Mala Designs Bebe Dragón

February 17, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Mala Designs Bebe Dragón...

Description

 

 pmoa = ed 91 

www.lm`m-iashons.ia

www.lm`m-iashons.ia dmfaceeb gttps;//www.dmfa gttps;//www.dmfaceeb.fel/Lm`mceeb.fel/Lm`m-Iashons Iashons  Hnstmorml lm`mUiashons 

fepyrhogt cy L.A. Garrlmnn  parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

  

 pmoa 3 ed 91 

Fmtenm (Vfgaapkas) 9x fymn (68?) =x e`i resa (9:7) =x hfy phnb (394) =x snew wghta (=:4) =x tu`hp (333) =x `hogt erfghi (334) =x e`i `mfa (=6:)

Vfgaapkas „Fmtenm‐ mra mvmh`mc`a gara; gttps;//we```e``h.ia  gttps;//we```e``h.ia 

-

 ‖  @mca`  @mca`

-

mvmh`mc`a gara;; www.lm`m-iashons.ia

-

mrthdhfhm` aya`msgas naai`a (mpprex. ?fl)

-

_e``@e``h ® frefgat geeb shza shza 3 er 3.1 - mvmh`mc`a gara; www.we```e``h.ia www.we```e``h.ia 

-

hd nafassmry; nafassmry; get o`ua oun, migashva p`mstar p`mstar , dhle peylar f`my (wghta) (wghta) der tga f`mws studdhno, frmdt o`ua (QGQ), sawhno tgrami, naai`a  der tga ayas; twe c`mfb gm`d pamr`s ed =:ll frmdt phpa f`amnars (fganh``a whra) (m`tarnmthva; studdhno), ramiy lmia pelpels der studdhno

L sf fg

Lmsfga dasta Lmsfga(n) @udtlmsfga(n)

st sf fg

sthtfg shno`a frefgat fgmhn

stb v `

staab / staban vmsta(n) `essa(n)

tfg bl Vtc gVtc

_ania`udtlmsfga Battlmsfga(n) Vtécfgan gm`cas Vtécfgan

tfg s`st if gif

b` gv st gst

baar`essa(n) gm`va vmsta(n) stebka(s) gm`dstebka(s)

hnf. iaf. ðcarspr. Si. Fd. dho. **

varieppa`n mcnaglan ðcarsprhnoan Sunia Taro`ahfg(a) dho. Smppert, ig.m``as, wms zwhsfgan ian ** stagt, luss hnnargm`c ihasar Sunia whaiarge`t warian

hnf. iaf. sbhp ri Fd. dho. **

turnhno fgmhn s`hp sthtfg ieuc`a frefgat gm`d ieuc`a frefgat hnframsa iaframsa sbhp reuni fendar dhoura rapamt x catwaan tga **

laari. lhni. evars`mmn tr zha mdc. **

laariaran lhniaran evars`mmn tear varoa`hkb lat mdcaa`ihno m``as wmt tussan ** stmmt, leat chnnan iaza tear gargmm`i werian

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

   

 pmoa 6 ed 91 

Netas en pretafthen ed fepyrhogt;

Yga sm`a ed, AWFGMNOA, AWFGMNOA, rapreiufthen mni puc`hfmthen (hnf`uihno trmns`mthens) ed tghs pmttarn (hnf`uihno en`hna puc`hfmthen) ms wa`` ms sa``hno tga dhnhsgai tey en tga hntarnat hs preghchtai. Va``hno tga dhnhsgai tey (a.o. hn `efm` steras, mt tga lmrbats) hs net parlhttai. 

Dm. _e```e``h geebs mni wee` gttps;//www.dmfaceeb.fel/_e``@e``h/  gttps;//www.dmfaceeb.fel/_e``@e``h/  fentmft;  _e``@e``h@mniJolmh`.fel  fentmft; _e``@e``h@mniJolmh`.fel 

www.we```e``h.ia   www.we```e``h.ia

Vtrhchimb Hng. Ygelms Hlsfgwah`ar  predasshenm` frefgat frefgat mni bnhtthno pmttarns pmttarns  dmfaceeboreup ; gttps;//www.dmfaceeb.fel/o gttps;//www.dmfaceeb.fel/oreups/=1:8614=84:9=893 reups/=1:8614=84:9=893// 

www.strhchimb.ia  www.strhchimb.ia 

parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

 

 pmoa 9 ed 91 

Yga gami ed tga `ufby irmoen bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno whri iar Bepd Bepd wh`` ca avan`y studdai studdai whtg studdhno rasp. dhcradh``.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn

hrm` m` re reun uni is  Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr

=.  =: fg, = tfg 3.  = sf hn tga safeni `mst fgmhn,7 sf mni 6 sf hnte tga `mst fg, (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) , 7 sf mni 3 sf hnte h nte tga `mst sthtfg < 33 sf

6 sf

= tfg amfg = sf

amfg = sf 3 sf ormpghf iaphfthen iaphfthen ed reuni 3

f`esa up ed reuni 3

6.  = x hnf., 7 sf, = x hnf., = x hnf., = x hnf., 7 sf, = x hnf., = x hnf.

< 37 sf

9.  = sf, = x hnf., 7 sf, *= sf, = x hnf.* x 6, 7 sf, *= sf, = x hnf.* x 3

< 69 sf

1.  3 sf, = x hnf., 7 sf, *3 sf, = x hnf.* x 6, 7 sf, *3 sf, = x hnf.* x 3

< 9: sf

4.  6 sf, = x hnf., 7 sf, *6 sf, = x hnf.* x 6, 7 sf, *6 sf, = x hnf.* x 3

< 94 sf

?.  9 sf, = x hnf., 7 sf, *9 sf, = x hnf.* x 6, 7 sf, *9 sf, = x hnf.* x 3 7.  99 sf

< 13 sf < 13 sf

8.  1 sf, = x hnf., 7 sf, *1 sf, = x hnf.* x 6, 7 sf, *1 sf, = x hnf.* x 3 =:.  17 sf

< 17 sf < 17 sf

==.  4 sf, = x hnf., 7 sf, *4 sf, = x hnf.* x 6, 7 sf, *4 sf, = x hnf.* x 3

< 49 sf

=3.  49 sf

< 49 sf



fd. dho. en pmoa 1 

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 1 ed 91  =6.  ? sf, = x hnf., 7 sf, *? sf, = x hnf.* x 6, 7 sf, *? sf, = x hnf.* x 3 =9.  ?: sf

< ?: sf < ?: sf

=1.  7 sf, = x hnf., 7 sf, *7 sf, = x hnf.* x 6, 7 sf, *7 sf, = x hnf.* x 3   =4. ?4 sf

< ?4 sf < ?4 sf

=?.  8 sf, = x hnf., 7 sf, *8 sf, = x hnf.* x 6, 7 sf, *8 sf, = x hnf.* x 3 =7.  73 sf

< 73 sf < 73 sf

f`esa up reuni =8



fd. dho. ; 

ed

f`esa up ed reuni =7

=8.  =: sf, = x hnf., 7 sf, *=: sf, = x hnf.* x 6, 7 sf, *=: sf, = x hnf.* x 3 3:.  77 sf

< 77 sf < 77 sf

3=.  == sf, = x hnf., 7 sf, *== sf, = x hnf.* x 6, 7 sf, *== sf, = x hnf.* x 3 33.  89 sf 36.  89 sf 39.  89 sf

< 89 sf < 89 sf < 89 sf < 89 sf

31.  89 sf 34.  89 sf 3?.  89 sf

< 89 sf < 89 sf < 89 sf

37.  == sf, = x iaf., 7 sf, *== sf, = x iaf.* x 6, 7 sf, *== sf, = x iaf.* x 3 38.  77 sf 6:.  77 sf

< 77 sf < 77 sf < 77 sf

6=.  =: sf, = x iaf., 7 sf, *=: sf, = x iaf.* x 6, 7 sf, *=: sf, = x iaf.* x 3 63.  73 sf

< 73 sf < 73 sf

66.  8 sf, = x iaf., 7 sf, *8 sf, = x iaf.* x 6, 7 sf, *8 sf, = x iaf.* x 3

< ?4 sf

69.  7 sf, = x iaf., 7 sf, *7 sf, = x iaf.* x 6, 7 sf, *7 sf, = x iaf.* x 3

< ?: sf

m tetm` ed 1 reunis ed ed 89 sf < 373 sf (enoehno feunthno)

m tetm` ed 1 reunis ed ed 89 sf < 373 sf (enoehno feunthno)



fd. dho. en pmoa 4  

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 4 ed 91  61.  ? sf, = x iaf., 7 sf, *? sf, = x iaf.* x 6, 7 sf, *? sf, = x iaf.* x 3

< 49 sf

64.  4 sf, = x iaf., 7 sf, *4 sf, = x iaf.* x 6, 7 sf, *4 sf, = x iaf.* x 3

< 17 sf

6?.  1 sf, = x iaf., 7 sf, *1 sf, = x iaf.* x 6, 7 sf, *1 sf, = x iaf.* x 3

< 13 sf

67.  9 sf, = x iaf., 7 sf, *9 sf, = x iaf.* x 6, 7 sf, *9 sf, = x iaf.* x 3

< 94 sf

68.  6 sf, = x iaf., 7 sf, *6 sf, = x iaf.* x 6, 7 sf, *6 sf, = x iaf.* x 3

< 9: sf

f`esa up ed reuni 63

f`esa up ed reuni 68



gara; studd whtg dhcradh``, fd. dho. ;

f`esa up ed reuni 91

9:.  3 sf, = x iaf., 7 sf, *3 sf, = x iaf.* x 6, 7 sf, *3 sf, = x iaf.* x 3

< 69 sf

9=.  = sf, = x iaf., 7 sf, *= sf, = x iaf.* x 6, 7 sf, *= sf, = x iaf.* x 3 93.  *1 sf, = x iaf.* x 9 96.  *3 sf, = x iaf.* x 4 99.  *= sf, = x iaf.* x 4 91.  *= x iaf.* x 4

< 37 sf < 39 sf < =7 sf < =3 sf < 4 sf

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y

Yga luzz`a wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno sawhno ente tga gami tga luzz`a luzz`a wh`` ca studdai whtg studdhno rasp. dhcradh``.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn

hrm` m` re reun unis is  Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr

 

=. tfg safeni `mst fgmhn, 9 sf mni 6 sf hnte tga `mst fg, 3.  4 = fg, sf hn= tga  Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa ? ed 91  (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) ,

6 sf

9 sf mni 3 sf hnte h nte tga `mst sthtfg < =9 sf

= tfg amfg = sf

amfg = sf 3 sf ormpghf iaphfthen iaphfthen ed reuni 3

f`esa up ed reuni 3

f`esa up ed reuni 9

6.  = x hnf., 9 sf, = x hnf., = x hnf., = x hnf., 9 sf, = x hnf., = x hnf.

< 3: sf

9.  = sf, = x hnf., 9 sf, *= sf, = x hnf.* x 6, 9 sf, *= sf, = x hnf.* x 3 1.  34 sf

< 34 sf < 34 sf

4.  3 sf, = x hnf., 9 sf, *3 sf, = x hnf.* x 6, 9 sf, *3 sf, = x hnf.* x 3 ?.  63 sf

< 63 sf < 63 sf

7.  6 sf, = x hnf., 9 sf, *6 sf, = x hnf.* x 6, 9 sf, *6 sf, = x hnf.* x 3 8.  67 sf

< 67 sf < 67 sf

=:.  9 sf, = x hnf., 9 sf, *9 sf, = x hnf.* x 6, 9 sf, *9 sf, = x hnf.* x 3 ==.  99 sf

< 99 sf < 99 sf

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y, tga luzz`a wh`` ca sawn whtg sawhno tgrami ente tga gami `mtar ↓ m`hon tga luzz`a whtg tga gami, dmstan ht whtg phns mni saw ht ente tga t ga gami whtg sawhnno tgrami fmradu``y ↓ sgert`y cadera dhnhsghno sawhno; studd tga luzz`a whtg dhcradh`` 2 fd. dho. ;

f`esa up ed reuni ==

saw ht whtg sawhno tgrami ente ht

studd whtg dhcradh``

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 7 ed 91 

Yga tenoua wh`` ca frefgatai frefgatai whtg ymrn hn h n tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga tenoua tenoua wen¹t ca studdai studdai whtg studdhno studdhno rasp. dhcradh``.

 ymrn

nmla ed ymrnfe`er

Fmtenm

e`i resa

hrm` m` re reun uni is  Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr

=.  3.  6.  9.  1. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf =3 sf < =3 sf *= x iaf.* x 4 < 4 sf

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ sat dhnhsgai tenoua mshia mni stmrt whtg frefgathno tga leutg

dhnhsgai tenoua

 ymrn Yga leutg ed tga `ufby irmoen bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai h nihfmtai ymrn fe`er mni whtg tga frefgat geeb Fmtenm shza 3. Iurhno frefgathno frefgathno tga leutg wen¹t ca studdai whtg studdhno rasp. dhcradh``.

nmla ed ymrnfe`er fymn

Fenthnueus`y frefgathno hn sphrm` reunis  =.  9 fg, = tfg 3.  = sf hn tga safeni `mst fgmhn, 3 sf mni 6 sf hnte tga `mst fg, (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) , 3 sf mni 3 sf hnte h nte tga `mst sthtfg < =: sf

6 sf

= tfg amfg = sf

amfg = sf 3 sf ormpghf iaphfthen ed reuni 3

f`esa up ed reuni 3

saw tga `mst reuni te m rew ushno tga anihno tgrami

6.  = x hnf., 3 sf, = x hnf., = x hnf., = x hnf., 3 sf, = x hnf., = x hnf. 9.  =4 sf

< =4 sf < =4 sf

1.  = sf, = x hnf., 3 sf, *= sf, = x hnf.* x 6, 3 sf, *= sf, = x hnf.* x 3

< 33 sf

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 8 ed 91  4.  3 sf, = x hnf., 3 sf, *3 sf, = x hnf.* x 6, sf, *3 sf, = x hnf.* x 3

3 < 37 sf

↓ dmstan edd `mst sf2 `amvhno m tmh` ed mceut =: hnfgas h nfgas hn eriar te saw tga `mst reuni te m rew rew ‖   ‖  fd.  fd. dho. en pmoa 7 ↓ wamva hn ymrn hnvhshc`y2 tga leutg wh`` ca sawn ente tga gam gami i whtg sawhno tgrami `mtar

dhnhsgai leutg

saw tga felp`atai leutg te tga luzz`a ushno sawhno tgrami

saw tga tenoua ente tga leutg

↓ tga `mst reuni ed tga tenoua hs p`mfai hn tga lhii`a ed tga t ga `mst rew ed tga leutg mni sawn ente ht whtg m daw sthtfgas ↓ dhnm``y; saw tga dhnhsgai leutg te tga luzz`a ‖  luzz`a ‖  fd.  fd. dho. ; (lmba 3)  

Yga nestrh`s wh`` ca frefgatai whtg whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga nestrh`s wen¹t ca studdai studdai whtg studdhno rasp. dhcradh``.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn

Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr hrm` m` re reun unis is  =.  3.  6.  9. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 1 sf < 1 sf *= x hnf.* x 1 < =: sf =: sf < =: sf

↓ dmstan edd `mst sf2 `amvhno m `enoar tmh` hn eriar te saw tga `mst reuni teoatgar teoatgar ‖   ‖  fd.  fd. dho. ;

f`esa up ed reuni 9

saw tga `mst reuni teoatgar

↓ wamva hn ymrn hnvhshc`y2 tga nestrh`s wh`` ca sawn ente tga luzz`a luzz`a whtg sawhno tgrami `mta `mtarr dhnm`hshno tga luzz`a

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =: ed 91  - tga ge`as der tga nestrh`s wh`` ca prapmrai ente tga luzz`a; m)  squaaza tga luzz`a luzz`a (ushno tga tgulc mni hniax dhnoar) dhnoar) mni derl m furvmtura furvmtura  c)  dhx tghs peshthen whtg m daw sthtfgas (antry pehnt der naai`a yeu wh`` saa hn tga dho. mni axht  pehnt cahno tga etgar etgar ena en tga eppeshta eppeshta shia) tgan wamva wamva hn ani ed ymrn ymrn hnvhshc`y ‖  hnvhshc`y ‖  fd.  fd. dho.

squaaza tga luzz`a (fd. mrrews)

 put tga dhnhsgai nestrh`s nestrh`s hnte tga furvmtura mni saw tgal whtg sawhno tgrami hnte ht

dhnhsgai furvmtura der tga nestrh`s

f)  tga nestrh`s wh`` ca p`mfai hnte tga furvmturas mni sawn en whtg sawhno tgrami

(lmba 3)  

Yga ayas ed tga `ufby irmoen bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga ayas wen¹t wen¹t ca studdai whtg whtg studdhno rasp. dhcradh``.

 ymrn

nmla ed ymrnfe`er

Fmtenm

snew wghta

Fenthnueus`y frefgathno hn sphrm` reunis 

=.  3.  6.  9.  1.  4.  ?. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *= sf, = x hnf.* x 4 < =7 sf =7 sf < =7 sf =7 sf < =7 sf =7 sf < =7 sf

7.  *= sf, = x iaf.* x 4 8.  *= x iaf.* x 4

m tetm` ed 6 reunis ed =7 sf < 19 sf (enoehno feunthno)

< =3 sf < 4 sf

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ mttmfg tga dhnhsgai ayas ayas ente tga gami mni saw tgal tgal en whtg sawhno tgrami, fd. dho. en tga naxt  pmoa

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa == ed 91 

dhnhsgai ayas

dhnhsgai saw ayas

↓ framta tga puph`s whtg c`mfb gm`d pamr`s ed =:ll mni dhnhsg ttga ga ayas whtg mrthdhfhm` aya`msgas , fd. dho. ;

mttmfg mrthdhfhm` aya `msgas

framta tga puph`s whtg c`mfb gm`d  pamr`s

drentvhaw

Yga pmtfg der tga gami ed tga tga `ufby irmoen bhi bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.

 ymrn

nmla ed ymrnfe`er

Fmtenm

hfy phnb

Ygara wh`` ca frefgathno cmfb mni dertg hn rews en`y, dhnhsghno amfg rew whtg m turnhno fgmhn =. 3.   6.  9.  1.  4. 

6 fg, = tfg 6 sf, = tfg 6 sf, = tfg = x hnf., = sf, = x hnf., = tfg 1 sf, = tfg 1 sf, = tfg

< 9 fg < 6 sf < 6 sf < 1 sf < 1 sf < 1 sf

?.  = x hnf., 6 sf, = x hnf., = tfg 7.  ? sf, = tfg 8.  ? sf, = tfg =:.  = x hnf., 1 sf, = x hnf., = tfg ==.  8 sf, = tfg =3.  8 sf, = tfg

< ? sf < ? sf < ? sf < 8 sf < 8 sf < 8 sf

=6.  = x hnf., ? sf, = x hnf., = tfg =9.  == sf, = tfg =1.  == sf, = tfg =4.  == sf, = tfg

< == sf < == sf < == sf < == sf

m tetm` ed 6 rews ed ed == sf < 66 sf (enoehno feunthno whtgeut tfg)

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =3 ed 91  =?.  == sf, = tfg =7.  = sf, = x iaf., 1 sf, = x iaf., = sf, = tfg =8.  8 sf, = tfg 3:.  = sf, = x iaf., 6 sf, = x iaf., = sf, = tfg 3=.  ? sf 33.  = sf, = x iaf., = sf, = x iaf., = sf, = tfg

< == sf < 8 sf < 8 sf < ? sf < ? sf < 1 sf

36.  1 sf, = tfg

< 1 sf

 

39. = x iaf., = sf, = x iaf.

< 6 sf

↓ ien¹t dmstan edd `mst sf, cut frefgat tga anthra fenteur whtg sf2 fd.dho. (mrrew pehnts ttga ga frefgathno ihrafthen)

frefgat mreuni tga aioas (fd. mrrew) mrrew)

dhnhsgai Bepdsfgmc`ena

saw en whtg sawhno tgrami

haw ed tga cmfb gami

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ mttmfg tga gami pmtfg, wghfg gms new caan dhnhsgai, dhnhsgai, ente tga gami, dhx ht whtg phns mni saw en tga anthra pmtfg whtg tga sawhno tgrami2 fd. dho. ;

Yga gami¹s trhmno`as ed tga `ufby irmoen bhi wh`` ca  ymrn nmla ed ymrnfe`er frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga Fmtenm tu`hp frefgat geeb shza 3. Iurhno frefgathno tga trhmno`as wen¹t wen¹t ca studdai whtg studdhno rasp. dhcradh``. Fd. eva evarvhaw; rvhaw;

trhmno`a ne. 9

trhmno`a ne. 3

trhmno`a ne. =

trhmno`a ne. 6

trhmno`a ne. 1

shiavhaw evarvhaw

drentvhaw

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =6 ed 91  ↓ der m`` trhmno`as; Fenthnueus`y frefgathno hn sphrm` reunis  ↓ der tga trhmno`as ne. 32 62 9 mni 1; ↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst reuni te m rew, fd. dho. ;

frefgat tga `mst reuni te m rew

trhmno`a ne. = (lmba =)  =)  =.  3.  6.  9. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 1 sf < 1 sf = x hnf., 9 sf < 4 sf = x hnf., 1 sf < ? sf

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ saw en trhmno`a ne. = whtg sawhno tgrami ente tga dhrst rews ed tga gami pmtfg ‖  pmtfg  ‖  fd.  fd. dho. ;

saw en trhmno`a ne. = ente tga gami pmtfg

iatmh`ai vhaw

trhmno`as ne. 3 (lmba 3)  3)  =.  3.  6.  9.  1. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf *6 sf, = x hnf.* x 3 < =: sf *9 sf, = x hnf.* x 3 < =3 sf

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 1 sf te m rew  ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en trhmno`as ne. 3 ente tga gami pmtfg ushno sawhno tgrami (tga kust frefgatai 1sf rew wh`` ca usai gara ms m sawhno rew) ↓ fd. dho. en tga naxt pmoa pmoa

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =9 ed 91 

saw en trhmno`a ne. 3

dhnhsgai sawn trhmno`as ne. 3

iatmh`ai vhaw

trhmno`as ne. 6 (lmba 3)  3)  =.  3.  6.  9.  1.  4. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf *6 sf, = x hnf.* x 3 < =: sf *9 sf, = x hnf.* x 3 < =3 sf *1 sf, = x hnf.* x 3 < =9 sf dhnhsgai sawn sawn trhmno`as ne. 6

?.  *4 sf, = x hnf.* x 3 7.  *? sf, = x hnf.* x 3

< =4 sf < =7 sf

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 7 sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en trhmno`as ne. 6 ente tga gami pmtfg ushno sawhno tgrami

trhmno`as ne. 9 (lmba 3)  3)  =.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf

 

6. 9.  1.  4. 

*3 *6 sf, sf, = =x x hnf.* hnf.* x x3 3 *9 sf, = x hnf.* x 3 *1 sf, = x hnf.* x 3

< 7 sfsf < =: < =3 sf < =9 sf

?.  *4 sf, = x hnf.* x 3

< =4 sf dhnhsgai sawn sawn trhmno`as ne. 9

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg ? sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en trhmno`as ne. 9 ente tga gami pmtfg ushno sawhno tgrami

trhmno`as ne. 1 (lmba 3)  3)  =.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf 6.  *3 sf, = x hnf.* x 3 < 7 sf  Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =1 ed 91  9.  *6 sf, = x hnf.* x 3 1.  *9 sf, = x hnf.* x 3

< =: sf < =3 sf

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 1 sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en trhmno`as ne. 1 ente tga gami pmtfg ushno sawhno tgrami

sawn n trhmno`as ne. 1 dhnhsgai saw

(lmba 3)  

Yga amrs ed tga `ufby irmoen bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga amrs amrs wen¹t ca studdai studdai whtg studdhno rasp. dhcradh``.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn

Fenthnueus`y frefgathno hn sphrm` reunis  =.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno;

 

3. 6.  9.  1.  4. 

4 sf *3 sf, = x hnf.* x 3 *6 sf, = x hnf.* x 3 *9 sf, = x hnf.* x 3 *3 sf, = x hnf.* x 9

< 4 sf < 7 sf < =: sf < =3 sf < =4 sf

?.  *= sf, = x hnf.* x 7 7.  *3 sf, = x hnf.* x 7 8.  63 sf =:.  63 sf ==.  *3 sf, = x iaf.* x 7 =3.  *3 sf, = x iaf.* x 4

< 39 sf < 63 sf < 63 sf < 63 sf < 39 sf < =7 sf

↓ dmstan edd `mst sf2 amvhno m `enoar ani tgrami hn eriar te saw tga `mst reuni te m rew ↓ dhnm``y, tga amrs mra mttmfgai (ushno phns) ente tga gami `mtarm``y mni dhnm``y sawn ente ht whtg sawhno tgrami  ‖  fd.  fd. dho. ;

dhnhsgai amrs

saw en tga amrs ente tga gami `mtarm``y

haw drel mceva

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =4 ed 91 

Ymh` mni ceiy wh`` ca frefgatai whtg ymrn hn tga t ga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn

Ht stmrts whtg tga tmh`, tga ceiy wh`` ca werbai eut hn tga de``ewhno reunis. Iurhno frefgathno tga tmh` wh`` ca studdai whtg fgan fganh``a h``a whra (m`tarnmthva`y yeu fm fmn n usa dhcradh`` tee) 2 tga ceiy wh`` ca studdai whtg dhcradh`` en`y. Fenthnueus`y frefgathno hn sphrm` reunis 

m) pmrts ed tga tmh`, lmba 3 =.  3.  6.  9.  1.  4. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 1 sf < 1 sf 1 sf < 1 sf 1 sf < 1 sf 1 sf < 1 sf = x hnf., 9 sf < 4 sf

?.  4 sf

< 4 sf

7.  4 sf 8.  = x hnf., 1 sf =:.  ? sf ==.  = x hnf., 4 sf =3.  7 sf

< 4 sf < ? sf < ? sf < 7 sf < 7 sf

=6.  = x hnf., ? sf =9.  8 sf =1.  = x hnf., 7 sf

< 8 sf < 8 sf < =: sf

m tetm` ed 6 reunis ed 1 sf < =1 sf (enoehno feunthno) `amvhno `mst sf „epan‐  „epan‐ 

dhnhsgai pmrts ed tga tmh`

↓ der tga dhrst pmrt ed tga t ga tmh`; dmstan edd `mst sf2 `amvhno m `enoar anihno tgrami hn eriar te frefgat cetg  pmrts whtg 1 sf teoatgar ↓ der tga safeni pmrt ed tga tmh`; frefgat frefgat tga reunis =-=1 momhn, ien¹t dmst edd `mst sf (`mst (`mst sf wh`` ca unwerbai rasp. „epan‐) „epan‐)  - fd. dho. ↓ frefgat tga =st pmrt ed tga tmh` whtg 1 sf en tga 3ni pmrt ed ttga ga tmh`, fd. ormphf dho. ;

ormphf dho.  pmrt =  pmrt =

 pmrt 3

 pmrt 3 < kehnai sf

< `amvhno `mst sf „epan‐  „epan‐ 

frefgat teoatgar whtg 1 sf

↓ mdtar yeu‘va kehnai m`` pmrts m`` pmrts whtg frefgathno frefgathno 1 sf; tmba up tgmt ‗undhnhsgai‘ sthtfg momhn mni fenthnua frefgathno `hba tghs;

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =? ed 91  c) tmh` mni ceiy =4.  *9 sf, = x hnf.* x 3 =?.  =3 sf =7.  =3 sf =8.  =3 sf 3:.  =3 sf 3=.  = x hnf., == sf

< =3 sf < =3 sf < =3 sf < =3 sf < =3 sf < =6 sf

33.  =6 sf 36.  =6 sf 39.  =6 sf 31.  =6 sf 34.  = x hnf., =3 sf ;  3?.  =9 sf

< =6 sf < =6 sf < =6 sf < =6 sf < =9 sf

f`esa up ed reuni =4

37.  =9 sf 38.  =9 sf

 



fd. dho. ca`ew  m tetm` ed 9 reunis ed =3 sf < 97 sf (enoehno feunthno)

m tetm` ed 9 reunis ed ed =6 sf < 13 sf (enoehno feunthno)



 studd whtg whra mni mni dhcradh``, fd. dho.

< =9 sf

f`esa up ed reuni 34 (studd cetg pmrts whtg whra)

studd momhn whtg whra mni dhcradh``

< =9 sf < =9 sf

6:. = x hnf., =6 sf 6=.  =1 sf 63.  =1 sf 66.  = x hnf., =9 sf

< =1 sf < =1 sf < =1 sf < =4 sf

69.  =4 sf 61.  = x hnf., =1 sf 64.  =? sf 6?.  = x hnf., =4 sf 67.  =7 sf 68.  = x hnf., =? sf

< =4 sf < =? sf < =? sf < =7 sf < =7 sf < =8 sf

9:.  =8 sf

< =8 sf

9=.  = x hnf., =7 sf 93.  3: sf 96.  = x hnf., =8 sf

< 3: sf < 3: sf < 3= sf



 studd whtg dhcradh``  dhcradh``  

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =7 ed 91  99.  3= sf 91.  = x hnf., 3: sf

< 3= sf < 33 sf

94.  33 sf 9?.  = x hnf., 3= sf 97.  36 sf 98.  = x hnf., 33 sf

< 33 sf < 36 sf < 36 sf < 39 sf

 



 studd whtg dhcradh``  dhcradh``  

1:. 39 sf 1=.  = x hnf., 36 sf

< 39 sf < 31 sf



 studd whtg dhcradh``  dhcradh``  

13.  31 sf 16.  = x hnf., 39 sf 19.  34 sf 11.  = x hnf., 31 sf 14.  3? sf 1?.  = x hnf., 34 sf 17.  37 sf 18.  *=6 sf, = x hnf.* x 3

< 31 sf < 34 sf < 34 sf < 3? sf < 3? sf < 37 sf < 37 sf < 6: sf



 studd whtg dhcradh``  dhcradh``  

4:.  6: sf

< 6: sf

4=.  *=9 sf, = x hnf.* x 3 43.  63 sf 46.  *=1 sf, = x hnf.* x 3 49.  69 sf 41.  *=4 sf, = x hnf.* x 3

< 63 sf < 63 sf < 69 sf < 69 sf < 64 sf



 studd whtg dhcradh``  dhcradh``  

44.  64 sf 4?.  *7 sf, = x hnf.* x 9 47.  9: sf 48.  *8 sf, = x hnf.* x 9 ?:.  99 sf ?=.  *=: sf, = x hnf.* x 9

< 64 sf < 9: sf < 9: sf < 99 sf < 99 sf < 97 sf

f`esa up ed reuni 77

f`esa up ed reuni =3:

?3.  97 sf ?6.  *? sf, = x hnf.* x 4 ?9.  19 sf ?1.  *7 sf, = x hnf.* x 4 ?4.  4: sf

< 97 sf < 19 sf < 19 sf < 4: sf < 4: sf

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa =8 ed 91  ??.  *8 sf, = x hnf.* x 4

< 44 sf

?7.  *=: sf, = x hnf.* x 4 ?8.  *== sf, = x hnf.* x 4 7:.  *=3 sf, = x hnf.* x 4 7=.  *=6 sf, = x hnf.* x 4 73.  8: sf

< ?3 sf < ?7 sf < 79 sf < 8: sf < 8: sf

 



76. *=9 sf, = x hnf.* x 4

< 84 sf

79.  84 sf 71.  84 sf 74.  *=1 sf, = x hnf.* x 4 7?.  =:3 sf 77.  =:3 sf 78.  *=4 sf, = x hnf.* x 4

< 84 sf < 84 sf < =:3 sf < =:3 sf < =:3 sf < =:7 sf

8:.  =:7 sf 8=.  =:7 sf 83.  =:7 sf 86.  =:7 sf

< =:7 sf < =:7 sf < =:7 sf < =:7 sf

89.  =:7 sf 81.  =:7 sf

< =:7 sf < =:7 sf

84.  =:7 sf 8?.  =:7 sf 87.  *=4 sf, = x iaf.* x 4 88.  =:3 sf =::. =:3 sf =:=. =:3 sf

< =:7 sf < =:7 sf < =:3 sf < =:3 sf < =:3 sf < =:3 sf

=:3. *=1 sf, = x iaf.* x 4 =:6. 84 sf =:9. 84 sf

< 84 sf < 84 sf < 84 sf

=:1. 84 sf =:4. *=9 sf, = x iaf.* x 4 =:?. 8: sf

< 84 sf < 8: sf < 8: sf

=:7. 8: sf =:8. *=6 sf, = x iaf.* x 4 ==:. 79 sf ===. 79 sf ==3. *=3 sf, = x iaf.* x 4 ==6. ?7 sf

< 8: sf < 79 sf < 79 sf < 79 sf < ?7 sf < ?7 sf

==9. ?7 sf ==1. *== sf, = x iaf.* x 4 ==4. ?3 sf ==?. ?3 sf

< ?7 sf < ?3 sf < ?3 sf < ?3 sf

 studd whtg dhcradh``  dhcradh``  



fd. dho. en pmoa =7 

m tetm` ed 4 reunis ed ed =:7 sf < 497 sf (enoehno feunthno)

m tetm` ed 6 reunis ed ed =:3 sf < 6:4 sf (enoehno feunthno)

m tetm` ed 6 reunis ed 84 sf < 377 sf (enoehno feunthno)

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 3: ed 91  ==7. *? sf, = x iaf.* x 7 ==8. 49 sf

< 49 sf < 49 sf

=3:. 49 sf =3=. *4 sf, = x iaf.* x 7 =33. 14 sf =36. 14 sf

< 49 sf < 14 sf < 14 sf < 14 sf

=39. *1 sf, = x iaf.* x 7 =31. 97 sf

< 97 sf < 97 sf

studd tga ceiy whtg dhcradh`` avan`y



fd. dho. en pm pmoa oa =7 

dhnhsgai ceiy ceiy rasp. f`esa up ed reuni =63

=34. 97 sf =3?. *9 sf, = x iaf.* x 7 =37. 9: sf =38. *9 sf, = x hnf.* x 7 =6:. *? sf, = x hnf.* x 4 =6=. *7 sf, = x hnf.* x 4 =63. 4: sf

< 97 sf < 9: sf < 9: sf < 97 sf < 19 sf < 4: sf < 4: sf



 studd momhn hd hd nafassmry 

ien¹t studd whtg dhcradh``2 tgasa reunis wh`` ca usai der sawhno

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 tga ceiy wh`` ca sawn whtg sawhno tgrami ente tga gami hn tga `mst stap ↓ sat tga dhnhsgai ceiy mshia mni stmrt whtg frefgathno thp ed tga tmh`

Yga tmh` thp fenshsts ed tgraa pmrts, wghfg mra amfg frefgatai sapmrmta`y mni sawn teoatgar `mtar. Fd. evarvhaw;  pmrt ne. =  pmrt ne. 3

 pmrt ne. =

dhnhsgai tmh` thp (shiavhaw)

evarvhaw ed amfg pmrt ed tga tmh` thp  pmrt ne. 3

 pmrt ne. 3

 pmrt ne. 3

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 3= ed 91  Amfg pmrt ed tga tmh` thp wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga shno`a pmrts pmrts wen¹t ca studdai whtg whtg studdhno rasp. dhcradh``.

 ymrn

nmla ed ymrnfe`er

Fmtenm

tu`hp

Fmtenm

hfy phnb

↓ der m`` pmrts ed tga tmh` thp; Fenthnueus`y frefgathno hn sphrm` reunis 

m) pmrt ne. =2 ymrnfe`er; tu`hp =.  7 fg, = tfg 3.  = sf hn tga safeni `mst fgmhn, 4 sf mni 6 sf hnte tga `mst fg, (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) , 4 sf mni 3 sf hnte h nte tga `mst sthtfg < =7 sf

6 sf

= tfg amfg = sf

amfg = sf 3 sf ormpghf iaphf iaphfthen then ed reuni 3

f`esa up ed reuni 3

dhnhsgai pmrt ne. =

6.  = x hnf., 4 sf, = x hnf., = x hnf., = x hnf., 4 sf, = x hnf., = x hnf. 9.  39 sf

< 39 sf < 39 sf

1.  = sf, = x hnf., 4 sf, *= sf, = x hnf.* x 6, 4 sf, *= sf, = x hnf.* x 3

< 6: sf

4.  6: sf

< 6: sf

?.  3 sf, = x hnf., 4 sf, *3 sf, = x hnf.* x 6, 4 sf, *3 sf, = x hnf.* x 3 7.  64 sf 8.  64 sf =:.  64 sf ==.  *= x iaf., =4 sf* x 3 =3.  *= x iaf., =1 sf* x 3

< 64 sf < 64 sf < 64 sf < 64 sf < 69 sf < 63 sf

=6.  *= x iaf., =9 sf* x 3 =9.  *= x iaf., =6 sf* x 3 =1.  *= x iaf., =3 sf* x 3 =4.  *= x iaf., == sf* x 3 =?.  *= x iaf., =: sf* x 3 =7.  *= x iaf., 8 sf* x 3

< 6: sf < 37 sf < 34 sf < 39 sf < 33 sf < 3: sf

=8.  *= x iaf., 7 sf* x 3

< =7 sf

m tetm` ed 6 reunis ed ed 64 sf < =:7 sf (enoehno feunthno)

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 33 ed 91  3:.  *= x iaf., ? sf* x 3 3=.  *= x iaf., 4 sf* x 3 33.  *= x iaf., 1 sf* x 3 36.  *= x iaf., 9 sf* x 3 39.  *= x iaf., 6 sf* x 3 31.  *= x iaf., 3 sf* x 3

< =4 sf < =9 sf < =3 sf < =: sf < 7 sf < 4 sf

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ sat tga dhnhsgai pmrt ne. = mshia mni stmrt whtg frefgathno tga pmrts ne. 3 c) pmrt ne. 32 ymrnfe`er; hfy phnb, lmba 3

=.  9 fg, = tfg 3.  = sf hn tga safeni `mst fgmhn, 3 sf mni 6 sf hnte tga `mst fg, (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) , 3 sf mni 3 sf hnte h nte tga `mst sthtfg < =: sf

6 sf

= tfg amfg = sf

amfg = sf 3 sf ormpghf iaphfthe iaphfthen n ed reuni 3

f`esa up ed reuni 3

f`esa up ed reuni ?

6.  = x hnf., 3 sf, = x hnf., = x hnf., = x hnf., 3 sf, = x hnf., = x hnf.

< =4 sf

9.  = sf, = x hnf., 3 sf, *= sf, = x hnf.* x 6, 3 sf, *= sf, = x hnf.* x 3 1.  33 sf 4.  33 sf ?.  33 sf 7.  *= x iaf., 8 sf* x 3

< 33 sf < 33 sf < 33 sf < 33 sf < 3: sf

8.  *= x iaf., 7 sf* x 3 =:.  *= x iaf., ? sf* x 3 ==.  *= x iaf., 4 sf* x 3 =3.  *= x iaf., 1 sf* x 3 =6.  *= x iaf., 9 sf* x 3 =9.  *= x iaf., 6 sf* x 3

< =7 sf < =4 sf < =9 sf < =3 sf < =: sf < 7 sf

=1.  *= x iaf., 3 sf* x 3 =4.  *= x iaf., = sf* x 3

< 4 sf < 9 sf

m tetm` ed 6 reunis ed ed 33 sf < 44 sf (enoehno feunthno)

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ mttmfg tga dhnhsgai pmrts ne. 3 ente pmrt ne. = mni saw en cetg pmrts

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 36 ed 91  ↓ dhnm``y; "phnfg" tga dhnhsgai tmh` thp mt tga tmh` ani pmrts mni dhx tghs peshthen whtg sawhno sthtfgas fmradu``y

saw tga pmrts en amfg etgar

„phnfg‐ tmh` thp catwaan tga ani pmrts ed t ga tmh` mni dhx tghs peshthen whtg sawhno sthtfgas

↓ hd tga tmh` wms studdai whtg fganh``a whra; cani tga tmh` f`esa te tga ceiy ↓ hd yeu ihin¹t werbai whtg fganh``a whra; cani tga tmh` f`esa te tga ceiy hn sgmpa mni saw tga tmh` `mtar whtg sawhno tgrami ente tga ceiy pmtfg

dhnhsgai tmh` thp mni ceiy

Yga ceiy ed tga `ufby irmoen bhi bhi wh`` ca frefgatai frefgatai whtg ymrn hn tga hnihfmtai h nihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.

ani tga tmh` f`esa te tga ceiy2 mrrew  pehnts sawhno penht penht der tga tmh` thp (saw en tga thp ente tga ceiy pmtfg)

 ymrn

nmla ed ymrnfe`er

Fmtenm

hfy phnb

Ygara wh`` ca frefgathno cmfb mni dertg hn rews en`y, dhnhsghno amfg rew whtg m turnhno fgmhn

=.  9 fg, = tfg 3.  9 sf, = tfg

< 1 fg < 9 sf

6.  9 sf, = tfg 9. 9 sf, = tfg 1.  = x hnf., 3 sf, = x hnf., = tfg

< 9 sf < 9 sf < 4 sf

ed 9 sf m tetm` ed 6 rews ed < =3 sf (enoehno feunthno whtgeut tfg)

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 39 ed 91  4.  4 sf, = tfg ?.  4 sf, = tfg 7.  4 sf, = tfg 8.  = x hnf., 9 sf, = x hnf., = tfg =:.  7 sf, = tfg ==.  7 sf, = tfg =3.  = x hnf., 4 sf, = x hnf., = tfg

 

< 4 sf < 4 sf < 4 sf < 7 sf < 7 sf < 7 sf < =: sf

=6.  =: =: sf, sf, = = tfg tfg =9. =1.  = x hnf., 7 sf, = x hnf., = tfg =4.  =3 sf, = tfg =?.  = x hnf., =: sf, = x hnf., = tfg =7.  =9 sf, = tfg

< =: =: sf sf < < =3 sf < =3 sf < =9 sf < =9 sf

=8.  = x hnf., =3 sf, = x hnf., = tfg 3:.  =4 sf, = tfg 3=.  =4 sf, = tfg 33.  =4 sf, = tfg 36.  = x hnf., =9 sf, = x hnf., = tfg 39.  =7 sf, = tfg

< =4 sf < =4 sf < =4 sf < =4 sf < =7 sf < =7 sf

31.  =7 sf, = tfg

< =7 sf

34. =7 sf, = tfg 3?.   =7 sf, = tfg 37.  =7 sf, = tfg 38.  =7 sf, = tfg 6:.  = x hnf., =4 sf, = x hnf., = tfg

< =7 sf < =7 sf < =7 sf < =7 sf < 3: sf

6=.  3: sf, = tfg 63.  3: sf, = tfg 66.  3: sf, = tfg 69.  3: sf, = tfg 61.  = sf, = x iaf., =9 sf, = x iaf., = sf, = tfg 64.  =7 sf, = tfg

< 3: sf < 3: sf < 3: sf < 3: sf < =7 sf < =7 sf

6?.  =7 sf, = tfg 67.  =7 sf, = tfg 68.  =7 sf, = tfg 9:.  =7 sf, = tfg 9=.  =7 sf, = tfg 93.  = sf, = x iaf., =3 sf, = x iaf., = sf, = tfg

< =7 sf < =7 sf < =7 sf < =7 sf < =7 sf < =4 sf

96.  =4 sf, = tfg 99.  =4 sf, = tfg 91.  =4 sf, = tfg 94.  = sf, = x iaf., =: sf, = x iaf., = sf, = tfg 9?.  =9 sf, = tfg 97.  =9 sf, = tfg

< =4 sf < =4 sf < =4 sf < =9 sf < =9 sf < =9 sf

98.  =9 sf, = tfg 1:.  = sf, = x iaf., 7 sf, = x iaf., = sf, = tfg 1=.  =3 sf, = tfg 13.  =3 sf, = tfg 16.  =3 sf, = tfg

< =9 sf < =3 sf < =3 sf < =3 sf < =3 sf

m tetm` ed 6 rews ed ed =4 sf < 97 sf (enoehno feunthno whtgeut tfg)

ed =7 sf m tetm` ed 1 rews ed < 8: sf (enoehno feunthno whtgeut tfg)

m tetm` ed 9 rews ed ed 3: sf < 7: sf (enoehno feunthno whtgeut tfg)

m tetm` ed 1 rews ed ed =7 sf < 8: sf (enoehno feunthno whtgeut tfg)

m tetm` ed 6 rews ed =7 sf < 19 sf (enoehno feunthno whtgeut tfg)

m tetm` ed 6 rews ed ed =3 sf < 64 sf (enoehno feunthno whtgeut tfg)

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 31 ed 91  19.  = sf, = x iaf., 4 sf, = x iaf., = sf, = tfg 11.  =: sf, = tfg 14.  =: sf, = tfg 1?.  =: sf, = tfg 17.  = sf, = x iaf., 9 sf, = x iaf., = sf, = tfg 18.  7 sf, = tfg 4:.  7 sf, = tfg

< =: sf < =: sf < =: sf < =: sf < 7 sf < 7 sf < 7 sf

4=. 7 sf, = tfg 43.  7 sf, = tfg 46.  = sf, = x iaf., 3 sf, = x iaf., = sf, = tfg 49.  4 sf, = tfg 41.  4 sf, = tfg 44.  4 sf, = tfg

< 7 sf < 7 sf < 4 sf < 4 sf < 4 sf < 4 sf

4?.  4 sf, = tfg 47.  4 sf, = tfg 48.  = sf, = x iaf., = x iaf., = sf, = tfg ?:.  9 sf, = tfg ?=.  9 sf, = tfg ?3.  9 sf, = tfg

< 4 sf < 4 sf < 9 sf < 9 sf < 9 sf < 9 sf

m tetm` ed 6 rews ed 9 sf < =3 sf (enoehno feunthno whtgeut tfg)

?6.  9 sf, = tfg

< 9 sf

m tetm` ed 6 rews ed 9 sf

?9.  9 sf, = tfg ?1.  9 sf, = tfg

< 9 sf < 9 sf

m tetm` ed 6 rews ed ed =: sf < 6: sf (enoehno feunthno whtgeut tfg)

m tetm` ed 6 rews ed 4 sf < =7 sf (enoehno feunthno whtgeut tfg)

< =3 sf (enoehno feunthno whtgeut tfg)

↓ ien¹t dmstan edd `mst sf, cut frefgat tga anthra fenteur whtg sf2 fd.dho. (mrrew pehnts ttga ga frefgathno ihrafthen)

iatmh`ai vhaw

frefgat mreuni tga aioas (fd. mrrew) dhnhsgai ceiy pmtfg

↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ mttmfg tga dhnhsgai ceiy pmtfg en tga cmfb, dhx whtg phns mni saw en whtg sawhno tgrami ↓ fd. dho. en tga naxt pmoa pmoa

parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

 

 pmoa 34 ed 91 

mttmfg tga pmtfg ente tga cmfb

iatmh`ai vhaw

saw en whtg sawhno tgrami

Yga ceiy¹s trhmno`as ed tga `ufby irmoen bhi wh`` ca  ymrn nmla ed ymrnfe`er frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga Fmtenm tu`hp frefgat geeb shza 3. Iurhno frefgathno tga trhmno`as wen¹t wen¹t ca studdai whtg studdhno rasp. dhcradh``. Fd. eva evarvhaw; rvhaw;

trhmno`a trhmno`a trhmno`a trhmno`a ne. ? ne. = ne. 6 ne. 1

trhmno`a ne. =3

trhmno`a trhmno`a trhmno`a ne. 4 ne. 3 ne. 9

trhmno`as ne. == evarvhaw

trhmno`a ne. 8

trhmno`a ne. 7

trhmno`a ne. =:

evarvhaw ed tga trhmno`as

↓ der m`` trhmno`as; Fenthnueus`y frefgathno hn sphrm` reunis ↓ der tga trhmno`as ne. = - =: mpp`has; ↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst reuni te m rew, fd. dho. ;

frefgat tga `mst reuni te m rew

trhmno`as ne. = (lmba 3)  3)  =.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

 

 pmoa 3? ed 91  6.  9.  1.  4. 

*3 sf, = x hnf.* x 3 *6 sf, = x hnf.* x 3 *9 sf, = x hnf.* x 3 *1 sf, = x hnf.* x 3

< 7 sf < =: sf < =3 sf < =9 sf

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 4 sf te m rew  ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga trhmno`as ne. = ente tga ceiy pmtfg whtg sawhno tgrami (tga kust frefgatai 4sf rew wh`` ca usai gara ms m sawhno rew)

saw en trhmno`a ne. =

iatmh`ai vhaw

trhmno`as ne. 3 mni ne. 6 (amfg lmba 3)  3)  =.  3.  6.  9.  1.  4.  ?.  7. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf *6 sf, = x hnf.* x 3 < =: sf *9 sf, = x hnf.* x 3 < =3 sf *1 sf, = x hnf.* x 3 < =9 sf *4 sf, = x hnf.* x 3 < =4 sf *? sf, = x hnf.* x 3 < =7 sf



mpp`has der trhmno`as ne. 3 



mpp`has der trhmno`as ne. 6 

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg ? sf (trhmno`as ne. 3) rasp. 7 sf (trhmno`as ne. 6) te m rew   dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami   tgrami ↓

trhmno`as ne. 6 trhmno`as ne. 3

saw en trhmno`as ne. ne. 3

iatmh`ai vhaw

saw en trhmno`as ne. 6

trhmno`as ne. 9 mni ne. 1 (lmba 3 der amfg ne.)  ne.)   =.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf 6.  *3 sf, = x hnf.* x 3 < 7 sf parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

 

 pmoa 37 ed 91  9.  *6 sf, = x hnf.* x 3 1.  *9 sf, = x hnf.* x 3 4.  *1 sf, = x hnf.* x 3 ?.  *4 sf, = x hnf.* x 3 7.  *? sf, = x hnf.* x 3 8.  *7 sf, = x hnf.* x 3 =:.  *8 sf, = x hnf.* x 3

< =: sf < =3 sf < =9 sf < =4 sf < =7 sf < 3: sf < 33 sf



mpp`has der trhmno`as ne. 9 



mpp`has der trhmno`as ne. 1 

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 8 sf (trhmno`as ne. 9) rasp. =: sf (trhmno`as ne. 1) te m rew   dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami   tgrami ↓

saw en trhmno`as ne. 9

saw en trhmno`as ne. 1

trhmno`as ne. 4 mni ne. ? (lmba 3 der amfg ne.)  ne.)   =.  3.  6.  9.  1.  4.  ?.  7.  8. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf *6 sf, = x hnf.* x 3 < =: sf *9 sf, = x hnf.* x 3 < =3 sf *1 sf, = x hnf.* x 3 < =9 sf *4 sf, = x hnf.* x 3 < =4 sf *? sf, = x hnf.* x 3 < =7 sf *7 sf, = x hnf.* x 3 < 3: sf



mpp`has der trhmno`as ne. ?  



mpp`has der trhmno`as ne. 4  

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 8 sf (trhmno`as ne. 4) rasp. 7 sf (trhmno`as ne. ?) te m rew  ↓

 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami  tgrami 

saw en trhmno`as ne. 4

trhmno`as ne. ?

saw en trhmno`as ne. ?

trhmno`as ne. 7, ne. 8 mni ne. =: (lmba 3 der amfg ne.)  ne.)   =.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf 6.  *3 sf, = x hnf.* x 3 < 7 sf parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

 

 pmoa 38 ed 91  9.  1.  4.  ?. 

*6 sf, = x hnf.* x 3 *9 sf, = x hnf.* x 3 *1 sf, = x hnf.* x 3 *4 sf, = x hnf.* x 3

< =: sf < =3 sf < =9 sf < =4 sf



mpp`has der trhmno`as ne. =: 



mpp`has der trhmno`as ne. 8 



mpp`has der trhmno`as ne. 7 

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg ? sf (trhmno`as ne. 7) rasp. 4 sf (trhmno`as ne. 8) mni 1 sf (trhmno`as ne. =:) te m rew    dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami  tgrami  ↓

trhmno`as ne. =: saw en trhmno`as ne. 7, 8 mni =:

trhmno`as ne. 8

trhmno`as ne. 8

trhmno`as ne. ne. ==(lmba ==(lmba 3) mni =3 (lmba =) =.  3.  6.  9. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf  mpp`has der trhmno`as ne. =3  *6 sf, = x hnf.* x 3 < =: sf mpp`has der trhmno`as ne. ==  ↓



 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami   tgrami ↓

trhmno`as ne. ==

trhmno`as ne. =3

trhmno`as ne. == mni =3

saw en trhmno`as ne. == mni =3  =3 

dhnm`hshno tga ceiy ↓ saw en tga ceiy te tga cmfb ed tga gami gami ushno sawhno tgrami, fd. dho. en tga naxt pmoa

parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

 

 pmoa 6: ed 91 

haw drel mceva

iatmh`ai vhaw

shiavhaw

Yga `ufby irmoen bhi bhi gms m tetm` ed shx ceiy pmtfgas hn deur ihddarant shzas (par shia ed tga t ga ceiy), amfg pmtfg wh`` ca frefgatai sapmrmta`y.

 ymrn

nmla ed ymrnfe`er

Fmtenm

`hogt erfghi

Yga fe`er pmtfgas wh`` ca frefgatai whtg ymrn hn h n tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Fd. evarvhaw

 pmtfg ne. 6

 pmtfg ne. 3  pmtfg ne. 9

 pmtfg ne. = eiy pmtfgas

dhnhsgai sawn ceiy pmtfgas

↓ mpp`has der m`` ceiy pmtfgas; Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr hrm` m` re reun unis is 

 pmtfgas ne. =(lmba =(lmba 4, der cetg shias shias ed tga ceiy) =.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf 6.  *= x hnf.* x 4 < =3 sf  dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga pmtfgas whtg sawhno tgrami



parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

 

 pmoa 6= ed 91   pmtfgas ne. 3(lmba 3(lmba 3) =.  3.  6.  9. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *= sf, = x hnf.* x 4 < =7 sf

 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga pmtfgas whtg sawhno tgrami



 pmtfgas ne. 6(lmba 6(lmba 3) =.  3.  6.  9.  1.  4. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *= sf, = x hnf.* x 4 < =7 sf *3 sf, = x hnf.* x 4 < 39 sf *6 sf, = x hnf.* x 4 < 6: sf

 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga pmtfgas whtg sawhno tgrami



 pmtfgas ne. 9(lmba 9(lmba 3) =.  3.  6.  9.  1.  4.  ?. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *= sf, = x hnf.* x 4 < =7 sf *3 sf, = x hnf.* x 4 < 39 sf *6 sf, = x hnf.* x 4 < 6: sf *9 sf, = x hnf.* x 4 < 64 sf

 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga pmtfgas whtg sawhno tgrami



↓ tga dhnhsgai ceiy ed tga `ufby irmoen bhi sgeu`i `eeb `hba `h ba tghs;

shiavhaw

haw drel mceva

(lmba 3)  

Yga dera`aos fenshst ed tga daat, tga `aos mni tga gerns,

 ymrn

nmla ed ymrnfe`er

wgaracy m`` pmrts wh`` ca frefgatai sapmrmta`y mni sawn teoatgar hn tga `mst stap. Fd. evarvhaw

Fmtenm Fmtenm

fymn e`i `mfa

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 63 ed 91 

dera`ao

`ao

gern deet

evarvhaw

dhnhsgai dera`aos

dera`ao

↓ der m`` pmrts;

Fenthnueus`y frefgathno hn sphrm` reunis 

m) `aos (lmba 3) Yga `aos wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga `aos wh`` ca studdai whtg studdhno rasp. dhcradh``. =.  3.  6.  9.  1.  4. 

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 1 sf < 1 sf *= x hnf.* x 1 < =: sf *= sf, = x hnf.* x 1 < =1 sf *3 sf, = x hnf.* x 1 < 3: sf 3: sf < 3: sf

?.  *9 sf, = x hnf.* x 9 7.  39 sf 8.  39 sf =:.  39 sf ==.  *1 sf, = x hnf.* x 9 =3.  37 sf

< 39 sf < 39 sf < 39 sf < 39 sf < 37 sf < 37 sf

=6.  37 sf =9.  *1 sf, = x iaf.* x 9 =1.  39 sf =4.  *9 sf, = x iaf.* x 9 =?.  3: sf =7.  *6 sf, = x iaf.* x 9

< 37 sf < 39 sf < 39 sf < 3: sf < 3: sf < =4 sf

=8.  =4 sf 3:.  =4 sf 3=.  *3 sf, = x iaf.* x 9

< =4 sf < =4 sf < =3 sf

33. =3 sf 36.   =3 sf 39.  =3 sf

< =3 sf < =3 sf < =3 sf

m tetm` ed 6 reunis ed 39 sf < ?3 sf (enoehno feunthno)

m tetm` ed 6 reunis ed =3 sf < 64 sf (enoehno feunthno)

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 66 ed 91 

31.  *3 sf, = x hnf.* x 9 34.  *6 sf, = x hnf.* x 9 3?.  *9 sf, = x hnf.* x 9 37.  39 sf

< =4 sf < 3: sf < 39 sf < 39 sf

 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 tga `aos wh`` ca sawn en te tga deet whtg sawhno tgrami `mtar   ↓

↓ sat tga dhnhsgai `aos mshia mni stmrt whtg frefgathno tga daat dhnhsgai `aos

c) daat (lmba 3) Yga daat wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga daat wh`` ca studdai whtg studdhno rasp. dhcradh``. Xeu wh`` gmva te stmrt whtg tga f`mws, tga daat wh`` ca werbai eut hn tga de``ewhno reunis.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn f`mw ne. 6 `amvhno `mst sf „epan‐‐   „epan‐‐

f`mw ne. =

=. f`mw ne. 3 =.  3.  6.  9.  1.  4.  ?.  7. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *1 sf, = x hnf.* x 3 < =9 sf =9 sf < =9 sf =9 sf < =9 sf =9 sf < =9 sf =9 sf < =9 sf

f`mw ne. 3

m tetm` ed 9 reunis ed =9 sf < 14 sf (enoehno feunthno)

↓ dmstan edd `mst sf2 `amvhno m tmh` ed mpprex. =: hnfgas 3. f`mw ne. = mni ne. 6 =.  3.  6.  9.  1.  4. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf =3 sf < =3 sf =3 sf < =3 sf =3 sf < =3 sf

m tetm` ed 6 reunis ed =3 sf < 64 sf (enoehno feunthno)

↓ mpp`has der f`mw ne. = mpp`has; dmstan edd `mst `mst sf2 `amvhno m tmh` ed mpprex. =: hnfgas ↓ mpp`has der f`mw ne. 6 mpp`has; ien¹t dmstan edd `mst `mst sf, cut put ht mshia der new2 fd. dho. dhnm`hshno tga f`mws  ↓ tga f`mws wh`` ca kehnai whtg =sf ↓ p`amsa  p`amsa baap baap hn lhni tgmt ms ms yeu‘ra kehnhno tgesa twe f`mws, tga tghri f`mw¹s `mst `mst yat ‗undhnhsgai‘ sthtfg naais te ca eppeshta tga kehnhno sthtfg ‖  sthtfg ‖  fd.  fd. ormphf ormphf dho. en tga naxt naxt pmoa

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 69 ed 91 

ormphf dho.

f`mw ne. =

f`mw ne. 6

f`mw ne. 3

=3 sf

== sf < „epan‐ sf ed 6ri f`mw f`mw  

== sf

< 69 sf

< kehnai sf

↓ new tmba tga dhrst f`mw mni kehn ht te t e safeni f`mw (fd. dho.) cy frefgathno = sf (ushno tga anihno tgrami ed tga =st f`mw)

= sf

↓ tmba tga 6ri f`mw mni kehn ht te tga safeni f`mw (fd.dho.) cy frefgathno =sf (ushno tga anihno tgrami ed tga 3ni f`mw)

= sf

↓ mdtar yeu‘va kehnai m`` tgraa f`mws whtg frefgathno = sf, wamva hn er fut edd tga ymrn ed tga kehnhno sthtfgas ↓ new - cmfb te eur 6ri f`mw; tmba up tgmt ‗undhnhsgai‘ sthtfg momhn mni fenthnua frefgathno `hba tghs;

=.  3.  6.  9.  1. 

69 sf *=1 sf, = x iaf.* x 3 *3 sf, = x iaf.* x 7 *6 sf, = x hnf.* x 4 *9 sf, = x hnf.* x 4

< 69 sf < 63 sf < 39 sf  sf  < 6: sf  sf  < 64 sf

4.  ?.  7.  8. 

64 sf 64 sf 64 sf 64 sf

< 64 sf < 64 sf < 64 sf < 64 sf

 

=:.  6: *9 sf sf, = x iaf.* x 4 ==. =3.  *6 sf, = x iaf.* x 4



gara; studd whtg dhcradh``  

m tetm` ed 9 reunis ed ed 64 sf < =99 sf (enoehno feunthno)

< 6: 6: sf sf  sf  < < 39 sf  sf 

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 61 ed 91  =6.  *3 sf, = x iaf.* x 4 =9.  *= sf, = x iaf.* x 4 =1.  *= x iaf.* x 4

< =7 sf < =3 sf  sf  < 4 sf



gara; studd whtg dhcradh``  

 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ saw en tga t ga dhnhsgai `aos whtg sawhno tgrami ente amfg deet ‖   ‖  fd.  fd. dho. ;



twe dhnhsgai daat

saw en tga `ao ente tga deet

dhnhsgai dera`aos

↓ sat tga dera`aos mshia mni stmrt whtg frefgathno tga gerns

(lmba 3)  

Yga gerns der tga dera`aos wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.

 ymrn

nmla ed ymrnfe`er

Fmtenm

e`i `mfa

Iurhno frefgathno tga gerns wh`` ca studdai whtg dhcrad dhcradh`` h`` (trhfby) er whtg ramiy lmia pel pelpels pels (amshar).

Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr hrm` m` re reun uni is 

=.  3.  6.  9.  1. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf = x hnf., 1 sf < ? sf = sf, = x hnf., 1 sf < 7 sf 3 sf, = x hnf., 1 sf < 8 sf

dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga gerns te tga `aos `mtarm``y ‖  `mtarm``y ‖  fd.  fd. dho. ;



saw en tga gerns `mtarm``y, fd. mrrews

↓ dhnm``y; m`hon tga dera`aos te tga ceiy mni saw en whtg sawhno tgrami ‖  tgrami ‖  fd.  fd. dho. en tga naxt naxt pmoa

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 64 ed 91 

shiavhaw

drentvhaw

(lmba 3)  

Yga ghni `aos fenshst ed tga daat, tga `aos mni tga gerns, wgaracy m`` pmrts wh`` ca frefgatai sapmrmta`y mni sawn teoatgar hn tga `mst stap.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn

Fmtenm

e`i `mfa

Fd. evarvhaw

`ao

ghni `ao

 cho gern

deet `htt`a gern

evarvhaw

dhnhsgai ghni `aos

ghni `ao

↓ der m`` pmrts; hrm` m` re reun unis is  Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr

m) `aos (lmba 3) Yga `aos wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga `aos wh`` ca studdai whtg studdhno rasp. dhcradh``.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn

=.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf 6.  *= x hnf.* x 4 < =3 sf

 

9.  *7 *= sf, sf, = =x x hnf.* hnf.* x x3 4 1. 4.  *9 sf, = x hnf.* x 9

< 3: =7 sf sf < < 39 sf

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 6? ed 91 

?.  *1 sf, = x hnf.* x 9 7.  37 sf 8.  37 sf =:.  *4 sf, = x hnf.* x 9 ==.  63 sf

< 37 sf < 37 sf < 37 sf < 63 sf < 63 sf

=3.  63 sf

< 63 sf

=6. 63 sf =9.   63 sf =1.  63 sf =4.  63 sf =?.  *4 sf, = x iaf.* x 9

< 63 sf < 63 sf < 63 sf < 63 sf < 37 sf

=7.  37 sf =8.  *1 sf, = x iaf.* x 9 3:.  39 sf 3=.  *9 sf, = x iaf.* x 9 33.  3: sf 36.  3: sf

< 37 sf < 39 sf < 39 sf < 3: sf < 3: sf < 3: sf

39.  *6 sf, = x iaf.* x 9 31.  =4 sf 34.  =4 sf 3?.  =4 sf 37.  =4 sf 38.  =4 sf

< =4 sf < =4 sf < =4 sf < =4 sf < =4 sf < =4 sf

6:.  *? sf, = x hnf.* x 3 6=.  *3 sf, = x hnf.* x 4 63.  39 sf 66.  *6 sf, = x hnf.* x 4 69.  6: sf

< =7 sf < 39 sf < 39 sf < 6: sf < 6: sf

m tetm` ed 1 reunis ed 63 sf < =4: sf (enoehno feunthno)

m tetm` ed 1 reunis ed ed =4 sf < 7: sf (enoehno feunthno)

 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 tga `aos wh`` ca sawn en te tga deet whtg sawhno tgrami `mtar ↓

dhnhsgai `aos

↓ sat tga dhnhsgai `aos mshia mni stmrt whtg frefgathno tga daat

c) daat (lmba 3) Yga daat wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga daat wh`` ca studdai whtg studdhno rasp. dhcradh``. Xeu wh`` gmva te stmrt whtg tga f`mws, tga daat wh`` ca werbai eut hn tga de``ewhno reunis.

 ymrn

nmla ed ymrnfe`er

Fmtenm

fymn f`mw ne. 6 `amvhno `mst sf „epan‐‐   „epan‐‐

f`mw ne. =

=. f`mw ne. 3

 

=. 9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf 6.  *= x hnf.* x 4 < =3 sf

f`mw ne. 3

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 67 ed 91  9.  1.  4.  ?.  7. 

*3 sf, = x hnf.* x 9 =4 sf =4 sf =4 sf =4 sf

< =4 sf < =4 sf < =4 sf < =4 sf < =4 sf

m tetm` ed 9 reunis ed =4 sf < 49 sf (enoehno feunthno)

↓ dmstan edd `mst sf2 `amvhno m tmh` ed mpprex. =: hnfgas 3. f`mw ne. = mni ne. 6 =.  3.  6.  9.  1. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *1 sf, = x hnf.* x 3 < =9 sf =9 sf < =9 sf =9 sf < =9 sf

↓ mpp`has der f`mw ne. = mpp`has; dmstan edd `mst `mst sf2 `amvhno m tmh` ed mpprex. =: hnfgas ↓ mpp`has der f`mw ne. 6 mpp`has; ien¹t dmstan edd `mst `mst sf, cut put ht mshia der new2 fd. dho. dhnm`hshno tga f`mws  ↓ tga f`mws wh`` ca kehnai whtg =sf ↓ p`amsa  p`amsa baap baap hn lhni tgmt ms ms yeu‘ra kehnhno tgesa twe f`mws, tga tghri f`mw¹s `mst `mst yat ‗undhnhsgai‘ sthtfg (naais te ca eppeshta tga kehnhno sthtfg ‖  sthtfg ‖  fd.  fd. ormphf dho.

ormphf dho.

f`mw ne. =

=6 sf

f`mw ne. 6

f`mw ne. 3

=9 sf

< „epan‐ sf ed 6ri f`mw f`mw  

↓ new tmba tga dhrst f`mw mni kehn ht te safeni f`mw (fd. dho.) cy frefgathno = sf (ushno tga anihno tgrami ed tga =st dhnoar)

== sf

< 9: sf

< kehnai sf

= sf

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 68 ed 91 

= sf

↓ tmba tga 6ri f`mw f`mw mni kehn ht te tga safeni f`mw (fd.dho.) cy frefgathno =sf (ushno tga anihno tgrami ed tga 3ni f`mw)

↓ mdtar yeu‘va kehnai m`` tgraa f`mws whtg frefgathno = sf, wamva hn er fut edd tga ymrn ed tga kehnhno sthtfgas ↓ new - cmfb te eur 6ri f`mw; tmba up tgmt ‗undhnhsgai‘ sthtfg momhn mni fenthnua frefgathno `hba tghs;

=.  9: sf < 9: sf *6 sf, = x iaf.* x 7 63 sf 63 sf *9 sf, = x hnf.* x 4 *1 sf, = x hnf.* x 4

3.  6.  9.  1.  4. 

< 63 sf < 63 sf  sf  < 63 sf  sf  < 64 sf < 93 sf



?.  93 sf 7.  93 sf 8.  93 sf =:.  93 sf ==.  *1 sf, = x iaf.* x 4 =3.  64 sf

< 93 sf < 93 sf < 93 sf < 93 sf < 64 sf  sf  < 64 sf

=6.  *9 sf, = x iaf.* x 4 =9.  6: sf =1.  *6 sf, = x iaf.* x 4 =4.  *3 sf, = x iaf.* x 4 =?.  *= sf, = x iaf.* x 4

< 6: sf < 6: sf < 39 sf  sf  < =7 sf < =3 sf  sf 



 

=7. *= x iaf.* x 4

gara; studd whtg dhcradh``  

m tetm` ed 9 reunis ed ed 93 sf < =47 sf (enoehno feunthno)

gara; studd whtg dhcradh``  

< 4 sf

 dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ saw en tga t ga dhnhsgai `aos whtg sawhno tgrami ente amfg deet ‖   ‖  fd.  fd. dho. ;



ghni `ao

ghni `ao

saw en tga `aos

dhnhsgai ghni `aos mni dera`aos

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 9: ed 91 

↓ sat tga ghni `aos mshia mni stmrt whtg frefgathno tga gerns

(amfg lmba 3)  

Yga gerns der tga ghni `aos wh`` ca frefgatai frefgatai whtg ymrn hn tga

 ymrn

nmla ed ymrnfe`er

hnihfmtai ymrn fe`er twe mni whtg tga frefgat geeb shza wh`` gmva te frefgat ihddarant gerns der amfg `ao.3. Xeu

Fmtenm

e`i `mfa

Iurhno frefgathno tga gerns wh`` ca studdai whtg dhcra dhcradh`` dh`` (trhfby) er whtg ramiy lmia pel pelpels pels (amshar). ↓ der m`` gerns; Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr hrm` m` re reun unis is Fd. evarvhaw; gerns ne. = gerns ne. =

gerns ne. 3 gerns ne. 3 evarvhaw

m) gerns ne. = (lmba 3) =.  3.  6.  9.  1.  4.  ?.  7. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf = x hnf., 1 sf < ? sf = sf, = x hnf., 1 sf < 7 sf 3 sf, = x hnf., 1 sf < 8 sf 6 sf, = x hnf., 1 sf < =: sf 9 sf, = x hnf., 1 sf < == sf 1 sf, = x hnf., 1 sf < =3 sf

dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga gerns te tga `aos `mtarm``y ‖  `mtarm``y  ‖  fd.  fd. dho. ;



saw en tga gerns `mtarm``y, fd. mrrews

c) gerns ne. 3 (lmba 3) =.  9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 3.  4 sf < 4 sf  Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 9= ed 91  6.  9.  1.  4.  ↓

= x hnf., 1 sf = sf, = x hnf., 1 sf 3 sf, = x hnf., 1 sf 6 sf, = x hnf., 1 sf

< ? sf < 7 sf < 8 sf < =: sf

dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga gerns te tga `aos `mtarm``y ‖  `mtarm``y ‖  fd.   fd. dho. en pmoa pmoa

9: ↓ dhnm``y; m`hon tga ghni `aos te tga ceiy mni saw en whtg sawhno tgrami ‖  tgrami ‖  fd.  fd. dho. ; ↓ framta whtg pe`ylar f`my slm`` f`mws mni mttmfg tgal te tga m`ramiy frefgatai f`mws

haw drel mceva

shiavhaw

(lmba 3)  

amfg whno pmhr fenshsts ed tgraa whno pmrts, wghfg mra dhrst hnihvhium``y frefgatai mni sawn teoatgar hn tga `mst stap. M`` pmrts ed tgawhnos wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.

 ymrn

nmla ed ymrnfe`er

Fmtenm

`hogt erfghi

Iurhno frefgathno tga whnopmrts wen¹ta ca studdai studdai whtg studdhno rasp. dhcra dhcradh``. dh``. ↓ der m`` pmrts; Fenthnueus`y frefgathno hn sphrm` reunis  Fd. evarvhaw;  pmrt ne. 3

dhnhsgai whnos

 pmrt ne. =

 pmrt ne. 6 evarvhaw

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 93 ed 91  ↓ der amfg pmrt ed tga whno; ↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst reuni te m rew, fd. dho. ; frefgat tga `mst reuni te m rew

m) whno whno pmrt ne. = =.  3.  6.  9.  1.  4. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf 7 sf < 7 sf *6 sf, = x hnf.* x 3 < =: sf =: sf < =: sf

?.  *9 sf, = x hnf.* x 3 7.  =3 sf 8.  *1 sf, = x hnf.* x 3 =:.  =9 sf ==.  =9 sf =3.  *4 sf, = x hnf.* x 3

< =3 sf < =3 sf < =9 sf < =9 sf < =9 sf < =4 sf

=6.  =4 sf =9.  =4 sf =1.  *? sf, = x hnf.* x 3 =4.  =7 sf =?.  =7 sf =7.  *7 sf, = x hnf.* x 3

< =4 sf < =4 sf < =7 sf < =7 sf < =7 sf < 3: sf

=8.  3: sf 3:.  3: sf

< 3: sf < 3: sf

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 8 sf te m rew  ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y c) whno pmrt ne. 3 =.  3.  6.  9.  1.  4. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf 7 sf < 7 sf *6 sf, = x hnf.* x 3 < =: sf =: sf < =: sf

?.  *9 sf, = x hnf.* x 3

< =3 sf

7.  *1 sf, = x hnf.* x 3 8.  *4 sf, = x hnf.* x 3 =:.  *? sf, = x hnf.* x 3

< =9 sf < =4 sf < =7 sf

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 96 ed 91  ==.  *7 sf, = x hnf.* x 3 =3.  *8 sf, = x hnf.* x 3

< 3: sf < 33 sf

=6.  *=: sf, = x hnf.* x 3 =9.  *== sf, = x hnf.* x 3 =1.  *=3 sf, = x hnf.* x 3 =4.  *=6 sf, = x hnf.* x 3

< 39 sf < 34 sf < 37 sf < 6: sf

=?.  *=9 sf, = x hnf.* x 3

< 63 sf

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg =1 sf te m rew  ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y f) whno pmrt ne. 6 =.  3.  6.  9.  1.  4. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf 7 sf < 7 sf *6 sf, = x hnf.* x 3 < =: sf =: sf < =: sf

?.  =: sf 7.  =: sf 8.  *9 sf, = x hnf.* x 3 =:.  =3 sf ==.  =3 sf =3.  =3 sf

< =: sf < =: sf < =3 sf < =3 sf < =3 sf < =3 sf

=6.  *1 sf, = x hnf.* x 3 =9.  =9 sf =1.  =9 sf =4.  =9 sf =?.  =9 sf =7.  *4 sf, = x hnf.* x 3

< =9 sf < =9 sf < =9 sf < =9 sf < =9 sf < =4 sf

=8.  =4 sf 3:.  =4 sf

< =4 sf < =4 sf

m tetm` ed 6 reunis ed =3 sf < 64 sf (enoehno feunthno)

m tetm` ed 9 reunis ed =9 sf < 14 sf (enoehno feunthno)

↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg ? sf te m rew  ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y dhnm`hshno tga whnos ↓ mttmfg whno pmrt ne. 6 en whno pmrt ne. 3 mni saw cetg pmrts teoatgar ushno sawhno tgrami ↓ mttmfg pmrt ne. = en whno pmrt ne. 6 mni m`se saw cetg cetg pmrts teoatgar, fd. dho. en tga naxt pmoa

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 99 ed 91 

 pmrt ne. =

 pmrt ne. 3

 pmrt ne. 6

 pmrt ne. 3

saw tga whnopmrts teoatgar ushno sawhno tgrami

↓ 

p`amsa neta, tgmt tga 3ni whno lust ca werbai hn m lhrrer-hnvartai lhrrer-hnvartai wmy

↓ m`hon tga dhnhsgai whnos en tga ceiy, dhx whtg phns mni saw en whtg m daw sthtfgas ushno sawhno tgrami (saw en tga trhmno`as, fd. dho.) dh o.)

dhnhsgai sawn whnos

dhnhsgai whnos

(lmba 3)  

Yga gerns der tga gami wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.

 ymrn

nmla ed ymrnfe`er

Fmtenm

e`i `mfa

Iurhno frefgathno tga gerns wh`` ca studdai whtg dhcradh`` dhcradh`` (trhfby) er whtg ramiy lmia pel pelpels pels (amshar). hrm` m` re reun uni is  Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr

=.  3.  6.  9. 

9 fg, = s`st hn dhrst fg (lmohf ‖  (lmohf ‖  rhno),  rhno), hn tghs rhno; 1 sf < 1 sf = x hnf., 9 sf < 4 sf = sf, = x hnf., 9 sf < ? sf

dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw tga gerns ente tga gami ushno sawhno tgrami ‖  tgrami ‖  fd.  fd. dho. ; ↓

saw en tga gerns, fd. mrrews

 Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7

 

 pmoa 91 ed 91 

- IENA ‖  IENA ‖  

www.lm`m-iashons.ia

parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7  Der parsenm

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF