminance Level' field of the 'Room' dialogue box. The number of luminaires will only be calculated if the information for the UF Method is included in the Data base.
(If required you can change the value of the 'Number of Luminaires needed'. If the value
fulfils the max. spacing to lighting ratio given in the database, Calulux will perform light calculations using the value in the 'Number of Luminares needed' field.
Calculux
Indoor - 3.20 -
Chapter 3
Background Information
b) You can create a Room Block arrangement by defining the number of luminaires and the spacing between the luminaires.
• • • • • •
In this case the following parameters have to be set: Luminaire Type; Orientation of the luminaires; Name of the arrangement; Number of luminaires in X and Y direction; Spacing between the luminaires in X and Y direction; Position of the arrangement. When the Room Block arrangement has been defined, depending on the position of the arrangement a number of ways of updating are possible: Using Regular button Centre button
Updates Position X, Y, Z Position X, Y, Z
E xample: For a Room Block arrangement with default luminaire orientation, the following definition is given: Dimensions of the 'room' = 16.0, 10.0, 6.0 Position of the 'Front Bottom Left' corner of the room = 1.0, 2.0 =3 Number in X =2 Number in Y = 6.0 X Spacing = 5.0 Y Spacing Position (of arrangement) = 3.0, 4.0, 6.0 (=P) This creates the following arrangement:
Z
Y
0˚ 18 0˚ 0˚ 18
18 0˚
0˚
6
˚ 80
18 18
3
0˚
0˚
17
Calculux
0˚
0˚
0˚
2
4
1
1
0˚
X
Indoor - 3.21 -
Chapter 3
Background Information
Now luminaire rotation and Tilt is applied to the previous figure: = 90° = 0° = 0°
Z
18 0˚
Y
Rotation Tilt90 Tilt0
0˚ 18
18
0˚
0˚ 0˚
0˚
6
18
18
0˚
2
18
1
0˚ 0˚
17
Rotation Tilt90 Tilt0
= 0° = 45° = 0°
0˚ 0˚
0˚
90
X
˚
Z 90
˚
90 90
6
˚
˚
90 ˚
2
90
˚
1
17
X
(The warning 'Arrangement does not fit in the room' will appear when the luminaires tilt, positions the luminaires outside the room. In this case the Z-position of the luminaires should be changed. Luminaire Definition For the definition of the luminaires, the following parameters can be set: • Symmetry; • Number of Same; • Switching Modes.
(For each parameter there is a separate Apply button. When settings are changed you can
click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list.
Calculux
Indoor - 3.22 -
Chapter 3
Background Information
Symmetry If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity'). Switching Modes If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.
3.7.3
Block Arrangement In a Block arrangement the luminaires are arranged in a rectangular shape.
• • • • •
Arrangement Definition For the definition of a Block arrangement, the following parameters have to be set: Name of the arrangement; Position of the arrangement; Orientation of the arrangement; Number of luminaires in AB and AC direction; Spacing between the luminaires in AB and AC direction.
(To simplify the definition of a Block arrangement you should first define a Block arrangement without orientation (rotation or tilt) and afterwards (if applicable) apply rotation and/or tilt.
E xample: For the definition of a Block arrangement without rotation or tilt, set: Position A The block position. P Reference point P is the position of the bottom left luminaire in the arrangement (if no rotation and tilt is applied). The number of luminaires in AB direction (if the block is not rotated, NAB AB is parallel to the XZ-plane). The number of luminaires in AC direction (if the block is not rotated, NAC AC is parallel to the YZ-plane). The distance between the luminaires in the AB direction (D1). SpacingAB The distance between the luminaires in the AC direction (D2). SpacingAC
Calculux
Indoor - 3.23 -
Chapter 3 = 4.0, 3.0, 2.0 =3 =2 = 2.0 m = 6.0 m
Y
Z
D 2
P NAB NAC SpacingAB SpacingAC
Background Information
C 0˚
0˚
A 0˚
3
2
P
0˚
B
0˚
0˚
4 D1
X
Now the Block arrangement is generated, you can apply rotation and/or tilt. For instance: Rotation = 30°: The Block arrangement is rotated 30° anti clockwise around the V-axis which passes through P and is parallel to the Z-axis.
Z Y
V
C 0˚
0˚
A 0˚
P
B
0˚
D2
3
2
0˚
0˚
30˚
4
D1
X
(In a Block Arrangement the luminaires are oriented in relation to the XYZ coordinate system (= global coordinate system). Therefore, only the arrangement is rotated, the orientation of the individual luminaires is not changed. Tilt90 = 30°: The block is rotated 30° around the AC-axis towards the positive Z-axis.
Y
Z
D
2
C
2
3
0˚
A
4
0˚
0˚
0˚
0˚
0˚
P
D1
30˚
X
Calculux
Indoor - 3.24 -
Background Information Z C
D2
Tilt0 = -30°: The block is rotated 30° around the AB-axis towards the negative Z-axis.
0˚
0˚
A
3
2
0˚
Y
Chapter 3
0˚
˚ P0
B 0˚
4 30˚
D1
X
(The block Rotation, Tilt90 and Tilt0 are equivalent to the luminaire Rotation, Tilt90 and
Tilt0 in the way they operate, but they are in fact separate orientations. The block orientation is set in the 'Arrangement Definition' tab, and controls the luminaire positions, while the luminaire orientation (= 'Aiming') is set in the 'Luminaire Definition' tab. If you want to have the luminaires orientated in the same direction as the arrangement, the angles of the arrangement and luminaire orientation have to be the same.
• • • • •
Luminaire Definition For the definition of the luminaires, the following parameters can be set: Project Luminaire Type; Aiming Type; Symmetry; Number of Same; Switching Modes.
(For each parameter there is a separate Apply button. When settings are changed you can
click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list. Project Luminaire Type If a project contains two or more luminaire types, you need to select the required luminaire type. If afterwards a different luminaire type is needed, you can click on the down arrow in the Project Luminaire Type box and make your selection. Aiming Type With this parameter you can set the default aiming type (choose from either RBA or XYZ), aiming angles or aiming points for the luminaires in the arrangement. Symmetry If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity').
Calculux
Indoor - 3.25 -
Chapter 3
Background Information
Switching Modes If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.
3.7.4
Polar Arrangement In a Polar arrangement the luminaires are arranged in one or more concentric arcs. Arrangement Definition • • • • • • • • •
For the definition of a Polar arrangement, the following parameters have to be set: Name of the arrangement; Centre position of the arrangement; Orientation of the arrangement (orientation of the plane); Number of luminaires per arc; Spacing between the luminaires on an arc; Length of an arc; Number of concentric arcs; Distance between two adjacent arcs; Radius of the arc that is nearest to the centre. When the Polar arrangement has been entered, a number of ways of updating are possible: Changing Luminaires per Arc Spacing along Arc Length of the Arc
Updates Spacing along Arc Length of an Arc (Total Arc) Spacing along Arc
(To simplify the definition of a Polar arrangement you can best first define an arrangement without orientation (rotation or tilt) and afterwards (if applicable) apply rotation and/or tilt. E xample: For a Polar arrangement without rotation or tilt, the following definition is given: Centre Position (P) = (10.0, 6.0, 2.0) Luminaires per Arc =5 Spacing along Arc = 45° Total Arc = 180° # of Concentric Arcs =2 Distance between Arcs (d) = 5.0 m Radius of First Arc (r) = 4.0 m
Calculux
Indoor - 3.26 -
Chapter 3
Background Information
Which results in the following arrangement:
Z Y
90˚ ˚
90
˚
90
6
90˚ ˚
d 90˚
2
90 r
90˚
90˚ P 90
˚
90
10
˚
X
Now rotation and tilt is applied to the previously defined Polar arrangement. For instance: Rotation = 30°:
Z Y
˚ 0 9
6
90 ˚
2
90 90˚
˚ 0 9
˚
90˚ 90˚
90˚
P
30˚
90˚
90˚
10
X
The arrangement is rotated 30° counter clockwise around the V-axis which passes through P and is parallel to the Z-axis.
(In a Polar arrangement, the orientation of the luminaires is related to the centre point (P) of the arrangement. So every time you change the orientation of the arrangement, the orientation of the luminaire will change too. Z Y
Tilt90 = 30°:
6
90˚ 90˚
˚ ' 90 C
2 90˚
90˚
A'
P
90˚
0˚
9
90˚ 90˚
90˚
30˚
10
X
Calculux
Indoor - 3.27 -
Chapter 3
Background Information
The arrangement is rotated 30° around the A'C'-axis towards the positive Z-axis. If no rotation is applied, A'C' is parallel to the YZ-plane. Tilt0 = -30°:
90˚
Z ˚
Y
90
90˚
A'
˚
90
6
90 ˚
2
90
90˚ ˚
90˚
' Pre A f
90
˚
10
90 ˚ B'
30˚
X
The arrangement is rotated 30° around the A'B'-axis towards the negative Z-axis. If no rotation is applied, A'B' is parallel to the XZ-plane.
• • • • •
Luminaire Definition For the definition of the luminaires, the following parameters can be set: Project Luminaire Type; Aiming Type; Symmetry; Number of Same; Switching Modes.
(For each parameter there is a separate Apply button. When settings are changed you can
click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list. Project Luminaire Type If a project contains two or more luminaire types, you need to select the required luminaire type. If afterwards a different luminaire type is needed, you can click on the down arrow in the Project Luminaire Type box and make your selection. Aiming Type With this parameter you can set the default Aiming Type (choose from either RBA or XYZ), Aiming Angles or Aiming Points for the luminaires in the arrangement.
E xample: • When the luminaire orientation is set to Rot = 90° Tilt90 = 0° Tilt0 = 0°
Calculux
Indoor - 3.28 -
Chapter 3
Background Information
This results in the following arrangement:
Y
Z 90˚ 90˚
6
90
˚ 90
2
90˚ 90˚ ˚ 90
˚
90
˚
90˚
90˚ ˚ 90
P
˚ 90
10
X • When the luminaire orientation is set to Rot = 90° Tilt90 = 45° Tilt0 = 0° The following arrangement will be created:
Y
Z
˚ 90 ˚
90˚
90
6
˚
˚ 90
2
90
90˚
90
˚
90 ˚
90˚
90˚
P
10
X Symmetry If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity'). Switching Modes If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.
Calculux
Indoor - 3.29 -
Chapter 3 3.7.5
Background Information
Line Arrangement In a Line arrangement the luminaires will be arranged in a line.
• • • •
Arrangement Definition For the definition of a Line arrangement, the following parameters have to be set: Name of the arrangement; First and last point of the line; Number of luminaires in the line; Spacing between the luminaires.
(When the line coordinates have been entered, the line orientation is automatically set by the program. Any subsequent alterations to the line coordinates update the orientation. E xample: A = First point (= reference point). The reference point is the position of the first luminaire in the arrangement. B = Last point α = Rotation β = Tilt90
Z B
9.5 D β
2
Y
10
A 2
2
α
8
X The angle α corresponds with the Rotation of the Line arrangement. The angle β corresponds with the Tilt90 of the Line arrangement. When the Line arrangement has been entered, several ways of updating are possible: Changing First point Spacing Number of Luminaires Last point Orientation
Updates Last point Last point Spacing Spacing and Orientation Last point
The following Line arrangements have been created to demonstrate the different ways of defining a Line arrangement. The Line arrangement below has the following settings: First point = 1.0, 1.0, 5.0 Last point = 1.0, 6.0, 5.0 Number of Luminaires = 3 Spacing = 2.5
Calculux
Indoor - 3.30 -
Background Information
27 0˚ 0˚
Z 27 A 0˚ 0˚
5
1
The luminaire orientation uses the default settings which are set to: Rot = 0° Tilt90 = 0° Tilt0 = 0°
27 B 0˚ 0˚
Y
This will create the following line orientation automatically: Rot = 90° Tilt90 = 0°
2. 5
Chapter 3
α=90˚
1
X • From the previous illustration, the luminaire orientation is now set to: a) Rot = 0° Tilt90 = 45° (rotation of 45° around C=0°...C=180° axis) Tilt0 = 0° Which results in the following arrangement: 2. 5
B
Z
0˚
0˚
45˚
1
A 2
1
B 2
5
6
5
Y
0˚
A
α=90˚
X
Calculux
Indoor - 3.31 -
Chapter 3 b) Rot Tilt90 Tilt0
Background Information = 90° = 45° = 0°
(rotation of 90°C around the vertical axis) (rotation of 45° around C=0°...C=180° axis)
Which results in the following arrangement: 2. 5
18 B 0˚ 0˚
18 0˚
Z
0˚
18 A 0˚ 0˚
Y
5
90˚
6
45˚
A 2
1
B 2
5
1
α=90˚
X
• If a line arrangement is given the following settings: First point = 2.0, 2.0, 2.0 Last point = 8.0,10.0, 9.5 Number of Luminaires = 3 Spacing = 6.25 m (calculated automatically by the program) This will create the following line orientation automatically: Rot = 53.1° (α) Tilt90 = 36.9° (β) When the luminaire orientation (Aiming Type) is set to: Rot = 0° Tilt90 = 45° (rotation of 45° around C=0°...C=0° axis) Tilt0 = 0° The following arrangement will be created:
Z 9.5
0˚
Y
0˚
2
0˚
β
A
B
10
2
2
α
8
X
Calculux
Indoor - 3.32 -
Chapter 3
Background Information
The luminaire orientation in the above arrangement can now be set with the same values as the line orientation (Rot = 53.1°; Tilt90 = 36.9°), so that the luminaire orientation is 'in line' with the line orientation.
Z B
9.5
˚
90
˚ 90
A 2
˚
90
Y
10 β
2
2
αα 8
X
Luminaire Definition • • • • •
For the definition of the luminaires, the following parameters can be set: Project Luminaire Type; Aiming Type; Symmetry; Number of Same; Switching Modes.
(For each parameter there is a separate Apply button. When settings are changed you can
click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list. Project Luminaire Type If a project contains two or more luminaire types, you need to select the required luminaire type. If afterwards a different luminaire type is needed, you can click on the down arrow in the Project Luminaire Type box and make your selection. Aiming Type With this parameter you can set the default aiming type (choose from either RBA or XYZ), aiming angles or aiming points for the luminaires in the arrangement. Symmetry If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity'). Switching Modes If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.
Calculux
Indoor - 3.33 -
Chapter 3 3.7.6
Background Information
Free Arrangement A Free arrangement is a special arrangement type, where the number of luminaires and their position is not defined by an arrangement rule. Arrangement Definition For the definition of a Free Arrangement only the name of the arrangement has to be specified. There is no arrangement rule for defining the number of luminaires and their positions.
(The definition of the luminaires and their positions is done in the same way as individual luminaires (see chapter 'Individual Luminaires').
• • • • •
Luminaire Definition For the definition of the luminaires, the following parameters can be set: Project Luminaire Type; Aiming Type; Symmetry; Number of Same; Switching Modes.
(For each parameter there is a separate Apply button. When settings are changed you can
click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list. Project Luminaire Type If a project contains two or more luminaire types, you need to select the required luminaire type. If afterwards a different luminaire type is needed, you can click on the down arrow in the Project Luminaire Type box and make your selection. Aiming Type With this parameter you can set the default aiming type (choose from either RBA or XYZ), aiming angles or aiming points for the luminaires in the arrangement. Symmetry If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity'). Switching Modes If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.
Calculux
Indoor - 3.34 -
Chapter 3 3.7.7
Background Information
Ungrouping a luminaire arrangement After you have positioned a luminaire arrangement, you may wish to adjust the position of the individual luminaires slightly. When you Ungroup a luminair arrangement, the luminaires are no longer part of an arrangement but individual luminaires. It is then possible to, change, delete or replace each luminaire individually.
(A similar result (roughly) is obtained when a luminaire arrangement is converted into a Free arrangement.
3.7.8
Convert into a Free Arrangement Calculux allows you to convert an existing arrangement or a group of individual luminaires into a Free arrangement. In a Free Arrangement the luminaires are considered as part of an arrangement but there is no arrangement rule for defining the number of luminaires and their positions. Only the name of the arrangement has to be specified.
Calculux
Indoor - 3.35 -
Chapter 3
3.8
Symmetry
3.8.1
General
Background Information
Symmetry is an optional specification, that can be used to simplify individual luminaire or luminaire arrangement entries when one or more luminaires have a symmetrical orientation and/or position. If applied, the luminaires are duplicated on the opposite side of a line parallel to the X-axis or Y-axis or they are duplicated to all quadrants. The use of symmetry in luminaire positioning and orientation is explained with the following example: Assume that you've created an indoor sports hall of width 80m and length 140m. The default position of the Front Bottom Left corner (reference point or P.) of the sports hall will be located at the origin of the XYZ co-ordinate system. Y
140
P O
80
X
The easiest way to position two identical luminaires at opposite corners of the sports hall is to position one luminaire and apply symmetry to the lighting installation to position the second luminaire. If you would do this without first translating the origin of the XYZ coordinate system to the centre of the sports hall, the new luminaire would be positioned outside the room. In this case an error message would appear on your screen. In order to apply symmetry to the lighting installation in a room you'll need to position the origin of the plane(s) of symmetry inside the room. E xample: You want to position two identical floodlights, orientated towards the centre, at the opposite corners of a sports hall (width 80m and length 140m). The axis you want to use to apply symmetry are equal to the X = 0 and Y=0 axis. In this case, the centre of the sports hall has to be in the origin (O).
(After defining the dimensions of the sports hall you can position the origin (O) at the centre of the sports hall by clicking on the 'Centre' button (Room Definition tab).
Calculux
Indoor - 3.36 -
Chapter 3
Background Information
At (-35, 65, 10) you have positioned a floodlight, orientated towards the centre of the sports hall. This will create the following situation: C=
Y
27 0˚
0˚ 18 C= C=
0˚
B
˚
-40
A
90
C=
70
32.5
-17.5
17.5 O
40
X
-32.5 C
D
-70
If the axis you want to use to apply symmetry is not equal to a central axis of the room, you'll have to change the settings of the X-origin or Y-origin (placing the plane of symmetry in the middle between the existing and the 'new' luminaire). You can do this in several ways: • For all new created luminaires in a project this is done by replacing the settings of the Xorigin and/or Y-origin in the Symmetry tab (Project Options). • For luminaires in a luminaire arrangement this is done by replacing the settings of the Xorigin and/or Y-origin in the Luminaire Definition tab (Arranged Luminaires), then clicking on the Apply button. • For individual luminaires or individual luminaires in an arrangement this is done by replacing the settings of the X-origin and/or Y-origin in the Luminaires tab (Individual Luminaires) or Luminaire List tab (Arranged Luminaires).
(When symmetry is applied and the position and/or orientation of a luminaire is changed,
the position and/or orientation of all symmetrical luminaires will also change according to the applied symmetry type.
Calculux
Indoor - 3.37 -
Chapter 3 3.8.2
Background Information
X-Symmetry If you select X-symmetry the existing luminaire in B quadrant is duplicated to the opposite position in A quadrant with the new coordinates (35, 65, 10). The result of this action will look like this:
-40
0˚
C= 0˚
A
90
B
C=
˚ 90 C=
0˚ C=
70
˚
0˚ 18 C=
C=
27
0˚ 27 C=
Y
32.5
-17.5
17.5
C= 18 0˚
40
O
X
-32.5 C
D
-70
3.8.3
Y-Symmetry If you select Y-symmetry the existing luminaire in B quadrant is duplicated to the opposite position in C quadrant with the new coordinates (-35, -65, 10). When Y-symmetry is used, the Y-origin field displays the Y coordinate of the XZ plane. The result of this action will look like this:
0˚
27
C=
Y
C=
0˚
70
B
A
˚
90
C=
0˚
18
C=
-40
32.5
-17.5
17.5
18
0˚
C=
C=
90 ˚
O
X
-32.5 C
C=
0˚
D
-70
C=
27
0˚
40
Calculux
Indoor - 3.38 -
Chapter 3 3.8.4
Background Information
XY-Symmetry If you select XY-symmetry the existing luminaire in B quadrant is duplicated to all other corners at the coordinates (-35, -65, 10), (35, 65, 10) and (35, -65, 10). When X- or XY-symmetry is used, the X-origin field displays the X coordinate of the YZ plane. When Y- or XY symmetry is used, the Y-origin field displays the Y coordinate of the XZ plane. The result of this action will look like this:
-40
0˚
A
˚
B
0˚ 90
C=
70
C=
C=
˚ 90 C=
0˚
C=
0˚
18
C=
C=
27
0˚ 27 C=
Y
32.5
-17.5
17.5
18
0˚
40
X
O
0˚
C= 0˚
-70
0˚ 18 C=
0˚
0˚
27
27
C=
C=
C=
D
˚
0˚
C=
90
˚
-32.5 C
90
18
C=
C=
Remember that symmetry is not only applied to the position of the luminaire, but also to its orientation: e.g. X-symmetry of a luminaire at coordinates (-35, 65, 10) resulted in a new luminaire on (35, 65, 10) which was rotated automatically so that it's still orientated towards the centre (0, 0, 0). Applying symmetry about the Y-axis to a lighting design does not automatically imply a symmetric light distribution. This is only the case if the luminaire is symmetric about its C=90°...C=270° plane.
Calculux
Indoor - 3.39 -
Chapter 3
3.9
Grids
3.9.1
General
Background Information
A grid is an area containing a specific number of points at which lighting calculations are carried out. A grid must always be rectangular in shape and can be in any plane in space (horizontal, vertical or sloping). It is useful to think of a grid as an invisible surface to which a light meter can be attached. The amount of light measured by the light meter changes as it is moved to different points on the surface. It also changes if the light meter is moved from one side of the surface to another. There are two types of calculation grids: • Generated grids; • User defined (Free added) grids.
3.9.2
Generated grids Calculux Indoor allows you to choose seven preset grids which lay on the six surfaces of the room and the working plane. Details about the grid (like position, number of points) are derived from the selected standard: CIBSE, DIN, NEN or Calculux. The 'Calculux' standard is a grid type which has been developed by Philips Lighting after years of practical experience in indoor lighting applications. Preset grids are a convenient feature when you do not want to define a grid yourself, or when you need to conform to the standards above. You can also use the preset grids as an aid to defining your own grid. For example, if you wish to define a grid parallel to the left wall (x=0) but shifted 1 m towards the centre of the room, then all you have to do is to disconnect the grid by selecting Grid Points Method 'No Rule'. Now you can change the x coordinates of three of the grid's corner points from 0.0 to 1.0. Calculux standard grids Working plane The working plane is defined as the area at working plane height which remains when a border zone is subtracted from the room. Grid points are spaced over the working plane. The distance from the first grid point to the border zone is 0.5 times the spacing between the rest of the grid points. The number of calculation points along either side of the grid is calculated with the following equation: a
side + 1)) Number of grid points = Min(12, Int ( 0.5 b c
side = the length or width of the grid
Calculux
Indoor - 3.40 -
Chapter 3
Background Information
This equation is subjected to the following constraints: • Up to 6 meters the maximum spacing between grid points is 0.5 m; • The maximum number of grid points is 12 and the minimum number is 5. Room Surfaces For each of the room surfaces, the number of calculated grid points and the spacing between the grid points is according to the above rules. E xample: In a room measuring 5.4 x 3.6 x 3.0 m (l x w x h) with a border of 0.5 m the number of grid points on the working plane for a CLX type grid have to be calculated. Using the above formula this will give the following result: The number of grid points in width direction a width of grid = width of room - (2 x border) Þ 3.6 - 1 = 2.6 b Int (
width of grid
0.5 Int (6.2) = 6
+ 1) = Int (
2.6 + 1) Þ 0.5
c Number of grid points (width) Þ Min (12,6) =6 The number of grid points in length direction a length of grid = length of room - (2 x border) Þ 5.4 – 1 = 4.4 b Int (+1) = Int (+1) Þ Int (9.8) =9 c Number of grid points (length) Þ Min (12,9) =9 As both calculated values are greater than 5 and less than 12, they are acceptable NEN standard grids Working plane The working plane is defined as the area at working plane height which remains when a border zone is subtracted from the room. The default value for the border zone should be set to 0.6 m. However, it's possible to set a different border for each side of the working plane. Grid points are divided over the remaining area. The distance from the first grid point to the border is 0.5 times the spacing between the rest of the grid points. The spacing in the length and width directions should not be greater than the smallest of the following values: • 1/3 x (Luminaire height - working plane height). If luminaires are positioned at different heights in the room, or have yet to be positioned, the room height is taken as the height of the luminaire position.
Calculux
Indoor - 3.41 -
Chapter 3
Background Information
• 1/3 x (Length of side under consideration) i.e. 1/3 x (Width - (left border + right border)) or 1/3 x (Length - (front border + back border)). • 3 m. Room Surfaces The number of calculation points along either side of a grid corresponding to one of the room's surfaces can be calculated with the aid of the following equation: Number of grid points = Min (12, Int(
side 0.5
+ 1))
This equation is subject to the following constraints: • The maximum spacing between grid points is 0.5 m; • The maximum number of grid points is 12 and the minimum number is 5. DIN standard grids Working plane The grid points are divided over the working plane. The distance from the first grid point to the border is 0.5 times the spacing between the rest of the grid points. In the DIN standard it's recommended to set the border zone to 0.
• • • • •
The number of grid points is related to the length of the side of the grid under consideration as follows: Length of side is 0 till 2 m use 7 grid points; Length of side is 2 till 5 m use 8 grid points; Length of side is 5 till 8 m use 9 grid points; Length of side is 8 till 10 m use 10 grid points; Else use 12 grid points. Room Surfaces The number of grid points and their spacing for each of the room surfaces is the same as above. CIBSE standard grids Working plane The working plane is defined as the area at working plane height which remains when a border zone is subtracted from the room. Grid points are divided over the working plane. The distance between the grid points should be approximately a meter. Calculux meets these requirements by setting a grid to fill the working plane with the first grid point at a half grid spacing from the edge of the border. The number of calculation points along either side of the grid is calculated with the aid of the following equation: Number of grid points = Min (12, Int(
side 1
Calculux
+ 1))
Indoor - 3.42 -
Chapter 3
Background Information
This equation yields a grid spacing of approximately 1 m. The grid is subject to the constraint of a minimum of 5 grid points in any direction. The maximum number of grid points is 12.
(In CIBSE standard it is recommendable to set a border zone of 0.5 m. Room Surfaces The number of grid points and the spacing between them follows the same rules as above for each of the room surfaces.
3.9.3
User defined (Free added) grids Calculux enables you to define your own grids, or to change the specifications of existing grids. If a grid lies on one of the room surfaces, the lighting calculations should be made for the inner side of the surface. If a grid lies within the room (a virtual grid), the user must specify the side of the grid (1 or 2) on which the calculations are performed.
1
2
Size and position of a grid: points A, B and C A grid is defined by specifying the X, Y and Z coordinates of the three reference corners A, B and C. The 4th reference corner is calculated automatically because the grid is a rectangle. Usually point A is considered the bottom left corner of the grid, so when this is the case, the reference corners are as follows: A = The bottom left corner of the grid B = The bottom right corner of the grid C = The top left corner of the grid
Calculux
Indoor - 3.43 -
Chapter 3
Background Information
The following rules apply to grids: a) The vectors (AB) and (AC) cannot be zero and must be perpendicular. A small deviation from perpendicularity is allowed, Calculux will correct this automatically. This is especially useful when a person, using a system with limited accuracy, has to specify the corners of a grid with sides that are not parallel to the axis of the coordinate system. b) The reference corners A, B and C can not be on one line. The following illustrations display a horizontal, vertical and sloping grid. Horizontal grid
C
20
n
65
Y
Z
A 20
50
B
X Vertical grid
Y
B
C 60
0
n
10
30 A 20
X
Sloping grid
Y
Z
20
30
60
C
30
n A 35 70 B
X
Calculux
Indoor - 3.44 -
Chapter 3
Background Information
Calculation points in a grid The number of calculation points you define in AB and AC direction is used to divide the grid into equal parts. These are the points at which the lighting calculations will be carried out. There is always a calculation point on each corner. For example, if you set both numbers of points in AB and AC direction to 4, the total number of grid points is 4 x 4 = 16, see figure below. The lighting calculations are performed at each of these points. Distance between calculation grid points: Total length of vector
D=
(Nr.of grid points along vector) - 1
The number of divisions along (vector) AB and AC is the number of grid points along that vector - 1. In the figure below, the distance between the calculation grid points in AB and AC direction is: DAB =
30 = 10 4 - 1
D
45 = 15 4 - 1
AC
=
C
20
n
65
Y
Z
A 20
50
B
X
Calculux
Indoor - 3.45 -
Chapter 3
Background Information
Default side It is usually obvious on which side of the grid (it has two sides) the calculations are to be carried. However, for some calculations, such as surface illuminance and luminance it is not always obvious and therefore becomes necessary to define the default side of the grid. The default side of the grid is related to the orientation of A, B and C and is determined using the right hand rule. The direction of the arrow (the normal vector on the grid area) indicates the side of the grid which is the default. This is always the case unless it is specified otherwise.
C
A
A
C
B B
Grid coupling Calculux enables you to connect a grid to an application field, (a calculation grid usually lies within an application field) ensuring that any changes made to the field parameters automatically change the grid parameters. You can set a calculation grid default for each application field type in the application field defaults dialogue box. The following example demonstrates these principles:
(Make sure the grid is located inside the room. General field Width Length Centre position
= 15 m = 28 m = 0 [x=0.0, y=0.0]
Calculation grid: spacing AB spacing AC include Mid Point at Centre Width include Mid Point at Centre Length
= 2 meters = 2 meters = yes = yes
This will give the following grid reference corner coordinates, see next figure:
A B C
X - 8.0 +8.0 - 8.0
Y - 14.0 - 14.0 +14.0
Z 0.0 0.0 0.0
Calculux
Indoor - 3.46 -
Chapter 3
Background Information Y
-8.0, 14.0
C
Y=14.0
(0,0,0)
X=7.5
-8.0, -14.0
X
8.0, -14.0
A
B
Now moving the centre position of the general field to 5, 0, 0 the grid parameters will automatically change to:
A B C
X - 3.0 + 13.0 - 3.0
Y - 14.0 - 14.0 + 14.0
Z 0.0 0.0 0.0
Y
-3.0, 14.0
C
Y=14.0
(5,0,0) (0,0,0)
X=12.5
-3.0, -14.0
X
13.0, -14.0
A
B
If in the first example the general field width changes to 20m, the new coordinates will be:
A B C
X -10.0 +10.0 -10.0
Y -14.0 -14.0 +14.0
Z 0.0 0.0 0.0
Calculux
Indoor - 3.47 -
Chapter 3
Background Information Y
-10.0, 14.0
C
Y=14.0
X
(0,0,0)
X=10.0
-10.0, -14.0
10.0, -14.0
A
B
The grid corners can fall outside the general field due to the spacing leading rule, with the centre point of the dimension of the application field being included. See section 'Spacing leading' for a more detailed explanation. To contain the grid inside the general field it is connected to, exclude 'Mid Point at Centre': Mid Point at Centre Width = no Mid Point at Centre Length = no The grid corner coordinates will change to: X -9.0 +9.0 -9.0
A B C
Y -13.0 -13.0 +13.0
Z 0.0 0.0 0.0 Y
C
Y=14.0
-9.0, 13.0
X
(0,0,0)
X=10.0
9.0, -13.0
-9.0, -13.0
A
B
Calculux
Indoor - 3.48 -
Chapter 3
Background Information
This aspect of Calculux is very user-friendly: you'll begin to appreciate the benefits of grid coupling when you start building your own projects. For connecting a grid to an application field the following grid point methods are possible: No Rule When a grid is connected to a application field with 'No Rule', there will be no relation between the definition of the grid and the definition of the field. The grid is defined by the corner points (A, B and C), the number of points in the AB and AC direction, and the direction of the normal vector. The grid will remain at the same position when the application field is moved and will also be deleted if the application field is deleted. Points Leading Along each dimension (i.e. length and width of the application field) the number of calculation grid points is defined. These points will be evenly spread over the surface of the application field starting at the edge or at half spacing from the edge, depending on your selection. Once your selections have been made, Calculux calculates the positions of A, B and C displaying the grid in the view box. In the following figure the number of calculation grid points along AB is 7, starting at half spacing from the edge. This gives a spacing of 10m. (between calculation points).
A
B
70m
5m 70.0
0.0
In the following figure the number of calculation grid points along AB is 7, starting at the edge (point A). This gives a spacing of 11.67m. (between calculation points).
A
B
70m
11.67m 70.0
0.0
Spacing Leading Along each dimension (i.e. length and width of the application field) the spacing of the calculation grid points is defined, together with the choice whether or not to include the centre of each dimension in the application field. Once your selections have been made, Calculux calculates the positions of A, B and C displaying the grid in the view box. In the following figure the spacing between the calculation grid points along AB is 10m. The centre point of the dimension of the application field is not included, giving: • The first point at X = +2.5m; • The last point at X = +72.5m.
A 2.5m
B
75m 10m
75.0
0.0
Calculux
Indoor - 3.49 -
Chapter 3
Background Information
In the following figure the spacing between the calculation grid points along AB is 10m. The centre point of the dimension of the application field is included, giving: • The first point at X = -2.5m; • The last point at X = +77.5m.
A
B
75m
2.5m
10m
2.5m 75.0
0.0
The distance between the application area and the border grid point is, at a maximum, half that of the spacing. In case spacing leading is used, the calculation grid can be larger than the application field to which it is connected. To include the grid within the field, switch between 'Mid Point at Centre' included 'Yes' or 'No'. Normal vector of a grid The normal vector is perpendicular to the plane of the grid and is defined by using the right-handed coordinate system. Presentation of results When the results of lighting calculations are presented in a textual table, they have a particular format. The calculated results for point A always appear at the bottom left corner of the table, the results for point B at the bottom right corner and the results for C at the top left corner, for example: A: x = 0.25 B: x = 3.75 C: x = 0.25
y y y
= 0.25 = 0.25 = 5.75
z z z
= 0.00 = 0.00 = 0.00
If the number of points AB = 8 and AC = 12 and no output rotation is performed, this will give the following format: L (Y)
C 5.75 5.25 4.75 4.25 3.75 3.25 2.75 2.25 1.75 1.25 0.75 0.25 0
A
L W
0.25
1.25
2.25
3.25
B
W (X)
= Length = Width
Calculux
Indoor - 3.50 -
Chapter 3
Background Information
The '+' represents the calculated result, (you can define points A, B and C to create any layout for the results you require). A different presentation of the calculated results can be displayed by defining the coordinates of points A, B and C as follows: A: x = 0.25 B: x = 0.25 C: x = 3.75
y y y
= 0.25 = 5.75 = 0.25
z z z
= 0.00; = 0.00; = 0.00.
If the number of points AB = 8 and AC = 12 and no rotation is applied, this will give the following format: W (X)
C 3.25 2.75 2.25 1.75 1.25 0.75 0.25 0
A
L W
0.25
1.25
2.25
3.25
4.25
5.25
B
L (Y)
= Length = Width
Calculux
Indoor - 3.51 -
Chapter 3
3.10
Background Information
Shapes A shape is a surface area in the same plane as a grid. Shapes can be used to create a userdefined form on the rectangular grid which is excluded from the calculations. Virtually any kind of form can be created. Shapes are connected to a grid, therefore shapes can only be added after a grid is defined. If multiple shapes are defined for a grid, each shape has an unique name. In Calculux, shapes can be set active or inactive. Active and inactive shapes Each shape can be set active or inactive individually. Only grid points not covered, or covered by inactive shapes will be used for calculation by Calculux. The shapes on a grid cover a grid point if at least one active shape covers the grid point. In Calculux shapes can be defined in two ways: • Pre-defined shapes • User-defined shapes
3.10.1
Pre-defined shapes In Calculux, some application fields use a connected grid other than the standard rectangle. For these application fields a set of pre-defined shapes is used to create different application field outlines. If the size of the grid is changed, the position and size of the shapes is updated automatically. The user cannot change or delete these pre-defined shapes, but can duplicate or add a shape. A duplicated shape will be a user-defined shape. Each predefined shape can be set active or inactive.
3.10.2
User-defined shapes On all calculation grids the user can add shapes by specifying the required input parameters. The user can add, change, duplicate or delete shapes. A user-defined shape can be set active or inactive.
• • • •
In Calculux, the following shape types can be defined by the user: Set of points Rectangle Closed polygon Arc
Calculux
Indoor - 3.52 -
Chapter 3
Background Information
Set of points The set of points shape can be used to cover individual grid points. This is especially useful when a few grid points at the edge of an application field or next to a generated shape must be excluded for calculation by Calculux. It only has effect when real grid positions are excluded. A point can be entered between grid points but will have no effect. C
A
B
Coordinates can be entered using the dialogue box. However, coordinates which are exactly on a grid point can also be entered simply by mouse-clicking on the grid point in the view box. Notes: • Points within 5mm from a grid point are taken as that grid point. • When the number of grid points is changed, it is possible that the selected points are no longer on a calculation point. Rectangle The rectangle shape can be used to create rectangular shapes. It is defined by its lower left corner position (relative to point A of the grid), width and length. C
A
B
Calculux
Indoor - 3.53 -
Chapter 3
Background Information
Furthermore, rotation around the starting point of the rectangle shape can be specified (see figure below). C
30
20 90 45 10
0 A
10
20
30
40
B
If the 'Change Proportionally' function is enabled, the position and size of the shape is changed proportionally with the size of the grid. Polygon The polygon shape can be used to create irregular shapes consisting of straight lines. At least three coordinates must be entered. The polygon is automatically closed by the program (first and last point are the same). All coordinates are relative to point A of the calculation grid. Lines within a polygon must not cross each other. Coordinates can be entered using the dialogue box. However, coordinates which are exactly on a grid point can also be entered simply by mouse-clicking on the grid point in the view box. Polygonal shapes can be set as inbound or outbound. Inbound C
A
B
The default setting for the polygon shape is inbound. In this case the area covered by the inbound of the shape will be excluded from the calculations.
Calculux
Indoor - 3.54 -
Chapter 3
Background Information
Outbound C
B
A
Choose the Outbound Polygon option to create user-defined application fields that are polygonal shaped. The area covered by the outbound of the shape will be excluded from the calculations. Rotation If rotation is applied a polygonal shape is rotated around grid corner A (see figure below). C
30
20 90
10
0 A
10
20
30
40
B
If the 'Change Proportionally' function is enabled, the position and size of the shape is changed proportionally with the size of the grid. Arc The Arc shape can be used to create circular shapes. The arc shape is defined by its starting position (relative to point A of the grid), radius and angle. The arc shape can be rotated around its starting position. Arc shape coordinates between grid points can only be entered using the dialogue box. The arc shape can be set as inbound or outbound.
Calculux
Indoor - 3.55 -
Chapter 3
Background Information
Inbound C
A
B
The default setting for the arc shape is inbound for creating segments up to a full circle. The area covered by the inbound of the shape will be excluded from the calculations. Outbound C
A
B
Choose the Outbound Arc option to create rounded corners or edges on user-defined application fields. The area covered by the outbound arc shape will be excluded from the calculations.
3.10.3
Symmetry Symmetry is an optional specification that can be used to simplify individual shape entry when one or more shapes have a symmetrical orientation and/or position. If applied, the shape is duplicated on the opposite side of a line parallel to the AB axis or the AC axis, or it is duplicated to all quadrants. The user can specify the symmetry type (AB, AC, ABAC or none) and the AB and AC origin (relative to point A of the grid).
Calculux
Indoor - 3.56 -
Chapter 3
3.11
Background Information
Lighting control (Switching Modes / Light Regulation Factor) In many designs the lighting system must be flexible so that the lighting level can be adapted to suit the activities for which the facility is to be used. The Calculux 'Lighting control' feature enables you to dim luminaires or luminaire arrangements. When using a 'Lighting Control' system you can: • Save energy When light sensors are used you can automatically dim luminaires in areas where the amount of daylight increases. By means of movement detectors you can automatically switch of luminaires when an area is not 'occupied'. In this way an energy saving of up to 70% can be achieved. • Increase the flexibility of the lighting installation When infrared remote control is available, the need for vertical wiring to wall switches is eliminated; Reduction of the installation costs; Less costly adaptations to the electrical system, when the furniture layout is changed. • Create more comfort for the user When pre-programmed lighting levels are available, the user can switch or regulate the lighting installation to the required lighting level. In Calculux you can create a 'Lighting Control' system using: a) Switching Modes b) Light Regulation Factors
3.11.1
Switching Modes A switching mode is a subset of luminaires which are in operation. For example, you can first generate a design for a conference room for video presentation and then by adding luminaires go on to generate a design for a conference situation. In this way the lighting level can be adapted to suit the activities for which the facility is to be used.
3.11.2
Light Regulation Factor (LRF) This option enables you to dim luminaires or luminaire arrangements. By using this option you can save energy, increase the flexibility of the lighting installation or create more comfort for the user. The value of the light regulation factor is expressed in % of the lumen output of a luminaire.
(There is no linear relation between the value of the light regulation factor and the power
consumption of a luminaire. As a result of this, when light regulation factors are used, the power consumption of the luminaire can not be calculated. So in the cost calculation the energy costs will not be given.
Calculux
Indoor - 3.57 -
Chapter 3
3.12
Background Information
Drawings A drawing is a 2-dimensional shape which you can add to your lighting design. A drawing may be a rectangle, arc, line or text. It is unlikely that you will need to add a drawing within an application field, as all the required areas are automatically included. You are more likely to place a drawing outside an application field to to illustrate your design (e.g. to represent a nearby construction). Be aware that if you move the centre coordinates of an application field, the drawing you've added will not move. Drawings appear on screen and in your printed reports if selected, but do not affect your calculations or scaling. The name and dimensions must be entered before a drawing can be included in a project. The exception is the text option. For this drawing, entering the name, the XYZ coordinates of where the centre of the text should be and the actual text is all that is required. You may wish to use a rectangular drawing e.g. for indication of luminaire positions, desks, conference tables, obstructions etc.
(A drawing does not affect the scaling of project overviews, calculation result views and the results of calculations.
Calculux
Indoor - 3.58 -
Chapter 3
3.13
Background Information
Light-technical Calculations Calculux Indoor currently supports the following calculation type: • Plane illuminance • Unified Glare Rating
Plane Illuminance
Z d
γ
Ip
This is the ratio of the luminous flux incident on an infinitely small flat surface to the area of that surface. The surface can have any orientation. The orientation is defined by the normal vector on the surface.
Y
3.13.1
α
n
P
X The plane illuminance (from one light source) at point P on the calculation grid is given by: Ep =
Ip d2
Cosα
Variables: Ep Ip d α
Meaning: Plane illuminance at point P Luminous intensity from the light source in the direction of point P Distance from the source to point P (m) Angle between the normal n and the light incidence
This formula assumes that the luminaire is a point source. For fluorescent luminaires, of which the distance between the luminaire and the point P is short in comparison with dimensions of the luminaire, the above formula is not valid. Calculux has a built-in feature (luminaire split-up) which overcomes this problem. When the luminaire split-up feature is activated, the luminaire is considered to be made up of a number of smaller luminaires with the same light distribution but proportionally smaller lumen output. The following types of surface orientation information relating to each point on the grid are recognised by Calculux.
Calculux
Indoor - 3.59 -
Chapter 3
Background Information
a) The surface orientation of each point on the grid can be in one of the main directions of the XYZ coordinate system:
Y
Z
15
35
Hor +Z Horizontal +Z grid point. The surfaces in the grid points, used in the calculation, are orientated towards the positive Z direction.
20 35
X
(The surfaces are infinitely small planes (one in each grid point) on which the light calculations are being performed.
Y
Z
15
35
Hor -Z Horizontal -Z grid point. The surfaces in the grid points, used in the calculation, are orientated towards the negative Z direction.
20 35
X
Y
Z
15
35
Vert +X Vertical +X grid point. The surfaces used in the calculation are orientated towards the positive X direction.
20 35
X
Calculux
Indoor - 3.60 -
Background Information Z
15
35
Vert -X Vertical -X grid point. The surfaces in the grid points, used in the calculation, are orientated towards the negative X direction.
Y
Chapter 3
20 35
X
Y
Z
15
35
Vert +Y Vertical +Y grid point. The surfaces in the grid points, used in the calculation, are orientated towards the positive Y direction.
20 35
X
Y
Z
15
35
Vert -Y Vertical -Y grid point. The surfaces in the grid points, used in the calculation, are orientated towards the negative Y direction.
20 35
X
Calculux
Indoor - 3.61 -
Chapter 3
Background Information
b) The surface orientation is parallel to the plane that passes through the grid points. This enables the illuminance to be calculated on two sides of the plane through the grid points:
Y
Z
60
C
n
20
Surface +N Surface +N grid point. The surfaces in the grid points, used in the calculation, are orientated parallel to the plane which passes through the grid points in positive N direction.
A
35
70
B
X
Y
Z
60
C
n-
20
Surface -N Surface -N grid point. The surfaces in the grid points, used in the calculation, are orientated parallel to the plane which passes through the grid points in negative N direction.
35
A 70
B
X
3.13.2
Glare Glare is the condition of vision in which there is a reduction in the ability to see details or objects due to an unsuitable distribution or range of luminance, or to extreme contrasts. Glare can occur in one of two possible forms: • Disability glare glare that impairs the vision; • Discomfort glare glare that induces a feeling of discomfort. For indoor Lighting the measure for discomfort glare is called the UGR factor. UGR is explained in the following section.
Calculux
Indoor - 3.62 -
Chapter 3
Background Information
UGR The Unified Glare Rating, UGR, is a measure for the amount of discomfort glare in an indoor lighting installation. A lower glare rating results in a better glare restriction. The practical meaning of the range of the glare assessment scale is from 10 (unnoticeable) to 30 (unbearable). For the calculation of the UGR the CIE formula is used: UGR = 8 log{0.25/Lb å L
2
Variables: UGR Lb
L ω p
ω/p } 2
Meaning: unified glare rating. background luminance, determined by the lighting, the room size and the reflectances. It is calculated from the vertical illuminance caused by interreflections on the observer's eye. luminance of the luminaire in the direction of the observer's eye. solid angle of the luminous parts of the luminaire as seen by the observer. position index of the luminaire (a value given by CIE typical for the displacement of the luminaire from the line of sight).
To get insight in the overall effect of glare from a lighting installation, an UGR calculation for reference conditions as specified in the CIE tabular method is most suitable. The resulting single value (called in Calculux UGRCIE), is the value against which specifications can easily be checked. For detailed glare rating evaluations, Calculux has also the possibility to calculate UGR values for non-reference conditions. In this case the observers are situated in a given grid at each grid point. For four mutual perpendicular viewing directions with parallel and crosswise view, individual UGR values can be calculated. The line of sight is always horizontal and the eye height is given by the grid parameters. CIE tabular method reference conditions for UGR CIE specifies reference conditions (according to the tabular method) for the calculation of UGR. The resulting single UGR value is called in Calculux UGRCIE tabular method. It is the most typical value for the overall effect of glare from the total lighting installation. The reference conditions are: • Luminaire geometry: luminaire spacing in both directions 0.25 H, with H being the vertical distance between the observer eye and the luminaire. • Observer position: against the middle of the respective walls at 1.2 m above the floor with horizontal viewing directions perpendicular to the wall.
(CIE's tabular method is not defined for complex situations. As a consequence also UGR
CIE
is not defined for such complex situations. Calculux will therefore only calculate UGRCIE for the following situations:
Calculux
Indoor - 3.63 -
Chapter 3 • • • •
Background Information
Rectangular rooms All luminaires of the same type and at the same height All luminaires positioned parallel to the walls Luminaires not asymmetrical or tilted. In all other situations Calculux will print 'UGRCIE not defined'. UGR in a calculation point For each luminaire in the room, it's contribution to the Sum å in the main formula is calculated. The calculation uses the formula:
UGR contribution = L2 ω/p2 The Luminance (L) and the solid angle ω are calculated by Calculux. P is taken from the Guth Position Index Table: Background luminance The background luminance, Lb, is defined as that uniform luminance of the whole surroundings which produces the same illuminance on a vertical plane at the observer's eye as the visual field under consideration excluding the glare sources. It may be obtained from the formula: Lb = Ei/π where Ei is the indirect illuminance at the eye of the observer (lux). The indirect illuminance is the illuminance on the eye caused by the luminance of the walls (direct illuminance from the light sources is not taken in to account). Output The output format of the calculation of point values will be presented in a textual grid, analogous to Calculux's vertical illuminance output. The values will be presented as rounded whole figures. The average, min/ave and min/max values are not calculated and will not be printed in this output. At the top of the output page the UGRCIE value will be presented, if defined. Also in the summary the UGRCIE values will be output per switching mode, that is, if they are defined and applicable.
Calculux
Indoor - 3.64 -
Chapter 3 3.13.3
Background Information
Indirect contribution The amount of light reaching a point depends on the direct contribution from the luminaires and on the indirect contribution reflected from the room's surfaces. Calculux Indoor calculates the indirect contribution by dividing the room's surfaces (cells) into a number of subsurfaces which are assumed to be area light sources with uniform radiance. The number of subsurfaces is defined with the 'interreflection accuracy level' which is set Room dialogue box. Since the total illuminance at a point includes the direct contribution plus the contribution of the subsurfaces, the more subsurfaces you have the more accurate your results will be. The direct contribution on each surface is calculated by placing a grid on each subsurface and deriving the incident illuminance from each luminaire according to the equation for the plane illuminance (see section 'Plane Illuminance'). The individual values are added up and averaged to give the total average illuminance on each surface. From the average direct contribution, the complete interreflection matrix is solved to calculate the average total radiance on each surface. Then from each surface the contribution to a point is calculated. When the room's surfaces are not divided into smaller subsurfaces, the so-called 6-plane interreflection model is used. This model corresponds to a normal interreflection accuracy level setting in the Room dialogue box.
(The Indirect Contribution can only be calculated when the surfaces in the grid points,
used in the calculation, are orientated towards the positive or negative X-,Y- or Z-direction.
3.13.4
Calculating the numbers of luminaires needed When you add a luminaire from a database or PHILLUM file, Calculux can give you a quick estimation of the number of luminaires needed to provide the required illuminance level. The calculation is done according the so called Utilisation Factor (UF) method. Quick Estimation If you enter the required illuminance level (in the Room dialogue box), Calculux will be able to determine a quick estimation of the number of luminaires needed. This calculation is done for each luminaire individually and is performed according to the UF (Utilisation Factor) method described in CIE reports 40 and 52. N=
E∗L ∗ W NL ∗ F ∗ MF ∗ UF
Where the variables are: N = number of luminaires needed E = required illuminance L = room length W = room width NL = number of lamps in each luminaire Φ = lamp flux MF = maintenance factor UF = utilisation factor
Calculux
Indoor - 3.65 -
Chapter 3
Background Information
Utilisation Factor (UF) The Utilisation Factor is calculated according to the lumen method. This method uses the CIE flux code of the luminaire, the room's dimensions and the reflection properties of its surfaces to perform the calculation. The room's dimensions are characterised by the room index K, defined as: K=
L∗W (H1 - H 0 ) ∗ (L + W)
Where the variables are: L = room length W = room width = room height H1 = height of the working plane H0 The Utilisation Factor can be found when the room index and the reflectance of the room are known. They are tabulated as part of the luminaire photometric data. Strictly speaking, the UF method is only valid if the luminaire arrangement and the room dimensions are exactly the same as those in the CIE reports. However, experience shows that the values are valid for most practical situations. The UF method of calculating the number of luminaires is used as a rough indication. A point calculation can always be performed. For this reason Calculux Indoor only uses the CIE method of calculating the utilisation factor as the differences between it and other methods (DIN, CIBSE, etc.) are quite small. The table below shows an example of room index values for a typical luminaire. Utilisation Factor Table TBS 300/236 M6 2XTL-D36W/840
room index K 0.60 0.80 1.00 1.25 1.50 2.00 2.50 3.00 4.00 5.00
Reflectances (%) for ceiling, walls and working plane 80 80 70 70 70 70 50 50 30 30 50 50 50 50 50 30 30 10 30 10 30 10 30 20 10 10 10 10 10 10 0.39 0.37 0.39 0.38 0.37 0.33 0.33 0.31 0.33 0.30 0.46 0.44 0.46 0.44 0.43 0.39 0.39 0.37 0.39 0.36 0.52 0.48 0.51 0.50 0.48 0.44 0.44 0.42 0.44 0.41 0.57 0.52 0.56 0.54 0.52 0.49 0.48 0.46 0.48 0.46 0.61 0.55 0.60 0.57 0.55 0.52 0.51 0.49 0.51 0.49 0.66 0.59 0.65 0.62 0.59 0.57 0.26 0.54 0.55 0.54 0.70 0.62 0.68 0.64 0.61 0.59 0.58 0.57 0.57 0.56 0.72 0.63 0.70 0.66 0.63 0.61 0.60 0.59 0.59 0.58 0.75 0.65 0.73 0.68 0.64 0.63 0.62 0.61 0.61 0.60 0.76 0.66 0.74 0.69 0.65 0.64 0.63 0.62 0.62 0.61 Suspension ratio: 0 Calculated acc. to CIE publication 40 LVW1077000-00
Calculux
0 0 0 0.29 0.35 0.40 0.45 0.48 0.52 0.55 0.57 0.59 0.60
Indoor - 3.66 -
Chapter 3
Background Information
Uniformity Check In some instances, the database contains information about the maximum advisable spacing to height ratios of luminaires which provide good uniformity. These values are taken into account in the Quick estimation and can sometimes lead to a greater number of luminaires than required to provide the average illuminance level. The uniformity check is restricted to checking the minimum numbers in length and width. This check is performed only if the luminaire maximum spacing to height ratio is given in the database. The uniformity check is based on the values as given in the data base. These values are calculated for a grid of 4 times 4 luminaires. The uniformity is calculated in the square of the middle four luminaires (as set out in CIBSE TM5).
(In practical situations the above conditions are not always met. 3.13.5
Quality Figures Calculux allows you to show the quality figures of the calculations. Depending on the settings of the Quality Figure tab (see Calculation menu, Presentation...) the following quality figures can be displayed: Average value calculation The average value for a grid is worked out by adding the calculated values of each point and dividing it by the number of grid points (grid dimensions; AB, AC). Average =
S calculated values for all idividual points (Points AB) * (Points AC)
Minimum This is the minimum calculated value. Maximum This is the maximum calculated value. Minimum/maximum This is the minimum calculated value divided by the maximum calculated value. Minimum/average This is the minimum calculated value divided by the average calculated value. Unified Glare Rating according to the CIE tabular method (UGRCIE ) This is the Unified Glare Rating under reference conditions as specified in the CIE tabular method.
Calculux
Indoor - 3.67 -
Chapter 3
3.14
Background Information
Report Setup
• • • • •
A very useful feature of Calculux is the report facility. When you have completed a lighting project you can create attractive reports to present the results of the calculations to your customers. By means of the Report Setup you can simply specify the layout of the report and components you wish to include. For example, you can include, a table of contents, 2-D and 3-D project overviews, a summary, luminaire information (including Polar or Cartesian diagram) and/or financial data. For detailed information about your calculation results you can include the following presentation formats: Textual Table; Graphical Table; Iso Contour; Filled Iso Contour; Mountain Plot. You can also include a summary of your findings and recommendations about the best lighting solutions. If you wish, you can produce reports in several languages.
(The order of the calculation results can be altered (see Calculation Presentations dialogue
box). However, the order of the presentation formats is governed by Calculux and cannot be altered. Calculux enables you also to print a report in portrait or landscape format with the 2D result views rotated 90°. This option (Report menu, Print Setup, Layout tab) can be very useful. For instance, when a report which has to be printed in portrait format contains a landscape formatted 2D result view which looks relatively small. By selecting 'Rotate presentation for Portrait Printing', the 2D result views will be rotated 90°. Because of the rotation the view can be enlarged.
Calculux
Indoor - 3.68 -
Chapter 3
3.15
Background Information
Cost Calculations Calculux allows you to calculate the annual energy, investment, lamp and maintenance costs for the lighting installation in your project. You can view and/or enter the data for calculating the 'annual costs' and the 'total investment' costs of the project.
3.15.1
Total Investment The Total Investment is the cost of the luminaires, lamps and the installation of the entire lighting project. The Total Investment costs are calculated according to the following formula: Total_Inve stment = Σ
Variables: INSTC LAPR LPR NL NT Σlumtype
lumtype
(NT * (LPR + INSTC + ( LAPR * NL )))
Meaning: Installation costs of the particular luminaire type; Lamp price for the particular luminaire type; Price of the particular luminaire type; Number of lamps for the particular luminaire; Number of luminaires of the particular type; Sum for all luminaires types.
Calculux
Indoor - 3.69 -
Chapter 3 3.15.2
Background Information
Annual costs The total annual costs are calculated according to the following formula: Total Annual Cost = EN + AI + LC + MC Variables: EN: AI: LC: MC:
Meaning: Energy costs per year; Annual investments costs for the particular luminaire type; Lamp replacement costs per year; Maintenance costs per year.
The formulas for these costs are: KWHPR
EN =
1000
AI = AF * Σ
AF =
*Σ
swimod
lumtype
{{Σ
lumtype
(NT * LWATT)} * BRNH } swimod swimod
{NT * (LPR + INSTC)}
R 100 1 - {1 [1 + R 100]}**N
Σ LC =
lumtype
RP Σ
MC =
{NT * NL * LAPR}
lumtype
Variables: AF BRNHswimod INSTC KWHPR LAPR LPR LWATT MCL N NT NTswimod NL R RP Σlumtype
{NT * MCL} RP
Meaning: the annuity factor; the burning hours per year of the switching mode; the installation cost per luminaire for a particular luminaire type; the kilowatt-hour price; the lamp price for a particular luminaire type; the price per luminaire for a particular luminaire type; the total watts per luminaire for a particular luminaire type; the maintenance cost per luminaire for a particular luminaire type; the amortization period (years); the number of luminaires of a particular type; the number of luminaires of a particular type per switching mode; the number of lamps per luminaire for a particular luminaire type; the interest rate (%); the relamping period (years) for a particular luminaire type; the sum for all luminaire types.
Calculux
Indoor - 3.70 -
Chapter 3
Background Information
Cost calculations and light regulation factors There is no linear relation between the value of the light regulation factor and the power consumption of a luminaire. As a result of this, when light regulation factors are used, the power consumption of the luminaire can not be calculated. So in the cost calculation the energy costs will not be given.
Calculux
Indoor - 3.71 -
Chapter 3
3.16
Background Information
Maintenance Factor/New Value Factor The Maintenance Factor is the ratio of the average illuminance on the plane under investigation after a specified period of use of the lighting installation, to the average illuminance obtained under the same conditions for a new installation. It is always equal or less than 1 and is used as a multiplier for calculations, based on luminaire light distribution tables. In some countries the New Value Factor (or Inverse Maintenance Factor) is used. Calculux allows you to use new value factors instead of maintenance factors. The 'Inverse Maintenance Factor' is always more than or equal to 1. The following maintenance factors are specified: • General Project Maintenance Factor; • Luminaire Type Maintenance Factor; • Lamp Maintenance Factor.
3.16.1
General Project Maintenance Factor This maintenance factor takes into account a general factor with which all calculation results are multiplied. It acts as a safeguarding factor and must reflect the overall conditions of the room surfaces. The value of the 'Project Maintenance Factor' is always equal or less than 1.
3.16.2
Luminaire Type Maintenance Factor This maintenance factor takes into account the reduction of light output caused by dirt deposited on or in a luminaire. The rate at which the dirt is deposited depends on the construction of the luminaire and the extent of what dirt is present in the environment. The value of the 'Luminaire Type Maintenance Factor' is always equal or less than 1.
3.16.3
Lamp Maintenance Factor The Lamp Maintenance Factor value is always equal or less than 1 and consists of two elements: a) Lamp Survival Factor; b) Lamp Lumen Depreciation Factor. a) Lamp Survival Factor This maintenance factor takes into account the percentage of the lamp failures during a specific number of operation hours. It is only applicable when a group replacement is to be carried out. The 'Lamp Survival Factor' is based on the assumptions about the switching cycle, supply voltage and control gear. b) Lamp Lumen Depreciation Factor. This maintenance factor takes into account the fact that the luminous output of all lamps decreases with use.
Calculux
Indoor - 3.72 -
Appendix 1
Calculux
Indoor
Calculux
Indoor
Appendix 1
1
My First Project
1.1
General
My First Project
This tutorial will take you through the process of creating a new Indoor lighting project. You will create a project, enter general project data, specify a room, perform a calculation and print a report. What the results of the print job of 'My First Project' should look like can be seen in appendix 1a. In 'My First Project' the following installation will be created: Room Specifications · Room dimensions Width Length Height Working Plane Height
3.50 5.60 2.70 0.80
m m m m
· Reflections Ceiling Walls Floor
0.50 0.30 0.10
· Position (of Left Front side of the room) X Y
0.0 0.0
Required illuminance level General lighting
300 lux on working plane
Luminaire Specifications Luminaire type Lamp type
TBS600/135 C7-60 TL5 35W
Project Maintenance Factor
· · · ·
0.80
Assumptions Installation of Calculux Indoor has been successful; Vignettes have been installed; Phillum files have been installed; Database has been installed. Before you start 'My First Project' first you should check the default settings of Calculux.
Calculux
- A1.1 -
Indoor
Appendix 1
1.2
My First Project
Checking the default settings In this section you will check some default settings. By means of default settings you can specify parameters that affect all future projects (new defined luminaires, luminaire arrangements, calculations and/or reports, etc.). The default settings remain valid the next time Calculux is started and can be changed at any time. If you specify/set the most common used parameters, you eliminate the need to specify/set the same parameters every time you create a new project. The default settings can be entered by means of the Option menu and are saved in the configuration file of Calculux. Do not use the Option menu when you want use different parameters for one particular project only. For 'My First Project' you are going to check the following default settings: · Environment (options) (default settings concerning the program environment) · Report Setup Defaults (default settings concerning the contents and layout of the report) · Calculation Presentation Defaults (default settings concerning the Calculation Presentation)
1.2.1
Environment · Select Environment from the Options menu. · Select the Directories tab. Check the directory settings of the Project files, Phillum files and Vignette files. · Select the Database tab. Check the directory settings of the Database files. · Click OK to return to the Main View. The Environment Options only have to be set after installing Calculux.
1.2.2
Report Setup Defaults · Select Report Setup Defaults from the Options menu. · Select the Contents tab. In the Included box, select the chapters to be included in the report. The following chapters should be displayed: · Title Page; · Table of Contents; · Top Project Overview; · Summary; · Luminaire Details; · Installation Data.
Calculux
- A1.2 -
Indoor
Appendix 1
My First Project
In the Presentation Forms box, select the presentation forms of the calculation presentation result views. Textual Table Select Iso Contour Filled Iso Contour
· Select the Layout tab. In the Project Luminaire Information box, select in which way the luminaire luminous intensity information is to be shown. Show Polar Diagram Select In the Installation Data box, select which elements are to be displayed in chapter 'Installation Data' of the report. Show Aiming Angles Select In the General box, select which additional information is to be displayed and in which language the report is to be created. Select Show Page Number Show File Name Language 'UK'
· Click OK to return to the Main View.
1.2.3
Calculation Presentation Defaults · Select Calculation Presentation Defaults from the Options menu. · Select the Presentation Forms tab. In this tab you can select the elements to be displayed in the calculation presentation result views. Select Textual Table Iso Contour Filled Iso Contour
· Select the General tab. In the Show box, select the elements to be displayed by default in the calculation presentation and report. Luminaires Select Luminaire Code Luminaire Legend Drawings Fill Color Legend Room Connected Field Connected Grid
In the Iso Contour Method box, select which Iso Contour Method will be used by default for the calculation presentation. Select Relative
Calculux
- A1.3 -
Indoor
Appendix 1
My First Project
· Select the Scaling tab. In the Minimum Report Scale box. 10 Select In the Sizing box, select the default sizing of the calculation presentation result views, select: Zoomed Relative to Grid: Factor
1.000
By setting the above scaling, the size of the defined objects in the calculation presentation result overviews will be based on the size of the grid and the field. The size is determined by the 'Zoom Factor'. · Click OK to return to the Main View.
1.3
Starting a new Project In this section we will enter project data, perform a calculation and print a report. But before you can start entering project data you have to start a new project. · Select New Project from the File menu. A new empty window will be created. You can maximize the view if you wish.
1.4
Enter Project Information · Select Project Info from the Data menu. · In the Project tab you can enter project information, e.g.: Name Subname Remarks
Designer
My First Design Example 1a General Lighting for my Office Room Dimensions: Width 3.5 m Length 5.6 m Height 2.7 m 'Your Name'
· In the Customer tab you can enter customer information, e.g.: Name
'Your Customer Name'
· In the Company tab you can enter company information or select a vignette file. For 'My First Project' you will use a previous created vignette file containing the company information: Browse · Click · Select LiDAC vignet (assuming the standard vignettes are installed and the environment is set correctly). Accept
· Click · Click OK to return to the Main View.
Calculux
- A1.4 -
Indoor
Appendix 1
1.5
My First Project
Setting Project Options · Select Project Options from Data menu. For 'My First Project' the following Project Options have to be set: In the Calculation box: Disable (no checkmark) Set 'Project Maintenance Factor' to:
'Luminaire Splitup' 0.80
In general, for indoor lighting designs, the luminaire split-up is needed only for precise calculations, such as indirect lighting (uplighter). · In the 2D View tab and 3D View tab: Disable
'Aiming Arrows'.
· Click OK to return to the Main View.
1.6
Specifing the Room · Select Room from the Data menu. · Select the Definition tab. In the Dimensions box, enter the dimensions of the room: Room Width Room Length Room Height Working Plane Height
3.50 5.60 2.70 0.80
m m m m
In the Position box you can define the position of the Left Front corner of the room. By means of the 'Centre' button you can position the centre of the room in origin (x=0, y=0). For this project the position of the Left Front corner is 0,0. · In the Quick Estimate box you can specify the requested illuminance level as general lighting. The value you specify will be used by Calculux to calculate the number of luminaires needed to meet the required Illuminance level. In the 'Required Illuminance Level field', enter 300 lux · Select the Interreflection tab. In the Interreflection Accuracy box you can specify the accuracy of the interreflection calculations. Select Normal · Click OK to return to the Main View.
Calculux
- A1.5 -
Indoor
Appendix 1
1.7
My First Project
Selecting Project Luminaires To select Project Luminaires: a) select Project Luminaires from the Data menu or; .
b) click on Toolbar shortcut button
a) Selecting Project Luminaires from the Data menu · Select Project Luminaires from the Data menu. · Click Add and select Database. In the Application Area box you can select the application area(s) you want to use. Select Indoor Lighting · Click Open. · In the Add Project Luminaires dialogue box, select the family name and/or family code of the luminaire: Family Name Family Code
TBS600 TBS600
By default both the family name and the family code are set to 'any' (no luminaires will be selected). Nevertheless, you should select 'any' for the family name if the family name is unknown or select 'any' for the family code if the family code is unknown. · Select the housing and light distributor of the luminaire, select: Housing Light Distributor
TBS600/135 C7-60
· Click Add. · Click OK, then Close (twice) to return to the Main View. OR b) Clicking on Toolbar shortcut button
.
in the Calculux menu bar. · Click on Select the housing and light distributor of the luminaire, select: Housing Light Distributor
TBS600/135 C7-60
· Click Add. · Click OK to return to the main View. If the luminaire is not in your database you can select another Indoor luminaire. If you wish you can view luminaire details by clicking on the Details button.
Calculux
- A1.6 -
Indoor
Appendix 1
1.8
My First Project
Positioning luminaires Calculux allows you to position luminaires individually as well as in arrangements. For 'My First Project' you will create a Room Block arrangement. The number of luminaires needed will be calculated according to the utilization factor (UF factor). · Select Arranged Luminaires from the Data menu. · Click Add and select Room Block. In the UF Method box you can see that 3.5 luminaires is sufficient for the requested illuminance level of 300 lux as general lighting. Click Generate. A Room Block arrangement of 4 luminaires will be generated. In the Definition box enter the name of the arrangement, enter: Name
General
· Click OK, then Close to return to the Main View.
1.9
Defining a (calculation) grid Before a calculation can be performed a (calculation) grid has to be defined. You can define your own grid, define a grid according to a rule or use a preset grid. For this project you will use a preset grid. · Select Grids from the Data menu. · Click Add in the Grids dialogue box. In the Add Grid dialogue box, enter the name of the grid, enter: Name
Working Plane
In the Coupling box, select: Connected to
Working Plane
· Click OK, then Close to return to the Main View.
1.10
Performing a calculation All settings concerning the definition or presentation of a calculation for a specific project are performed in the Calculation menu. For 'My First Project' project you will use the default settings as set in section 1.2.3 (Calculation Presentation Defaults), so no settings have to be done. · Select Show Results from the Calculation menu. The calculation will be performed.
Calculux
- A1.7 -
Indoor
Appendix 1
1.11
My First Project
Printing the report All settings concerning the contents and layout of a report for a specific project are normally done in the Report menu. For 'My First Project' project you will use the default settings as set in section 1.2.1 (Environment) and 1.2.2 (Report Setup Defaults), so no settings have to be done. · Select Print Report from the File menu. · Click OK in the Print dialogue box to print the report. The results of the print job of 'My First Project' can be seen in appendix 1a.
1.12
Saving the project In case you wish to redesign the project later, it is advisable to save the project. · Select Save from the File menu. Enter the file name, enter: File Name
Office 1.cin
· Click OK to save the project. · Select Exit from the File menu to close the program.
Calculux
- A1.8 -
Indoor
Appendix 2
Calculux
Indoor
Calculux
Indoor
Appendix 2
My Second Project
1
My Second Project
1.1
General In this tutorial furniture and additional lighting, such as task lighting and accent lighting will be added to the indoor lighting installation you have created in 'My First Project'. Due to windows in the back wall of the room two luminaires of the Room Block arrangement have to be moved.
1.2
Open 'My First Project' and save it under a new name · Select Open Project from the File menu. · Select OFFICE 1.CIN and click OK. · In de File menu, select Save As. · In the File Name box, enter OFFICE 2.CIN and click OK. You are now working in OFFICE 2.CIN.
1.3
Adding furniture By means of the Drawing function a bureau (desk), consisting of three elements, and a conference table will be placed in the room. · Select Drawings from the Data menu. Placing the first bureau element (dimensions: 1.60m x 0.80m) · Select Add Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name
Bureau
Position of the bottom left corner of the bureau element: X Y Z
1.30 m 3.10 m 0.80 m
Dimensions and orientation of the bureau: Length Width Rotation
1.60 m 0.80 m 0.00 deg
· Click OK.
Calculux
- A2.1 -
Indoor
Appendix 2
My Second Project
Placing the second bureau element (dimensions: 0.80m x 0.80m) · Select Add Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name
Bureau corner
Position of the bottom left corner of the bureau element: X Y Z
1.30 m 4.70 m 0.80 m
Dimensions and orientation of the bureau: Length Width Rotation
0.80 m 0.80 m 0.00 deg
· Click OK. Placing the third bureau element (dimensions: 1.20m x 0.80m) · Select Add Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name
Bureau left
Position of the bottom left corner of the bureau element: X Y Z
0.10 m 4.70 m 0.80 m
Dimensions and orientation of the bureau: Length Width Rotation
0.80 m 1.20 m 0.00 deg
· Click OK. Placing the conference table (dimensions: 0.80m x 1.60m) · Select Add Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name
Conference table
Position of the bottom left corner of the conference table: X Y Z
1.70 m 1.00 m 0.80 m
Dimensions and orientation of the conference table: Length Width Rotation
0.80 m 1.60 m 0.00 deg
· Click OK, then Close.
Calculux
- A2.2 -
Indoor
Appendix 2
1.4
My Second Project
Selecting a Project Luminaire for task-and accent lighting Now task lighting for the desk and conference table and accent lighting for a painting will be added. For this project the MASTERLINE PLUS 20W 24D will be used. . · Click on Toolbar shortcut button In the Add Project Luminaires dialogue box, select the family name, family code, housing and light distributor of the luminaire: Family Name Family Code Housing Light distributor
REFLECTOR LAMPS HALOGEN MASTERLINE PLUS 20W 24D
· Click Add, then OK.
1.5
Repositioning of luminaires for general lighting Due to windows in the back wall of the room (wall at position Y = 5.6) the luminaires at the window side have to be moved closer towards the window side. There are two possibilities: Change the Y-spacing of the luminaires in the arrangement · Select Arranged Luminaires from Data menu. · In the Arrangements dialogue box, click Change. · Select the Arrangement tab. In the Definition box, enter the Y-spacing of the luminaires: · Change the Y-spacing from 2.80 to 3.40. · Click OK, then Close. Change the position of the luminaires According to the arrangement rule, the luminaires in the Room Block arrangement can not be moved individually. In order to move individual luminaires, the Room Block arrangement has to be changed into a Free arrangement first. · Select Arranged Luminaires from Data menu. In the Arrangements dialogue box, click Free, then click Yes. Now the Room Block arrangement is made into a Free arrangement. · Click Change and select the Luminaire List tab. In the Luminaire List tab, enter the new positions of the luminaires: · Change the Y-position of the luminaires in row 3 and 4 from 4.20 to 4.80. · Click OK, then Close.
Calculux
- A2.3 -
Indoor
Appendix 2
1.6
My Second Project
Positioning luminaires for the task- and accent lighting Task lighting for the bureau · In the Arrangements dialogue box, click Add and select Block. · In the Arrangement tab, enter the name of the arrangement. Name
Bureau
In the Position A box, enter the position of the bottom left luminaire. Position
X = 1.50 m, Y = 3.50 m, Z = 2.70 m
In the Arrangement box, enter quantity and spacing of the luminaires. Number in AB: Number in AC:
2 2
X-spacing: Y-spacing:
0.40 m 0.80 m
· Select the Luminaire Definition tab. In the Project Lumnaire box, select: Type
MASTERLINE PLUS 20W 24D
· Click Apply, then OK. Task lighting for the conference table · In the Arrangements dialogue box, click Add and select Block. · In the Arrangement tab, enter the name of the arrangement. Name
Conference table
In the Position A box, enter the position of the bottom left luminaire. Position
X = 2.10 m, Y = 1.20 m, Z = 2.70 m
In the Arrangement box, enter quantity and spacing of the luminaires. Number in AB: Number in AC:
2 2
X-spacing: Y-spacing:
0.80 m 0.40 m
· Select the Luminaire Definition tab. In the Project Luminaire box, select: Type
MASTERLINE PLUS 20W 24D
· Click Apply, then OK. Accent lighting for the painting on the right wall · In the Arrangements dialogue box, click Add and select Line. · Select the Luminaire Definition tab. In the Project Luminaire box, enter: Type
MASTERLINE PLUS 20W 24D
· Click Apply.
Calculux
- A2.4 -
Indoor
Appendix 2
My Second Project
The warning 'Arrangement does not fit in the room' will appear on screen. This is caused while the default position of the luminaires is not within the room. You can use the View tab to check the position of the luminaires. In this case there is a luminaire on the left bottom corner of the room (X = 0.0,Y = 0.0). Click OK to return to the Arrangements dialogue box. · Select the Arrangement tab and enter: Name
Painting
· In the Line box, enter the position, quantity and spacing of the luminaires: First X = 2.75, Y = 3.25, Z = 2.65 Last X = 2.75, Y = 4.25, Z = 2.65 Number of Luminaires 2 Spacing 1.00 m
-
The rotation of the Line arrangement will be 90°.
-
To ensure that the luminaires fit into the room when they are tilted a luminaire height of 2.65 m is chosen (room height is 2.70 m).
Now the luminaires have to be tilted to the wall: · In the Luminaire List tab, enter the values for the tilt of both luminaires: Tilt90 =
40°
· Click OK, then Close. To show that the accent lighting is aimed to the wall, the 'aiming arrows' can be displayed in the project overview. · Select Project Options from the Data menu. · In the 2D View tab, check the Aiming Arrows box. · Click OK.
Calculux
- A2.5 -
Indoor
Appendix 2
1.7
My Second Project
Define Calculation grids for the bureau, conference table and the right wall · Select Grids from the Data menu. Grid on Bureau · In the Grids dialogue box, click Add. · In the Add Grid dialogue box, enter: Name
Bureau
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 1.3, Y = 3.1, Z = 0.8 X = 2.1, Y = 3.1, Z = 0.8 X = 1.3, Y = 4.7, Z = 0.8
Number of Points in AB in AC
4 8
Do not check 'Other Side'. · Click OK. Grid on Conference table · In the Grids dialogue box, click Add. · In the Add Grid dialogue box, enter: Name
Conference table
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 1.7, Y = 1.0, Z = 0.8 X = 3.3, Y = 1.0, Z = 0.8 X = 1.7, Y = 1.8, Z = 0.8
Number of Points in AB in AC
8 4
Do not check 'Other Side'. · Click OK.
Calculux
- A2.6 -
Indoor
Appendix 2
My Second Project
Grid on right wall · In the Grids dialogue box, click Add. · In the Add Grid dialogue box, enter: Name
Right Wall
In the Coupling box, select: Connected to
Right wall
· Click OK, then Close.
1.8
Defining Switching Modes · · · ·
The following four switching modes will be defined for this project: General lighting; Task lighting for bureau; Task lighting for table; Accent lighting for painting at right wall.
Defining the name of the switching modes · Select Switching Modes from the Data menu. · In the Switching Modes dialogue box, enter the names of the switching modes. · Enter General Lighting, then click New. · Enter Task Lighting Bureau, then click New. · Enter Task Lighting Table, then click New. · Enter Accent Lighting Painting, then click OK. In this example project the General Lighting is always switched on. Selecting the luminaires to which the switching mode is applied · Select Arranged Luminaires from the Data menu. · Double click on 'Bureau' in the Arrangements dialogue box. · Select the Luminaire Definition tab. In the Switching Modes box, check 'Task Lighting Bureau' only. · Click Apply, then OK. · Double click on 'Conference Table' in the Arrangements dialogue box. · Select the Luminaire Definition tab. In the Switching Modes box, check 'Task Lighting Table' only. · Click Apply, then OK.
Calculux
- A2.7 -
Indoor
Appendix 2
My Second Project
· Double click on 'Painting' in the Arrangements dialogue box. · Select the Luminaire Definition tab. In the Switching Modes box, check 'Accent Lighting Painting' only. · Click Apply, then OK. · Double click on 'General' in the Arrangements dialogue box. · Select the Luminaire Definition tab. In the Switching Modes box, check 'General Lighting', 'Task Lighting Bureau', 'Task Lighting Table' and 'Accent Lighting Painting'. · Click Apply, then OK. · Click Close.
1.9
Defining Calculations Before you can perform a calculation, you have to specify the calculation name and the calculation parameters first. · Select Define from the Calculation menu. · For this project the following calculations have to be defined: Working Plane · Double click on 'Working Plane' in the Calculation dialogue box. · In the Change Calculation dialogue box, check and/or select: Name Grid Switching Mode Calculation Type Result Type Direction
Working Plane Working Plane General Lighting Plane Illuminance Total (= Direct + Indirect contribution) Surface +N
· Click OK. Bureau · Double click on 'Bureau' in the Calculation dialogue box. · In the Change Calculation dialogue box, check and/or select: Name Grid Switching Mode Calculation Type Result Type Direction
Bureau Bureau Task Lighting Bureau Plane Illuminance Total (= Direct + Indirect contribution) Surface +N
· Click OK.
Calculux
- A2.8 -
Indoor
Appendix 2
My Second Project
Conference table · Double click on 'Conference table' in the Calculation dialogue box. · In the Change Calculation dialogue box, check and/or select: Name Grid Switching Mode Calculation Type Result Type Direction
Conference Table Conference Table Task Lighting Table Plane Illuminance Total (= Direct + Indirect contribution) Surface +N
· Click OK. Right Wall · Double click on 'Right Wall' in the Calculation dialogue box. · In the Change Calculation dialogue box, check and/or select: Name Grid Switching Mode Calculation Type Result Type Direction
Right Wall Right Wall Accent Lighting Painting Plane Illuminance Total (= Direct + Indirect contribution) Surface +N
· Click OK, then Close.
1.10
Defining the Calculation Presentation · Select Presentation from the Calculation menu. · In the Include box, double click on the + or - sign to include (+) or exclude (-) a calculation. For this project Working Plane, Bureau, Conference table and Right Wall have to be included. · In the Presentation Forms box, select in which presentation forms the calculation results of Working Plane, Bureau, Conference table and Right Wall are presented. Select: · Textual Table; · Filled Iso Contour. Set the options for calculation presentation of Bureau: · In the Calculation Presentation dialogue box, select Bureau. · Click Options. · Select the General tab. In the Show box, set which attributes are shown in the calculation presentation. Disable (no cross)
Calculux
Unconnected Field Unconnected Grid
- A2.9 -
Indoor
Appendix 2
My Second Project
· Select the Scaling tab. In the Minimum Report Scale box, select the scaling of the report, select: 1:
10
In the Sizing box, select: Zoomed Relative to Grid Factor
1.000
· Click OK. Set the options for calculation presentation of Conference table: · In the Calculation Presentation dialogue box, select Conference table. · Click Options. · Select the General tab. In the Show box, set which attributes are shown in the calculation presentation. Disable (no cross)
Unconnected Field Unconnected Grid
· Select the Scaling tab. In the Minimum Report Scale box, select the scaling of the report, select: 1:
10
In the Sizing box, select: Zoomed Relative to Grid Factor
1.000
· Click OK. · Click OK to return to the Main View.
1.11
Creating a report Enter new Project Information Before you create a report you should enter information about the project. This information will be printed on the title page of your report. · Select Project Info from the Data menu. · In the Project tab you can enter project information: Name Subname Date Remarks
Calculux
My Second Design Example 1b Press Update General Lighting for my Office
- A2.10 -
Indoor
Appendix 2
My Second Project
Room Dimensions: Width Length Height
3.5 m 5.6 m 2.7 m
Additional Task- and Accent Lighting. · Click OK. Select which elements are to be displayed in the Top Project Overview of your report For this project the Grid points and Luminaire Code have not to be displayed. · Select Project Options from the Data menu. · Select the 2D View tab. In the Show box, Luminaire Code and Grids should not be checked (no cross). · Click OK. Report Setup · Select Setup from the Report menu. · Select the Components tab. In the Components box, select which components have to be included in the report. Include: Title Page Include: Table of Contents Top Project Overview Summary Luminaire Details Installation Data
In the Include box, double click on the + or - sign to include (+) or exclude (-) a calculation. For this project Working Plane, Bureau, Table and Right Wall have to be included. · In the Presentation Forms box, select in which presentation forms the calculation results are presented. Select: Select: Graphical Table Iso Contour Filled Iso Contour
· Click OK.
Calculux
- A2.11 -
Indoor
Appendix 2
1.12
My Second Project
Printing the Report You can use Print Preview (see Report menu) to preview your report before printing it. · Select Print Report from the File menu or Report menu. · Click OK in the Print dialogue box to print the report.
1.13
Saving the project In case you wish to redesign the project later, it is advisable to save the project. · Select Save from the File menu to save the project.
Calculux
- A2.12 -
Indoor
Appendix 3
My Third Project
Calculux
Indoor
Calculux
Indoor
Appendix 3
My Third Project
1
My Third Project
1.1
General In this project you will make a lighting design for a director room. The design will contain Indirect, Curtain, Painting, Whiteboard, Desk, Conference and Accent lighting. The luminaires will be mounted in or on a system ceiling (0.6 m x 0.6 m modules). Room Specifications Room dimensions: Width Length Height
4.70 m 7.50 m 2.70 m
(= height of the system ceiling)
Room reflectances: Windows (on the left) 0.10 Other walls 0.30 Ceiling 0.70 Floor 0.10
Following luminaire types will be used: Task Conference
TPH601/128 C7-60 and TBS630/314 TPH601/128 MD and MASTERLINE PLUS 35W 10D Curtain and Cupboard FBS145/118 Painting MASTERLINE PLUS 50W 24D Whiteboard MASTERLINE PLUS 50W 38D Indirect QFG101/300
1.2
C7-60
Starting a new Project • Select New Project from the File menu. A new empty window will be created. You can maximize the view if you wish.
Calculux
Indoor - A3.1 -
Appendix 3
1.3
My Third Project
Entering Project Information and Project Options • Select Project Info from the Data menu. In the Project tab you can enter project information, e.g.: Name Subname Remarks
Designer
Director room Example 3 Design for desk, conference and presentation lighting using light regulation factors (LRF). 'Your Name'
• In the Customer tab you can enter customer information, e.g.: Name
'Your Customer Name'
• In the Company tab you can enter company information. • Click OK. • Select Project Options from the Data menu. • Select the General tab. In the Calculations box, enter: Project Maintenance Factor
0.80
• Click OK.
1.4
Specifing the Room • Select Room from Data Menu. Select the Definition tab. In the Dimensions box, enter the dimensions of the room: Room Width Room Length Room Height Working Plane Heigh
4.70 7.50 2.70 0.80
m m m m
In the Position box, enter the position of the Front Bottom Left corner of the room: Front Bottom Left
(
X = 0.00 m Y = -3.75 m
The Y = 0 axis is the middle of the room. In Reflectances box, select Presets and double click on:
0.70 – 0.30 – 0.10
Due to the windows and curtain the value of the reflectance of the left wall has to be changed. Enter: Left
0.10
• Click OK.
Calculux
Indoor - A3.2 -
Appendix 3
1.5
My Third Project
Adding a door, windows and furniture to the room By means of the Drawing function, two windows, a door, a painting, a whiteboard, a desk, a computer desk, a cupboard and a conference table will be added to the room. • Select Drawings from the Data menu.
1.5.1
Adding the windows and door • Click Add, then select Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Window 1 0.00 m -3.45 m 1.00 m 3.30 m 0.10 m 0.00 deg
• Click OK. • Click Duplicate. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Window 2 0.00 m 0.15 m 2.10 m 3.30 m 0.10 m 0.00 deg
• Click OK. • Click Add, then select Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Door 4.60 2.60 2.10 0.80 0.10 0.00
m m m m m deg
• Click OK.
Calculux
Indoor - A3.3 -
Appendix 3 1.5.2
My Third Project
Adding a Painting and Whiteboard • Click Add, then select Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Painting 1.10 m -3.75 m 1.60 m 0.05 m 0.80 m 0.00 deg
• Click OK. • Click Add, then select Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Whiteboard 1.80 m 3.70 m 1.20 m 0.05 m 1.20 m 0.00 deg
• Click OK.
1.5.3
Adding the furniture • Click Add, then select Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Bureau 2.30 m -3.00 m 0.80 m 1.80 m 0.80 m 0.00 deg
• Click OK. • Click Add, then select Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Computer Table 3.10 m -2.00 m 0.80 m 0.80 m 0.80 m 0.00 deg
• Click OK.
Calculux
Indoor - A3.4 -
Appendix 3
My Third Project
• Click Add, then select Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Cupboard 4.10 m 0.60 m 1.50 m 1.20 m 0.60 m 0.00 deg
• Click OK. • Click Add, then select Rectangle. In the Add Rectangle dialogue box, set the following parameters: Name X Y Z Length Width Rotation
Conference Table 1.00 m 0.70 m 0.80 m 2.20 m 1.00 m 0.00 deg
• Click OK.
1.6
Drawing the system ceiling In this section the system ceiling (0.60 m x 0.60 m modules) will be added to the room. While this version of Calculux Indoor has no special drawing feature for system ceilings, each line of the system ceiling has to be drawn separately.
1.6.1
Drawing the lines in Y-direction (line spacing 0.60 m) • Click Add, then select Line. In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h1 X = 0.10, Y = -3.30, Z = 2.70 X = 4.70, Y = -3.30, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h2 X = 0.10, Y = -2.70, Z = 2.70 X = 4.70, Y = -2.70, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h3 X = 0.10, Y = -2.10, Z = 2.70 X = 4.70, Y = -2.10, Z = 2.70
• Click OK, then Duplicate.
Calculux
Indoor - A3.5 -
Appendix 3
My Third Project
• In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h4 X = 0.10, Y = -1.50, Z = 2.70 X = 4.70, Y = -1.50, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h5 X = 0.10, Y = -0.90, Z = 2.70 X = 4.70, Y = -0.90, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h6 X = 0.10, Y = -0.30, Z = 2.70 X = 4.70, Y = -0.30, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h7 X = 0.10, Y = 0.30, Z = 2.70 X = 4.70, Y = 0.30, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h8 X = 0.10, Y = 0.90, Z = 2.70 X = 4.70, Y = 0.90, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h9 X = 0.10, Y = 1.50, Z = 2.70 X = 4.70, Y = 1.50, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h10 X = 0.10, Y = 2.10, Z = 2.70 X = 4.70, Y = 2.10, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h11 X = 0.10, Y = 2.70, Z = 2.70 X = 4.70, Y = 2.70, Z = 2.70
Calculux
Indoor - A3.6 -
Appendix 3
My Third Project
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line h12 X = 0.10, Y = 3.30, Z = 2.70 X = 4.70, Y = 3.30, Z = 2.70
• Click OK.
1.6.2
Drawing the lines in X-direction (line spacing 0.60 m) • Click Add, then select Line. In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line v1 X = 0.60, Y = -3.75, Z = 2.70 X = 0.60, Y = 3.75, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line v2 X = 1.20, Y = -3.75, Z = 2.70 X = 1.20, Y = 3.75, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line v3 X = 1.80, Y = -3.75, Z = 2.70 X = 1.80, Y = 3.75, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line v4 X = 2.40, Y = -3.75, Z = 2.70 X = 2.40, Y = 3.75, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line v5 X = 3.00, Y = -3.75, Z = 2.70 X = 3.00, Y = 3.75, Z = 2.70
• Click OK, then Duplicate. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line v6 X = 3.60, Y = -3.75, Z = 2.70 X = 3.60, Y = 3.75, Z = 2.70
Calculux
Indoor - A3.7 -
Appendix 3
My Third Project
• Click OK. • In the Add Line dialogue box, set the following parameters: Name Point A Point B
Ceiling, line v7 X = 4.20, Y = -3.75, Z = 2.70 X = 4.20, Y = 3.75, Z = 2.70
• Click OK, then Close.
1.7
Selecting Project Luminaires • Click on Toolbar shortcut button . In the Add Project Luminaires dialogue box, select following luminaires: Family Name Family Code Housing Light distributor
TBS630 TBS630 TBS630/314 C7-60
• Click Add, select: Family Name Family Code Housing Light distributor
TPH601 TPH601 TPH601/128 C7-60
• Click Add, select: Family Name Family Code Housing Light distributor
TPH601 TPH601 TPH601/128 MD
• Click Add, select: Family Name Family Code Housing Light distributor
FBS145 FBS145 FBS145/118 (none)
• Click Add, select: Family Name Family Code Housing Light distributor
REFLECTOR LAMPS HALOGEN MASTERLINE PLUS 35W 10D 10D
• Click Add, select: Family Name Family Code Housing Light distributor
REFLECTOR LAMPS HALOGEN MASTERLINE PLUS 50W 24D 10D
• Click Add, select: Family Name Family Code Housing Light distributor
REFLECTOR LAMPS HALOGEN MASTERLINE PLUS 50W 38D 38D
Calculux
Indoor - A3.8 -
Appendix 3
My Third Project
• Click Add, select: Family Name Family Code Housing Light distributor
QFG101 QFG101 QFG101/300 (none)
• Click OK.
1.8
Defining the (calculation) grids Now the (calculation) grids for the Working Plane, Floor, Curtain, Bureau, Conference Table, Painting and Whiteboard will be defined.
( 1.8.1
For this project the grid points do not have to be displayed in the 2D project overviews. Therefore, the 'Show Grid option' has to be disabled in the Project Options.
Excluding the grid points from the 2D project overviews • Select Project Options from the Data menu. • Select the 2D View tab. In the Show box, disable (no cross) Grids. • Click OK.
1.8.2
Defining the grid for the Working Plane • Select Grids from Data menu. • Click Add in the Grids dialogue box. • In the Add Grid dialogue box, enter the name of the grid. Name
Working Plane
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 0.30, Y = -3.60, Z = 0.80 X = 4.50, Y = -3.60, Z = 0.80 X = 0.30, Y = 3.60, Z = 0.80
Number of Points in AB in AC
8 13
• Click OK.
(
The grid of the Working plane is not connected to 'Working Plane', but user defined. This is done because the grid points have to be in the middle of the system ceiling.
Calculux
Indoor - A3.9 -
Appendix 3 1.8.3
My Third Project
Defining the grid for the Floor • Click Add in the Grids dialogue box. • In the Add Grid dialogue box, enter the name of the grid. Name
Floor
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 0.25, Y = -3.50, Z = 0.00 X = 4.50, Y = -3.50, Z = 0.00 X = 0.25, Y = 3.50, Z = 0.00
Number of Points in AB in AC
(
9 15
The grid of the Floor is not connected to 'Working Plane', but user defined.
• Click OK.
1.8.4
Defining the grid for the Curtain • Click Add in the Grids dialogue box. • In the Add Grid dialogue box, enter the name of the grid. Name
Curtain
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 0.00, Y = -3.30, Z = 0.25 X = 0.00, Y = 3.30, Z = 0.25 X = 0.00, Y = -3.30, Z = 2.50
Number of Points in AB in AC
12 10
• Click OK.
Calculux
Indoor - A3.10 -
Appendix 3 1.8.5
My Third Project
Defining the grid for the Bureau • Click Add in the Grids dialogue box. • In the Add Grid dialogue box, enter the name of the grid. Name
Bureau
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 2.30, Y = -3.00, Z = 0.80 X = 3.10, Y = -3.00, Z = 0.80 X = 2.30, Y = -1.20, Z = 0.80
Number of Points in AB in AC
5 10
• Click OK.
1.8.6
Defining the grid for the Conference Table • Click Add in the Grids dialogue box. • In the Add Grid dialogue box, enter the name of the grid. Name
Conference Table
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 1.00, Y = 0.70, Z = 0.80 X = 2.00, Y = 0.70, Z = 0.80 X = 1.00, Y = 2.90, Z = 0.80
Number of Points in AB in AC
5 12
• Click OK.
Calculux
Indoor - A3.11 -
Appendix 3 1.8.7
My Third Project
Defining the grid for the Painting • Click Add in the Grids dialogue box. • In the Add Grid dialogue box, enter the name of the grid. Name
Painting
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 1.10, Y = -3.70, Z = 1.50 X = 1.70, Y = -3.70, Z = 1.50 X = 1.10, Y = -3.70, Z = 1.90
Number of Points in AB in AC
5 5
• Click OK.
1.8.8
Defining the grid for the Whiteboard • Click Add in the Grids dialogue box. • In the Add Grid dialogue box, enter the name of the grid. Name
Whiteboard
In the Coupling box, select: Connected to
None
In the Definition box, enter the position of the grid points: Position A B C
X = 1.80, Y = 3.70, Z = 1.20 X = 3.00, Y = 3.70, Z = 1.20 X = 1.80, Y = 3.70, Z = 2.10
Number of Points in AB in AC
8 7
• Click OK, then Close.
Calculux
Indoor - A3.12 -
Appendix 3
1.9
My Third Project
Defining Switching Modes To suit different activities the Desk Lighting, Conference Lighting and Presentation Lighting have to be dimmable. Therefore, the Light Regulation Factors (LRF) option has to be switched on. Enabling the LRF option • Select Project Options from the Data menu. • Select the General tab. In Miscellaneous box, check (cross) 'Use Light Regulation Factors'. • Click OK. Defining the Switching modes The following switching modes will be defined: • Desk Lighting • Conference Lighting • Presentation Lighting • Select Switching Modes from Data menu. In the Switching Modes dialogue box, enter the names of the switching modes: • Enter Desk Lighting, then click New. • Enter Conference Lighting, then click New. • Enter Presentation Lighting, then click OK.
1.10
Positioning Luminaires for the Task-, Conference- and Accent lighting
1.10.1
Positioning individual luminaires • Select Individual Luminaires from the Data menu. • Select the Luminaires tab. Lighting for Conference Table (suspended mounted, direct + indirect) • Click New. • In the first row of the luminaire list, select or enter: Type (A, B, ...)
TPH 601/128 MD (or select corresponding legend number (A, B, etc) placed before the luminaire type name as shown in the 'Type' column in the luminaire list). Quantity (Qty.) 1 Position (Pos) X = 1.50, Y = 1.80, Z = 2.00 Aiming Rot = 90, Tilt90 = 0.0, Tilt0 = 0.0 Sym NONE Switching Mode (1, 2, ...)
Calculux
Indoor - A3.13 -
Appendix 3 / LRF (%)
My Third Project Desk Lighting Conference Lighting
LRF LRF
60 10
Lighting for Bureau (suspended mounded, direct + indirect) • Click New. • In the second row of the luminaire list, select or enter: Type (A, B, ...) TPH 601/128 C7-60 Quantity (Qty.) 1 Position (Pos) X = 2.80, Y = -2.10, Z = 2.00 Aiming Rot = 90, Tilt90 = 0.0, Tilt0 = 0.0 Sym NONE Switching Mode (1, 2, ...) / LRF (%) Desk Lighting LRF 100
Uplighter • Click New. • In the third row of the luminaire list, select or enter: Type (A, B, ...) QFG 101/300 Quantity (Qty.) 1 Position (Pos) X = 3.90, Y = -3.00, Z = 1.80 Aiming Rot = 45, Tilt90 = 180, Tilt0 = 0.0 Sym NONE Switching Mode (1, 2, ...) / LRF (%) Conference Lighting LRF 70 Presentation Lighting LRF 40
Lighting for Painting • Click New. • In the fourth row of the luminaire list, select or enter: Type (A, B, ...) MASTERLINE PLUS 50W 24D Quantity (Qty.) 1 Position (Pos) X = 2.10, Y = -3.00, Z = 2.65 Aiming Rot = 135, Tilt90 = 0.0, Tilt0 = -43 Sym NONE Switching Mode (1, 2, ...) / LRF (%) Conference Lighting LRF 100 Presentation Lighting LRF 100
• Click OK.
(
To show the direction aiming of the luminaire the Aiming Arrows in the 2D Project Overview have to be switched on.
• Select Project Options from the Data menu. • Select the 2D View tab. In the Show box, check (cross) Aiming Arrows. • Click OK.
Calculux
Indoor - A3.14 -
Appendix 3 1.10.2
My Third Project
Positioning arranged luminaires Lighting for the Bureau • Select Arranged Luminaires from the Data menu. • In the Arrangements dialogue box, click Add and select Block. • In the Arrangement tab, enter the name of the arrangement. Name
Bureau
In the Position A box, enter the position of the bottom left luminaire. Position
X = 1.50 m, Y = -2.40 m, Z = 2.70 m
In the Block Orientation box, enter Orientation
Rot = 0.0, Tilt90 = 0.0, Tilt0 = 0.0
In the Arrangement box, enter quantity and spacing of the luminaires. Number in AB: Number in AC:
2 2
Spacing in AB: Spacing in AC:
2.40 m 2.40 m
• Select the Luminaire Definition tab. In the Project Luminaire box, select: Type
TBS 630/314 C7-60
• Click Apply. In the Aiming Type box, enter: Rot
90.0
• Click Apply. In the Switching Modes box check/enter: Desk Lighting Conference Lighting
LRF LRF
100 40
• Click Apply.
(
The dimensions of the luminaire and system ceiling are both 0.60 m x 0.60 m. Therefore, this luminaire type can not be seen if the project is printed on a B/W printer.
• Click OK.
Calculux
Indoor - A3.15 -
Appendix 3
My Third Project
Conference Lighting Arrangement 1 • In the Arrangements dialogue box, click Add and select Block. • In the Arrangement tab, enter the name of the arrangement. Name
Conference Table 1
In the Position A box, enter the position of the bottom left luminaire. Position
X = 1.10 m, Y = 1.20 m, Z = 2.70 m
In the Block Orientation box, enter Orientation
Rot = 0.0, Tilt90 = 0.0, Tilt0 = 0.0
In the Arrangement box, enter quantity and spacing of the luminaires. Number in AB: Number in AC:
2 3
Spacing in AB: Spacing in AC:
0.80 m 0.60 m
• Select the Luminaire Definition tab. In the Project Luminaire box, select: Type
MASTERLINE PLUS 35W 10D
• Click Apply. In the Switching Modes box check/enter: Conference Lighting Presentation Lighting
LRF LRF
100 70
• Click Apply. • Click OK. Arrangement 2 • In the Arrangements dialogue box, click Add and select Line. Select the Arrangement tab, enter: Name
Conference Table 2
In the Line box, enter the position and quantity of the luminaires: First X = 1.50 m, Y = 0.80 m, Z = 2.70 m Last X = 1.50 m, Y = 2.80 m, Z = 2.70 m Number of luminaires 2 Spacing 2.00 m Orientation
Rot = 90.0, Tilt90 = 0.0
• Select the Luminaire Definition tab. In the Project Luminaire box, enter: Type
MASTERLINE PLUS 35W 10D
• Click Apply.
Calculux
Indoor - A3.16 -
Appendix 3
My Third Project
In the Switching Modes box check/enter: Conference Lighting Presentation Lighting
LRF LRF
100 70
• Click Apply. • Click OK. Cupboard and Door Lighting • In the Arrangements dialogue box, click Add and select Line. Select the Arrangement tab, enter: Name
Cupboard and Door
In the Line box, enter the position and quantity of the luminaires: First X = 3.90 m, Y = 0.60 m, Z = 2.70 m Last X = 3.90 m, Y = 3.00 m, Z = 2.70 m Number of luminaires 3 Spacing 1.20 m Orientation
Rot = 90.0, Tilt90 = 0.0
• Select the Luminaire Definition tab. In the Project Luminaire box, enter: Type
FBS 145/118
• Click Apply. In the Switching Modes box check/enter: Desk Lighting Conference Lighting
LRF LRF
100 100
• Click Apply. • Click OK. Curtain Lighting • In the Arrangements dialogue box, click Add and select Line. • Select the Arrangement tab, enter: Name
Curtain
In the Line box, enter the position and quantity of the luminaires: First X = 0.30 m, Y = -3.00 m, Z = 2.70 m Last X = 0.30 m, Y = 3.00 m, Z = 2.70 m Number of luminaires 6 Spacing 1.20 m Orientation
Rot = 90.0, Tilt90 = 0.0
Calculux
Indoor - A3.17 -
Appendix 3
My Third Project
• Select the Luminaire Definition tab. In the Project Luminaire box, enter: Type
FBS 145/118
• Click Apply. In the Switching Modes box, check/enter: Desk Lighting Conference Lighting
LRF LRF
100 100
• Click Apply. • Click OK. Whiteboard Lighting • In the Arrangements dialogue box, click Add and select Line. Select the Arrangement tab, enter: Name
Whiteboard
In the Line box, enter the position and quantity of the luminaires: First X = 2.10 m, Y = 3.00 m, Z = 2.65 m Last X = 2.70 m, Y = 3.00 m, Z = 2.65 m Number of luminaires 2 Spacing 0.60 m Orientation
Rot = 0.0, Tilt90 = 0.0
• Select the Luminaire Definition tab. In the Project Luminaire box, enter: Type
MASTERLINE PLUS 50W 38D
• Click Apply (if applicable). In the Aiming Type box, enter: Tilt0
-30.0
• Click Apply. In the Switching Modes box, check/enter: Conference Lighting
LRF
100
• Click Apply. • Click OK, then Close.
Calculux
Indoor - A3.18 -
Appendix 3
1.11
My Third Project
Defining the Calculations • Select Define from the Calculation menu. • Double click on 'Working Plane'. In the Change Calculation dialogue box, change: Name Grid Switching Mode Calculation Type Result Type Direction
Working Plane Working Plane Desk Lighting Plane Illuminance Total Surface +N
• Click OK. • Double click on 'Floor'. In the Change Calculation dialogue box, change: Name Grid Switching Mode Calculation Type Result Type Direction
Floor Floor Presentation Lighting Plane Illuminance Total Surface +N
• Click OK. • Double click on 'Curtain'. In the Change Calculation dialogue box, change: Name Grid Switching Mode Calculation Type Result Type Direction
Curtain Curtain Desk Lighting Plane Illuminance Total Surface +N
• Click OK. • Double click on 'Bureau'. In the Change Calculation dialogue box, change: Name Grid Switching Mode Calculation Type Result Type Direction
Bureau Bureau Desk Lighting Plane Illuminance Total Surface +N
• Click OK.
Calculux
Indoor - A3.19 -
Appendix 3
My Third Project
• Double click on 'Conference Table'. In the Change Calculation dialogue box, change: Name Grid Switching Mode Calculation Type Result Type Direction
Conference Table Conference Table Conference Lighting Plane Illuminance Total Surface +N
• Click OK. • Click Duplicate. In the Add Calculation dialogue box, change: Name Grid Switching Mode Calculation Type Result Type Direction
Conference Table 1 Conference Table Presentation Lighting Plane Illuminance Total Surface +N
• Click OK. • Double click on 'Painting'. In the Change Calculation dialogue box, change: Name Grid Switching Mode Calculation Type Result Type Direction
Painting Painting Conference Lighting Plane Illuminance Total Surface +N
• Click OK. • Double click on 'Whiteboard'. In the Change Calculation dialogue box, change: Name Grid Switching Mode Calculation Type Result Type Direction
Whiteboard Whiteboard Table Conference Lighting Plane Illuminance Total Surface +N
• Click OK, then Close.
Calculux
Indoor - A3.20 -
Appendix 3
1.12
My Third Project
Defining the Calculation Presentation • Select Presentation from the Calculation menu. In the Include box, double click on the + or - sign to include (+) or exclude (-) a calculation. For this project all calculations have to be included (Working Plane, Floor, Curtain, Bureau, Conference Table, Painting and Whiteboard). In the Presentation Forms box, select in which presentation forms the calculation results will be presented. Select: • Graphical Table; • Filled Iso Contour.
1.12.1
Set the options for calculation presentation of all Calculations • In the Calculation Presentation dialogue box, select a calculation, beginning at the top. • Click Options.
( -
For vertical calculations 'Working Plane', 'Floor', 'Curtain', 'Bureau' and 'Conference Table' the Aiming Arrows, Connected Grid and Unconnected Grid do not have to be displayed in the calculation presentation. For vertical calculations 'Painting' and 'Whiteboard' the Aiming Arrows, Connected Field, Unconnected Field and Unconnected Grid do not have to be displayed in the calculation presentation.
• Select the General tab. In the Show box, disable (no cross): Aiming Arrows Connected Grid Unconnected Grid
Aiming Arrows Connected Field Unconnected Field Unconnected Grid
OR
• Select the Scaling tab. In the Sizing box, select: Zoomed Relative to Grid Factor
1.000
• Click OK. • Repeat the above steps for all remaining calculations. • Click OK to return to the Main View.
Calculux
Indoor - A3.21 -
Appendix 3 1.12.2
My Third Project
Report Setup • Select Setup from the Report menu. • Select the Components tab. In the Components box, select which components have to be included in the report. Include: • Title Page; • Table of Contents; • Top Project Overview; • Summary; • Luminaire Details; • Installation Data. In the Include box, double click on the + or - sign to include (+) or exclude (-) a calculation. For this project 'Working Plane', 'Floor', 'Curtain', 'Bureau', 'Conference Table', 'Painting' and 'Whiteboard' have to be included. In the Presentation Forms box, select in which presentation forms the calculation results are presented. For all calculations, select: • Graphical Table; • Filled Iso Contour. • Click OK to return to the Main View.
1.13
Printing the report
(
You can use Print Preview (see Report menu) to preview your report before printing it.
• Select Print Report from the File menu or Report menu. • Click OK in the Print dialogue box to print the report.
1.14
Saving the project • Select Save from the File menu to save the project (DIRECTOR_ROOM.CIN).
Calculux
Indoor - A3.22 -
Appendix 4
My First Project printed report
Calculux
Indoor
Calculux
Indoor
My First Design Example 1a Date: Customer:
27-04-1999 P. Tan
Designer:
T. Gielen
Description:
General Lighting for my Office: Room Dimensions: Width 3.5 m Length 5.6 m Height 2.7 m
The nominal values shown in this report are the result of precision calculations, based upon precisely positioned luminaires in a fixed relationship to each other and to the area under examination. In practice the values may vary due to tolerances on luminaires, luminaire positioning, reflection properties and electrical supply.
Philips Lighting B.V. Lighting Design and Application Centre LiDAC Central, Building ED-2 P.O. Box 80020 5600 JM Eindhoven Telephone: + 31 40 2758472 Fax: + 31 40 2756406 Telex: 35000 phtc nl E-Mail:
[email protected]
CalcuLuX Indoor 4.5a
My First Design Example 1a
Philips Lighting B.V. Date: 27-04-1999
Table of Contents
1.
Project Description
3
1.1
Top Project Overview
3
2.
Summary
4
2.1 2.2 2.3
Room Summary Project Luminaires Calculation Results
4 4 4
3.
Calculation Results
5
3.1 3.2 3.3
Working Plane: Textual Table Working Plane: Iso Contour Working Plane: Filled Iso Contour
5 6 7
4.
Luminaire Details
8
4.1
Project Luminaires
8
5.
Installation Data
9
5.1 5.2
Legends Luminaire Positioning and Orientation
9 9
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
Page:
2/9
My First Design
Philips Lighting B.V. Date: 27-04-1999
Example 1a
1. Project Description
4.5
5.5
1.1 Top Project Overview
A
A
A
-0.5
0.5
1.5
2.5
Y(m)
3.5
A
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
X(m)
A:
TBS 600/135 C7-60
Width 3.50 m CalcuLuX Indoor 4.5a
Length 5.60 m
Height 2.70 m
Scale 1:40
Working Plane Height 0.80 m Philips Lighting B.V.
Page:
3/9
My First Design
Philips Lighting B.V. Date: 27-04-1999
Example 1a
2. Summary 2.1 Room Summary Room Dimensions Width Length Height Working Plane Height
3.50 5.60 2.70 0.80
m m m m
Room Position (Front Bottom Left) X 0.00 Y 0.00
m m
Surface Ceiling Left Wall Right Wall Front Wall Back Wall Floor
Total Average Room Surface Luminance (cd/m2): Ceiling Left Right Front 4.8 10.6 10.7 9.0
Back 9.0
Reflectance 0.50 0.30 0.30 0.30 0.30 0.10
Floor 9.0
The overall maintenance factor used for this project is 0.80.
2.2 Project Luminaires Code A
Qty Luminaire Type 4 TBS 600/135 C7-60
Lamp Type 1 * TL5 35W HE
Power (W) 40.0
Flux (lm) 1 * 3650
The total installed power: 0.16 (kWatt) Number of Luminaires Per Arrangement: Luminaire Code Arrangement A Room Block 4
Power (kWatt) 0.16
2.3 Calculation Results
(Il)luminance Calculations: Calculation Type Working Plane Surface Illuminance
CalcuLuX Indoor 4.5a
Unit lux
Ave Min/Ave Min/Max 357 0.59 0.46
Philips Lighting B.V.
Result Total
Page:
4/9
My First Design
Philips Lighting B.V. Date: 27-04-1999
Example 1a
3. Calculation Results 3.1 Working Plane: Textual Table Grid Calculation Result Type
: Working Plane at Z = 0.80 m : Surface Illuminance (lux) : Total
X (m) Y (m) 5.37
0.25
0.75
1.25
1.75
2.25
2.75
3.25
211<
273
307
311
307
274
213
4.90
267
352
390
393
390
354
270
4.44
289
387
419
415
419
388
292
3.97
292
391
424
418
424
393
295
3.50
293
387
430
432
430
389
295
3.03
307
403
453
463>
454
405
309
2.57
307
403
453
463>
454
405
309
2.10
293
387
430
432
430
389
295
1.63
292
391
424
418
424
393
295
1.16
289
387
419
415
419
388
292
0.70
267
352
390
393
390
354
270
0.23
211
273
307
311
307
274
213
Average 357 CalcuLuX Indoor 4.5a
Min/Ave 0.59
Min/Max 0.46
Project maintenance factor 0.80
Philips Lighting B.V.
Page:
5/9
My First Design
Philips Lighting B.V. Date: 27-04-1999
Example 1a
3.2 Working Plane: Iso Contour Grid Calculation Result Type
: Working Plane at Z = 0.80 m : Surface Illuminance (lux) : Total
300 5
25 0
350
250
400 A
4
A
300
350
Y(m)
400
3
450
2
350
300
A
250
250
40 0
1
A
350
0
300
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
X(m)
A:
TBS 600/135 C7-60
Average 357 CalcuLuX Indoor 4.5a
Min/Ave 0.59
Min/Max 0.46
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:40 Page:
6/9
My First Design
Philips Lighting B.V. Date: 27-04-1999
Example 1a
3.3 Working Plane: Filled Iso Contour : Working Plane at Z = 0.80 m : Surface Illuminance (lux) : Total
5
Grid Calculation Result Type
450
A
4
A
Y(m)
3
400
2
350
300 A
1
A
0
250
-0.5
0.5
1.5
2.5
3.5
X(m)
A:
TBS 600/135 C7-60
Average 357 CalcuLuX Indoor 4.5a
Min/Ave 0.59
Min/Max 0.46
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:40 Page:
7/9
My First Design
Philips Lighting B.V. Date: 27-04-1999
Example 1a
4. Luminaire Details 4.1 Project Luminaires Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
TBS 600/135 C7-60 1 x TL5 35W HE / 840 Light output ratios DLOR ULOR TLOR Ballast Lamp flux Luminaire wattage Measurement code
: : : : : : :
0.76 0.00 0.76 Electronic 3650 lm 40.0 W LVW1067900
90o
90o
60o
60o
250
30o
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
C = 180o C = 270o
0o Imax
30o C = 0o C = 90o
Page:
8/9
My First Design Example 1a
Philips Lighting B.V. Date: 27-04-1999
5. Installation Data 5.1 Legends
Project Luminaires: Code Qty Luminaire Type A 4 TBS 600/135 C7-60
Lamp Type 1 * TL5 35W HE
Flux (lm) 1 * 3650
5.2 Luminaire Positioning and Orientation Qty and Code 1*A 1*A 1*A 1*A
Position
Aiming Angles
X (m)
Y (m)
Z (m)
Rot.
Tilt90
Tilt0
0.88 0.88 2.63 2.63
1.40 4.20 1.40 4.20
2.70 2.70 2.70 2.70
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
Page:
9/9
Appendix 5
My Second Project printed report
Calculux
Indoor
Calculux
Indoor
My Second Design Example 1b Date: Customer:
27-04-1999 P. Tan
Designer:
T. Gielen
Description:
General Lighting for my Office: Room Dimensions: Width 3.5 m Length 5.6 m Height 2.7 m Additional Task-and Accent Lighting
The nominal values shown in this report are the result of precision calculations, based upon precisely positioned luminaires in a fixed relationship to each other and to the area under examination. In practice the values may vary due to tolerances on luminaires, luminaire positioning, reflection properties and electrical supply.
Philips Lighting B.V. Lighting Design and Application Centre LiDAC Central, Building ED-2 P.O. Box 80020 5600 JM Eindhoven Telephone: + 31 40 2758472 Fax: + 31 40 2756406 Telex: 35000 phtc nl E-Mail:
[email protected]
CalcuLuX Indoor 4.5a
My Second Design Example 1b
Philips Lighting B.V. Date: 27-04-1999
Table of Contents
1.
Project Description
3
1.1
Top Project Overview
3
2.
Summary
4
2.1 2.2 2.3
Room Summary Project Luminaires Calculation Results
4 4 5
3.
Calculation Results
6
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12
Working Plane: Graphical Table Working Plane: Iso Contour Working Plane: Filled Iso Contour Bureau: Graphical Table Bureau: Iso Contour Bureau: Filled Iso Contour Conference table: Graphical Table Conference table: Iso Contour Conference table: Filled Iso Contour Right wall: Graphical Table Right wall: Iso Contour Right wall: Filled Iso Contour
6 7 8 9 10 11 12 13 14 15 16 17
4.
Luminaire Details
18
4.1
Project Luminaires
18
5.
Installation Data
19
5.1 5.2
Legends Luminaire Positioning and Orientation
19 19
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
Page:
2/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
1. Project Description
-0.5
0.5
1.5
2.5
Y(m)
3.5
4.5
5.5
1.1 Top Project Overview
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
X(m)
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672) Width 3.50 m CalcuLuX Indoor 4.5a
Length 5.60 m
Height 2.70 m
Scale 1:40
Working Plane Height 0.80 m Philips Lighting B.V.
Page:
3/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
2. Summary 2.1 Room Summary Room Dimensions Width Length Height Working Plane Height
3.50 5.60 2.70 0.80
m m m m
Room Position (Front Bottom Left) X 0.00 Y 0.00
m m
Surface Ceiling Left Wall Right Wall Front Wall Back Wall Floor
Total Average Room Surface Luminance (cd/m2): Switching Mode Ceiling Left General Lighting 5.0 10.2 Task Lighting Bureau 5.3 10.4 Task Lighting Table 5.3 10.4 Accent Lighting Painting 5.2 10.4
Right 10.3 10.5 10.6 12.3
Reflectance 0.50 0.30 0.30 0.30 0.30 0.10
Front 9.1 9.2 9.2 9.2
Back 14.3 14.4 14.4 14.4
Floor 8.4 9.6 9.6 8.5
The overall maintenance factor used for this project is 0.80.
2.2 Project Luminaires Code A B
Qty Luminaire Type Lamp Type 4 TBS 600/135 C7-60 1 * TL5 35W HE 10 MASTERLINE PLUS 20W 24D (13672) 1 * 12V 20W 24D
Power (W) 40.0 20.0
Flux (lm) 1 * 3650 1 * 305
The total installed power: 0.36 (kWatt) Number of Luminaires Per Switching Mode: Luminaire Code Switching Mode A B General Lighting 4 0 Task Lighting Bureau 4 4 Task Lighting Table 4 4 Accent Lighting Painting 4 2
Number of Luminaires Per Arrangement: Luminaire Code Arrangement B A Bureau 4 0 4 Conference table 0 General 4 0 2 Painting 0
CalcuLuX Indoor 4.5a
Power (kWatt) 0.16 0.24 0.24 0.20
Power (kWatt) 0.08 0.08 0.16 0.04
Philips Lighting B.V.
Page:
4/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
2.3 Calculation Results
Switching Modes: Switching Mode Code General Lighting 1 Task Lighting Bureau 2 Task Lighting Table 3 Accent Lighting Painting 4
(Il)luminance Calculations: Calculation Working Plane Bureau Conference table Right wall
CalcuLuX Indoor 4.5a
Switching Mode 1 2 3 4
Type
Unit
Ave Min/Ave Min/Max
Surface Illuminance Surface Illuminance Surface Illuminance Surface Illuminance
lux lux lux lux
331 699 716 128
Philips Lighting B.V.
0.60 0.57 0.55 0.19
0.47 0.40 0.40 0.05
Result Total Total Total Total
Page:
5/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3. Calculation Results 3.1 Working Plane: Graphical Table : Working Plane at Z = 0.80 m : Surface Illuminance (lux) : Total
5
Grid Calculation Result Type
General Lighting
284
376
411
413
412
378
286
292
392
423
421
423
393
294
A
290
387
419
419
419
388
292
260
343
381
385
381
344
263
212
277
315
317
315
278
213
197
253
282
293
283
254
199
226
292
329
337
329
293
228
269
354
392
396
392
355
271
288
387
419
414
419
388
291
288
387
418
414
419
388
291
267
352
390
393
390
353
269
211
273
307
311
307
274
213
2
Y(m)
3
4
A
A
0
1
A
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
X(m)
A:
TBS 600/135 C7-60
Average 331 CalcuLuX Indoor 4.5a
Min/Ave 0.60
Min/Max 0.47
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:40 Page:
6/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.2 Working Plane: Iso Contour : Working Plane at Z = 0.80 m : Surface Illuminance (lux) : Total
5
350
Grid Calculation Result Type
General Lighting
A
A
250
300
300
400
25 0
4
0 35
3
300
250
35 0
2
30 0
Y(m)
200
200 400
A
350
1
A
0 20
300
0 25
0
0 20
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
X(m)
A:
TBS 600/135 C7-60
Average 331 CalcuLuX Indoor 4.5a
Min/Ave 0.60
Min/Max 0.47
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:40 Page:
7/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.3 Working Plane: Filled Iso Contour : Working Plane at Z = 0.80 m : Surface Illuminance (lux) : Total
5
Grid Calculation Result Type
General Lighting
A
A
4
400
Y(m)
3
350
2
300
250 A
1
A
0
200
-0.5
0.5
1.5
2.5
3.5
X(m)
A:
TBS 600/135 C7-60
Average 331 CalcuLuX Indoor 4.5a
Min/Ave 0.60
Min/Max 0.47
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:40 Page:
8/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.4 Bureau: Graphical Table : Bureau at Z = 0.80 m : Surface Illuminance (lux) : Total
4.8
Grid Calculation Result Type
Task Lighting Bureau
A
540
627
626
540
695
908
908
694
990
992
644
821
821
645
616
794
796
619
647
905
906
648
4.3
4.4
4.5
4.6
4.7
A
B
B
734
3.9 3.5
3.6
3.7
3.8
Y(m)
4
4.1
4.2
733
B
3.4
B
788
787
572
401
495
499
404
2.9
3
3.1
3.2
3.3
569
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
X(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 699 CalcuLuX Indoor 4.5a
Min/Ave 0.57
Min/Max 0.40
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:12.5 Page:
9/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.5 Bureau: Iso Contour : Bureau at Z = 0.80 m : Surface Illuminance (lux) : Total
4.8
Grid Calculation Result Type
Task Lighting Bureau
A
4.7
A
600
60 0
4.6
700
4.3
4.4
0 90
4.5
800
B
3.9
800
900
3.5
B
3.2
3.3
70 0
3.4
B
800
3.6
3.7
3.8
700
Y(m)
4
4.1
4.2
B
600
2.9
3
3.1
500
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
X(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 699 CalcuLuX Indoor 4.5a
Min/Ave 0.57
Min/Max 0.40
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:12.5 Page:
10/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.6 Bureau: Filled Iso Contour : Bureau at Z = 0.80 m : Surface Illuminance (lux) : Total
4.4
4.5
4.6
4.7
4.8
Grid Calculation Result Type
Task Lighting Bureau
4.3
900 B
4.1
4.2
B
3.9 3.8
Y(m)
4
800
3.5
3.6
3.7
700
600
B
3.3
3.4
B
2.9
3
3.1
3.2
500
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
X(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 699 CalcuLuX Indoor 4.5a
Min/Ave 0.57
Min/Max 0.40
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:12.5 Page:
11/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.7 Conference table: Graphical Table : Conference table at Z = 0.80 m : Surface Illuminance (lux) : Total
534
689
622
905
604
396
956
820
485
956
820
485
604
396
740
671
655
696
998
848
834
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
Grid Calculation Result Type
Task Lighting Table
B
1.4
A
1.3
Y(m)
1.5
B
1.2
834
848
998
905
622
B
1.1
B
695
655
670
739
688
0.4
0.5
0.6
0.7
0.8
0.9
1
533
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
X(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 716 CalcuLuX Indoor 4.5a
Min/Ave 0.55
Min/Max 0.40
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:12.5 Page:
12/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.8 Conference table: Iso Contour : Conference table at Z = 0.80 m : Surface Illuminance (lux) : Total
1.7
60 0
400
1.8
1.9
2
2.1
2.2
2.3
Grid Calculation Result Type
Task Lighting Table
1.6
B
B
90 0
1.4
1.5
700
90 0
800
A
1.2
B
500
600
1.3
Y(m)
70 0
800
B
1.1
600 800
0.4
0.5
0.6
0.7
0.8
0.9
1
700
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
X(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 716 CalcuLuX Indoor 4.5a
Min/Ave 0.55
Min/Max 0.40
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:12.5 Page:
13/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.9 Conference table: Filled Iso Contour Grid Calculation Result Type
Task Lighting Table
: Conference table at Z = 0.80 m : Surface Illuminance (lux) : Total
400
600
800
700
900
1.6
1.7
1.8
1.9
2
2.1
500
B
1.4
A
1.2
1.3
Y(m)
1.5
B
B
0.7
0.8
0.9
1
1.1
B
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
X(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 716 CalcuLuX Indoor 4.5a
Min/Ave 0.55
Min/Max 0.40
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:12.5 Page:
14/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.10 Right wall: Graphical Table : Right wall at X = 3.50 m : Surface Illuminance (lux) : Total
3.5
4.5
Grid Calculation Result Type
Accent Lighting Painting
B
B
A
25
25
25
24
24
24
25
94
156
27
43
191
189
43
28
295
227
265
67
201
259
259
200
62
205
168
121
96
108
151
163
163
150
103
133
134
125
111
107
110
122
127
127
120
99
112
115
119
123
123
120
115
110
108
107
97
26
25
339
70
268
532
164
172
131
113
27
80
219
240 1.5
28
-1.5
-0.5
0.5
Z(m)
2.5
A
31
6
5
4
3
2
1
0
Y(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 128 CalcuLuX Indoor 4.5a
Min/Ave 0.19
Min/Max 0.05
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:40 Page:
15/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.11 Right wall: Iso Contour : Right wall at X = 3.50 m : Surface Illuminance (lux) : Total
3.5
4.5
Grid Calculation Result Type
Accent Lighting Painting
A
A
B
2.5
B
100
200
1.5
0 40 0 50
Z(m)
20 0
0 30
100 200
-1.5
-0.5
100
0.5
100
6
5
4
3
2
1
0
Y(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 128 CalcuLuX Indoor 4.5a
Min/Ave 0.19
Min/Max 0.05
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:40 Page:
16/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
3.12 Right wall: Filled Iso Contour Grid Calculation Result Type
Accent Lighting Painting
: Right wall at X = 3.50 m : Surface Illuminance (lux) : Total
100
300
500
400
3.5
200
B
A
B
1.5 -0.5
0.5
Z(m)
2.5
A
6
5
4
3
2
1
0
Y(m)
A: B:
TBS 600/135 C7-60 MASTERLINE PLUS 20W 24D (13672)
Average 128 CalcuLuX Indoor 4.5a
Min/Ave 0.19
Min/Max 0.05
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:40 Page:
17/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
4. Luminaire Details 4.1 Project Luminaires Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
TBS 600/135 C7-60 1 x TL5 35W HE / 840 Light output ratios DLOR ULOR TLOR Ballast Lamp flux Luminaire wattage Measurement code
: : : : : : :
0.76 0.00 0.76 Electronic 3650 lm 40.0 W LVW1067900
90o
90o
60o
60o
250
30o
: : : : : :
0.76 0.00 0.76 305 lm 20.0 W 9502091800
0o Imax
30o C = 0o C = 90o
Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
MASTERLINE PLUS 20W 24D (13672) 1 x 12V 20W 24D Light output ratios DLOR ULOR TLOR Lamp flux Luminaire wattage Measurement code
C = 180o C = 270o
90o
90o
60o
60o
3750
30o
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
C = 180o C = 270o
0o Imax
30o C = 0o C = 90o
Page:
18/19
My Second Design
Philips Lighting B.V. Date: 27-04-1999
Example 1b
5. Installation Data 5.1 Legends
Project Luminaires: Lamp Type Qty Luminaire Type Code 1 * TL5 35W HE 4 TBS 600/135 C7-60 A 10 MASTERLINE PLUS 20W 24D (13672) 1 * 12V 20W 24D B
Flux (lm) 1 * 3650 1 * 305
Switching Modes: Switching Mode Code General Lighting 1 Task Lighting Bureau 2 Task Lighting Table 3 Accent Lighting Painting 4
5.2 Luminaire Positioning and Orientation Qty and Code
Position
Switching Modes
Aiming Angles
X (m)
Y (m)
Z (m)
Rot.
Tilt90
Tilt0
1
2
3
4
1*A 1*A 1*B 1*B 1*B
0.88 0.88 1.50 1.50 1.90
1.40 4.80 3.50 4.30 3.50
2.70 2.70 2.70 2.70 2.70
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
+ + -
+ + + + +
+ + -
+ + -
1*B 1*B 1*B 1*A 1*A
1.90 2.10 2.10 2.63 2.63
4.30 1.20 1.60 1.40 4.80
2.70 2.70 2.70 2.70 2.70
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
+ +
+ + +
+ + + +
+ +
1*B 1*B 1*B 1*B
2.75 2.75 2.90 2.90
3.25 4.25 1.20 1.60
2.65 2.65 2.70 2.70
0.00 0.00 0.00 0.00
40.00 40.00 0.00 0.00
0.00 0.00 0.00 0.00
-
-
+ +
+ + -
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
Page:
19/19
Appendix 6
My Third Project printed report
Calculux
Indoor
Calculux
Indoor
Director room Example 3 Date: Customer:
27-04-1999 P. Tan
Designer:
T. Gielen
Description:
Design for desk, conference and presentation lighting using light regulation factors (LRF)
The nominal values shown in this report are the result of precision calculations, based upon precisely positioned luminaires in a fixed relationship to each other and to the area under examination. In practice the values may vary due to tolerances on luminaires, luminaire positioning, reflection properties and electrical supply.
Philips Lighting B.V. Lighting Design and Application Centre LiDAC Central, Building ED-2 P.O. Box 80020 5600 JM Eindhoven Telephone: + 31 40 2758472 Fax: + 31 40 2756406 Telex: 35000 phtc nl E-Mail:
[email protected]
CalcuLuX Indoor 4.5a
Director room Example 3
Philips Lighting B.V. Date: 27-04-1999
Table of Contents
1.
Project Description
3
1.1
Top Project Overview
3
2.
Summary
4
2.1 2.2 2.3
Room Summary Project Luminaires Calculation Results
4 4 5
3.
Calculation Results
6
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16
Working Plane: Graphical Table Working Plane: Filled Iso Contour Floor: Graphical Table Floor: Filled Iso Contour Curtain: Graphical Table Curtain: Filled Iso Contour Bureau: Graphical Table Bureau: Filled Iso Contour Conference Table: Graphical Table Conference Table: Filled Iso Contour Painting: Graphical Table Painting: Filled Iso Contour Whiteboard: Graphical Table Whiteboard: Filled Iso Contour Conference Table 1: Graphical Table Conference Table 1: Filled Iso Contour
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
4.
Luminaire Details
22
4.1
Project Luminaires
22
5.
Installation Data
26
5.1 5.2
Legends Luminaire Positioning and Orientation
26 26
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
Page:
2/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
1. Project Description
3.5
4.5
1.1 Top Project Overview
D
A
A
D
2.5
C C
C
E
C
D
1.5
D
C
C
C C D
Y(m)
0.5
D
-0.5
G
G
-1.5
D
D F -2.5
G
B
H
-4.5
-3.5
D
G
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
5.5
6.5
X(m)
Maximum of 6 luminaire types exceeded - discarding legend. Width 4.70 m CalcuLuX Indoor 4.5a
Length 7.50 m
Height 2.70 m
Scale 1:50
Working Plane Height 0.80 m Philips Lighting B.V.
Page:
3/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
2. Summary 2.1 Room Summary Room Dimensions Width Length Height Working Plane Height
4.70 7.50 2.70 0.80
m m m m
Room Position (Front Bottom Left) X 0.00 Y -3.75
m m
Surface Ceiling Left Wall Right Wall Front Wall Back Wall Floor
Total Average Room Surface Luminance (cd/m2): Switching Mode Ceiling Left Desk Lighting 13.3 4.6 Conference Lighting 20.2 4.3 Presentation Lighting 9.2 0.5
Right 12.0 9.5 1.8
Reflectance 0.70 0.10 0.30 0.30 0.30 0.10
Front 10.6 13.0 6.4
Back 6.3 15.3 1.2
Floor 10.7 9.5 2.2
The overall maintenance factor used for this project is 0.80.
2.2 Project Luminaires Code A B C D E F G H
Qty 2 1 8 9 1 1 4 1
Luminaire Type Lamp Type MASTERLINE PLUS 50W 38D (13678) 1 * 12V 50W 38D MASTERLINE PLUS 50W 24D (13674) 1 * 12V 50W 24D MASTERLINE PLUS 35W 10D (13764) 1 * 12V 35W 10D FBS 145/118 1 * PL-C 18W TPH 601/128 MD 1 * TL5 28W HE TPH 601/128 C7-60 1 * TL5 28W HE TBS 630/314 C7-60 3 * TL5 14W HE QFG 101/300 1 * T3 P S 300W
Power (W) 50.0 50.0 35.0 24.0 33.0 33.0 52.0 300.0
Flux (lm) 1 * 1000 1 * 1000 1 * 620 1 * 1200 1 * 2900 1 * 2900 3 * 1350 1 * 5600
The total installed power: 1.22 (kWatt) Number of Luminaires Per Switching Mode: Switching Mode Desk Lighting Conference Lighting Presentation Lighting
A 0 2 0
Switching Mode
B 0 1 1
C 0 8 8
Luminaire Code D E 9 1 9 1 0 0
F 1 0 0
G 4 4 0
H 0 1 1
Luminaire Code D E 0 0
F 0
G 4
H 0
Power (kWatt)
Desk Lighting Conference Lighting Presentation Lighting
-
Number of Luminaires Per Arrangement: Arrangement Bureau CalcuLuX Indoor 4.5a
A 0
B 0
C 0
Philips Lighting B.V.
Page:
4/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3 Arrangement
A 0 0 0 0 2 0
Conference Table 1 Conference Table 2 Cupboard and Door Curtain Whiteboard Individuals
C 6 2 0 0 0 0
B 0 0 0 0 0 1
Luminaire Code E D 0 0 0 0 0 3 0 6 0 0 1 0
G 0 0 0 0 0 0
F 0 0 0 0 0 1
H 0 0 0 0 0 1
Power (kWatt)
Arrangement
0.21 0.21 0.07 0.07 0.14 0.10 0.42
Bureau Conference Table 1 Conference Table 2 Cupboard and Door Curtain Whiteboard Individuals
2.3 Calculation Results
Switching Modes: Code Switching Mode 1 Desk Lighting 2 Conference Lighting 3 Presentation Lighting
(Il)luminance Calculations: Calculation Working Plane Floor Curtain Bureau Conference Table Painting Whiteboard Conference Table 1
CalcuLuX Indoor 4.5a
Switching Mode 1 3 1 1 2 2 2 3
Type
Unit
Surface Illuminance Surface Illuminance Surface Illuminance Surface Illuminance Surface Illuminance Surface Illuminance Surface Illuminance Surface Illuminance
lux lux lux lux lux lux lux lux
Philips Lighting B.V.
Ave Min/Ave Min/Max 375 67.3 143 670 1060 40.9 576 584
0.19 0.14 0.36 0.73 0.26 1.00 0.20 0.15
0.10 0.01 0.26 0.61 0.13 1.00 0.12 0.07
Result Total Total Total Total Total Total Total Total
Page:
5/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3. Calculation Results 3.1 Working Plane: Graphical Table : Working Plane at Z = 0.80 m : Surface Illuminance (lux) : Total
4.5
5.5
Grid Calculation Result Type
Desk Lighting
122
86
73
86
118
142
111
245
191
125
105
123
180
234
167
283
250
177
158
176
231
266
204
366
333
242
243
272
315
344
269
397
388
315
324
378
395
398
332
473
476
416
435
494
504
507
418
3.5
146
2.5
D
1.5
D
E
-0.5
Y(m)
0.5
D
D
D
D
483
528
489
502
548
536
508
440
504
527
466
505
559
511
432
398
469
492
442
551
604
539
405
352
495
520
501
689
761
679
500
371
457
504
512
685
744
675
512
368
G
G
-1.5
D
D
F
-2.5
G
406
413
383
484
514
470
352
291
250
261
230
253
286
248
197
187
D
-5.5
-4.5
-3.5
G
-3.5
-2.5
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
X(m)
D: E: F:
FBS 145/118 TPH 601/128 MD TPH 601/128 C7-60
Average 375 CalcuLuX Indoor 4.5a
Min/Ave 0.19
G:
Min/Max 0.10
TBS 630/314 C7-60
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:75 Page:
6/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.2 Working Plane: Filled Iso Contour Grid Calculation Result Type
Desk Lighting
: Working Plane at Z = 0.80 m : Surface Illuminance (lux) : Total
3
D
D
2
700 D
E
D
1
600
D
D
G
0
Y(m)
500 G
400
-1
D
300
-2
D
200
F
-3
G
G
100
-4
D
-0.5
0.5
1.5
2.5
3.5
4.5
X(m)
D: E: F:
FBS 145/118 TPH 601/128 MD TPH 601/128 C7-60
Average 375 CalcuLuX Indoor 4.5a
Min/Ave 0.19
G:
Min/Max 0.10
TBS 630/314 C7-60
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:50 Page:
7/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.3 Floor: Graphical Table : Floor at Z = 0.00 m : Surface Illuminance (lux) : Total
10
11
30
26
13
13
12
12
11
11
51
349
191
37
15
14
13
12
21
246
627
790
108
16
15
14
13
118
17
16
15
14
110
18
17
16
14
3
Grid Calculation Result Type
Presentation Lighting
C
C
C
448
617
422
557
622
604
96
18
18
17
15
224
130
37
19
18
17
15
16
29
28
19
19
18
17
15
14
16
18
19
20
19
19
17
16
14
16
18
19
20
20
19
17
16
14
16
18
19
20
20
19
17
16
14
16
18
19
20
20
19
17
16
14
17
18
20
20
20
19
18
15
20
17
19
20
20
20
19
18
15
32
38
29
20
20
20
19
18
16
242
29
226
22
195
14
43
14
2
28
C
C
1
C
C
0
B
H
-4
-3
-2
-1
Y(m)
C
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
5.5
6.5
X(m)
B: C: H:
MASTERLINE PLUS 50W 24D (13674) MASTERLINE PLUS 35W 10D (13764) QFG 101/300
Average 67.3 CalcuLuX Indoor 4.5a
Min/Ave 0.14
Min/Max 0.01
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:50 Page:
8/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.4 Floor: Filled Iso Contour : Floor at Z = 0.00 m : Surface Illuminance (lux) : Total
3
Grid Calculation Result Type
Presentation Lighting
C
C
C
C
C
C
2
C
1
600
0
Y(m)
C
-2
-1
400
-3
200
H
-4
B
-0.5
0.5
1.5
2.5
3.5
4.5
X(m)
B: C: H:
MASTERLINE PLUS 50W 24D (13674) MASTERLINE PLUS 35W 10D (13764) QFG 101/300
Average 67.3 CalcuLuX Indoor 4.5a
Min/Ave 0.14
Min/Max 0.01
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:50 Page:
9/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.5 Curtain: Graphical Table : Curtain at X = 0.00 m : Surface Illuminance (lux) : Total
3.5
4.5
Grid Calculation Result Type
Desk Lighting
2.5
55
D
56
G
56
D
57
57
D
57
G
57
D
57
56
D E
56
55
D
52
194
197
197
197
197
198
199
199
198
197
196
191
171
181
182
182
182
184
185
186
184
183
182
169
124
141
143
140
140
146
148
146
144
142
139
122
104
138
141
123
124
145
148
132
128
124
115
94
119
176
179
146
147
184
188
151
132
120
102
80
138
189
198
181
183
204
203
172
140
115
92
71
137
179
194
191
193
200
193
167
139
110
84
64
129
162
180
185
186
187
176
155
132
106
79
60
119
147
163
171
172
169
159
141
122
101
78
59
1.5 -2.5
-1.5
-0.5
0.5
Z(m)
F
-4
-3
-2
-1
0
1
2
3
4
Y(m)
D: E: F:
FBS 145/118 TPH 601/128 MD TPH 601/128 C7-60
Average 143 CalcuLuX Indoor 4.5a
Min/Ave 0.36
G:
Min/Max 0.26
TBS 630/314 C7-60
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:50 Page:
10/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.6 Curtain: Filled Iso Contour Grid Calculation Result Type
Desk Lighting
: Curtain at X = 0.00 m : Surface Illuminance (lux) : Total
75
125
175
150
200
3.5
100
G
D
D
G
D
D E
D
2.5
D
1.5 -1.5
-0.5
0.5
Z(m)
F
-4
-3
-2
-1
0
1
2
3
4
Y(m)
D: E: F:
FBS 145/118 TPH 601/128 MD TPH 601/128 C7-60
Average 143 CalcuLuX Indoor 4.5a
Min/Ave 0.36
G:
Min/Max 0.26
TBS 630/314 C7-60
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:50 Page:
11/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.7 Bureau: Graphical Table : Bureau at Z = 0.80 m : Surface Illuminance (lux) : Total
581
601
604
595
570
625
644
650
638
616
668
703
700
694
670
716
756
761
751
726
747
797
803
794
768
749
791
797
789
770
713
743
744
738
723
652
677
676
668
654
580
597
599
591
571
501
513
514
505
488
-2.1
F
G
G
-3.3
-3.2
-3.1
-3
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-2.2
Y(m)
-2
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1
Grid Calculation Result Type
Desk Lighting
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
X(m)
D: E: F:
FBS 145/118 TPH 601/128 MD TPH 601/128 C7-60
Average 670 CalcuLuX Indoor 4.5a
Min/Ave 0.73
G:
Min/Max 0.61
TBS 630/314 C7-60
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:15 Page:
12/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.8 Bureau: Filled Iso Contour : Bureau at Z = 0.80 m : Surface Illuminance (lux) : Total
-1.4
-1.3
-1.2
-1.1
-1
Grid Calculation Result Type
Desk Lighting
-1.7
-1.6
-1.5
800
-1.9
-1.8
750
-2.1
F
-2.2
Y(m)
-2
700
-2.4
-2.3
650
-2.7
-2.6
-2.5
600
-2.9
-2.8
550
-3.3
-3.2
-3.1
-3
500
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
X(m)
D: E: F:
FBS 145/118 TPH 601/128 MD TPH 601/128 C7-60
Average 670 CalcuLuX Indoor 4.5a
Min/Ave 0.73
G:
Min/Max 0.61
TBS 630/314 C7-60
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:15 Page:
13/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.9 Conference Table: Graphical Table : Conference Table at Z = 0.80 m : Surface Illuminance (lux) : Total
D
A
324
667
1874
2.8
2.9
3
3.1
Grid Calculation Result Type
Conference Lighting
630
273
A
567
864
1953
825
491
1561
1337
745
1297
1483
1602
1302
546
1261
1523
855
722
453
679
773
1641
1299
520
1256
1559
1651
1308
528
1265
1569
883
750
481
708
805
1652
1351
594
1310
1576
1634
1409
815
1370
1560
664
959
2047
920
592
445
785
1989
746
374
2.4
2.5
2.6
2.7
C
C
1.8
D
C
E
C
1.2
1.3
1.4
1.5
1.6
1.7
Y(m)
1.9
2
2.1
2.2
2.3
C
C
0.8
0.9
1
1.1
C
D
0.5
0.6
0.7
C
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
X(m)
Maximum of 6 luminaire types exceeded - discarding legend. Average 1060 CalcuLuX Indoor 4.5a
Min/Ave 0.26
Min/Max 0.13
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:15 Page:
14/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.10 Conference Table: Filled Iso Contour : Conference Table at Z = 0.80 m : Surface Illuminance (lux) : Total
3.1
Grid Calculation Result Type
Conference Lighting
2.8
2.9
3
A
2.4
2.5
2.6
2.7
C
C
C
2
2.1
2.2
2.3
2000
1.8
C
E
C
1.5
1.6
1.7
Y(m)
1.9
1500
1.2
1.3
1.4
1000
C
1.1
C
0.8
0.9
1
500
0.5
0.6
0.7
C
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
X(m)
Maximum of 6 luminaire types exceeded - discarding legend. Average 1060 CalcuLuX Indoor 4.5a
Min/Ave 0.26
Min/Max 0.13
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:15 Page:
15/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.11 Painting: Graphical Table : Painting at Y = -3.70 m : Surface Illuminance (lux) : Total
1.7
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
Z(m)
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
Grid Calculation Result Type
Conference Lighting
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
X(m)
Maximum of 6 luminaire types exceeded - discarding legend. Average 40.9 CalcuLuX Indoor 4.5a
Min/Ave 1.00
Min/Max 1.00
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:10 Page:
16/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.12 Painting: Filled Iso Contour Grid Calculation Result Type
Conference Lighting
: Painting at Y = -3.70 m : Surface Illuminance (lux) : Total
40.91
40.92
40.92
1.7 1.1
1.2
1.3
1.4
1.5
1.6
Z(m)
1.8
1.9
2
2.1
2.2
2.3
40.91
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
X(m)
Maximum of 6 luminaire types exceeded - discarding legend. Average 40.9 CalcuLuX Indoor 4.5a
Min/Ave 1.00
Min/Max 1.00
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:10 Page:
17/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.13 Whiteboard: Graphical Table : Whiteboard at Y = 3.70 m : Surface Illuminance (lux) : Total
125
385
526
256
254
521
377
116
335
805
940
687
685
934
797
329
515
789
884
910
908
879
783
511
498
689
764
901
899
760
684
495
442
557
674
777
776
672
554
443
371
451
569
639
639
569
452
373
309
373
468
520
520
469
375
312
Z(m)
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
Grid Calculation Result Type
Conference Lighting
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
X(m)
Maximum of 6 luminaire types exceeded - discarding legend. Average 576 CalcuLuX Indoor 4.5a
Min/Ave 0.20
Min/Max 0.12
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:10 Page:
18/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.14 Whiteboard: Filled Iso Contour Grid Calculation Result Type
Conference Lighting
: Whiteboard at Y = 3.70 m : Surface Illuminance (lux) : Total
200
600
800
1.1
1.2
1.3
1.4
1.5
1.6
Z(m)
1.7
1.8
1.9
2
2.1
2.2
400
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
X(m)
Maximum of 6 luminaire types exceeded - discarding legend. Average 576 CalcuLuX Indoor 4.5a
Min/Ave 0.20
Min/Max 0.12
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:10 Page:
19/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.15 Conference Table 1: Graphical Table : Conference Table at Z = 0.80 m : Surface Illuminance (lux) : Total
3.2
Grid Calculation Result Type
Presentation Lighting
87
348
1211
349
89
244
475
1257
476
246
926
794
400
795
928
940
755
249
756
943
403
337
174
338
405
941
731
211
732
944
941
731
212
732
944
404
338
175
339
406
942
757
251
758
944
928
796
402
797
931
247
478
1260
480
250
90
352
1215
354
93
2.7
C
C
1.7
C
1.2
Y(m)
2.2
C
C
C
C
0.2
0.7
C
0
0.5
1
1.5
2
2.5
3
X(m)
B: C: H:
MASTERLINE PLUS 50W 24D (13674) MASTERLINE PLUS 35W 10D (13764) QFG 101/300
Average 584 CalcuLuX Indoor 4.5a
Min/Ave 0.15
Min/Max 0.07
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:20 Page:
20/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
3.16 Conference Table 1: Filled Iso Contour : Conference Table at Z = 0.80 m : Surface Illuminance (lux) : Total
3.2
Grid Calculation Result Type
Presentation Lighting
2.7
C
1250 C
2.2
C
C
C
1.7
Y(m)
1000
1.2
750
C
500
C
C
0.2
0.7
250
0.4
0.9
1.4
1.9
2.4
X(m)
B: C: H:
MASTERLINE PLUS 50W 24D (13674) MASTERLINE PLUS 35W 10D (13764) QFG 101/300
Average 584 CalcuLuX Indoor 4.5a
Min/Ave 0.15
Min/Max 0.07
Project maintenance factor 0.80
Philips Lighting B.V.
Scale 1:20 Page:
21/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
4. Luminaire Details 4.1 Project Luminaires Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
MASTERLINE PLUS 50W 38D (13678) 1 x 12V 50W 38D Light output ratios DLOR ULOR TLOR Lamp flux Luminaire wattage Measurement code
: : : : : :
0.76 0.00 0.76 1000 lm 50.0 W 9502090800
90o
90o
60o
60o
1500
30o
: : : : : :
0.75 0.00 0.75 1000 lm 50.0 W 9502091400
0o Imax
30o C = 0o C = 90o
Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
MASTERLINE PLUS 50W 24D (13674) 1 x 12V 50W 24D Light output ratios DLOR ULOR TLOR Lamp flux Luminaire wattage Measurement code
C = 180o C = 270o
90o
90o
60o
60o
3750
30o
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
C = 180o C = 270o
0o Imax
30o C = 0o C = 90o
Page:
22/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
MASTERLINE PLUS 35W 10D (13764) 1 x 12V 35W 10D Light output ratios DLOR ULOR TLOR Lamp flux Luminaire wattage Measurement code
: : : : : :
0.68 0.00 0.68 620 lm 35.0 W 9502092100
90o
90o
60o
60o
15000
30o
: : : : : : :
0o Imax
30o C = 0o C = 90o
Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
FBS 145/118 1 x PL-C 18W / 840 Light output ratios DLOR ULOR TLOR Ballast Lamp flux Luminaire wattage Measurement code
C = 180o C = 270o
0.59 0.00 0.59 Standard 1200 lm 24.0 W DL36012000
90o
90o
60o
60o
375
30o
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
C = 180o C = 270o
0o Imax
30o C = 0o C = 90o
Page:
23/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
Luminous Intensity Diagram (candela/1000 lumen) 150o 180o 150o
TPH 601/128 MD 1 x TL5 28W HE / 840 Light output ratios DLOR ULOR TLOR Ballast Lamp flux Luminaire wattage Measurement code
: : : : : : :
0.46 0.43 0.89 Electronic 2900 lm 33.0 W LVW1086500
120o
120 o
90o
90o
60o
60o
200 30o
: : : : : : :
0o Imax
30o C = 0o C = 90o
Luminous Intensity Diagram (candela/1000 lumen) 150o 180o 150o
TPH 601/128 C7-60 1 x TL5 28W HE / 840 Light output ratios DLOR ULOR TLOR Ballast Lamp flux Luminaire wattage Measurement code
C = 180o C = 270o
200
0.42 0.47 0.89 Electronic 2900 lm 33.0 W LVW1087100
120o
120 o
90o
90o
60o
60o
200 30o
C = 180o C = 270o
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
0o Imax
30o C = 0o C = 90o
Page:
24/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
TBS 630/314 C7-60 3 x TL5 14W HE / 840 Light output ratios DLOR ULOR TLOR Ballast Lamp flux Luminaire wattage Measurement code
: : : : : : :
0.73 0.00 0.73 Electronic 1350 lm 52.0 W LVW1067900
90o
90o
60o
60o
250
30o
: : : : : :
0o Imax
30o C = 0o C = 90o
Luminous Intensity Diagram (candela/1000 lumen) 120o 150 o 180o 150 o 120o
QFG 101/300 1 x T3 P S 300W Light output ratios DLOR ULOR TLOR Lamp flux Luminaire wattage Measurement code
C = 180o C = 270o
0.79 0.00 0.79 5600 lm 300.0 W LML2480100
90o
90o
60o
60o
500
30o
CalcuLuX Indoor 4.5a
Philips Lighting B.V.
C = 180o C = 270o
0o Imax
30o C = 0o C = 90o
Page:
25/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
5. Installation Data 5.1 Legends
Project Luminaires: Lamp Type Qty Luminaire Type Code 2 MASTERLINE PLUS 50W 38D (13678) 1 * 12V 50W 38D A 1 MASTERLINE PLUS 50W 24D (13674) 1 * 12V 50W 24D B 8 MASTERLINE PLUS 35W 10D (13764) 1 * 12V 35W 10D C 1 * PL-C 18W 9 FBS 145/118 D 1 * TL5 28W HE 1 TPH 601/128 MD E 1 * TL5 28W HE 1 TPH 601/128 C7-60 F 3 * TL5 14W HE 4 TBS 630/314 C7-60 G 1 * T3 P S 300W 1 QFG 101/300 H
Flux (lm) 1 * 1000 1 * 1000 1 * 620 1 * 1200 1 * 2900 1 * 2900 3 * 1350 1 * 5600
Switching Modes: Code Switching Mode 1 Desk Lighting 2 Conference Lighting 3 Presentation Lighting
5.2 Luminaire Positioning and Orientation Qty and Code
Position
Switching Modes (%)
Aiming Angles
X (m)
Y (m)
Z (m)
Rot.
Tilt90
Tilt0
1
2
3
1*D 1*D 1*D 1*D 1*D
0.30 0.30 0.30 0.30 0.30
-3.00 -1.80 -0.60 0.60 1.80
2.70 2.70 2.70 2.70 2.70
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
100 100 100 100 100
100 100 100 100 100
-
1*D 1*C 1*C 1*C 1*G
0.30 1.10 1.10 1.10 1.50
3.00 1.20 1.80 2.40 -2.40
2.70 2.70 2.70 2.70 2.70
0.00 0.00 0.00 0.00 90.00
0.00 0.00 0.00 0.00 0.00
0.00 100 100 0.00 - 100 70 0.00 - 100 70 0.00 - 100 70 0.00 100 40 -
1*G 1*C 1*E 1*C 1*C
1.50 1.50 1.50 1.50 1.90
0.00 0.80 1.80 2.80 1.20
2.70 2.70 2.70 2.70 2.70
90.00 0.00 90.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 100 40 0.00 - 100 70 0.00 60 100 0.00 - 100 70 0.00 - 100 70
1*C 1*C 1*B 1*A 1*A
1.90 1.90 2.10 2.10 2.70
1.80 2.40 -3.00 3.00 3.00
2.70 2.70 2.65 2.65 2.65
0.00 0.00 135.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
1*F 1*H 1*G 1*G
2.80 3.90 3.90 3.90
-2.10 -3.00 -2.40 0.00
2.00 1.80 2.70 2.70
90.00 45.00 90.00 90.00
0.00 180.00 0.00 0.00
CalcuLuX Indoor 4.5a
0.00 0.00 -43.00 -30.00 -30.00
-
100 70 100 70 100 100 100 100 -
0.00 100 0.00 70 0.00 100 40 0.00 100 40
Philips Lighting B.V.
40 Page:
26/27
Director room
Philips Lighting B.V. Date: 27-04-1999
Example 3
Qty and Code
Position
Switching Modes (%)
Aiming Angles
Y (m)
Z (m)
Rot.
Tilt90
1*D
3.90
0.60
2.70
0.00
0.00
0.00 100 100
-
1*D 1*D
3.90 3.90
1.80 3.00
2.70 2.70
0.00 0.00
0.00 0.00
0.00 100 100 0.00 100 100
-
CalcuLuX Indoor 4.5a
Tilt0
Philips Lighting B.V.
1
2
X (m)
3
Page:
27/27
Index
Calculux
Indoor
Calculux
Indoor
Page
A Aiming offset Floodlights ............................................................................................................................................... 3.15 Aiming Type RBA Aiming............................................................................................................................................ 3.11 Aiming Types ............................................................................................................................................... 3.25 XYZ Aiming............................................................................................................................................ 3.10 Annual costs ................................................................................................................................................. 3.70 Application Field Badminton Court .......................................................................................................................................3.6 Basketball Court ........................................................................................................................................3.6 Five-a-side football Pitch...........................................................................................................................3.6 General Field .............................................................................................................................................3.6 Handball Court...........................................................................................................................................3.6 hockey Field ..............................................................................................................................................3.6 Ice hockey Field.........................................................................................................................................3.6 Korfball Court............................................................................................................................................3.6 Squash Court..............................................................................................................................................3.6 Table Tennis Table ....................................................................................................................................3.6 Tennis Court ..............................................................................................................................................3.6 Volleyball Court ........................................................................................................................................3.6 Arc Shape ....................................................................................................................................................... 3.55 Arrangement Definition Block Arrangement.................................................................................................................................. 3.23 Free Arrangement .................................................................................................................................... 3.34 Line Arrangement .................................................................................................................................... 3.30 Polar Arrangement................................................................................................................................... 3.26 Room Block Arrangement ....................................................................................................................... 3.20 ASCII data file ................................................................................................................................................3.8
B Badminton Court ............................................................................................................................................3.6 Basketball Court .............................................................................................................................................3.6 Block Arrangement....................................................................................................................................... 3.23
C Calculation Calculation points .................................................................................................................................... 3.45 Calculation Grids ..................................................................................................................................... 1.3, 3.7 Calculation points in a grid ........................................................................................................................... 3.45 Calculux Calculux Indoor .........................................................................................................................................1.1 Calculux standard grids................................................................................................................................. 3.40 C-Gamma-System...........................................................................................................................................3.9 CIBSE.............................................................................................................................................................1.2 CIBSE standard grids.................................................................................................................................... 3.42 CIBSE, DIN, NEN........................................................................................................................................ 3.40 CIBSE/TM14..................................................................................................................................................1.2 Connections with calculation Grids ................................................................................................................3.7 Conversion of Aiming types ......................................................................................................................... 3.13 Convert into a Free Arrangement.................................................................................................................. 3.35 Coordinates XYZ-coordinates .......................................................................................................................................3.9
Calculux
Indoor - Ι.1 -
Cost Calculation Annual costs ............................................................................................................................................ 3.70 Total Investment ...................................................................................................................................... 3.69 Create reports..................................................................................................................................................1.4 C-γ coordinate.................................................................................................................................................3.9
D Database Luminaire Database ...................................................................................................................................3.8 Default side................................................................................................................................................... 3.46 Depreciation Factor....................................................................................................................................... 3.72 Drawings....................................................................................................................................................... 3.58
E Environment settings and preferences ............................................................................................................2.3 EULUMDAT..................................................................................................................................................1.2
F Factor Depreciation Factor.................................................................................................................................. 3.72 Lamp Lumen Depreciation Factor ........................................................................................................... 3.72 Lamp Maintenance Factor ....................................................................................................................... 3.72 Lamp Survival Factor .............................................................................................................................. 3.72 Light Regulation Factor (LRF) ..................................................................................................................1.4 Luminaire Type Maintenance Factor ....................................................................................................... 3.72 Maintenance Factor.................................................................................................................................. 3.72 New Value Factor .................................................................................................................................... 3.72 Filled Iso Contour ......................................................................................................................................... 3.68 Five-a-side football Pitch................................................................................................................................3.6 Floodlights Aiming offset ........................................................................................................................................... 3.15 Free Arrangement ......................................................................................................................................... 3.34
G General Field ..................................................................................................................................................3.6 Generated grids............................................................................................................................................. 3.40 Glare ............................................................................................................................................................. 3.62 Graphical manipulation...................................................................................................................................1.3 Graphical Table ............................................................................................................................................ 3.68 Grid Calculation Grids .......................................................................................................................................1.3 Calculation points in a grid ...................................................................................................................... 3.45 Default side.............................................................................................................................................. 3.46 Normal vector of a grid............................................................................................................................ 3.50 Size and position of a grid ....................................................................................................................... 3.43 Grid Method CIBSE........................................................................................................................................................1.2
H Handball Court................................................................................................................................................3.6 hockey Field ...................................................................................................................................................3.6
Calculux
Indoor - Ι.2 -
I Ice hockey Field..............................................................................................................................................3.6 IES ..................................................................................................................................................................1.2 Indirect contribution ..................................................................................................................................... 3.65 Individual Luminaires................................................................................................................................... 3.17 Luminaire Definition ............................................................................................................................... 3.17 Installation ......................................................................................................................................................1.3 Installation and operating platform .................................................................................................................1.5 Investment .................................................................................................................................................... 3.69 Iso Contour ................................................................................................................................................... 3.68
K Korfball Court.................................................................................................................................................3.6
L Lamp Lumen Depreciation Factor ................................................................................................................ 3.72 Lamp Maintenance Factor ............................................................................................................................ 3.72 Lamp Lumen Depreciation Factor ........................................................................................................... 3.72 Lamp Survival Factor .............................................................................................................................. 3.72 Lamp Survival Factor ................................................................................................................................... 3.72 Light Regulation Factor (LRF) .............................................................................................................. 1.4, 3.57 Lighting Control ...................................................................................................................................... 3.57 Lighting control ............................................................................................................................................ 3.57 Lighting Controls Light Regulation Factor (LRF) ..................................................................................................................1.4 Light-technical Calculations ......................................................................................................................... 3.59 Line Arrangement ......................................................................................................................................... 3.30 LTLI ...............................................................................................................................................................1.2 Luminaire Conversion of Aiming types .................................................................................................................... 3.13 Database.....................................................................................................................................................3.8 Individual Luminaires.............................................................................................................................. 3.17 Luminaire Arrangements ......................................................................................................................... 3.19 Luminaire Data ..........................................................................................................................................3.8 Luminaire data formats ..............................................................................................................................1.2 Luminaire orientation .............................................................................................................................. 3.12 Luminaire Quantity.................................................................................................................................. 3.16 Positioning .................................................................................................................................................3.9 Rotating .....................................................................................................................................................3.9 Luminaire Arrangements ....................................................................................................................... 1.3, 3.19 Block Arrangement.................................................................................................................................. 3.23 Convert into a Free Arrangement............................................................................................................. 3.35 Free ............................................................................................................................................................1.3 Free Arrangement .................................................................................................................................... 3.34 Line............................................................................................................................................................1.3 Line Arrangement .................................................................................................................................... 3.30 Point Arrangement.....................................................................................................................................1.3 Polar Arrangement............................................................................................................................ 1.3, 3.26 Ungroup ................................................................................................................................................... 3.35 Luminaire Data ...............................................................................................................................................3.8 CIBSE/TM14...................................................................................................................................... 1.2, 3.8 EULUMDAT...................................................................................................................................... 1.2, 3.8 IES ...................................................................................................................................................... 1.2, 3.8 LTLI ................................................................................................................................................... 1.2, 3.8 Phillum ......................................................................................................................................................1.1 Luminaire data formats ...................................................................................................................................1.2
Calculux
Indoor - Ι.3 -
Luminaire definition Aiming Types ................................................................................................................................. 3.10, 3.25 Number of Same ...................................................................................................................................... 3.25 Project Luminaire Type .................................................................................................................. 3.17, 3.25 Symmetry................................................................................................................................................. 3.25 Luminaire Definition Block Arrangement.................................................................................................................................. 3.25 Free Arrangement .................................................................................................................................... 3.34 Line Arrangement .................................................................................................................................... 3.33 Polar Arrangement................................................................................................................................... 3.28 Room Block Arrangement ....................................................................................................................... 3.22 Luminaire Orientation................................................................................................................................... 3.10 Luminaire Photometric Data CIBSE/TM14.............................................................................................................................................1.2 EULUMDAT...................................................................................................................................... 1.2, 3.8 IES .............................................................................................................................................................1.2 LTLI ................................................................................................................................................... 1.2, 3.8 Phillum ......................................................................................................................................................1.1 Luminaire Quantity....................................................................................................................................... 3.16 Luminaire Type Maintenance Factor ............................................................................................................ 3.72
M Maintenance Factor Lamp Maintenance Factor ....................................................................................................................... 3.72 Luminaire Type Maintenance Factor ....................................................................................................... 3.72 Mountain Plot ............................................................................................................................................... 3.68
N NEN.............................................................................................................................................................. 3.40 New Value Factor ......................................................................................................................................... 3.72 Normal vector of a grid................................................................................................................................. 3.50 Number of Same ........................................................................................................................................... 3.25
P Phillum ...........................................................................................................................................................1.1 Platform Operating platform.....................................................................................................................................1.5 Polar Arrangement........................................................................................................................................ 3.26 Polygon Shape ....................................................................................................................................................... 3.54 Positionering luminaire.......................................................................................................................... 3.9, 3.16 Positioning and Orientation Luminaire...................................................................................................................................................3.9 Pre-defined shapes ........................................................................................................................................ 3.52 Preferences......................................................................................................................................................2.3 Presentation Calculation results.................................................................................................................................... 3.50 Selecting Aiming Presentation types ....................................................................................................... 3.14 Presentation formats ..................................................................................................................................... 3.68 Filled Iso Contour .................................................................................................................................... 3.68 Graphical Table ....................................................................................................................................... 3.68 Iso Contour .............................................................................................................................................. 3.68 Mountain Plot .......................................................................................................................................... 3.68 Textual Table ........................................................................................................................................... 3.68
Calculux
Indoor - Ι.4 -
Project Project Information ....................................................................................................................................3.1 Project Luminaire Type .................................................................................................................. 3.17, 3.25 Project overview ............................................................................................................................... 1.4, 3.68
Q Quality Figures ............................................................................................................................................. 3.67
R RBA System ................................................................................................................................................. 3.11 Rectangle Shape ....................................................................................................................................................... 3.53 Report Setup ................................................................................................................................................. 3.68 Reports Create reports.............................................................................................................................................1.4 Right hand rule ............................................................................................................................................. 3.46 Room Block Arrangement ............................................................................................................................ 3.20 Rotating ..........................................................................................................................................................3.9 Rotation (Rot) ............................................................................................................................................... 3.11
S Set of points Shape ....................................................................................................................................................... 3.53 Settings .................................................................................................................................................. 2.3, 3.25 Shapes Arc ........................................................................................................................................................... 3.55 Polygon.................................................................................................................................................... 3.54 Pre-defined shapes ................................................................................................................................... 3.52 Rectangle ................................................................................................................................................. 3.53 Set of points ............................................................................................................................................. 3.53 Symmetry................................................................................................................................................. 3.56 User defined shapes ................................................................................................................................. 3.52 Squash Court...................................................................................................................................................3.6 Standards CIBSE................................................................................................................................................. 1.2, 3.8 NEN......................................................................................................................................................... 3.40 Switching Mode..................................................................................................................................... 1.4, 3.25 Symmetry...................................................................................................................................................... 3.25 Shapes...................................................................................................................................................... 3.56 X-Symmetry ............................................................................................................................................ 3.38 XY-Symmetry.......................................................................................................................................... 3.39 Y-Symmetry ............................................................................................................................................ 3.38 Symmetry lighting installation........................................................................................................................1.3
T Table Tennis Table .........................................................................................................................................3.6 Tennis Court ...................................................................................................................................................3.6 Textual Table ................................................................................................................................................ 3.68 Tilt0 .............................................................................................................................................................. 3.12 Tilt90 ............................................................................................................................................................ 3.12
Calculux
Indoor - Ι.5 -
U UGR Unified Glare Rating................................................................................................................................ 3.63 User defined grids......................................................................................................................................... 3.43 User defined shapes ...................................................................................................................................... 3.52 Utilisation Factor (UF).................................................................................................................................. 3.66
V Vignette files...................................................................................................................................................3.1 Volleyball Court .............................................................................................................................................3.6
X X-Symmetry Luminaires ............................................................................................................................................... 3.38 XY-Symmetry Luminaires ............................................................................................................................................... 3.39 XYZ aiming.................................................................................................................................................. 3.10 XYZ-coordinates ............................................................................................................................................3.9
Y Y-Symmetry Luminaires ............................................................................................................................................... 3.38
Calculux
Indoor - Ι.6 -
Calculux
Indoor
LiDAC Central Lighting Design and Application Centre P.O. Box 80020 5600 JM Eindhoven The Netherlands http://www.lightingsoftware.philips.com
Calculux
Indoor