Mala Designs Bebe Dragón
February 17, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Mala Designs Bebe Dragón...
Description
pmoa = ed 91
www.lm`m-iashons.ia
www.lm`m-iashons.ia dmfaceeb gttps;//www.dmfa gttps;//www.dmfaceeb.fel/Lm`mceeb.fel/Lm`m-Iashons Iashons Hnstmorml lm`mUiashons
fepyrhogt cy L.A. Garrlmnn parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
pmoa 3 ed 91
Fmtenm (Vfgaapkas) 9x fymn (68?) =x e`i resa (9:7) =x hfy phnb (394) =x snew wghta (=:4) =x tu`hp (333) =x `hogt erfghi (334) =x e`i `mfa (=6:)
Vfgaapkas „Fmtenm‐ mra mvmh`mc`a gara; gttps;//we```e``h.ia gttps;//we```e``h.ia
-
‖ @mca` @mca`
-
mvmh`mc`a gara;; www.lm`m-iashons.ia
-
mrthdhfhm` aya`msgas naai`a (mpprex. ?fl)
-
_e``@e``h ® frefgat geeb shza shza 3 er 3.1 - mvmh`mc`a gara; www.we```e``h.ia www.we```e``h.ia
-
hd nafassmry; nafassmry; get o`ua oun, migashva p`mstar p`mstar , dhle peylar f`my (wghta) (wghta) der tga f`mws studdhno, frmdt o`ua (QGQ), sawhno tgrami, naai`a der tga ayas; twe c`mfb gm`d pamr`s ed =:ll frmdt phpa f`amnars (fganh``a whra) (m`tarnmthva; studdhno), ramiy lmia pelpels der studdhno
L sf fg
Lmsfga dasta Lmsfga(n) @udtlmsfga(n)
st sf fg
sthtfg shno`a frefgat fgmhn
stb v `
staab / staban vmsta(n) `essa(n)
tfg bl Vtc gVtc
_ania`udtlmsfga Battlmsfga(n) Vtécfgan gm`cas Vtécfgan
tfg s`st if gif
b` gv st gst
baar`essa(n) gm`va vmsta(n) stebka(s) gm`dstebka(s)
hnf. iaf. ðcarspr. Si. Fd. dho. **
varieppa`n mcnaglan ðcarsprhnoan Sunia Taro`ahfg(a) dho. Smppert, ig.m``as, wms zwhsfgan ian ** stagt, luss hnnargm`c ihasar Sunia whaiarge`t warian
hnf. iaf. sbhp ri Fd. dho. **
turnhno fgmhn s`hp sthtfg ieuc`a frefgat gm`d ieuc`a frefgat hnframsa iaframsa sbhp reuni fendar dhoura rapamt x catwaan tga **
laari. lhni. evars`mmn tr zha mdc. **
laariaran lhniaran evars`mmn tear varoa`hkb lat mdcaa`ihno m``as wmt tussan ** stmmt, leat chnnan iaza tear gargmm`i werian
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 6 ed 91
Netas en pretafthen ed fepyrhogt;
Yga sm`a ed, AWFGMNOA, AWFGMNOA, rapreiufthen mni puc`hfmthen (hnf`uihno trmns`mthens) ed tghs pmttarn (hnf`uihno en`hna puc`hfmthen) ms wa`` ms sa``hno tga dhnhsgai tey en tga hntarnat hs preghchtai. Va``hno tga dhnhsgai tey (a.o. hn `efm` steras, mt tga lmrbats) hs net parlhttai.
Dm. _e```e``h geebs mni wee` gttps;//www.dmfaceeb.fel/_e``@e``h/ gttps;//www.dmfaceeb.fel/_e``@e``h/ fentmft; _e``@e``h@mniJolmh`.fel fentmft; _e``@e``h@mniJolmh`.fel
www.we```e``h.ia www.we```e``h.ia
Vtrhchimb Hng. Ygelms Hlsfgwah`ar predasshenm` frefgat frefgat mni bnhtthno pmttarns pmttarns dmfaceeboreup ; gttps;//www.dmfaceeb.fel/o gttps;//www.dmfaceeb.fel/oreups/=1:8614=84:9=893 reups/=1:8614=84:9=893//
www.strhchimb.ia www.strhchimb.ia
parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
pmoa 9 ed 91
Yga gami ed tga `ufby irmoen bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno whri iar Bepd Bepd wh`` ca avan`y studdai studdai whtg studdhno rasp. dhcradh``.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn
hrm` m` re reun uni is Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr
=. =: fg, = tfg 3. = sf hn tga safeni `mst fgmhn,7 sf mni 6 sf hnte tga `mst fg, (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) , 7 sf mni 3 sf hnte h nte tga `mst sthtfg < 33 sf
6 sf
= tfg amfg = sf
amfg = sf 3 sf ormpghf iaphfthen iaphfthen ed reuni 3
f`esa up ed reuni 3
6. = x hnf., 7 sf, = x hnf., = x hnf., = x hnf., 7 sf, = x hnf., = x hnf.
< 37 sf
9. = sf, = x hnf., 7 sf, *= sf, = x hnf.* x 6, 7 sf, *= sf, = x hnf.* x 3
< 69 sf
1. 3 sf, = x hnf., 7 sf, *3 sf, = x hnf.* x 6, 7 sf, *3 sf, = x hnf.* x 3
< 9: sf
4. 6 sf, = x hnf., 7 sf, *6 sf, = x hnf.* x 6, 7 sf, *6 sf, = x hnf.* x 3
< 94 sf
?. 9 sf, = x hnf., 7 sf, *9 sf, = x hnf.* x 6, 7 sf, *9 sf, = x hnf.* x 3 7. 99 sf
< 13 sf < 13 sf
8. 1 sf, = x hnf., 7 sf, *1 sf, = x hnf.* x 6, 7 sf, *1 sf, = x hnf.* x 3 =:. 17 sf
< 17 sf < 17 sf
==. 4 sf, = x hnf., 7 sf, *4 sf, = x hnf.* x 6, 7 sf, *4 sf, = x hnf.* x 3
< 49 sf
=3. 49 sf
< 49 sf
↓
fd. dho. en pmoa 1
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 1 ed 91 =6. ? sf, = x hnf., 7 sf, *? sf, = x hnf.* x 6, 7 sf, *? sf, = x hnf.* x 3 =9. ?: sf
< ?: sf < ?: sf
=1. 7 sf, = x hnf., 7 sf, *7 sf, = x hnf.* x 6, 7 sf, *7 sf, = x hnf.* x 3 =4. ?4 sf
< ?4 sf < ?4 sf
=?. 8 sf, = x hnf., 7 sf, *8 sf, = x hnf.* x 6, 7 sf, *8 sf, = x hnf.* x 3 =7. 73 sf
< 73 sf < 73 sf
f`esa up reuni =8
↓
fd. dho. ;
ed
f`esa up ed reuni =7
=8. =: sf, = x hnf., 7 sf, *=: sf, = x hnf.* x 6, 7 sf, *=: sf, = x hnf.* x 3 3:. 77 sf
< 77 sf < 77 sf
3=. == sf, = x hnf., 7 sf, *== sf, = x hnf.* x 6, 7 sf, *== sf, = x hnf.* x 3 33. 89 sf 36. 89 sf 39. 89 sf
< 89 sf < 89 sf < 89 sf < 89 sf
31. 89 sf 34. 89 sf 3?. 89 sf
< 89 sf < 89 sf < 89 sf
37. == sf, = x iaf., 7 sf, *== sf, = x iaf.* x 6, 7 sf, *== sf, = x iaf.* x 3 38. 77 sf 6:. 77 sf
< 77 sf < 77 sf < 77 sf
6=. =: sf, = x iaf., 7 sf, *=: sf, = x iaf.* x 6, 7 sf, *=: sf, = x iaf.* x 3 63. 73 sf
< 73 sf < 73 sf
66. 8 sf, = x iaf., 7 sf, *8 sf, = x iaf.* x 6, 7 sf, *8 sf, = x iaf.* x 3
< ?4 sf
69. 7 sf, = x iaf., 7 sf, *7 sf, = x iaf.* x 6, 7 sf, *7 sf, = x iaf.* x 3
< ?: sf
m tetm` ed 1 reunis ed ed 89 sf < 373 sf (enoehno feunthno)
m tetm` ed 1 reunis ed ed 89 sf < 373 sf (enoehno feunthno)
↓
fd. dho. en pmoa 4
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 4 ed 91 61. ? sf, = x iaf., 7 sf, *? sf, = x iaf.* x 6, 7 sf, *? sf, = x iaf.* x 3
< 49 sf
64. 4 sf, = x iaf., 7 sf, *4 sf, = x iaf.* x 6, 7 sf, *4 sf, = x iaf.* x 3
< 17 sf
6?. 1 sf, = x iaf., 7 sf, *1 sf, = x iaf.* x 6, 7 sf, *1 sf, = x iaf.* x 3
< 13 sf
67. 9 sf, = x iaf., 7 sf, *9 sf, = x iaf.* x 6, 7 sf, *9 sf, = x iaf.* x 3
< 94 sf
68. 6 sf, = x iaf., 7 sf, *6 sf, = x iaf.* x 6, 7 sf, *6 sf, = x iaf.* x 3
< 9: sf
f`esa up ed reuni 63
f`esa up ed reuni 68
↓
gara; studd whtg dhcradh``, fd. dho. ;
f`esa up ed reuni 91
9:. 3 sf, = x iaf., 7 sf, *3 sf, = x iaf.* x 6, 7 sf, *3 sf, = x iaf.* x 3
< 69 sf
9=. = sf, = x iaf., 7 sf, *= sf, = x iaf.* x 6, 7 sf, *= sf, = x iaf.* x 3 93. *1 sf, = x iaf.* x 9 96. *3 sf, = x iaf.* x 4 99. *= sf, = x iaf.* x 4 91. *= x iaf.* x 4
< 37 sf < 39 sf < =7 sf < =3 sf < 4 sf
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y
Yga luzz`a wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno sawhno ente tga gami tga luzz`a luzz`a wh`` ca studdai whtg studdhno rasp. dhcradh``.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn
hrm` m` re reun unis is Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr
=. tfg safeni `mst fgmhn, 9 sf mni 6 sf hnte tga `mst fg, 3. 4 = fg, sf hn= tga Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa ? ed 91 (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) ,
6 sf
9 sf mni 3 sf hnte h nte tga `mst sthtfg < =9 sf
= tfg amfg = sf
amfg = sf 3 sf ormpghf iaphfthen iaphfthen ed reuni 3
f`esa up ed reuni 3
f`esa up ed reuni 9
6. = x hnf., 9 sf, = x hnf., = x hnf., = x hnf., 9 sf, = x hnf., = x hnf.
< 3: sf
9. = sf, = x hnf., 9 sf, *= sf, = x hnf.* x 6, 9 sf, *= sf, = x hnf.* x 3 1. 34 sf
< 34 sf < 34 sf
4. 3 sf, = x hnf., 9 sf, *3 sf, = x hnf.* x 6, 9 sf, *3 sf, = x hnf.* x 3 ?. 63 sf
< 63 sf < 63 sf
7. 6 sf, = x hnf., 9 sf, *6 sf, = x hnf.* x 6, 9 sf, *6 sf, = x hnf.* x 3 8. 67 sf
< 67 sf < 67 sf
=:. 9 sf, = x hnf., 9 sf, *9 sf, = x hnf.* x 6, 9 sf, *9 sf, = x hnf.* x 3 ==. 99 sf
< 99 sf < 99 sf
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y, tga luzz`a wh`` ca sawn whtg sawhno tgrami ente tga gami `mtar ↓ m`hon tga luzz`a whtg tga gami, dmstan ht whtg phns mni saw ht ente tga t ga gami whtg sawhnno tgrami fmradu``y ↓ sgert`y cadera dhnhsghno sawhno; studd tga luzz`a whtg dhcradh`` 2 fd. dho. ;
f`esa up ed reuni ==
saw ht whtg sawhno tgrami ente ht
studd whtg dhcradh``
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 7 ed 91
Yga tenoua wh`` ca frefgatai frefgatai whtg ymrn hn h n tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga tenoua tenoua wen¹t ca studdai studdai whtg studdhno studdhno rasp. dhcradh``.
ymrn
nmla ed ymrnfe`er
Fmtenm
e`i resa
hrm` m` re reun uni is Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr
=. 3. 6. 9. 1.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf =3 sf < =3 sf *= x iaf.* x 4 < 4 sf
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ sat dhnhsgai tenoua mshia mni stmrt whtg frefgathno tga leutg
dhnhsgai tenoua
ymrn Yga leutg ed tga `ufby irmoen bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai h nihfmtai ymrn fe`er mni whtg tga frefgat geeb Fmtenm shza 3. Iurhno frefgathno frefgathno tga leutg wen¹t ca studdai whtg studdhno rasp. dhcradh``.
nmla ed ymrnfe`er fymn
Fenthnueus`y frefgathno hn sphrm` reunis =. 9 fg, = tfg 3. = sf hn tga safeni `mst fgmhn, 3 sf mni 6 sf hnte tga `mst fg, (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) , 3 sf mni 3 sf hnte h nte tga `mst sthtfg < =: sf
6 sf
= tfg amfg = sf
amfg = sf 3 sf ormpghf iaphfthen ed reuni 3
f`esa up ed reuni 3
saw tga `mst reuni te m rew ushno tga anihno tgrami
6. = x hnf., 3 sf, = x hnf., = x hnf., = x hnf., 3 sf, = x hnf., = x hnf. 9. =4 sf
< =4 sf < =4 sf
1. = sf, = x hnf., 3 sf, *= sf, = x hnf.* x 6, 3 sf, *= sf, = x hnf.* x 3
< 33 sf
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 8 ed 91 4. 3 sf, = x hnf., 3 sf, *3 sf, = x hnf.* x 6, sf, *3 sf, = x hnf.* x 3
3 < 37 sf
↓ dmstan edd `mst sf2 `amvhno m tmh` ed mceut =: hnfgas h nfgas hn eriar te saw tga `mst reuni te m rew rew ‖ ‖ fd. fd. dho. en pmoa 7 ↓ wamva hn ymrn hnvhshc`y2 tga leutg wh`` ca sawn ente tga gam gami i whtg sawhno tgrami `mtar
dhnhsgai leutg
saw tga felp`atai leutg te tga luzz`a ushno sawhno tgrami
saw tga tenoua ente tga leutg
↓ tga `mst reuni ed tga tenoua hs p`mfai hn tga lhii`a ed tga t ga `mst rew ed tga leutg mni sawn ente ht whtg m daw sthtfgas ↓ dhnm``y; saw tga dhnhsgai leutg te tga luzz`a ‖ luzz`a ‖ fd. fd. dho. ; (lmba 3)
Yga nestrh`s wh`` ca frefgatai whtg whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga nestrh`s wen¹t ca studdai studdai whtg studdhno rasp. dhcradh``.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn
Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr hrm` m` re reun unis is =. 3. 6. 9.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 1 sf < 1 sf *= x hnf.* x 1 < =: sf =: sf < =: sf
↓ dmstan edd `mst sf2 `amvhno m `enoar tmh` hn eriar te saw tga `mst reuni teoatgar teoatgar ‖ ‖ fd. fd. dho. ;
f`esa up ed reuni 9
saw tga `mst reuni teoatgar
↓ wamva hn ymrn hnvhshc`y2 tga nestrh`s wh`` ca sawn ente tga luzz`a luzz`a whtg sawhno tgrami `mta `mtarr dhnm`hshno tga luzz`a
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =: ed 91 - tga ge`as der tga nestrh`s wh`` ca prapmrai ente tga luzz`a; m) squaaza tga luzz`a luzz`a (ushno tga tgulc mni hniax dhnoar) dhnoar) mni derl m furvmtura furvmtura c) dhx tghs peshthen whtg m daw sthtfgas (antry pehnt der naai`a yeu wh`` saa hn tga dho. mni axht pehnt cahno tga etgar etgar ena en tga eppeshta eppeshta shia) tgan wamva wamva hn ani ed ymrn ymrn hnvhshc`y ‖ hnvhshc`y ‖ fd. fd. dho.
squaaza tga luzz`a (fd. mrrews)
put tga dhnhsgai nestrh`s nestrh`s hnte tga furvmtura mni saw tgal whtg sawhno tgrami hnte ht
dhnhsgai furvmtura der tga nestrh`s
f) tga nestrh`s wh`` ca p`mfai hnte tga furvmturas mni sawn en whtg sawhno tgrami
(lmba 3)
Yga ayas ed tga `ufby irmoen bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga ayas wen¹t wen¹t ca studdai whtg whtg studdhno rasp. dhcradh``.
ymrn
nmla ed ymrnfe`er
Fmtenm
snew wghta
Fenthnueus`y frefgathno hn sphrm` reunis
=. 3. 6. 9. 1. 4. ?.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *= sf, = x hnf.* x 4 < =7 sf =7 sf < =7 sf =7 sf < =7 sf =7 sf < =7 sf
7. *= sf, = x iaf.* x 4 8. *= x iaf.* x 4
m tetm` ed 6 reunis ed =7 sf < 19 sf (enoehno feunthno)
< =3 sf < 4 sf
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ mttmfg tga dhnhsgai ayas ayas ente tga gami mni saw tgal tgal en whtg sawhno tgrami, fd. dho. en tga naxt pmoa
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa == ed 91
dhnhsgai ayas
dhnhsgai saw ayas
↓ framta tga puph`s whtg c`mfb gm`d pamr`s ed =:ll mni dhnhsg ttga ga ayas whtg mrthdhfhm` aya`msgas , fd. dho. ;
mttmfg mrthdhfhm` aya `msgas
framta tga puph`s whtg c`mfb gm`d pamr`s
drentvhaw
Yga pmtfg der tga gami ed tga tga `ufby irmoen bhi bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.
ymrn
nmla ed ymrnfe`er
Fmtenm
hfy phnb
Ygara wh`` ca frefgathno cmfb mni dertg hn rews en`y, dhnhsghno amfg rew whtg m turnhno fgmhn =. 3. 6. 9. 1. 4.
6 fg, = tfg 6 sf, = tfg 6 sf, = tfg = x hnf., = sf, = x hnf., = tfg 1 sf, = tfg 1 sf, = tfg
< 9 fg < 6 sf < 6 sf < 1 sf < 1 sf < 1 sf
?. = x hnf., 6 sf, = x hnf., = tfg 7. ? sf, = tfg 8. ? sf, = tfg =:. = x hnf., 1 sf, = x hnf., = tfg ==. 8 sf, = tfg =3. 8 sf, = tfg
< ? sf < ? sf < ? sf < 8 sf < 8 sf < 8 sf
=6. = x hnf., ? sf, = x hnf., = tfg =9. == sf, = tfg =1. == sf, = tfg =4. == sf, = tfg
< == sf < == sf < == sf < == sf
m tetm` ed 6 rews ed ed == sf < 66 sf (enoehno feunthno whtgeut tfg)
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =3 ed 91 =?. == sf, = tfg =7. = sf, = x iaf., 1 sf, = x iaf., = sf, = tfg =8. 8 sf, = tfg 3:. = sf, = x iaf., 6 sf, = x iaf., = sf, = tfg 3=. ? sf 33. = sf, = x iaf., = sf, = x iaf., = sf, = tfg
< == sf < 8 sf < 8 sf < ? sf < ? sf < 1 sf
36. 1 sf, = tfg
< 1 sf
39. = x iaf., = sf, = x iaf.
< 6 sf
↓ ien¹t dmstan edd `mst sf, cut frefgat tga anthra fenteur whtg sf2 fd.dho. (mrrew pehnts ttga ga frefgathno ihrafthen)
frefgat mreuni tga aioas (fd. mrrew) mrrew)
dhnhsgai Bepdsfgmc`ena
saw en whtg sawhno tgrami
haw ed tga cmfb gami
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ mttmfg tga gami pmtfg, wghfg gms new caan dhnhsgai, dhnhsgai, ente tga gami, dhx ht whtg phns mni saw en tga anthra pmtfg whtg tga sawhno tgrami2 fd. dho. ;
Yga gami¹s trhmno`as ed tga `ufby irmoen bhi wh`` ca ymrn nmla ed ymrnfe`er frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga Fmtenm tu`hp frefgat geeb shza 3. Iurhno frefgathno tga trhmno`as wen¹t wen¹t ca studdai whtg studdhno rasp. dhcradh``. Fd. eva evarvhaw; rvhaw;
trhmno`a ne. 9
trhmno`a ne. 3
trhmno`a ne. =
trhmno`a ne. 6
trhmno`a ne. 1
shiavhaw evarvhaw
drentvhaw
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =6 ed 91 ↓ der m`` trhmno`as; Fenthnueus`y frefgathno hn sphrm` reunis ↓ der tga trhmno`as ne. 32 62 9 mni 1; ↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst reuni te m rew, fd. dho. ;
frefgat tga `mst reuni te m rew
trhmno`a ne. = (lmba =) =) =. 3. 6. 9.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 1 sf < 1 sf = x hnf., 9 sf < 4 sf = x hnf., 1 sf < ? sf
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ saw en trhmno`a ne. = whtg sawhno tgrami ente tga dhrst rews ed tga gami pmtfg ‖ pmtfg ‖ fd. fd. dho. ;
saw en trhmno`a ne. = ente tga gami pmtfg
iatmh`ai vhaw
trhmno`as ne. 3 (lmba 3) 3) =. 3. 6. 9. 1.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf *6 sf, = x hnf.* x 3 < =: sf *9 sf, = x hnf.* x 3 < =3 sf
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 1 sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en trhmno`as ne. 3 ente tga gami pmtfg ushno sawhno tgrami (tga kust frefgatai 1sf rew wh`` ca usai gara ms m sawhno rew) ↓ fd. dho. en tga naxt pmoa pmoa
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =9 ed 91
saw en trhmno`a ne. 3
dhnhsgai sawn trhmno`as ne. 3
iatmh`ai vhaw
trhmno`as ne. 6 (lmba 3) 3) =. 3. 6. 9. 1. 4.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf *6 sf, = x hnf.* x 3 < =: sf *9 sf, = x hnf.* x 3 < =3 sf *1 sf, = x hnf.* x 3 < =9 sf dhnhsgai sawn sawn trhmno`as ne. 6
?. *4 sf, = x hnf.* x 3 7. *? sf, = x hnf.* x 3
< =4 sf < =7 sf
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 7 sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en trhmno`as ne. 6 ente tga gami pmtfg ushno sawhno tgrami
trhmno`as ne. 9 (lmba 3) 3) =. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf
6. 9. 1. 4.
*3 *6 sf, sf, = =x x hnf.* hnf.* x x3 3 *9 sf, = x hnf.* x 3 *1 sf, = x hnf.* x 3
< 7 sfsf < =: < =3 sf < =9 sf
?. *4 sf, = x hnf.* x 3
< =4 sf dhnhsgai sawn sawn trhmno`as ne. 9
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg ? sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en trhmno`as ne. 9 ente tga gami pmtfg ushno sawhno tgrami
trhmno`as ne. 1 (lmba 3) 3) =. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf 6. *3 sf, = x hnf.* x 3 < 7 sf Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =1 ed 91 9. *6 sf, = x hnf.* x 3 1. *9 sf, = x hnf.* x 3
< =: sf < =3 sf
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 1 sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en trhmno`as ne. 1 ente tga gami pmtfg ushno sawhno tgrami
sawn n trhmno`as ne. 1 dhnhsgai saw
(lmba 3)
Yga amrs ed tga `ufby irmoen bhi wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga amrs amrs wen¹t ca studdai studdai whtg studdhno rasp. dhcradh``.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn
Fenthnueus`y frefgathno hn sphrm` reunis =. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno;
3. 6. 9. 1. 4.
4 sf *3 sf, = x hnf.* x 3 *6 sf, = x hnf.* x 3 *9 sf, = x hnf.* x 3 *3 sf, = x hnf.* x 9
< 4 sf < 7 sf < =: sf < =3 sf < =4 sf
?. *= sf, = x hnf.* x 7 7. *3 sf, = x hnf.* x 7 8. 63 sf =:. 63 sf ==. *3 sf, = x iaf.* x 7 =3. *3 sf, = x iaf.* x 4
< 39 sf < 63 sf < 63 sf < 63 sf < 39 sf < =7 sf
↓ dmstan edd `mst sf2 amvhno m `enoar ani tgrami hn eriar te saw tga `mst reuni te m rew ↓ dhnm``y, tga amrs mra mttmfgai (ushno phns) ente tga gami `mtarm``y mni dhnm``y sawn ente ht whtg sawhno tgrami ‖ fd. fd. dho. ;
dhnhsgai amrs
saw en tga amrs ente tga gami `mtarm``y
haw drel mceva
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =4 ed 91
Ymh` mni ceiy wh`` ca frefgatai whtg ymrn hn tga t ga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn
Ht stmrts whtg tga tmh`, tga ceiy wh`` ca werbai eut hn tga de``ewhno reunis. Iurhno frefgathno tga tmh` wh`` ca studdai whtg fgan fganh``a h``a whra (m`tarnmthva`y yeu fm fmn n usa dhcradh`` tee) 2 tga ceiy wh`` ca studdai whtg dhcradh`` en`y. Fenthnueus`y frefgathno hn sphrm` reunis
m) pmrts ed tga tmh`, lmba 3 =. 3. 6. 9. 1. 4.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 1 sf < 1 sf 1 sf < 1 sf 1 sf < 1 sf 1 sf < 1 sf = x hnf., 9 sf < 4 sf
?. 4 sf
< 4 sf
7. 4 sf 8. = x hnf., 1 sf =:. ? sf ==. = x hnf., 4 sf =3. 7 sf
< 4 sf < ? sf < ? sf < 7 sf < 7 sf
=6. = x hnf., ? sf =9. 8 sf =1. = x hnf., 7 sf
< 8 sf < 8 sf < =: sf
m tetm` ed 6 reunis ed 1 sf < =1 sf (enoehno feunthno) `amvhno `mst sf „epan‐ „epan‐
dhnhsgai pmrts ed tga tmh`
↓ der tga dhrst pmrt ed tga t ga tmh`; dmstan edd `mst sf2 `amvhno m `enoar anihno tgrami hn eriar te frefgat cetg pmrts whtg 1 sf teoatgar ↓ der tga safeni pmrt ed tga tmh`; frefgat frefgat tga reunis =-=1 momhn, ien¹t dmst edd `mst sf (`mst (`mst sf wh`` ca unwerbai rasp. „epan‐) „epan‐) - fd. dho. ↓ frefgat tga =st pmrt ed tga tmh` whtg 1 sf en tga 3ni pmrt ed ttga ga tmh`, fd. ormphf dho. ;
ormphf dho. pmrt = pmrt =
pmrt 3
pmrt 3 < kehnai sf
< `amvhno `mst sf „epan‐ „epan‐
frefgat teoatgar whtg 1 sf
↓ mdtar yeu‘va kehnai m`` pmrts m`` pmrts whtg frefgathno frefgathno 1 sf; tmba up tgmt ‗undhnhsgai‘ sthtfg momhn mni fenthnua frefgathno `hba tghs;
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =? ed 91 c) tmh` mni ceiy =4. *9 sf, = x hnf.* x 3 =?. =3 sf =7. =3 sf =8. =3 sf 3:. =3 sf 3=. = x hnf., == sf
< =3 sf < =3 sf < =3 sf < =3 sf < =3 sf < =6 sf
33. =6 sf 36. =6 sf 39. =6 sf 31. =6 sf 34. = x hnf., =3 sf ; 3?. =9 sf
< =6 sf < =6 sf < =6 sf < =6 sf < =9 sf
f`esa up ed reuni =4
37. =9 sf 38. =9 sf
↓
fd. dho. ca`ew m tetm` ed 9 reunis ed =3 sf < 97 sf (enoehno feunthno)
m tetm` ed 9 reunis ed ed =6 sf < 13 sf (enoehno feunthno)
↓
studd whtg whra mni mni dhcradh``, fd. dho.
< =9 sf
f`esa up ed reuni 34 (studd cetg pmrts whtg whra)
studd momhn whtg whra mni dhcradh``
< =9 sf < =9 sf
6:. = x hnf., =6 sf 6=. =1 sf 63. =1 sf 66. = x hnf., =9 sf
< =1 sf < =1 sf < =1 sf < =4 sf
69. =4 sf 61. = x hnf., =1 sf 64. =? sf 6?. = x hnf., =4 sf 67. =7 sf 68. = x hnf., =? sf
< =4 sf < =? sf < =? sf < =7 sf < =7 sf < =8 sf
9:. =8 sf
< =8 sf
9=. = x hnf., =7 sf 93. 3: sf 96. = x hnf., =8 sf
< 3: sf < 3: sf < 3= sf
↓
studd whtg dhcradh`` dhcradh``
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =7 ed 91 99. 3= sf 91. = x hnf., 3: sf
< 3= sf < 33 sf
94. 33 sf 9?. = x hnf., 3= sf 97. 36 sf 98. = x hnf., 33 sf
< 33 sf < 36 sf < 36 sf < 39 sf
↓
studd whtg dhcradh`` dhcradh``
1:. 39 sf 1=. = x hnf., 36 sf
< 39 sf < 31 sf
↓
studd whtg dhcradh`` dhcradh``
13. 31 sf 16. = x hnf., 39 sf 19. 34 sf 11. = x hnf., 31 sf 14. 3? sf 1?. = x hnf., 34 sf 17. 37 sf 18. *=6 sf, = x hnf.* x 3
< 31 sf < 34 sf < 34 sf < 3? sf < 3? sf < 37 sf < 37 sf < 6: sf
↓
studd whtg dhcradh`` dhcradh``
4:. 6: sf
< 6: sf
4=. *=9 sf, = x hnf.* x 3 43. 63 sf 46. *=1 sf, = x hnf.* x 3 49. 69 sf 41. *=4 sf, = x hnf.* x 3
< 63 sf < 63 sf < 69 sf < 69 sf < 64 sf
↓
studd whtg dhcradh`` dhcradh``
44. 64 sf 4?. *7 sf, = x hnf.* x 9 47. 9: sf 48. *8 sf, = x hnf.* x 9 ?:. 99 sf ?=. *=: sf, = x hnf.* x 9
< 64 sf < 9: sf < 9: sf < 99 sf < 99 sf < 97 sf
f`esa up ed reuni 77
f`esa up ed reuni =3:
?3. 97 sf ?6. *? sf, = x hnf.* x 4 ?9. 19 sf ?1. *7 sf, = x hnf.* x 4 ?4. 4: sf
< 97 sf < 19 sf < 19 sf < 4: sf < 4: sf
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa =8 ed 91 ??. *8 sf, = x hnf.* x 4
< 44 sf
?7. *=: sf, = x hnf.* x 4 ?8. *== sf, = x hnf.* x 4 7:. *=3 sf, = x hnf.* x 4 7=. *=6 sf, = x hnf.* x 4 73. 8: sf
< ?3 sf < ?7 sf < 79 sf < 8: sf < 8: sf
↓
76. *=9 sf, = x hnf.* x 4
< 84 sf
79. 84 sf 71. 84 sf 74. *=1 sf, = x hnf.* x 4 7?. =:3 sf 77. =:3 sf 78. *=4 sf, = x hnf.* x 4
< 84 sf < 84 sf < =:3 sf < =:3 sf < =:3 sf < =:7 sf
8:. =:7 sf 8=. =:7 sf 83. =:7 sf 86. =:7 sf
< =:7 sf < =:7 sf < =:7 sf < =:7 sf
89. =:7 sf 81. =:7 sf
< =:7 sf < =:7 sf
84. =:7 sf 8?. =:7 sf 87. *=4 sf, = x iaf.* x 4 88. =:3 sf =::. =:3 sf =:=. =:3 sf
< =:7 sf < =:7 sf < =:3 sf < =:3 sf < =:3 sf < =:3 sf
=:3. *=1 sf, = x iaf.* x 4 =:6. 84 sf =:9. 84 sf
< 84 sf < 84 sf < 84 sf
=:1. 84 sf =:4. *=9 sf, = x iaf.* x 4 =:?. 8: sf
< 84 sf < 8: sf < 8: sf
=:7. 8: sf =:8. *=6 sf, = x iaf.* x 4 ==:. 79 sf ===. 79 sf ==3. *=3 sf, = x iaf.* x 4 ==6. ?7 sf
< 8: sf < 79 sf < 79 sf < 79 sf < ?7 sf < ?7 sf
==9. ?7 sf ==1. *== sf, = x iaf.* x 4 ==4. ?3 sf ==?. ?3 sf
< ?7 sf < ?3 sf < ?3 sf < ?3 sf
studd whtg dhcradh`` dhcradh``
↓
fd. dho. en pmoa =7
m tetm` ed 4 reunis ed ed =:7 sf < 497 sf (enoehno feunthno)
m tetm` ed 6 reunis ed ed =:3 sf < 6:4 sf (enoehno feunthno)
m tetm` ed 6 reunis ed 84 sf < 377 sf (enoehno feunthno)
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 3: ed 91 ==7. *? sf, = x iaf.* x 7 ==8. 49 sf
< 49 sf < 49 sf
=3:. 49 sf =3=. *4 sf, = x iaf.* x 7 =33. 14 sf =36. 14 sf
< 49 sf < 14 sf < 14 sf < 14 sf
=39. *1 sf, = x iaf.* x 7 =31. 97 sf
< 97 sf < 97 sf
studd tga ceiy whtg dhcradh`` avan`y
↓
fd. dho. en pm pmoa oa =7
dhnhsgai ceiy ceiy rasp. f`esa up ed reuni =63
=34. 97 sf =3?. *9 sf, = x iaf.* x 7 =37. 9: sf =38. *9 sf, = x hnf.* x 7 =6:. *? sf, = x hnf.* x 4 =6=. *7 sf, = x hnf.* x 4 =63. 4: sf
< 97 sf < 9: sf < 9: sf < 97 sf < 19 sf < 4: sf < 4: sf
↓
studd momhn hd hd nafassmry
ien¹t studd whtg dhcradh``2 tgasa reunis wh`` ca usai der sawhno
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 tga ceiy wh`` ca sawn whtg sawhno tgrami ente tga gami hn tga `mst stap ↓ sat tga dhnhsgai ceiy mshia mni stmrt whtg frefgathno thp ed tga tmh`
Yga tmh` thp fenshsts ed tgraa pmrts, wghfg mra amfg frefgatai sapmrmta`y mni sawn teoatgar `mtar. Fd. evarvhaw; pmrt ne. = pmrt ne. 3
pmrt ne. =
dhnhsgai tmh` thp (shiavhaw)
evarvhaw ed amfg pmrt ed tga tmh` thp pmrt ne. 3
pmrt ne. 3
pmrt ne. 3
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 3= ed 91 Amfg pmrt ed tga tmh` thp wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga shno`a pmrts pmrts wen¹t ca studdai whtg whtg studdhno rasp. dhcradh``.
ymrn
nmla ed ymrnfe`er
Fmtenm
tu`hp
Fmtenm
hfy phnb
↓ der m`` pmrts ed tga tmh` thp; Fenthnueus`y frefgathno hn sphrm` reunis
m) pmrt ne. =2 ymrnfe`er; tu`hp =. 7 fg, = tfg 3. = sf hn tga safeni `mst fgmhn, 4 sf mni 6 sf hnte tga `mst fg, (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) , 4 sf mni 3 sf hnte h nte tga `mst sthtfg < =7 sf
6 sf
= tfg amfg = sf
amfg = sf 3 sf ormpghf iaphf iaphfthen then ed reuni 3
f`esa up ed reuni 3
dhnhsgai pmrt ne. =
6. = x hnf., 4 sf, = x hnf., = x hnf., = x hnf., 4 sf, = x hnf., = x hnf. 9. 39 sf
< 39 sf < 39 sf
1. = sf, = x hnf., 4 sf, *= sf, = x hnf.* x 6, 4 sf, *= sf, = x hnf.* x 3
< 6: sf
4. 6: sf
< 6: sf
?. 3 sf, = x hnf., 4 sf, *3 sf, = x hnf.* x 6, 4 sf, *3 sf, = x hnf.* x 3 7. 64 sf 8. 64 sf =:. 64 sf ==. *= x iaf., =4 sf* x 3 =3. *= x iaf., =1 sf* x 3
< 64 sf < 64 sf < 64 sf < 64 sf < 69 sf < 63 sf
=6. *= x iaf., =9 sf* x 3 =9. *= x iaf., =6 sf* x 3 =1. *= x iaf., =3 sf* x 3 =4. *= x iaf., == sf* x 3 =?. *= x iaf., =: sf* x 3 =7. *= x iaf., 8 sf* x 3
< 6: sf < 37 sf < 34 sf < 39 sf < 33 sf < 3: sf
=8. *= x iaf., 7 sf* x 3
< =7 sf
m tetm` ed 6 reunis ed ed 64 sf < =:7 sf (enoehno feunthno)
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 33 ed 91 3:. *= x iaf., ? sf* x 3 3=. *= x iaf., 4 sf* x 3 33. *= x iaf., 1 sf* x 3 36. *= x iaf., 9 sf* x 3 39. *= x iaf., 6 sf* x 3 31. *= x iaf., 3 sf* x 3
< =4 sf < =9 sf < =3 sf < =: sf < 7 sf < 4 sf
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ sat tga dhnhsgai pmrt ne. = mshia mni stmrt whtg frefgathno tga pmrts ne. 3 c) pmrt ne. 32 ymrnfe`er; hfy phnb, lmba 3
=. 9 fg, = tfg 3. = sf hn tga safeni `mst fgmhn, 3 sf mni 6 sf hnte tga `mst fg, (frefgat tga rast en tga cettel shia ed tga rew ed fgmhns) , 3 sf mni 3 sf hnte h nte tga `mst sthtfg < =: sf
6 sf
= tfg amfg = sf
amfg = sf 3 sf ormpghf iaphfthe iaphfthen n ed reuni 3
f`esa up ed reuni 3
f`esa up ed reuni ?
6. = x hnf., 3 sf, = x hnf., = x hnf., = x hnf., 3 sf, = x hnf., = x hnf.
< =4 sf
9. = sf, = x hnf., 3 sf, *= sf, = x hnf.* x 6, 3 sf, *= sf, = x hnf.* x 3 1. 33 sf 4. 33 sf ?. 33 sf 7. *= x iaf., 8 sf* x 3
< 33 sf < 33 sf < 33 sf < 33 sf < 3: sf
8. *= x iaf., 7 sf* x 3 =:. *= x iaf., ? sf* x 3 ==. *= x iaf., 4 sf* x 3 =3. *= x iaf., 1 sf* x 3 =6. *= x iaf., 9 sf* x 3 =9. *= x iaf., 6 sf* x 3
< =7 sf < =4 sf < =9 sf < =3 sf < =: sf < 7 sf
=1. *= x iaf., 3 sf* x 3 =4. *= x iaf., = sf* x 3
< 4 sf < 9 sf
m tetm` ed 6 reunis ed ed 33 sf < 44 sf (enoehno feunthno)
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ mttmfg tga dhnhsgai pmrts ne. 3 ente pmrt ne. = mni saw en cetg pmrts
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 36 ed 91 ↓ dhnm``y; "phnfg" tga dhnhsgai tmh` thp mt tga tmh` ani pmrts mni dhx tghs peshthen whtg sawhno sthtfgas fmradu``y
saw tga pmrts en amfg etgar
„phnfg‐ tmh` thp catwaan tga ani pmrts ed t ga tmh` mni dhx tghs peshthen whtg sawhno sthtfgas
↓ hd tga tmh` wms studdai whtg fganh``a whra; cani tga tmh` f`esa te tga ceiy ↓ hd yeu ihin¹t werbai whtg fganh``a whra; cani tga tmh` f`esa te tga ceiy hn sgmpa mni saw tga tmh` `mtar whtg sawhno tgrami ente tga ceiy pmtfg
dhnhsgai tmh` thp mni ceiy
Yga ceiy ed tga `ufby irmoen bhi bhi wh`` ca frefgatai frefgatai whtg ymrn hn tga hnihfmtai h nihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.
ani tga tmh` f`esa te tga ceiy2 mrrew pehnts sawhno penht penht der tga tmh` thp (saw en tga thp ente tga ceiy pmtfg)
ymrn
nmla ed ymrnfe`er
Fmtenm
hfy phnb
Ygara wh`` ca frefgathno cmfb mni dertg hn rews en`y, dhnhsghno amfg rew whtg m turnhno fgmhn
=. 9 fg, = tfg 3. 9 sf, = tfg
< 1 fg < 9 sf
6. 9 sf, = tfg 9. 9 sf, = tfg 1. = x hnf., 3 sf, = x hnf., = tfg
< 9 sf < 9 sf < 4 sf
ed 9 sf m tetm` ed 6 rews ed < =3 sf (enoehno feunthno whtgeut tfg)
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 39 ed 91 4. 4 sf, = tfg ?. 4 sf, = tfg 7. 4 sf, = tfg 8. = x hnf., 9 sf, = x hnf., = tfg =:. 7 sf, = tfg ==. 7 sf, = tfg =3. = x hnf., 4 sf, = x hnf., = tfg
< 4 sf < 4 sf < 4 sf < 7 sf < 7 sf < 7 sf < =: sf
=6. =: =: sf, sf, = = tfg tfg =9. =1. = x hnf., 7 sf, = x hnf., = tfg =4. =3 sf, = tfg =?. = x hnf., =: sf, = x hnf., = tfg =7. =9 sf, = tfg
< =: =: sf sf < < =3 sf < =3 sf < =9 sf < =9 sf
=8. = x hnf., =3 sf, = x hnf., = tfg 3:. =4 sf, = tfg 3=. =4 sf, = tfg 33. =4 sf, = tfg 36. = x hnf., =9 sf, = x hnf., = tfg 39. =7 sf, = tfg
< =4 sf < =4 sf < =4 sf < =4 sf < =7 sf < =7 sf
31. =7 sf, = tfg
< =7 sf
34. =7 sf, = tfg 3?. =7 sf, = tfg 37. =7 sf, = tfg 38. =7 sf, = tfg 6:. = x hnf., =4 sf, = x hnf., = tfg
< =7 sf < =7 sf < =7 sf < =7 sf < 3: sf
6=. 3: sf, = tfg 63. 3: sf, = tfg 66. 3: sf, = tfg 69. 3: sf, = tfg 61. = sf, = x iaf., =9 sf, = x iaf., = sf, = tfg 64. =7 sf, = tfg
< 3: sf < 3: sf < 3: sf < 3: sf < =7 sf < =7 sf
6?. =7 sf, = tfg 67. =7 sf, = tfg 68. =7 sf, = tfg 9:. =7 sf, = tfg 9=. =7 sf, = tfg 93. = sf, = x iaf., =3 sf, = x iaf., = sf, = tfg
< =7 sf < =7 sf < =7 sf < =7 sf < =7 sf < =4 sf
96. =4 sf, = tfg 99. =4 sf, = tfg 91. =4 sf, = tfg 94. = sf, = x iaf., =: sf, = x iaf., = sf, = tfg 9?. =9 sf, = tfg 97. =9 sf, = tfg
< =4 sf < =4 sf < =4 sf < =9 sf < =9 sf < =9 sf
98. =9 sf, = tfg 1:. = sf, = x iaf., 7 sf, = x iaf., = sf, = tfg 1=. =3 sf, = tfg 13. =3 sf, = tfg 16. =3 sf, = tfg
< =9 sf < =3 sf < =3 sf < =3 sf < =3 sf
m tetm` ed 6 rews ed ed =4 sf < 97 sf (enoehno feunthno whtgeut tfg)
ed =7 sf m tetm` ed 1 rews ed < 8: sf (enoehno feunthno whtgeut tfg)
m tetm` ed 9 rews ed ed 3: sf < 7: sf (enoehno feunthno whtgeut tfg)
m tetm` ed 1 rews ed ed =7 sf < 8: sf (enoehno feunthno whtgeut tfg)
m tetm` ed 6 rews ed =7 sf < 19 sf (enoehno feunthno whtgeut tfg)
m tetm` ed 6 rews ed ed =3 sf < 64 sf (enoehno feunthno whtgeut tfg)
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 31 ed 91 19. = sf, = x iaf., 4 sf, = x iaf., = sf, = tfg 11. =: sf, = tfg 14. =: sf, = tfg 1?. =: sf, = tfg 17. = sf, = x iaf., 9 sf, = x iaf., = sf, = tfg 18. 7 sf, = tfg 4:. 7 sf, = tfg
< =: sf < =: sf < =: sf < =: sf < 7 sf < 7 sf < 7 sf
4=. 7 sf, = tfg 43. 7 sf, = tfg 46. = sf, = x iaf., 3 sf, = x iaf., = sf, = tfg 49. 4 sf, = tfg 41. 4 sf, = tfg 44. 4 sf, = tfg
< 7 sf < 7 sf < 4 sf < 4 sf < 4 sf < 4 sf
4?. 4 sf, = tfg 47. 4 sf, = tfg 48. = sf, = x iaf., = x iaf., = sf, = tfg ?:. 9 sf, = tfg ?=. 9 sf, = tfg ?3. 9 sf, = tfg
< 4 sf < 4 sf < 9 sf < 9 sf < 9 sf < 9 sf
m tetm` ed 6 rews ed 9 sf < =3 sf (enoehno feunthno whtgeut tfg)
?6. 9 sf, = tfg
< 9 sf
m tetm` ed 6 rews ed 9 sf
?9. 9 sf, = tfg ?1. 9 sf, = tfg
< 9 sf < 9 sf
m tetm` ed 6 rews ed ed =: sf < 6: sf (enoehno feunthno whtgeut tfg)
m tetm` ed 6 rews ed 4 sf < =7 sf (enoehno feunthno whtgeut tfg)
< =3 sf (enoehno feunthno whtgeut tfg)
↓ ien¹t dmstan edd `mst sf, cut frefgat tga anthra fenteur whtg sf2 fd.dho. (mrrew pehnts ttga ga frefgathno ihrafthen)
iatmh`ai vhaw
frefgat mreuni tga aioas (fd. mrrew) dhnhsgai ceiy pmtfg
↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ mttmfg tga dhnhsgai ceiy pmtfg en tga cmfb, dhx whtg phns mni saw en whtg sawhno tgrami ↓ fd. dho. en tga naxt pmoa pmoa
parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
pmoa 34 ed 91
mttmfg tga pmtfg ente tga cmfb
iatmh`ai vhaw
saw en whtg sawhno tgrami
Yga ceiy¹s trhmno`as ed tga `ufby irmoen bhi wh`` ca ymrn nmla ed ymrnfe`er frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga Fmtenm tu`hp frefgat geeb shza 3. Iurhno frefgathno tga trhmno`as wen¹t wen¹t ca studdai whtg studdhno rasp. dhcradh``. Fd. eva evarvhaw; rvhaw;
trhmno`a trhmno`a trhmno`a trhmno`a ne. ? ne. = ne. 6 ne. 1
trhmno`a ne. =3
trhmno`a trhmno`a trhmno`a ne. 4 ne. 3 ne. 9
trhmno`as ne. == evarvhaw
trhmno`a ne. 8
trhmno`a ne. 7
trhmno`a ne. =:
evarvhaw ed tga trhmno`as
↓ der m`` trhmno`as; Fenthnueus`y frefgathno hn sphrm` reunis ↓ der tga trhmno`as ne. = - =: mpp`has; ↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst reuni te m rew, fd. dho. ;
frefgat tga `mst reuni te m rew
trhmno`as ne. = (lmba 3) 3) =. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
pmoa 3? ed 91 6. 9. 1. 4.
*3 sf, = x hnf.* x 3 *6 sf, = x hnf.* x 3 *9 sf, = x hnf.* x 3 *1 sf, = x hnf.* x 3
< 7 sf < =: sf < =3 sf < =9 sf
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 4 sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga trhmno`as ne. = ente tga ceiy pmtfg whtg sawhno tgrami (tga kust frefgatai 4sf rew wh`` ca usai gara ms m sawhno rew)
saw en trhmno`a ne. =
iatmh`ai vhaw
trhmno`as ne. 3 mni ne. 6 (amfg lmba 3) 3) =. 3. 6. 9. 1. 4. ?. 7.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf *6 sf, = x hnf.* x 3 < =: sf *9 sf, = x hnf.* x 3 < =3 sf *1 sf, = x hnf.* x 3 < =9 sf *4 sf, = x hnf.* x 3 < =4 sf *? sf, = x hnf.* x 3 < =7 sf
↓
mpp`has der trhmno`as ne. 3
↓
mpp`has der trhmno`as ne. 6
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg ? sf (trhmno`as ne. 3) rasp. 7 sf (trhmno`as ne. 6) te m rew dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami tgrami ↓
trhmno`as ne. 6 trhmno`as ne. 3
saw en trhmno`as ne. ne. 3
iatmh`ai vhaw
saw en trhmno`as ne. 6
trhmno`as ne. 9 mni ne. 1 (lmba 3 der amfg ne.) ne.) =. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf 6. *3 sf, = x hnf.* x 3 < 7 sf parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
pmoa 37 ed 91 9. *6 sf, = x hnf.* x 3 1. *9 sf, = x hnf.* x 3 4. *1 sf, = x hnf.* x 3 ?. *4 sf, = x hnf.* x 3 7. *? sf, = x hnf.* x 3 8. *7 sf, = x hnf.* x 3 =:. *8 sf, = x hnf.* x 3
< =: sf < =3 sf < =9 sf < =4 sf < =7 sf < 3: sf < 33 sf
↓
mpp`has der trhmno`as ne. 9
↓
mpp`has der trhmno`as ne. 1
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 8 sf (trhmno`as ne. 9) rasp. =: sf (trhmno`as ne. 1) te m rew dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami tgrami ↓
saw en trhmno`as ne. 9
saw en trhmno`as ne. 1
trhmno`as ne. 4 mni ne. ? (lmba 3 der amfg ne.) ne.) =. 3. 6. 9. 1. 4. ?. 7. 8.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf *6 sf, = x hnf.* x 3 < =: sf *9 sf, = x hnf.* x 3 < =3 sf *1 sf, = x hnf.* x 3 < =9 sf *4 sf, = x hnf.* x 3 < =4 sf *? sf, = x hnf.* x 3 < =7 sf *7 sf, = x hnf.* x 3 < 3: sf
↓
mpp`has der trhmno`as ne. ?
↓
mpp`has der trhmno`as ne. 4
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 8 sf (trhmno`as ne. 4) rasp. 7 sf (trhmno`as ne. ?) te m rew ↓
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami tgrami
saw en trhmno`as ne. 4
trhmno`as ne. ?
saw en trhmno`as ne. ?
trhmno`as ne. 7, ne. 8 mni ne. =: (lmba 3 der amfg ne.) ne.) =. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf 6. *3 sf, = x hnf.* x 3 < 7 sf parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
pmoa 38 ed 91 9. 1. 4. ?.
*6 sf, = x hnf.* x 3 *9 sf, = x hnf.* x 3 *1 sf, = x hnf.* x 3 *4 sf, = x hnf.* x 3
< =: sf < =3 sf < =9 sf < =4 sf
↓
mpp`has der trhmno`as ne. =:
↓
mpp`has der trhmno`as ne. 8
↓
mpp`has der trhmno`as ne. 7
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg ? sf (trhmno`as ne. 7) rasp. 4 sf (trhmno`as ne. 8) mni 1 sf (trhmno`as ne. =:) te m rew dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami tgrami ↓
trhmno`as ne. =: saw en trhmno`as ne. 7, 8 mni =:
trhmno`as ne. 8
trhmno`as ne. 8
trhmno`as ne. ne. ==(lmba ==(lmba 3) mni =3 (lmba =) =. 3. 6. 9.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf mpp`has der trhmno`as ne. =3 *6 sf, = x hnf.* x 3 < =: sf mpp`has der trhmno`as ne. == ↓
↓
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga trhmno`as ente tga ceiy pmtfg ushno sawhno tgrami tgrami ↓
trhmno`as ne. ==
trhmno`as ne. =3
trhmno`as ne. == mni =3
saw en trhmno`as ne. == mni =3 =3
dhnm`hshno tga ceiy ↓ saw en tga ceiy te tga cmfb ed tga gami gami ushno sawhno tgrami, fd. dho. en tga naxt pmoa
parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
pmoa 6: ed 91
haw drel mceva
iatmh`ai vhaw
shiavhaw
Yga `ufby irmoen bhi bhi gms m tetm` ed shx ceiy pmtfgas hn deur ihddarant shzas (par shia ed tga t ga ceiy), amfg pmtfg wh`` ca frefgatai sapmrmta`y.
ymrn
nmla ed ymrnfe`er
Fmtenm
`hogt erfghi
Yga fe`er pmtfgas wh`` ca frefgatai whtg ymrn hn h n tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Fd. evarvhaw
pmtfg ne. 6
pmtfg ne. 3 pmtfg ne. 9
pmtfg ne. = eiy pmtfgas
dhnhsgai sawn ceiy pmtfgas
↓ mpp`has der m`` ceiy pmtfgas; Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr hrm` m` re reun unis is
pmtfgas ne. =(lmba =(lmba 4, der cetg shias shias ed tga ceiy) =. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf 6. *= x hnf.* x 4 < =3 sf dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga pmtfgas whtg sawhno tgrami
↓
parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
pmoa 6= ed 91 pmtfgas ne. 3(lmba 3(lmba 3) =. 3. 6. 9.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *= sf, = x hnf.* x 4 < =7 sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga pmtfgas whtg sawhno tgrami
↓
pmtfgas ne. 6(lmba 6(lmba 3) =. 3. 6. 9. 1. 4.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *= sf, = x hnf.* x 4 < =7 sf *3 sf, = x hnf.* x 4 < 39 sf *6 sf, = x hnf.* x 4 < 6: sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga pmtfgas whtg sawhno tgrami
↓
pmtfgas ne. 9(lmba 9(lmba 3) =. 3. 6. 9. 1. 4. ?.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *= sf, = x hnf.* x 4 < =7 sf *3 sf, = x hnf.* x 4 < 39 sf *6 sf, = x hnf.* x 4 < 6: sf *9 sf, = x hnf.* x 4 < 64 sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en ttga ga pmtfgas whtg sawhno tgrami
↓
↓ tga dhnhsgai ceiy ed tga `ufby irmoen bhi sgeu`i `eeb `hba `h ba tghs;
shiavhaw
haw drel mceva
(lmba 3)
Yga dera`aos fenshst ed tga daat, tga `aos mni tga gerns,
ymrn
nmla ed ymrnfe`er
wgaracy m`` pmrts wh`` ca frefgatai sapmrmta`y mni sawn teoatgar hn tga `mst stap. Fd. evarvhaw
Fmtenm Fmtenm
fymn e`i `mfa
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 63 ed 91
dera`ao
`ao
gern deet
evarvhaw
dhnhsgai dera`aos
dera`ao
↓ der m`` pmrts;
Fenthnueus`y frefgathno hn sphrm` reunis
m) `aos (lmba 3) Yga `aos wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga `aos wh`` ca studdai whtg studdhno rasp. dhcradh``. =. 3. 6. 9. 1. 4.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 1 sf < 1 sf *= x hnf.* x 1 < =: sf *= sf, = x hnf.* x 1 < =1 sf *3 sf, = x hnf.* x 1 < 3: sf 3: sf < 3: sf
?. *9 sf, = x hnf.* x 9 7. 39 sf 8. 39 sf =:. 39 sf ==. *1 sf, = x hnf.* x 9 =3. 37 sf
< 39 sf < 39 sf < 39 sf < 39 sf < 37 sf < 37 sf
=6. 37 sf =9. *1 sf, = x iaf.* x 9 =1. 39 sf =4. *9 sf, = x iaf.* x 9 =?. 3: sf =7. *6 sf, = x iaf.* x 9
< 37 sf < 39 sf < 39 sf < 3: sf < 3: sf < =4 sf
=8. =4 sf 3:. =4 sf 3=. *3 sf, = x iaf.* x 9
< =4 sf < =4 sf < =3 sf
33. =3 sf 36. =3 sf 39. =3 sf
< =3 sf < =3 sf < =3 sf
m tetm` ed 6 reunis ed 39 sf < ?3 sf (enoehno feunthno)
m tetm` ed 6 reunis ed =3 sf < 64 sf (enoehno feunthno)
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 66 ed 91
31. *3 sf, = x hnf.* x 9 34. *6 sf, = x hnf.* x 9 3?. *9 sf, = x hnf.* x 9 37. 39 sf
< =4 sf < 3: sf < 39 sf < 39 sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 tga `aos wh`` ca sawn en te tga deet whtg sawhno tgrami `mtar ↓
↓ sat tga dhnhsgai `aos mshia mni stmrt whtg frefgathno tga daat dhnhsgai `aos
c) daat (lmba 3) Yga daat wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga daat wh`` ca studdai whtg studdhno rasp. dhcradh``. Xeu wh`` gmva te stmrt whtg tga f`mws, tga daat wh`` ca werbai eut hn tga de``ewhno reunis.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn f`mw ne. 6 `amvhno `mst sf „epan‐‐ „epan‐‐
f`mw ne. =
=. f`mw ne. 3 =. 3. 6. 9. 1. 4. ?. 7.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf *1 sf, = x hnf.* x 3 < =9 sf =9 sf < =9 sf =9 sf < =9 sf =9 sf < =9 sf =9 sf < =9 sf
f`mw ne. 3
m tetm` ed 9 reunis ed =9 sf < 14 sf (enoehno feunthno)
↓ dmstan edd `mst sf2 `amvhno m tmh` ed mpprex. =: hnfgas 3. f`mw ne. = mni ne. 6 =. 3. 6. 9. 1. 4.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *= x hnf.* x 4 < =3 sf =3 sf < =3 sf =3 sf < =3 sf =3 sf < =3 sf
m tetm` ed 6 reunis ed =3 sf < 64 sf (enoehno feunthno)
↓ mpp`has der f`mw ne. = mpp`has; dmstan edd `mst `mst sf2 `amvhno m tmh` ed mpprex. =: hnfgas ↓ mpp`has der f`mw ne. 6 mpp`has; ien¹t dmstan edd `mst `mst sf, cut put ht mshia der new2 fd. dho. dhnm`hshno tga f`mws ↓ tga f`mws wh`` ca kehnai whtg =sf ↓ p`amsa p`amsa baap baap hn lhni tgmt ms ms yeu‘ra kehnhno tgesa twe f`mws, tga tghri f`mw¹s `mst `mst yat ‗undhnhsgai‘ sthtfg naais te ca eppeshta tga kehnhno sthtfg ‖ sthtfg ‖ fd. fd. ormphf ormphf dho. en tga naxt naxt pmoa
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 69 ed 91
ormphf dho.
f`mw ne. =
f`mw ne. 6
f`mw ne. 3
=3 sf
== sf < „epan‐ sf ed 6ri f`mw f`mw
== sf
< 69 sf
< kehnai sf
↓ new tmba tga dhrst f`mw mni kehn ht te t e safeni f`mw (fd. dho.) cy frefgathno = sf (ushno tga anihno tgrami ed tga =st f`mw)
= sf
↓ tmba tga 6ri f`mw mni kehn ht te tga safeni f`mw (fd.dho.) cy frefgathno =sf (ushno tga anihno tgrami ed tga 3ni f`mw)
= sf
↓ mdtar yeu‘va kehnai m`` tgraa f`mws whtg frefgathno = sf, wamva hn er fut edd tga ymrn ed tga kehnhno sthtfgas ↓ new - cmfb te eur 6ri f`mw; tmba up tgmt ‗undhnhsgai‘ sthtfg momhn mni fenthnua frefgathno `hba tghs;
=. 3. 6. 9. 1.
69 sf *=1 sf, = x iaf.* x 3 *3 sf, = x iaf.* x 7 *6 sf, = x hnf.* x 4 *9 sf, = x hnf.* x 4
< 69 sf < 63 sf < 39 sf sf < 6: sf sf < 64 sf
4. ?. 7. 8.
64 sf 64 sf 64 sf 64 sf
< 64 sf < 64 sf < 64 sf < 64 sf
=:. 6: *9 sf sf, = x iaf.* x 4 ==. =3. *6 sf, = x iaf.* x 4
↓
gara; studd whtg dhcradh``
m tetm` ed 9 reunis ed ed 64 sf < =99 sf (enoehno feunthno)
< 6: 6: sf sf sf < < 39 sf sf
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 61 ed 91 =6. *3 sf, = x iaf.* x 4 =9. *= sf, = x iaf.* x 4 =1. *= x iaf.* x 4
< =7 sf < =3 sf sf < 4 sf
↓
gara; studd whtg dhcradh``
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ saw en tga t ga dhnhsgai `aos whtg sawhno tgrami ente amfg deet ‖ ‖ fd. fd. dho. ;
↓
twe dhnhsgai daat
saw en tga `ao ente tga deet
dhnhsgai dera`aos
↓ sat tga dera`aos mshia mni stmrt whtg frefgathno tga gerns
(lmba 3)
Yga gerns der tga dera`aos wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.
ymrn
nmla ed ymrnfe`er
Fmtenm
e`i `mfa
Iurhno frefgathno tga gerns wh`` ca studdai whtg dhcrad dhcradh`` h`` (trhfby) er whtg ramiy lmia pel pelpels pels (amshar).
Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr hrm` m` re reun uni is
=. 3. 6. 9. 1.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf = x hnf., 1 sf < ? sf = sf, = x hnf., 1 sf < 7 sf 3 sf, = x hnf., 1 sf < 8 sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga gerns te tga `aos `mtarm``y ‖ `mtarm``y ‖ fd. fd. dho. ;
↓
saw en tga gerns `mtarm``y, fd. mrrews
↓ dhnm``y; m`hon tga dera`aos te tga ceiy mni saw en whtg sawhno tgrami ‖ tgrami ‖ fd. fd. dho. en tga naxt naxt pmoa
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 64 ed 91
shiavhaw
drentvhaw
(lmba 3)
Yga ghni `aos fenshst ed tga daat, tga `aos mni tga gerns, wgaracy m`` pmrts wh`` ca frefgatai sapmrmta`y mni sawn teoatgar hn tga `mst stap.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn
Fmtenm
e`i `mfa
Fd. evarvhaw
`ao
ghni `ao
cho gern
deet `htt`a gern
evarvhaw
dhnhsgai ghni `aos
ghni `ao
↓ der m`` pmrts; hrm` m` re reun unis is Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr
m) `aos (lmba 3) Yga `aos wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga `aos wh`` ca studdai whtg studdhno rasp. dhcradh``.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn
=. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf 6. *= x hnf.* x 4 < =3 sf
9. *7 *= sf, sf, = =x x hnf.* hnf.* x x3 4 1. 4. *9 sf, = x hnf.* x 9
< 3: =7 sf sf < < 39 sf
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 6? ed 91
?. *1 sf, = x hnf.* x 9 7. 37 sf 8. 37 sf =:. *4 sf, = x hnf.* x 9 ==. 63 sf
< 37 sf < 37 sf < 37 sf < 63 sf < 63 sf
=3. 63 sf
< 63 sf
=6. 63 sf =9. 63 sf =1. 63 sf =4. 63 sf =?. *4 sf, = x iaf.* x 9
< 63 sf < 63 sf < 63 sf < 63 sf < 37 sf
=7. 37 sf =8. *1 sf, = x iaf.* x 9 3:. 39 sf 3=. *9 sf, = x iaf.* x 9 33. 3: sf 36. 3: sf
< 37 sf < 39 sf < 39 sf < 3: sf < 3: sf < 3: sf
39. *6 sf, = x iaf.* x 9 31. =4 sf 34. =4 sf 3?. =4 sf 37. =4 sf 38. =4 sf
< =4 sf < =4 sf < =4 sf < =4 sf < =4 sf < =4 sf
6:. *? sf, = x hnf.* x 3 6=. *3 sf, = x hnf.* x 4 63. 39 sf 66. *6 sf, = x hnf.* x 4 69. 6: sf
< =7 sf < 39 sf < 39 sf < 6: sf < 6: sf
m tetm` ed 1 reunis ed 63 sf < =4: sf (enoehno feunthno)
m tetm` ed 1 reunis ed ed =4 sf < 7: sf (enoehno feunthno)
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 tga `aos wh`` ca sawn en te tga deet whtg sawhno tgrami `mtar ↓
dhnhsgai `aos
↓ sat tga dhnhsgai `aos mshia mni stmrt whtg frefgathno tga daat
c) daat (lmba 3) Yga daat wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3. Iurhno frefgathno frefgathno tga daat wh`` ca studdai whtg studdhno rasp. dhcradh``. Xeu wh`` gmva te stmrt whtg tga f`mws, tga daat wh`` ca werbai eut hn tga de``ewhno reunis.
ymrn
nmla ed ymrnfe`er
Fmtenm
fymn f`mw ne. 6 `amvhno `mst sf „epan‐‐ „epan‐‐
f`mw ne. =
=. f`mw ne. 3
=. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf 6. *= x hnf.* x 4 < =3 sf
f`mw ne. 3
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 67 ed 91 9. 1. 4. ?. 7.
*3 sf, = x hnf.* x 9 =4 sf =4 sf =4 sf =4 sf
< =4 sf < =4 sf < =4 sf < =4 sf < =4 sf
m tetm` ed 9 reunis ed =4 sf < 49 sf (enoehno feunthno)
↓ dmstan edd `mst sf2 `amvhno m tmh` ed mpprex. =: hnfgas 3. f`mw ne. = mni ne. 6 =. 3. 6. 9. 1.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *1 sf, = x hnf.* x 3 < =9 sf =9 sf < =9 sf =9 sf < =9 sf
↓ mpp`has der f`mw ne. = mpp`has; dmstan edd `mst `mst sf2 `amvhno m tmh` ed mpprex. =: hnfgas ↓ mpp`has der f`mw ne. 6 mpp`has; ien¹t dmstan edd `mst `mst sf, cut put ht mshia der new2 fd. dho. dhnm`hshno tga f`mws ↓ tga f`mws wh`` ca kehnai whtg =sf ↓ p`amsa p`amsa baap baap hn lhni tgmt ms ms yeu‘ra kehnhno tgesa twe f`mws, tga tghri f`mw¹s `mst `mst yat ‗undhnhsgai‘ sthtfg (naais te ca eppeshta tga kehnhno sthtfg ‖ sthtfg ‖ fd. fd. ormphf dho.
ormphf dho.
f`mw ne. =
=6 sf
f`mw ne. 6
f`mw ne. 3
=9 sf
< „epan‐ sf ed 6ri f`mw f`mw
↓ new tmba tga dhrst f`mw mni kehn ht te safeni f`mw (fd. dho.) cy frefgathno = sf (ushno tga anihno tgrami ed tga =st dhnoar)
== sf
< 9: sf
< kehnai sf
= sf
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 68 ed 91
= sf
↓ tmba tga 6ri f`mw f`mw mni kehn ht te tga safeni f`mw (fd.dho.) cy frefgathno =sf (ushno tga anihno tgrami ed tga 3ni f`mw)
↓ mdtar yeu‘va kehnai m`` tgraa f`mws whtg frefgathno = sf, wamva hn er fut edd tga ymrn ed tga kehnhno sthtfgas ↓ new - cmfb te eur 6ri f`mw; tmba up tgmt ‗undhnhsgai‘ sthtfg momhn mni fenthnua frefgathno `hba tghs;
=. 9: sf < 9: sf *6 sf, = x iaf.* x 7 63 sf 63 sf *9 sf, = x hnf.* x 4 *1 sf, = x hnf.* x 4
3. 6. 9. 1. 4.
< 63 sf < 63 sf sf < 63 sf sf < 64 sf < 93 sf
↓
?. 93 sf 7. 93 sf 8. 93 sf =:. 93 sf ==. *1 sf, = x iaf.* x 4 =3. 64 sf
< 93 sf < 93 sf < 93 sf < 93 sf < 64 sf sf < 64 sf
=6. *9 sf, = x iaf.* x 4 =9. 6: sf =1. *6 sf, = x iaf.* x 4 =4. *3 sf, = x iaf.* x 4 =?. *= sf, = x iaf.* x 4
< 6: sf < 6: sf < 39 sf sf < =7 sf < =3 sf sf
↓
=7. *= x iaf.* x 4
gara; studd whtg dhcradh``
m tetm` ed 9 reunis ed ed 93 sf < =47 sf (enoehno feunthno)
gara; studd whtg dhcradh``
< 4 sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y ↓ saw en tga t ga dhnhsgai `aos whtg sawhno tgrami ente amfg deet ‖ ‖ fd. fd. dho. ;
↓
ghni `ao
ghni `ao
saw en tga `aos
dhnhsgai ghni `aos mni dera`aos
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 9: ed 91
↓ sat tga ghni `aos mshia mni stmrt whtg frefgathno tga gerns
(amfg lmba 3)
Yga gerns der tga ghni `aos wh`` ca frefgatai frefgatai whtg ymrn hn tga
ymrn
nmla ed ymrnfe`er
hnihfmtai ymrn fe`er twe mni whtg tga frefgat geeb shza wh`` gmva te frefgat ihddarant gerns der amfg `ao.3. Xeu
Fmtenm
e`i `mfa
Iurhno frefgathno tga gerns wh`` ca studdai whtg dhcra dhcradh`` dh`` (trhfby) er whtg ramiy lmia pel pelpels pels (amshar). ↓ der m`` gerns; Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr hrm` m` re reun unis is Fd. evarvhaw; gerns ne. = gerns ne. =
gerns ne. 3 gerns ne. 3 evarvhaw
m) gerns ne. = (lmba 3) =. 3. 6. 9. 1. 4. ?. 7.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf = x hnf., 1 sf < ? sf = sf, = x hnf., 1 sf < 7 sf 3 sf, = x hnf., 1 sf < 8 sf 6 sf, = x hnf., 1 sf < =: sf 9 sf, = x hnf., 1 sf < == sf 1 sf, = x hnf., 1 sf < =3 sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga gerns te tga `aos `mtarm``y ‖ `mtarm``y ‖ fd. fd. dho. ;
↓
saw en tga gerns `mtarm``y, fd. mrrews
c) gerns ne. 3 (lmba 3) =. 9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 3. 4 sf < 4 sf Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 9= ed 91 6. 9. 1. 4. ↓
= x hnf., 1 sf = sf, = x hnf., 1 sf 3 sf, = x hnf., 1 sf 6 sf, = x hnf., 1 sf
< ? sf < 7 sf < 8 sf < =: sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw en tga gerns te tga `aos `mtarm``y ‖ `mtarm``y ‖ fd. fd. dho. en pmoa pmoa
9: ↓ dhnm``y; m`hon tga ghni `aos te tga ceiy mni saw en whtg sawhno tgrami ‖ tgrami ‖ fd. fd. dho. ; ↓ framta whtg pe`ylar f`my slm`` f`mws mni mttmfg tgal te tga m`ramiy frefgatai f`mws
haw drel mceva
shiavhaw
(lmba 3)
amfg whno pmhr fenshsts ed tgraa whno pmrts, wghfg mra dhrst hnihvhium``y frefgatai mni sawn teoatgar hn tga `mst stap. M`` pmrts ed tgawhnos wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.
ymrn
nmla ed ymrnfe`er
Fmtenm
`hogt erfghi
Iurhno frefgathno tga whnopmrts wen¹ta ca studdai studdai whtg studdhno rasp. dhcra dhcradh``. dh``. ↓ der m`` pmrts; Fenthnueus`y frefgathno hn sphrm` reunis Fd. evarvhaw; pmrt ne. 3
dhnhsgai whnos
pmrt ne. =
pmrt ne. 6 evarvhaw
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 93 ed 91 ↓ der amfg pmrt ed tga whno; ↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst reuni te m rew, fd. dho. ; frefgat tga `mst reuni te m rew
m) whno whno pmrt ne. = =. 3. 6. 9. 1. 4.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf 7 sf < 7 sf *6 sf, = x hnf.* x 3 < =: sf =: sf < =: sf
?. *9 sf, = x hnf.* x 3 7. =3 sf 8. *1 sf, = x hnf.* x 3 =:. =9 sf ==. =9 sf =3. *4 sf, = x hnf.* x 3
< =3 sf < =3 sf < =9 sf < =9 sf < =9 sf < =4 sf
=6. =4 sf =9. =4 sf =1. *? sf, = x hnf.* x 3 =4. =7 sf =?. =7 sf =7. *7 sf, = x hnf.* x 3
< =4 sf < =4 sf < =7 sf < =7 sf < =7 sf < 3: sf
=8. 3: sf 3:. 3: sf
< 3: sf < 3: sf
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg 8 sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y c) whno pmrt ne. 3 =. 3. 6. 9. 1. 4.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf 7 sf < 7 sf *6 sf, = x hnf.* x 3 < =: sf =: sf < =: sf
?. *9 sf, = x hnf.* x 3
< =3 sf
7. *1 sf, = x hnf.* x 3 8. *4 sf, = x hnf.* x 3 =:. *? sf, = x hnf.* x 3
< =9 sf < =4 sf < =7 sf
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 96 ed 91 ==. *7 sf, = x hnf.* x 3 =3. *8 sf, = x hnf.* x 3
< 3: sf < 33 sf
=6. *=: sf, = x hnf.* x 3 =9. *== sf, = x hnf.* x 3 =1. *=3 sf, = x hnf.* x 3 =4. *=6 sf, = x hnf.* x 3
< 39 sf < 34 sf < 37 sf < 6: sf
=?. *=9 sf, = x hnf.* x 3
< 63 sf
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg =1 sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y f) whno pmrt ne. 6 =. 3. 6. 9. 1. 4.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 4 sf < 4 sf *3 sf, = x hnf.* x 3 < 7 sf 7 sf < 7 sf *6 sf, = x hnf.* x 3 < =: sf =: sf < =: sf
?. =: sf 7. =: sf 8. *9 sf, = x hnf.* x 3 =:. =3 sf ==. =3 sf =3. =3 sf
< =: sf < =: sf < =3 sf < =3 sf < =3 sf < =3 sf
=6. *1 sf, = x hnf.* x 3 =9. =9 sf =1. =9 sf =4. =9 sf =?. =9 sf =7. *4 sf, = x hnf.* x 3
< =9 sf < =9 sf < =9 sf < =9 sf < =9 sf < =4 sf
=8. =4 sf 3:. =4 sf
< =4 sf < =4 sf
m tetm` ed 6 reunis ed =3 sf < 64 sf (enoehno feunthno)
m tetm` ed 9 reunis ed =9 sf < 14 sf (enoehno feunthno)
↓ ien¹t dmstan edd `mst sf, cut frefgat tga `mst rew whtg ? sf te m rew ↓ dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y dhnm`hshno tga whnos ↓ mttmfg whno pmrt ne. 6 en whno pmrt ne. 3 mni saw cetg pmrts teoatgar ushno sawhno tgrami ↓ mttmfg pmrt ne. = en whno pmrt ne. 6 mni m`se saw cetg cetg pmrts teoatgar, fd. dho. en tga naxt pmoa
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 99 ed 91
pmrt ne. =
pmrt ne. 3
pmrt ne. 6
pmrt ne. 3
saw tga whnopmrts teoatgar ushno sawhno tgrami
↓
p`amsa neta, tgmt tga 3ni whno lust ca werbai hn m lhrrer-hnvartai lhrrer-hnvartai wmy
↓ m`hon tga dhnhsgai whnos en tga ceiy, dhx whtg phns mni saw en whtg m daw sthtfgas ushno sawhno tgrami (saw en tga trhmno`as, fd. dho.) dh o.)
dhnhsgai sawn whnos
dhnhsgai whnos
(lmba 3)
Yga gerns der tga gami wh`` ca frefgatai whtg ymrn hn tga hnihfmtai ymrn fe`er mni whtg tga frefgat geeb shza 3.
ymrn
nmla ed ymrnfe`er
Fmtenm
e`i `mfa
Iurhno frefgathno tga gerns wh`` ca studdai whtg dhcradh`` dhcradh`` (trhfby) er whtg ramiy lmia pel pelpels pels (amshar). hrm` m` re reun uni is Fent Fe nthn hnue ueus us`` fref frefga gath thn n hn s hr
=. 3. 6. 9.
9 fg, = s`st hn dhrst fg (lmohf ‖ (lmohf ‖ rhno), rhno), hn tghs rhno; 1 sf < 1 sf = x hnf., 9 sf < 4 sf = sf, = x hnf., 9 sf < ? sf
dmstan edd `mst sf2 wamva hn ymrn hnvhshc`y2 saw tga gerns ente tga gami ushno sawhno tgrami ‖ tgrami ‖ fd. fd. dho. ; ↓
saw en tga gerns, fd. mrrews
Der parsenm parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7
pmoa 91 ed 91
- IENA ‖ IENA ‖
www.lm`m-iashons.ia
parsenm`` usa en`y. Net Net der fellarfhm` fellarfhm` purpesa! purpesa! m`` rhogts rhogts rasarvai rasarvai - lm`m iashons iashons ® 3:=7 Der parsenm
View more...
Comments