Makalah Signal Conditioning

May 21, 2018 | Author: w4w4n_s3mk4n1s4 | Category: Amplifier, Operational Amplifier, Cable, Inductance, Electronic Circuits
Share Embed Donate


Short Description

Makalah tentang signal conditioning...

Description

2102-487 Industrial Electronics

Signal Conditioners and Transmission

Overview

4-20 mA Amp

V to I

I to V

Amp

Control Room

Field Noise Source

Interference

Motor/Power 

Arcing

Lighting

Overview

4-20 mA Amp

V to I

I to V

Amp

Control Room

Field Noise Source

Interference

Motor/Power 

Arcing

Lighting

Instrumentation Amplifier (IA) Instrumentation amplifiers a dedicate differential amplifier with extremely high input impedance. Its gain can be precisely se by a single internal or external resistor. The high common-mode rejection makes IA very useful in recovering small signals buried in large common-mode offsets or noise. •IA consists of Two stages: •The fist stage: high input impedance and gain control •The second stage: differential amplifier (change differential signal to common to ground  R R-

 R  E 

+

 R

-

 R+∆ R

+

V dm/2

V out 

 R

V cm

+

-

-

+

V dm/2

 R+

Bridge circuit for sensor application

Equivalent circuit for a Load cell

IA: The First Stage For Ideal op amp, no voltage difference between the inverting and noninverting inputs

V 1 = e1 and V 2 = e2

+ -

e1

V 1

The voltage across  Rg

 R

V  R g  = e1 − e2 +

 I  Rg 

 R g 

V o -

V 2 + e2

 R g  = gain setting resistor 

 R

 I  R g  =

e1 − e2  R g 

This current must flow through all three resistors because none of the current can flow into the op amp inputs

V o = I  R g  2 R + R g 

    

V o = (e1 − e2 )1 +

2 R 

 R g  

• Changing R g  will inversely alter the output voltage.

IA: First + Second stage The second stage of IA is a unit-gain differential amplifier V 1 + e1  R1

-

 R

+  R g 

 R1

V o1 -

e2

+  R1

 R

+

  2 R   V o = (e2 − e1 )1 +   +    R g  

V o

 R1

Gain = 1 +

2 R  R g 

V 2     

V o1 = (e1 − e2 )1 +

2 R 

V o = −V o1

 R g  

Without loading effect, we can applied the direct multiplication for the cascade system e1 − e2

  2 R  1 +    R g      

V o1

-1

  2 R   V o = (e2 − e1 )1 +   R   g    

IA with Offset (Reference) e1

+  R1

 R2

V 1  R2

-

V o1

 R g 

-

e2

    

Output

V o = (e2 − e1 )1 +

+  R2

 R1

2 R 

 R g  

+ V ref 

Reference

Load

V 2

+

Sense

 R2 +V 

V ref  

  2 R   V o1 = (e1 − e2 )1 +   R g      

+

V ref  

-V 

V o = −V o1 + V ref  e1 − e2

  2 R  1 +    R g      

V o1

-1

+ V ref 

    

V o = (e2 − e1 )1 +

2 R 

 R g   

+ V ref 

Commercial IA: AD524 Features: Low Noise: 0.3 Vp-p 0.1 Hz to 10 Hz Low Nonlinearity: 0.03% (G = 1) High CMRR: 120 dB (G = 1000) Low offset Voltage: 50 V Gain Bandwidth Product: 25 MHz Programmable Gain of 1, 10, 100, 1000

AD524 Functional Block Diagram     

G = 1 +

40000   R g   

± 20% Here R g  = 40, 404, 4.44 k Ω or external resistor (connect: RG1 – RG2)

Commercial IA: AD524

V b

V a 349

V out 

Ex For the circu circuit, it, calcula calculate te V a, V b, and V out as well as the effect on the output of the 5V common-mode signal. For a gain of 100, CMRR = 100 dB

V b = 12 V supply = 5 V

349Ω     10 V = 4.99285 V Ω + Ω 350 349    

V a = 

V out  = G (V a − V b )

= 100(4.99285 V - 5 V) = -715 mV

CMRR = 20 log

Gdm Gcm

Gcm = 0.001

GcmV cm = 0.001× 5 V = 5 mV The common mode error is

5 mV

715 mV

×100% = 0.7%

Commercial IA: AD524

Error Budget Analysis To illustrate how instrumentation amplifier specification are applied, we will now examine a typical case where an AD524 is required to amplify the output an unbalance transducer. Figure above shows a differential transducer, unbalance by 100 supplying a 0 to 20 mV signal to an AD524C. The output of the IA feeds a 14-bit A/D converter with a 0 to 2 Voltage range. The operating temperature temperature is 25oC to 85oC. Therefore, the largest change in temperature T within the operating range is from ambient to +85oC (85oC - 25oC = 60oC)

Commercial IA: AD524 1000ppm = 0.1%

Zero and Span Circuits The zero and span circuit adjust the output of a transducer to match the levels you want to provide to the controller or display. Ex. You may need a 0.01 mV/lb input to a digital panel meter, while the load cell provides a 20 V/lb reading with 18 mV output with no load. Ex. A/D converter needs a 0- to 5-V signal, while the temperature transducer output 2.48 to 3.90 V.

V out 

V out       l   e    l      b   a    u   n    i    o    i  g     d   r   O    n    a    p     S  a  l f

  H  a n  p  S

V in

  y   e  l   v   t  i   s  i  o   p   d   e   i  f  t   s  h   r o   l   e    Z   n  a   i   i  g    O  r   l  y   e   i  v   a  t   g    n  e   d   e   i  f  t   h   s  o   r    Z  e

V in

Zero and Span: Inverting summer  ±V 

 R f  

 ROS 

eu1

 R

ein

 R

 Ri

-

+

eu2

+  Rcomp

Inverting summer   R f   R f  eu1 = − ein − V   Ri  ROS  eu 2 =

Compare this to the eq. of straight line

 R f   Ri

ein +

 R f   ROS 

 R/2

Inverting amplifier  eu 2 = −eu1



eout 

 y = mx + b

Here y = eu2, x = ein, m = R f / Ri and b = R f / Ros V 

b=

 R f   ROS 



m =

 R f   Ri

ein

Zero and Span: Instrument Amplifier  Ex When the temperature in a process is at its minimum, the sensor outputs 2.48 V. At maximum temperature, it outputs 3.90 V. The A/D converter used to input these data into a computer has the range 0 to 5 V. To provide maximum resolution, you must zero and span the signal from the transducer so that it fills the entire range of converter. V out  = 0-5 V V in = 2.48-3.90 V

V out 

b=

 R f   ROS 

m =

 R f   Ri

m=

V out (max) − V out (min) V in (max) − V in (min)

=

5V−0V 3.9 V − 2.48 V

= 3.52

b = V out  − mV in = 0 − 3.52 × 2.48 V = -8.73 V

V in



Let R f  = 330 k

The gain, m is set by  R f  / Ri , R f  relatively large, so that  Ri  will not load down the sensors  R f  330 k Ω = = 93.7 k Ω  Ri = m 3.52

Select Rs as a 47 k

fixed resistor with a series 100 k potentiometer. (m ~ 2.25-7.02)  R f V  (330 k Ω)(- 12V)  / ROS V  select V = -12 V b is R f  = = 454 k Ω  ROS  = − 8.73 V b Select Rs as a 220 k fixed resistor with a 500 k potentiometer. (b ~ -18 - -5.5 V)

 Rcomp = R f  // R1 // ROS  = 62.9 k Ω The resistors in the 2nd stage should be in k pick R = 2.2 k and so R /2 = 1.1 k

Select Rcomp = 56 k range, this will not load the 1st stage,

Zero and Span: Instrument Amplifier  +V 

+  R2

8 2 16

+

ein

4

+

-

1

span

AD524 6

 R g 



-

Sense

 R2

V out 

9

11 3

O

10

12

 R1

5

13

 R g 

-

S

-

span

Output

V out 

+

7

+V 

+V 

 R2

 R1

Reference

 R2

+

+V 

-V 

V ref  

zero

V ref  

zero

+

-

-V 

-V 

+

-V 

    

V out  = 1 +

40000   R g   

(e2 − e1 ) + V ref 

V ref  

Zero and Span: Instrument Amplifier  Ex The output from a load cell changes 20 V/lb with an output of 18 mV with no load on the cell. Design a zero and span converter using an instrumentation amplifier which will output 0 Vdc when there is no load, and will change 10 mV/lb. +V 

V sensor  = 20 V/lb x Load + 18 mV V out  = 10mV/lb x Load = G V sensor + V ref 

8 2 16

+

4

+

S 5

13

V  sensor 

 R g 

-

1

V out 

9 6

11 3

O

10

AD524

12

V out  = 20 V G x Load + 18mV G + V ref 



-

G=

7

span

10 mV/lb 20 µ V/lb

= 500

+V  +V  -V 

V ref  

zero

G = 1+

40000  R g 

= 500

Select  R g as a 33 fixed resistor with a series 100 potentiometer. (G ~ 301-1213)

+ -

0 = 18 mVG + V ref  = 18 mV × 500 + V ref  -V 

-V 

    

V out  = 1 +

40000 

(e2 − e1 ) + V ref 

 R g   

 R g  = 80.2 Ω

V ref  = −9 V

So tie one end of the potentiometer to ground and the other end to –V supply. Select resistor and potentiometer values that will put approximately -10 V at one end and -8 V at the other end.

Voltage-To-Current Converters Signal voltage transmission presents many problems. The series resistance between the output of the signal conditioner and the load depends on the distance, the wire used, temperature, conditioner.

 Rwire

Distance, wire type, temperature

 Rwire

+ -

+

+ ein

-

 R

 R f  

   R f    ein V o = 1 +  R     -

load

   Load     V o +  R  Load    wire  

V To I: Floating Load The most simple V to I actually is the non-inverting amplifier  +V 

 Rwire

+ -

 I  +

-V 

ein

-

load

+

ein

 R



-

 I  =

ein  R

Therefore, The resistance in the transmission loop ( Rloop = Rwire + Rload) does not affect the transmitted current. However, the output voltage of the op amp is affected by the  Rloop    Rloop   ein < V  sat   R    

V out  = 1 +

 Rloop must be kept small enough to keep the op amp out of the saturation.

V To I: Floating Load V to I with current booster 

Add transistor for  increase current output

+V 

New op amp with high current output +

Q1

 I 

 Rwire

Q2

load

+ ein

-V 

-

 I 

 R

 I  =

ein  R

Many transmission standard call for either 20 or 60 mA current. These values are beyond the capabilities of most general-purpose op amps. However, the transistor can be added to increase the transmission current capability.

V To I: Floating Load The signal at the load is inherently differential. So we can use difference or instrumentation amplifier to reject any common-mode noise. Open and short circuit in the transmission loop can be detected by checking V out of the non-inverting amplifier (transmission side) open circuit : V out  = V sat  short circuit : V out  = ein However, at the load side, with this circuit , if ein = 0, I  L = 0, here it appears that the I  L = 0 is the valid signal. If the open or short circuit fault occurs, I  L will fall to zero too. The load would respond as if ein = 0. Therefore a method has been advised to allow the load to differentiate between no signal (circuit failure)  I  L = 0 and ein = 0 This can be achieved by adding an offset to  I  L when ein = 0 ein = 0: I  L > 0 Ex. 4-20 mA standard in current transimission

V To I: Floating Load zero

An example of 4-20 mA V to I converter (span + zero adjust)

10 k Ω

-V 

+V  eref  

+V 

1 MΩ

+

 I in

ein

 Rwire

 I  L

Q1

-

1 MΩ

load

-V 

 R span

 I  b=

m=

1 2 R

eref  2 R

ein

 I  =

ein + eref  2 R

=

ein 2 R

+

eref  2 R

m = 1/2 R, b = eref /2 R

Zero and Span: Instrument Amplifier  Ex Design an offset voltage-to-current converter that will produce 4 mA with an input of -5 V and 20 mA with an input of 10 V  I (mA)

m=

15 10

1 2 R

=

 I out (max) − I out (min) V in (max) − V in (min)

Select a 430

5

-5

 I out  = 4 - 20 mA

V in = -5 - 10 V

20

4 0

 I  =

10

5

V in 2 R

+

V ref  2 R

V in

=

20 mA − 4 mA 10 V − (−5 V)

fixed resistor with a series 100

 R = 469 Ω

potentiometer.

V ref  = 2 RI − V in = 2(469 Ω)(20 mA) − 10V = 8.8 V

V To I: Grounded Load This V to I actually is a derivative of difference amplifier   R3  R1

 I 

+ e1

V out 

 R2

e2

 Rs

+ V  L

 R4

load

    I

 R1=R2=R3=R4=R

Using superposition: V out  due to e1 = -e1 V out  due to e2 = e2 V out  due to V  L = V  L

V out  = V out  |e1 +V out  |e2 +V out  |V  L

= - e1 + e2 + V  L = e2 - e1 + V  L

The current drive into the load is approximately equal to the current in  Rs if R Load   IRload  + e2 − e1

V To I: Grounded Load An example of 4-20 mA V to I converter (span + zero adjust) zero  Ra

100 kΩ

+V 

 Rb eref  

100 kΩ

-

    I

 R s

+ 100 kΩ

ein

span

 

-V 

+ V  L

load

100 kΩ

 I  L ≈

 I  m=

b=−

eref   R s

ein

1  R s

ein − eref   R s

=

ein  R s



eref   R s

m = 1/ R, b = -eref / R

V To I: XTR110 •4 to 20 mA Transmitter  •Selectable input/output ranges: 0-5V or 0-10V Inputs 4-20mA, 0-20mA, 5-25mA Outputs • Required an external MOS transistor to transmit current to load Reference voltage I to I converter  (current mirror)

Precision resistive network

V to I converter 

V To I: XTR110 VCC  13.5-40V

XTR110

VIN1(10V)

R8 500

External MOS

R9 50

4

VREF IN 3

3

Io /10

V a

R5

Io

-

R3 20k

+

Io 4-20mA

Io /10

RL

V b VIN2(5V) 5

R6 1562.5 16mA span

R7 6250 4mA span 9

10

V a  R6

Since there is no voltage difference between the op amp inputs

+ -

R4 10k

 R6

=

 I  R 8 ≈ I R 6

14

16.25k R2 5k

V b

The current  I  R6 is approximately equal to  I  R8

1

R1 15k

 I  R 6 =

16

8

V  R8 = V R 9  I o = I  R 9 =

 I  R 8 R8

 I o =

 R9 10V a  R6

= 10 I  R8

V To I: XTR110 The voltage at V a is defined by precision divider network and the voltage at V in1, V in2 and V ref  . Using superposition V a due to V in1 = V in1/4 V a due to V in2 = V in2/2 V a due to V ref  = V ref /16 V a = V in1 / 4 + V in 2 / 2 + V ref  / 16

Therefore, the relation of the output current can be shown as  I o =

10 V in1 / 4 + V in 2 / 2 + V ref  / 16  R span

This IC allows us to change the value of  Rspan by using R6, R7 and external resistors so therefore the Io span can be set to 16mA, 4mA or arbitrary value. Ex if V in2 = 0, V ref  = 10 V, V in1 varies from 0-10V and Use  Rspan = R6 = 1562.5 At V in1 =0 V; Io = 4 mA at zero V in1

Zero = 4 mA

At V in1 =0 V; Io = 20 mA at V in1 = 10 V

Zero+span = 4mA + 16 mA

V To I: XTR110 VIN1

4

VREF IN

3

R1 15k

R3 20k

R5

R2 5k

1 + 2 + 3

V a

16.25k R4 10k

V a = 14 V IN1 + 12 V IN2 + 161 V REF

VIN2 5

 Rin = 22 k Ω

 Rin = 27 k Ω

 Rin = 20 k Ω

VIN2

VIN1

VREF IN

1

V a

16.25k

V a =

R2 5k

 R4 //( R5 + R1 // R2 )  R3 + R4 //( R5 + R1 // R2 )

R4 10k

V IN1 = 14 V IN1

V a

16.25k R1 15k

V a =

R2 5k

 R3 //( R5 + R1 // R2 )  R4 + R3 //( R5 + R1 // R2 )

3

R5

R5

R5

R1 15k

R1 15k

R4 10k

2

R3 20k

R2 5k

R3 20k

V IN2 = 12 V IN2

V a

16.25k

V a =

 R3 // R4

R4 10k

R3 20k

 R2

( R5 + R1 // R2 ) + R3 // R4  R1 + R2

V REF = 161 V REF

V To I: XTR110 Pin connections for standard XTR110 input voltage/output current ranges

15 V 1 F 15 16 12

3

1

13

XTR110

14

4

5

9

A basic 4 to 20 mA transmitter  4 to 20 mA Out

2

0 to 10 V RL

VL

V To I: XTR110  I out  =

V out  = 400V in + 6 V V  sensor  = ±10 mV

10(V in1 / 4) 1250 Ω

 I out  = 4 − 20 mA

V  sensor  = 2 − 10 V

 I out  =

10( 400V  sensor  + 6) / 4 1250 Ω

Current-To-Voltage Converters Grounded Load I to V converter  R f  

 Ros

Span and Zero circuit

±V 

4 to 20 mA

 R

+ -

 R

 R2

-

+

+

 R L  Rcomp

Current is converted into a voltage by  R L

 R/2

+ V out  -

Voltage follower is inserted to avoid the loading effect

V out  =

 R f   Ri

 IR L +

 R f   ROS 



m = R f  R L/ R ,i  b = R f / ROS V 

The grounded load converter has many problems with the common ground (use by many device) especially the noise source. To reduce this problem, we use a floating load.

I To V Converters: Floating Load  R f  

4-20 mA

 R span

 Ri

 R4  Ri

+

+V 

+ V out  -

 R f    R pot 

+ V ref  

-V 

V out  =

 R f   Ri

 IR span + V ref 

m = R f  R L/ R ,i  b = V ref 

To prevent the loading effect be sure that  Rspan  Rspan I-V , pick  Ri  = 2.2 k Find V ref  :

V ref  = V out  −

 R f   Ri

 R span I  = 0 −

22 k Ω 2.2 k Ω

(4 mA )(62.5Ω ) = −2.5 V

I To V Converters: Floating Load +V 

+ 2V

+

+

-

0.7 V

-

+

 I 

 IRspan I-V -V  +

 IRspan V-I

 Rspan I-V

-

 I 

 Rspan V-I

-

+ V  = 2 + 0.7 + IR spanI −V  + IR spanV − I   R spanI −V  (max) =

12 − 2 − 0.7 − (20 mA)(312) 20 mA

= 153 Ω

Therefore, 62.5 resistor would work. However, if we had chosen  R f  / Ri =1 then  Rspan I-V  = 625 , which is too large. The op Amp in the voltage-to-curren converter would saturate before 20 mA would be reached.

Voltage-To-Frequency Converters To provide the high noise immunity, digital transmission must be used. V to F will convert the analog voltage from the sensor or signal conditioner to a pulse train. The pulse width is constant but the frequency varies linearly with the applied voltage

 f  ∝ V in

V in

V to F

f out 

 f out 

V in

Ideal V to F characteristics

V-To-F: LM131

LM131

Suitable for various applications: precision V to F converter  simple low-cost circuits for A/D conversion precision F to V converter  long-term integration linear frequency modulation and demodulation

Voltage-To-Frequency Converters Basic V to F block diagram  Rt 

C t 

V CC  8 2

5

Switched current source

 f o =

V logic

 R S 

 R L

C  L

Comparator  1

V  x 

6

7 Input V  voltage 1

V in

3

-

One shot timer 

+

Frequency output

4

a b



V  x  t 

V out 

t   f out 

High V in

high  f out 

Adjustment

Low V in

low  f out 

Adjust

High V in

high  f out 



V in

 RS 

1

2.09 V  R L  Rt C t 

Voltage-To-Frequency Converters  R







Determine the timer of one shot T OS  = 1.1 Rt C t 



CC 

Determine  I ref 

8 2

5

Switched current source



logic

 R

 S 

Comparator 

 R

 L



 L

1

6

7 Input V  voltage in

-

3 One shot

Frequency output

timer 

+

4

Phase I: Charge C  L with  I ref  within the specific time T OS  from the one shot timer. At the end of this phase, V C  reaches the value assigned as V  x  Phase II: C  L discharge through  I ref  until V C  is equal to V in. The time in this phase is defined as T  II  We can found that 1/(T OS  + T  II ) = f 

V in

Voltage-To-Frequency Converters Phase I: Charge C  L with  I ref  within the specific time T OS  determined from the one shot timer. At the end of this phase, V C  reaches the value assigned as V  x  Initial condition: V C (0) = V in  I ref 

 R L

C  L

V C (t ) = (V in − I ref  R L )e −t /τ  + I ref  RL

Assume R LC  L >> T OS 

e

V  x = V C (T OS ) = V in + ( I ref  R L − V in )

−T OS  / τ 

τ  = R L C  L

≈ 1 − T OS  / τ 

T OS 

1

τ 

Phase II: C  L discharge through  I ref  until V C  is equal to V in. The time in this phase is defined as T  II  Initial condition: V C (0) = V  x   R L

 I 

C  L

τ  = R L C L

V C (t ) = V  x e −t /τ  V in = V C (T  II  ) = V  x e

−T II  / τ 

T  II  = τ ln

Since R LC  L >> T OS  , Therefore V  x  /V in ~ 1

 V  x

  − 1  V in  

T  II  = τ 

V  x V in ln

V  x V in

2



V  x V in

−1

Voltage-To-Frequency Converters Combine eq.(1) and (2)

T  = T OS  + T  II  =  f  =

1

=

 I ref  R LT OS  V in V in

T   I ref  R LT OS 

Substitute I ref  = 1.9 V/  Rs ,T OS  = 1.1 Rt C t 

 f  =

V in R s 1.9 V R L (1.1 Rt C t  )

=

V in

 R s

1

2.09 V  R L  Rt C t 

V To F Converters Ex Design a voltage-to-frequency converter that will output 20 kHz when the input is 5 V. At maximum frequency, the minimum period is 1 1 = = 50 µ s T min =  f max 20 kHz We have to set the pulse width no wider than about 80% of the minimum period, otherwise, at the higher frequencies the pulse width may approach or exceed the period, which will not work. t low = 1.1 Rt C t  pick C t  = 0.0047 F (somewhat arbitrary, but suggested by manufacturer)

 Rt  =

t low 1.1C t 

=

(0.8)(50 µs ) = 7.7 k Ω (1.1)(0.0047 µF )

pick Rt  = 6.8 k , since this is not a critical parameter, as long as it is not too big. This give t low = 35 s. Pick  R L = 100 K .

 R s =

(2 V ) f 0 R L Rt C t  (2 V )(20 kHz )(100 k Ω )(6.8 k Ω )(0.0047 µF )

Select a 22 k

V in

=

5V

fixed resistor with a series 10 k

potentiometer.

= 25.6 k Ω

Voltage-To-Frequency Converters Low-pass filter 

Simple V to F converter  From

 f o =

V in

 RS 

1

2.09 V  R L  Rt C t 

 I  =

1.9 V  RS 

< 200 µA

Manufacturer’s recommended, R L = 100 k  , Rt  = 6.8 k  , C t = 0.01 F and R S  = 14.2 k   f o =

1 kHz Volt

V in

V To F Converters Ex Design a voltage-to-frequency converter that will output 20 kHz when the input is 5 V. At maximum frequency, the minimum period is 1 1 T min = = = 50 µ s  f max 20 kHz We have to set the pulse width no wider than about 80% of the minimum period, otherwise, at the higher frequencies the pulse width may approach or exceed the period, which will not work. t low = 1.1 Rt C t  pick C t  = 0.0047 F (somewhat arbitrary, but suggested by manufacturer)

 Rt  =

t low 1.1C t 

=

(0.8)(50 µs ) = 7.7 k Ω (1.1)(0.0047 µF )

pick Rt  = 6.8 k , since this is not a critical parameter, as long as it is not too big. This give t low = 35 s. Pick  R L = 100 K .

 R s =

(2 V ) f 0 R L Rt C t  (2 V )(20 kHz )(100 k Ω )(6.8 k Ω )(0.0047 µF )

Select a 22 k

V in

=

5V

fixed resistor with a series 10 k

potentiometer.

= 25.6 k Ω

Frequency-To-Voltage Converters V CC 

 I out  1

 R L

Connect to low pass filter 

Comparator  7

 R D

8

+

One shot timer 

 Rt  V CC 

C t 

C  D V in

V in i   I out  T 

i=

The amplitude of pulse current output is The average voltage output is The average current output is

 I ave =

1.9 V  R s

it  1.9 V ×1.1 Rt C t  T 

=

 R sT 

 R V ave = I av e R L = 1.9 V ×1.1 Rt C t   L f in  R s

Frequency-To-Voltage Converters

High pass filter for input frequency

Low pass filter for output current

Simple F to V converter  From

 R V ave = 1.9 V × 1.1 Rt C t   L f in  RS 

 R L = 100 k  , Rt  = 6.8 k  , C t = 0.01 F and R S  = 14.2 k  V ave =

1V kHz

f in

F To V Converters Ex A reflective optical sensor is used to encode the velocity of a shaft. There are six pieces of reflective tape. They are sized and positioned to produce a 50% duty cycle wave. The maximum shaft speed is 3000 r/min. Design the frequency-tovoltage converter necessary to output 10 V at maximum shaft speed. Provide filtering adequate to assure no more than 10% ripple at 100 r/min The maximum frequency is T min =

Select

1

 f max =

= 3.33 ms

6 counts rev

×

3000 rev 1 min min

×

60 s

= 300 Hz

T  pulse = 0.5T min = 1.67 ms

300 Hz T out ( high) ≤ 0.8T min = (0.8)(3.33 ms ) = 2.664 ms

Select C t  = 0.33 F  Rt  = t low = (0.8)(50 µs ) = 7.7 k Ω 1.1C t  (1.1)(0.0047 µF ) pick Rt  = 6.8 k , This give t out(high) = 2.47 ms. We must set 5 R DC  D
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF